

Quantum Computing at Mphasis

March 8, 2021

CASE STUDIES

< 1

QUANTUM COMPUTING EXPERIMENTS

Problem	Description	Quantum Achievement	Algorithms
Distributional Supply Network Optimization	 Facility location problem Select best among potential sites to equip with services, while minimizing costs. 	 Around 400% improvement in Prediction time 	Classical Simulated Annealer, Simulated Annealer, Hybrid Solver
Portfolio Optimization and Asset Allocation	 Maximizing portfolio return while minimizing risks 	 76.65 % Reduced Time taken in optimization 2.29 % Better result for same no. of annealing steps 5.6 % Increased Portfolio Return 	Simulated Annealing, Hybrid Solver
Damaged Shipment Classification	 Predicting damaged/not damaged shipment images using computer vision 	 12.34% improvement in test accuracy 325 % improvement in training time 3.44 % improvement in test time 	Image transformation + Transfer learning + quantum circuit layers + DNN (Hybrid QML model)
News Headlines Sentence Clustering	 Clustering of similar news headlines together to analyze the trends of news 	 98.75% improvement in Training time 80% improvement in Testing time 8% improvement in coherence score 	QUBO HSS solver, QPU solver, K-means clustering
Covid 19 News Sentiment Analysis	 Categorizing the sentiment of the new headlines into Positive, Negative and Neutral 	 4% improvement in accuracy 94% improvement in Training time 98.57% improvement in Testing time 	Qboost HSS solver, BERT, Qboost (Pure)

QUANTUM COMPUTING EXPERIMENTS

Problem	Description	Quantum Achievement	Algorithms
Resource Allocation Optimization	 Problem is to select a set of trajectories that complete all repairs of machine while minimize the congestion across all resources. 	• The time takes to get results from classical system is 40x more than the time taken to get the quantum results	Classical Simulated Annealer, Simulated Annealer, Quantum Solver
Freight Route optimization	 identify the optimal route to transfer packages through available destination routes, with minimum operational cost, maximum capacity utilization of legs 	 The time takes to get results from classical system is 25x more than the time taken to get the quantum results 	Classical Simulated Annealer, Simulated Annealer, Quantum Solver
Capacitated Vehicle Routing Optimization	 Obtain optimal route and number of trucks to minimize the cost function 	 68.74 % Reduced Time taken in optimization 	Genetic algorithm, Hybrid Solver
Time Series Forecasting	 Time Series Demand Forecasting problem Predict the future 36 months of demands for the provided SKUs 	 2% Improved prediction percentage error achieved on 6 month future forecast. 	Timeseries decomposition + Quantum circuit + Deep learning (Hybrid QML framework)

Damaged Shipment Classification – Feature Decomposition

Ģ

Classify shipment boxes into either damaged or not damaged categories

- Image preprocessing
- EON: Image orthogonalization through convolution
- Quantum variational classifier
- Quantum ML pipeline

		Accuracy(%)
Ø	With EON	100
	Without EON	41

- Training sample: 132
- Validation of model: 23
- Prediction on new images: 10

Т

Damage Shipment Classification: Classical ML Vs Quantum ML

	Google Auto ML	EON powered QML
Training time (Sec)	8820	875
Training accuracy (%)	94.7	100
Validation accuracy (%)	82.6	100
Prediction accuracy (%)	9 out of 10	All 10

Damaged Shipment Classification – QCNN

Classify shipment boxes into either damaged or not damaged categories

- Image preprocessing
- EON: Feature transformation, Resizing
- Quantum CNN
- Integrated DL-QML
 pipeline

	Accuracy(%)
With EON	81.25
Without EON	50

- Training sample: 132
- Validation of model: 23
- Prediction on new images: 10

	CNN	EON powered QML
Training accuracy (%)	73.89	99.36
Test accuracy (%)	50.00	81.25
Prediction accuracy (%)	5 out of 10	7 out of 10

Forecast future demand using historic global demand data

- Time Series Forecasting
- EON: Vector decomposition and learning, Wave fit for seasonality
- Quantum function fit
- Quantum ML pipeline

	% of Wins over ML
With EON	62
Without EON	36

- Number of SKUs for forecasting: 10
- Size of timeseries: 53 months of sales for each SKU
- Train: 47 months data
- Forecast: Next 6 months
- Number of traditional trained: 42

_

Traditional Time Series Vs. Quantum function fit

- Number of SKUs for forecasting: 10
- Size of timeseries: 53 months of sales for each SKU
- Train: 47 months data
- Forecast: Next 6 months
- Number of traditional models used in past: 42

Models on which EON powered QML won (Out of 42)		
ID	# models	% of win
SKU1	24	57.14%
SKU2	39	92.86%
SKU3	22	52.38%
SKU4	23	54.76%
SKU5	42	100.00%
SKU6	30	71.43%
SKU7	28	66.67%
SKU8	30	71.43%
SKU9	19	45.24%
SKU10	30	71.43%

Sentiment Analysis - QCNN

Ş

Classify text input into either positive or negative sentiment

- Text preprocessing
- EON: Embedding and Autoencoder
- Quantum CNN
- Quantum ML pipeline

Quantum Circuit Data processing Text Input Quantum Circle Text Pretrained Quantum Quantum Quantum Trained Bert Model Rotation Preprocessing Convolution Preprocessing Weights Resize Some 🔔 Some Text and Text QCNN Feature 7 3a28 277c 4f27 2c28 2766 6f72 engineering "The the Who is a rock band från USA, founded vear 1964. They made \$1.000.000" Trained Quantum Hybrid Mode 23.3.1445.11.8.1710.1001.1.1457.2.2576.153.5458.4.192.152.107.92.2.11515.0.0.0.0.0 **Parameters** MEmbedded Text +1 n Positive Negative **Quantum ML training Test Environment Feature Engineering Training Environment**

Accuracy(%)With EON84Without67EON67

- Dataset: COVID 19 News Headlines
- Training set size: 1216
- Validation set size: 304

Sentiment Analysis: Traditional ML Vs. Quantum Sentiment

	Traditional	EON powered QML
Training accuracy (%)	96	97
Validation accuracy (%)	82	84

Classify shipment boxes into either damaged or not damaged categories

- Preparing Quantum data using Mphasis EON
- Quantum circuit design
- Quantum ML training
- Variational Classifier

- We were able to detect 3 out of 10 fraudulent transactions
- Need some more work

Data normalization Quantum Angle State Quantum Trained Data Transformation Generation Preparation Layers Weights Quantum Circuit Eigen Value Decomposition Data Processing Transaction Credit Card Tx Feature engineering Trained Quantum Hybrid Mod Auto Encoder 10.16919 10.17594 10.17526 10.17201 **Dimension Reduction** M**Parameters** Feature orthogonalization Not fraud **Quantum ML training**

Training Environment

Data set Details

Online transaction data

- Data set source: Kaggle
- Total transactions: 284807
- Fraudulent Transactions: 492 .

Feature Engineering

Dataset is not balanced

Fraud

Test Environment

- Total transactions: 284807
- Fraudulent Transactions: 492
- Dataset is not balanced

	Quantum Circuit
Training accuracy (%)	88.4
Validation accuracy (%)	88.2
Prediction accuracy (%)	12.60

- Results of Quantum Machine Learning are encouraging
 - Data of different nature are handled for Quantum algorithms: Image, Text, Timeseries data
 - The results of image classification and Time series forecasting are promising and match the existing framework/techniques
 - Very good model accuracy and reduced training time compared to classical counter parts
- Currently, there is a limitation on the number of qubits available, which may result in
 - Increased training time
 - Information loss due to data transformation, especially while handling large set of attributes

THANK YOU

About Mphasis

Mphasis (BSE: 526299; NSE: MPHASIS) applies next-generation technology to help enterprises transform businesses globally. Customer centricity is foundational to Mphasis and is reflected in the Mphasis' <u>Front2Back</u>[™] Transformation approach. Front2Back[™] uses the exponential power of cloud and cognitive to provide hyperpersonalized (C=<u>X2C²_{TM}</u>=1) digital experience to clients and their end customers. Mphasis' Service Transformation approach helps 'shrink the core' through the application of digital technologies across legacy environments within an enterprise, enabling businesses to stay ahead in a changing world. Mphasis' core reference architectures and tools, speed and innovation with domain expertise and specialization are key to building strong relationships with marquee clients. Click <u>here</u> to know

Important Confidentiality Notice

This document is the property of, and is proprietary to Mphasis, and identified as "Confidential". Those parties to whom it is distributed shall exercise the same degree of custody and care afforded their own such information. It is not to be disclosed, in whole or in part to any third parties, without the express written authorization of Mphasis. It is not to be duplicated or used, in whole or in part, for any purpose other than the evaluation of, and response to, Mphasis' proposal or bid, or the performance and execution of a contract awarded to Mphasis. This document will be returned to Mphasis upon request.