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1 Introduction 
 
This document discusses security guidelines, policies, design principles, and implementation at 
Wipster. 

1.1 Target audience 
This document provides a guide covering the measures we take to ensure Wipster systems and 
data are secure.  The target audience is technical and non-technical professionals of 
organisations that use, or intend to use, the Wipster platform. 

1.2 About Wipster 
Wipster is a pre-publishing platform providing the means for engaging video, image and Portable 
Document Format (PDF) review and approval among teams creating short-form video content, 
imagery and other creative output.  Content is uploaded to the platform, and teams collaborate 
via commenting directly on the content. Comments become to-do items, making Wipster the 
system of record for creative projects. Wipster accelerates the creative process, allowing teams 
to publish more content, faster. 

1.3 Who to contact 
Direct any questions regarding this document or the Wipster platform to: 
 
Robyn Haugh  
VP of Product 
robyn@wipster.io 
+64 21 022 59496 
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2 Infrastructure overview 
 
This chapter outlines the network and server infrastructure for Wipster and gives an overview of 
the application architecture from an IT security perspective. 
 

2.1 Servers and services 
Wipster runs on Microsoft’s Azure cloud platform. Wipster operates in a multi-tenanted 
environment with logical separation of instances controlled by credentialed access. Traffic to our 
servers is restricted using Azure’s security controls and on-server IP filters to isolate server 
environments and to only allow traffic that is necessary for the operation of the platform. 
 
Access to our servers is highly restricted. Customers never have direct access, except through 
our web application interfaces, which customers use through their web browsers on personal 
computers or mobile phones. Administrative access in the application is restricted to employees 
at Wipster, is based on their ​@wipster.io​ email account, and requires a change to our application 
to enable. This level of access is granted only to employees who require it to perform their duties. 
 
Security credentials for logging on to virtual machines are never shared between our production, 
staging, or other environments. 
 
Wipster also uses Amazon’s CloudFront content delivery network (CDN) service to speed the 
delivery of content to users around the world.  Video, image, audio and PDF traffic through 
CloudFront is served only via HTTPS and CloudFront only accepts requests from our Wipster 
domain as the origin, maintaining our secure environment. Access to CloudFront servers is 
restricted in the same manner as our Azure servers. 
 
Wipster uses Brightcove Zencoder to encode uploaded videos to two resolutions: one High 
Definition and one Standard Definition (assuming the resolution of the original upload supports 
1080p). These encodings are then used for video playback on the Wipster platform.  

2.2 Redundant architecture 
Our systems are designed to avoid single points of failure. Video/image/PDF and Audio data and 
Azure Table (nosql) data are replicated across two Azure datacenters in Geo-Redundant Storage . 1

The cloud services running the Wipster applications are configured to automatically scale up and 
down in response to demand. The SQL Server database has a standby server in a separate 
datacenter that will take over automatically if the primary instance goes down. 

1 ​https://docs.microsoft.com/en-us/azure/storage/storage-redundancy 
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2.3 Separate security environments 

 
 
Our servers and services perform different roles and are grouped in environments that are strictly 
isolated from each other. We have the following broad environments: 
 

● Development operations infrastructure 
Each system has its own security and access controls.  The infrastructure includes source 
code control via Git, continuous integration via Microsoft’s Visual Studio Team Services, 
and centralised logging via Seq  and Raygun. Access to these systems is strictly limited to 2

employees on a needs-only basis, and served over HTTPS connections. 
 

● Staging 
Staging mimics production, but has dedicated cloud services and storage containers, and 
a dedicated SQL Server instance. Staging is used for end-to-end testing of the Wipster 
application prior to deploying changes to Production. 
 

● Production 
Including database servers, cloud services, storage containers and caching servers. 

 

2.4 Production environments 
The Wipster production environment consists of: 
 

● An Azure cloud service-based private API 
● Azure cloud services that host the Wipster web and mobile applications 

2 ​https://getseq.net/ 

7 / 32 

https://getseq.net/


 
 
 

 

● An Adobe plugin that integrates directly with Adobe Premiere and Adobe After Effects 
and communicates with the Wipster platform via our private API 

● Amazon’s CloudFront CDN, used to speed video playback across all apps, and uploads 
from the the Adobe plugin 

● A Redis caching server within our Azure environment powering web notifications 
● Several Azure cloud service-based scheduled tasks and worker roles that perform 

backend functions (such as video encoding), operating via queues 
 
All traffic on the Wipster platform is encrypted via HTTPS: 
 

● From client browser and Adobe software to Azure cloud services and Azure storage 
containers 

● From client browser, through CloudFront, to Azure storage containers for video playback 
● From Azure cloud services to the SQL Server database 
● From Azure cloud services to Azure Tables (nosql) 
● From Azure cloud services to the Redis caching server (port 6380) 
● To all third-party services: 

○ From Azure storage containers to Zencoder for encoding 
○ From cloud services to Braintree , our payments provider 3

○ From cloud services to Auth0 , our Enterprise Single-Sign On (SSO) provider 4

 
The cloud services that run our apps sit behind an Azure load balancer. No direct HTTP(S) access 
to the cloud services is possible. 
 
Wipster data is encrypted at rest via built-in Azure encryption functionality: 
 

● Video, Image, PDF and Audio data in Azure storage containers 
● Azure Table data in storage containers 
● SQL Server database (v12.0.2000.8) 

 
Cached data in Redis has a Time To Live (TTL) of 24 hours. 
 
Azure is configured to only allow access to our SQL database to virtual machines within our 
environment. No other machines and/or IP addresses have access without explicit configuration. 
 
The following diagrams depict: 

A. Wipster’s Production Azure environment 
B. Wipster’s Production environment with connections to third party systems 

 
 

3 ​https://www.braintreepayments.com/  
4 ​https://auth0.com/  

8 / 32 

https://www.braintreepayments.com/
https://auth0.com/


 
 
 

 

A. 

 
 
 
 
 
 
 
 
 
 

9 / 32 



 
 
 

 

B. 

 

2.4.1 Wipster Qualys SSL Labs rating 
The Wipster app has an “A” rating according to the Qualys SSL Labs SSL Report.   5

 
Known weak cryptographic ciphers and protocols have been disabled (e.g. 3DES, SSL2, SSL3, 
TLS 1.0, TLS1.1 - all disabled) 
 

3 Application architecture 
 
The Wipster platform consists of: 
 

● Microsoft .NET backend application 
● Google AngularJS + Microsoft TypeScript single-page web application [​link​] 

5 ​https://www.ssllabs.com/ssltest/analyze.html?d=app.wipster.io  
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● Google AngularJS + Microsoft TypeScript single-page web application targeting mobile 
phone browsers [​link​] 

● Google AngularJS application (hereafter panel) that integrates into Adobe Premiere and 
Adobe After Effects [​link​] 

3.1 Web application logical structure 
 
The web, mobile, and panel applications form the interfaces between the Wipster platform and 
end users, all served via HTTPS. 
 
A comprehensive stack of web middleware (mainly Microsoft’s Open Web Interface for .Net 
[OWIN]  and Microsoft’s WebApi2 ) handles communications between the server application and 6 7

end users. It is responsible for URL routing, content validation, shared access token handling, 
session handling, and for mitigating common web application vulnerabilities. 
 

 

3.2 Permissions model 
Immediately upon visiting the web, mobile and panel applications, users are required to 
authenticate. Users can have an account directly within the Wipster application, or can choose to 
login in via a federated identity from: 
 

● Google [​API link​] 

6 ​https://github.com/TerribleDev/OwinOAuthProviders 
7 ​https://msdn.microsoft.com/en-us/library/dn448365(v=vs.118).aspx  
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● Facebook [​API link​] 
● Vimeo [​API link​] 
● Enterprise Single Sign-On via Auth0 [​API link​] (more detail below) 

 
Authorisation occurs deeper in the application and determines whether a given user can perform 
a specific action. 
 
This authorisation operates on two levels: 
 

● The backend application code restricts actions to specific system roles using .NET’s 
in-built Authorisation attribute decorator. This attribute is attached to specific 
methods/controllers, and grants access to all or a subset of roles as required. This is used 
to control Wipster employee administrative access vs. standard external user access. As 
covered in this document, only a defined list of Wipster employees, based on their 
@wipster.io​ email address, can access administrative functionality, and the attribute 
decorator is used to ensure this is enforced. 

● The backend code enforces application access based on various roles (see section 3.2.5) 
using a code object for “Org Role Permissions”. This object is present for all authenticated 
members, and is interrogated for the required permissions when users attempt to access 
features. 

 
When an authorisation failure occurs, the error is caught by the application and the user is 
redirected back to their Wipster home screen. 

3.2.1 Organisations 
The highest level of grouping in the Wipster domain model is the organisation (hereafter org). 
Everything else belongs to, or is contained within, an org. Users belong to an organisation, and 
they will never have access to resources outside of their organisation, unless the owner of a 
resource explicitly grants this access. 

3.2.2 Users 
Users are identified by a unique email address, and they log in using a password (either locally or 
via a federated account as covered in section 3.2). Details on local account password 
management is covered later. Users always belong to an org. 

3.2.3 Folders 
An org can have one or many folders, each of which generally represent a work project. Folders 
contain video, image, and PDF content. Access to folders and their contents are controlled by the 
role the given user has (roles covered in section 3.2.5) 
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3.2.4 Videos, Images, PDFs and Audio files 
Uploaded videos, images, PDFs and audio files reside within folders. Access to these assets  is 
controlled by the role of the given user. Wipster accepts a defined list of file formats, as covered 
in section 3.4.3. 

3.2.5 Roles 
Wipster operates with a number of authorised roles that allow different levels of access: 

● Team Owner 
Full rights to all content, billing, and user management within an org 
 

● Team Admin 
Full rights to all content and user management,  and read-only access to billing 
statements in an org 
 

● Full  
Access to all team folders and content within an org 
 

● Guest 
Access to a specified list of team folders and content within an org 
 

● Reviewer 
Access to a specific piece of content via invite (private or public share, as covered in 
section 3.3.4) within an org 

 

3.3 Application security 

3.3.1 Authentication 

3.3.1.1 Account credentials 

End-user authentication is based on a combination of email address and password. An end-user’s 
email address is used in account creation and password reset procedures, ensuring that the user 
has control over the given email address. Password protocol applies and they must consist of a 
minimum of six characters, at least one uppercase and one number.  
 
Passwords are not stored in plain text. The Wipster application makes use of ​bcrypt ​hashes 
(provided by a ​bcrypt ​library integrated into the backend code)  specifically designed as a 8

one-way algorithm for password encryption. 
 

8 ​https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf 
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Users are responsible for selecting a sufficiently strong password. The Wipster application assists 
users in this regard via the AngularJS third-party plug-in ​ng-password-strength , which moves 9

from red to yellow to green as password complexity increases. 
 
The entire Wipster application runs via HTTPS, so password data is never transmitted as plain 
text. Similarly, passwords are not put into log files on our platform. 

3.3.1.2 Account creation and password reset 

Passwords are not stored as plain text, nor are they sent via email. Once a password is lost, a 
user can only regain access by initiating a password reset request. The user enters their email 
address, and if the address exists an email will be generated containing a link to reset their 
password. The link contains a cryptographically strong token to verify that the password reset 
request originated from the email Wipster sent to the user. Clicking the link takes the user to a 
screen where they can create a new password. 

3.3.1.3 Enterprise Single-Sign On (SSO) 

Enterprise customers can optionally have SSO enabled for their accounts. This allows users to 
login with the same credentials they use for their internal corporate systems. Enterprise 
customers can then control password rules and ensure that a dismissed employee’s Wipster 
access will be immediately revoked.  
 
Wipster uses the third-party provider Auth0 to supply enterprise single-sign on services.  All 
communications with Auth0 are done over HTTPS. Once a user successfully logs in via their own 
corporate login page, Auth0 mediates the transfer of the user back to Wipster along with a token 
verifying the successful login and identifying information. With this valid token, Wipster matches 
the email address to an active user in the Wipster database and logs the user in. Once logged in, 
the user is subject to the same session management that applies to local account logins. 

3.3.2 Shared Access Signatures 
Once a piece of content is uploaded to Wipster, it can only be accessed through our application. 
This is ensured via issuing a Shared Access Signature (SAS) for each piece of content inside 
Wipster. A SAS is a URI that encompasses in its response all of the information necessary for 
authenticated access to that particular piece of content. This allows Wipster to grant access to a 
particular piece of content only to authorised parties (e.g. team members), and only for a limited 
amount of time. For example, if someone were to attempt to circumvent Wipster to gain access to 
a piece of content directly from our Azure storage containers, they would be refused access as 
we did not issue a secure token for the resource. 

9 ​https://github.com/subarroca/ng-password-strength 
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3.3.3 Session handling 
After a successful authentication attempt using an email address/password or via a federated ID, 
users are issued an OAUTH2 bearer token via OWIN middleware, which is stored in Local 
Storage on the browser. The token tells Wipster who the user is, what team they are in, and what 
they can see and do. Every single action inside Wipster is signed with this unique, tamper-proof 
token. These bearer tokens expire after a period of 24 hours. 

3.3.4 Private and public sharing 
Content on Wipster can be shared for review via: 
 

● Creating a tokenized link - anyone with the link can view and review; or 
● Inviting via email address - the recipient receives an email with a tokenized link 

 
Owners requiring more security can choose to enable private-only sharing for their team. This 
allows for sharing ​only ​via email address, and ​only ​for members of the given team. For both 
private and public share links, a password can be applied for enhanced security. This requires 
either link holders or team members to enter a password in order to view the resource. 

3.3.5 Third-party integrations 
Wipster offers its users the ability to connect their Wipster account to the following third-party 
services via public APIs: 
 
Communications​: 

● Slack 
 
Content publishing​: 

● Brightcove 
● Wistia 
● Facebook 
● YouTube 
● Twitter 
● Vimeo 

 
Communications with all third party applications are done via HTTPS. Wipster users grant access 
to third party applications within the Wipster web app. Where possible, this access is granted via 
three-legged OAuth . Where this is not possible, users are required to manually input access 10

tokens and/or secrets, obtained from their accounts on the given third-party provider 
 

10 ​http://oauthbible.com/#oauth-10a-three-legged  
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3.4 Technical application security measures 

3.4.1 Information containment 

3.4.1.1 Accounts 
Efforts are taken to not disclose information about existing user accounts via using generic 
messaging during invalid login attempts and elsewhere. 

3.4.1.2 API access 
The private server API (which is called by the user's browser to access our system) uses symbolic 
names for the API functions that contain no information about the internal code structure of the 
application, i.e. no namespaces, module names or function names are leaked to the outside 
world. URLs are validated and the application and web server provide no direct access to the file 
system, which makes directory guessing or directory traversal impossible. All API functions are 
treated as stateless and have security controls that are appropriate. This means that all API 
requests are treated as untrusted and could be called outside the normal flow of the application. 
Access to any resource is subject to the platform's authorisation mechanism, which only grants 
access if explicitly allowed. 

3.4.1.3 Error handling 
All API calls that result in an error will return an appropriate HTTP status code, and a 
human-readable error message. 
 
Recoverable errors are handled appropriately, on an application level. E.g. when an 
authenticated user sends a request that requires authentication, an HTTP 401 error is sent back 
to the client application, which causes a prompt to the user to log in before retrying the request. 
 
When an unexpected error occurs on the server, an HTTP 5xx status code is returned. The user 
will see a generic error page informing them something went wrong. It does not display any 
technical information that could reveal information about the underlying platform to the user. 
 
A global error handler exists in the Wipster platform's application stack, which will catch any 
unhandled exception before returning a response to the client. Stack traces or other technical 
data are never displayed to the user. 
 
3.4.2 Administrative access 
 
As covered in section 2.1, administrative access in the application is restricted to employees  at 
Wipster, is based on their ​@wipster.io​ email account, and requires a change to our application to 
enable. This level of access is granted only to employees who require it to perform their duties. 
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3.4.3 Input validation 
Wipster has a defined list of file formats that it accepts. All file types not included in these lists are 
rejected: 
 
Video 

● .mp4 
● .m4v 
● .mov 
● .avi 
● .mkv 
● .mpg 
● .mpeg 
● .ts 
● .m2ts 
● .webm 
● .wmv 

 

Image 

● .jpg 
● .jpeg 
● .gif 
● .png 

 

Document 

● .pdf 

 

Audio 
● .mp3 
● .wav 
● .m4a  

 

 
Users can submit text-based input via comments and replies on videos and images, naming 
videos and images, and searching for content in their accounts.  Validation is done on both the 
front and back ends to ensure the data we get is the data we expect. 

3.4.4 Output escaping 
As part of our development process, every piece of information that can be rendered in the 
user's web browser is checked to ensure it will not be shown as unfiltered or unescaped output. 
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Information is either generated by the application (e.g. static content or strings that are 
hard-coded in the application) or is retrieved from persistent storage or user input.  
 
The web and mobile browser applications never renders strings as HTML, CSS, JavaScript, or 
other potentially harmful data. All information that comes from sources that are, for this purpose, 
considered untrusted, including user input and data stored in the database, is appropriately 
escaped to mitigate XSS attacks. 
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4 Policy and organisation 

4.1 Data locality and physical security 
The Wipster platform and services are developed in Wellington, New Zealand by WIP APP 
LIMITED. Wipster hosts its services and data on Microsoft’s Azure cloud platform. Azure offers us 
a highly secure, robust, high-performance and scalable environment with a wide range of security 
controls. Azure is used by a large number of enterprise customers, including NBC, GE, 3M, BMW, 
and others. 
 
Our platform is hosted in Azure’s US West and US Central data centers, given the majority of our 
customer base operate in the United States. 
 
Access to physical services hosting Wipster servers and data is tightly controlled and restricted 
by Microsoft, and subject to their strict security processes.  

4.2 Security awareness and direction 
Wipster has security processes and practices in place, guided by the Open Web Application 
Security Project (OWASP) . Security policies and practices are continuously updated, based on 11

technological and security-related developments. 
 
Wipster software development is security-focussed and includes code reviews, change 
management, and security reviews of every new piece of code. Security implications of our code 
and infrastructure are reviewed frequently by the IT team. As part of our written "definition of 
done"— a checklist for new code that we must follow before it is merged into our main code 
base. We utilise automated tools such as Git Dependency Scanner to check all code for 
vulnerabilities before code is executed.  
 
We maintain and frequently develop new technical documentation, for example around 
development processes and system administration. Most system administration tasks are 
automated and documented, to ensure a repeatable and well-tested process for provisioning or 
maintaining servers. 
 

4.3 Team 
Wipster’s VP of Product and Engineering Robyn Haugh, has a Bachelor of Commerce (HONS) 
degree in Marketing and Strategy Management.  She has 20 years of experience in product 

11 ​https://www.owasp.org/ 
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development, channel and business management. Ultimate responsibility for Wipster’s security 
policies and procedures, cloud infrastructure, and application code lie with Robyn. 
 
System access for administrative purposes is only given to key Wipster employees, for the 
purpose of system maintenance, customer support, or other tasks that are necessary to ensure 
continued availability of the Wipster platform. 
 
We have a technical team with a diverse skill base, covering backend and frontend development, 
along with product design. References are checked before hiring employees. Employment 
contracts contain confidentiality and intellectual property protection clauses. 
 
Our development team is cross-functional: while every developer has expertise in certain areas, 
part of our development strategy is to ensure everyone can step in for someone else. This avoids 
being overly dependent on any individual. 
 
Access to any sensitive information and our systems are based on individual access credentials, 
which are revoked when an employee leaves Wipster. Employees only have access to systems 
and information they need to perform their duties. 
 

4.3.1 Third-party contractors 
 
Wipster employs a third-party contractor in a Virtual CFO capacity. This individual does not have 
access to our Production systems or code, but has access to Wipster platform metadata to 
perform required analytics. 

4.4 Staying up-to-date 
Security policies, code, and documents are continuously updated and new security threats are 
assessed. We receive security and vulnerability notices for the systems and software we are 
using, such as the ​Microsoft Technical Security Notifications​ mailing list, the ​Microsoft Security 
Newsletter​, and IT security news from other online sources. 

4.5 Threat assessments 
Threats and vulnerabilities are discussed frequently with the development team. Proper access 
control exists on all our systems, and production, staging, and development systems are strictly 
separated. We have an inventory of workstations and equipment, and a broad liability insurance 
for IT Companies. 
 
Security risks of production systems, preview/staging systems and development systems (e.g. 
workstations, code repository, automated test systems, issue tracker and project management 
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systems) are assessed, and controls are in place to protect and isolate data. For instance, 
production data is never copied to development or staging systems and non-production systems 
have no access to production systems. Customer data is considered with the highest priority, 
followed by Wipster source code and the automated test environment. 
 
Vulnerability assessments are frequently conducted by external third parties. If any vulnerabilities 
are reported, we have a policy in place that defines the timeframes for remediating the 
vulnerabilities. High vulnerabilities are resolved within 30 days. The root cause analysis of the 
vulnerabilities are assessed and issues are addressed so that we do not experience a recurrence 
of the issue. 
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5 Development practice 
 
The Wipster platform and supporting systems are designed with security in mind. Every aspect of 
the design and implementation of our platform is viewed through IT security eyes, and in our 
development practice, we continuously ask questions such as: 
 

● What security risks does this component present? 
● How could we exploit this code? 
● What could a potential attacker do with this information? 
● Is this "secure by default?" In other words: if we introduce a bug or mis-configure this 

component, will it default to its strictest security settings? 
 
Our development team uses the well-known source code management system git, hosted on a 
private repository on GitHub.com. Every new piece of functionality or bug fix is developed on a 
separate code branch, and only merged after a code review with at least one other member of 
the development team. 
 
During a code review, other members of the development team ask questions and give 
suggestions, to maintain high standards of code quality. After all necessary changes to new code 
have been made and before the new code is merged into our code base, we go through our 
"definition of done" checklist, which consists of: 
 

●  Is error behaviour well-specified and tested? 
●  Are errors handled correctly and is no technical information leaked to the end-user? 
●  Are both code and automated test code reviewed, and is test coverage adequate? 
●  Are security impacts understood, and are informed decisions made by at least two team 

members for any code that could potentially have security impacts? 
● If the code requires sensitive information or privileged access, is it clear why this is 

necessary, and are no more privileges granted than needed? 
● Is all untrusted input, from the user, the database, or the file system, identified and 

appropriately escaped and sanitised? 
● Is all output escaped appropriately, following OWASP guidelines? 
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6 System management 

6.1 Security administration 
Key Wipster employees have administrative access to our systems. System access, and access to 
the infrastructure management interface from Microsoft, is based on individual access credentials 
with multi-factor authentication that can be granted, revoked, or restricted when necessary. 
 
Responsibilities and duties for IT personnel are stated in employment contracts, and 
management and the IT team are continuously communicating priorities and responsibilities. 
 
VP of Product Robyn Haugh is ultimately responsible for IT architecture and security. Her role and 
responsibilities are documented, alongside those of other management team members. 
 
Audit logs for administrative access are available on all systems that support it (e.g. Azure, 
Windows Event logs) 
 

6.2 Logging, monitoring, and alerting 
Systems and processes are in place to detect outages or abnormal system behaviour, using two 
primary mechanisms: Azure services and Pingdom. Pingdom is configured to send push 
notifications to our technical team in the event of system problems. Our SQL Server databases 
within Azure have automated alerts when database throughput unit (DTU) percentages are 
greater than 50% for 5 minutes and/or greater than 80% for 5 minutes. Web servers within Azure 
have similar alerts. Outages are reported via email and Slack to the Wipster technical team. 
 
The Raygun error logging system collects application error events for our production servers. 
Logging dashboards provide quick overviews of the health of our systems and user activity, and 
detailed logs are available to diagnose faults. Raygun errors are deleted on a rolling basis as we 
hit our storage quota. 
 
We also make use of the Seq logging platform, hosted on a virtual machine within our Azure 
environment, running on HTTPS with credentials required for access. This platform receives a 
variety of error and information-based output from the Wipster application. Events stored in Seq 
are deleted after 60 days. 
 
Operational and incident response are handled by the CPO and senior developers. 
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6.3 Provisioning, testing, and automation 
Provisioning of application servers is largely an automated process. We can provision a new 
server from scratch in less than twenty minutes. Our servers are configured to automatically scale 
up and down in response to demand. 
 
Our production system is designed to avoid a single point of failure. At any point in time, at least 
two production servers are active to handle user activity. The dedicated database server has a 
dedicated slave on standby in a different data centre. All systems are hosted by Microsoft and 
utilise Azure’s redundant and robust virtual server and network infrastructure.  
 
Maintenance release windows generally occur during lower traffic times of the day. Our 
infrastructure allows us to deploy to production with virtually no impact to end users. 

6.4 Change management 

6.4.1 Application code changes 
In almost all cases, new versions of the application will not change, delete, compromise, or make 
client data inaccessible. In rare, or unforeseen situations where access to data would be affected, 
we will consult with our customers before implementing the change. 
 
Our development process requires all new code to comply with a "definition of done" checklist 
before it is merged into the code base. This includes code reviews, security impacts, adequate 
testing (both automated and functional) and documentation requirements. 
 
New features are built in code branches prefixed with the name “feature/[id]-[name]”, where [id] is 
the ID generated by our source code management system, GitHub, and [name] is a concise name 
of the given piece of work. Bugs found during testing are recorded in our issue tracker on 
GitHub. Post launch, any bugs are fixed in branches named with the prefix “bug/[id]-[name]”.  
 
Changes are merged into a release branch, which is used to deploy to production. Once changes 
are live to production and proved to be working to the required standard, the release branch is 
merged into our master branch. Master is considered to be the absolute source of truth for our 
production code. 
 
Changes are tracked in GitHub. We have documented processes in place for code branches, 
merge requests, and other mechanisms to organise our source code changes, and new staff are 
trained to use these mechanisms and procedures. A summary of important changes is kept 
up-to-date in a Changes or Release Notes document that accompanies every new release. 
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6.4.2 Release planning 
New versions of the application are tested on a staging system and any bugs are fixed on the 
feature-frozen release candidate code branch, before the release is deployed on our production 
platform. 
 
Our development cycles vary, and we aim to release application updates regularly as they are 
ready. Staff within and outside of our technical team contribute to functionally testing changes. 
Planned releases are discussed within the technical team, with the CPO, and with other key 
stakeholders (CEO, customer support, etc.) to ensure opinions align before going live. 

6.4.3 Deployment 
Changes to production servers, including significant system changes, major new features, and 
bug fixes are tested locally on developer machines, and within a dedicated testing environment 
that does not share resources with production. Our “definition of done” list must be complete 
before we deploy changes to production. 
 

6.5 Contingency and resilience 
Wipster’s VP of Product, Robyn Haugh, is responsible for system and application security and the 
technical robustness of the Wipster platform. In her absence, our Technical Lead has delegated 
responsibility.  
 
Information related to our business is stored in cloud business systems. 
 
A documented process exists to set up a new production environment. Production systems, as 
well as source code management, automated testing, development and staging systems are all 
hosted off site in secure, redundant data centres managed by Microsoft and GitHub. 
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7 Technical risk mitigation 
This section covers the Open Web Application Security Project's Top 10  list of most critical Web 12

Application vulnerabilities and our mitigation strategies. 

7.1 Injection 
Injection flaws, such as SQL, OS, and LDAP Injection occur when untrusted 
data is sent to an interpreter as part of a command or query. The attacker's 
hostile data can trick the interpreter into executing unintended commands 
or accessing data without proper authorisation. 

 
The Wipster platform does not construct queries directly from user input, but instead uses 
parameterised queries. This ensures malicious commands cannot be executed in our database 
servers. The Azure built-in ​SQL Auditing & Threat Detection​ capability is enabled for our 
database servers, which provides automated alerting when an attempted malicious attack is 
detected. 
 
API functions in Wipster code that accept a range of parameters, such as key/value pairs, only 
accept those parameters they expect to see and strip out the rest. 
 

7.2 Broken authentication and session management 
Application functions related to authentication and session management 
are often not implemented correctly, allowing attackers to compromise 
passwords, keys, or session tokens, or to exploit other implementation flaws 
to assume other users' identities. 

 
The Wipster platform uses a single set of strong authentication and session management controls 
(OAUTH2 Bearer tokens), as recommended by OWASP. Authentication occurs early in the web 
application middleware stack (see section 3.1) and meets most Level 1 and Level 2 and some 
Level 3 requirements of the ​Application Security Verification Standard​ sections V2 and V3 . 13

 
See section 3.3.3 for more information on the implementation of our authentication mechanism 
and session handling. 
 
 

12 ​https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project 
13 ​https://www.owasp.org/images/3/33/OWASP_Application_Security_Verification_Standard_3.0.1.pdf 
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7.3 Cross-site scripting (XSS) 
XSS flaws occur whenever an application takes untrusted data and sends it 
to a web browser without proper validation or escaping. XSS allows 
a"ackers to execute scripts in the victim's browser which can hijack user 
sessions, deface websites, or redirect the user to malicious sites 

 
As described in section 3.4.4, we ensure that all untrusted data is properly escaped before it is 
displayed in client browsers. All fields are validated before accepting and storing them. Data from 
users is treated as untrusted. 

7.4 Insecure object references 
A direct object reference occurs when a developer exposes a reference to 
an internal implementation object, such as a file, a directory, or database 
key. Without an access control check or other protection, attackers can 
manipulate these references to access unauthorised data 

 
Every resource that is accessed is subject to our authorisation code (see section 3.2), which is a 
uniform and well-understood framework that guards all our resources. 
 
The web application API, made available over HTTPS to the web browser client application, uses 
symbolic names and does not expose any reference to namespaces or internal function names. 
API functions must be explicitly programmed as such before they are available: it is not possible 
to call arbitrary functions in the code. 
 

7.5 Security misconfiguration 
Good security requires having a secure configuration defined and deployed 
for the application, frameworks, application server, web server, database 
server, and platform. Secure settings should be defined, implemented, and 
maintained, as defaults are often insecure. Additionally, software should be 
kept up to date 

 
Chapter 2 discusses our platform infrastructure and some of the measures we take to address 
security concerns. Furthermore, chapters 4, 5, and 6 discuss in detail our processes around 
change management and configuration. 
 
Our servers are configured using automated, repeatable and reliable processes that take care to 
provision servers with up-to-date software, disable services we don't need, lock down access to 
the server, remove default accounts, perform automatic security updates, etc. 
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Our infrastructure uses strict access controls that isolate servers and services. For example, 
production, staging, and development environments are all strictly separate and use different, 
dedicated servers and credentials. 
 

7.6 Sensitive data exposure 
Many web applications do not properly protect sensitive data, such as 
credit cards, tax IDs, and authentication credentials. Attackers may steal or 
modify such weakly protected data to conduct credit card fraud, identity 
theft, or other crimes. Sensitive data deserves extra protection such as 
encryption at rest or in transit, as well as special precautions when 
exchanged with the browser. 

 
Our systems do not store sensitive personally identifiable information (PII) such as credit card 
details, mailing address or similar. We do store company name and an optional user avatar. User 
accounts are identified by email address and password. We use ​bcrypt​, cryptographically strong 
one-way encryption specifically designed for password encryption, to store password 
information. We never store or transmit passwords in plain text, and we take special care to 
prevent passwords, password crypts, or session ids from being displayed or logged to files. 
Section 3.3.2 explains in detail how we handle authentication and what measures we take to 
protect passwords. We discuss handling of session tokens in section 3.3.3. 
 
Our databases (and their snapshots and backups) are encrypted at rest using Azure built-in 
encryption functionality, and all communication between our application servers and the 
database servers use TLS-encrypted channels. Communication with the database server is 
restricted to our Azure Cloud Services by default. Exceptions to this can only be granted explicitly 
via the database server firewall configuration (and are granted only for telecommuting purposes). 
The database backup retention period is 30 days, after which snapshots are deleted. 
 
Our web and mobile applications can only be accessed via HTTPS, and the panel communicates 
with our private API over HTTPS.  
 
The Wipster application supports non-authenticated use in the form of content reviewers. 
Authenticated users can share a piece of content either via a public share link, or via email 
address, (see section 3.3.4) to non-Wipster account holders. These users can only access 
resources to which they have a URI, and that link contains a cryptographically-strong token. All 
other access to application functionality requires both authentication and authorisation. 
 
We discuss this in more detail in section 3.2. 
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7.7 Missing function level access control 
Most web applications verify function level access rights before making 
that functionality visible in the UI. However, applications need to perform 
the same access control checks on the server when each function is 
accessed. If requests are not verified, attackers will be able to forge requests 
in order to access functionality without proper authorisation. 

 
We never rely on the JavaScript browser application for any authentication or authorisation. All 
API calls to the web application server are considered to be stateless and are subject to our 
authentication and authorisation mechanisms. Calls to our application must be authenticated 
unless a resource is explicitly declared as public, such as CSS files and certain background 
images. We use a uniform, consistent, and easily understood authorisation mechanism that 
guards our resources. Every request is verified and subject to authorisation checks. For more 
information about our authentication and authorisation mechanisms, see section 3.2. 
 

7.8 Cross-site request forgery (CSRF) 
A CSRF attack forces a logged-on victim's browser to send a forged HTTP 
request, including the victim's session cookie and any other automatically 
included authentication information, to a vulnerable web application. This 
allows the attacker to force the victim's browser to generate requests the 
vulnerable application thinks are legitimate requests from the victim. 

 
The Wipster web application is a single-page application based on Google’s AngularJS upon 
which we have added CSRF protection. After successful login: 
 

1. An anti-cross-site request forgery token is generated via in-built .NET anti-forgery 
methods, and stored in the browser’s local storage. 

2. A second token generated in the same way is placed as a cookie on the user’s browser 
3. The local storage token is automatically added to the HTTP headers by AngularJS when 

making requests to our server 
4. The cookie token is sent by the browser with every request 
5. In-built .NET methods validate that the tokens were the same as those issued 
6. The submission of data to Wipster’s servers is only allowed upon successful validation of 

the tokens 
 

7.9 Using components with known vulnerabilities 
Components, such as libraries, frameworks, and other software modules, 
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almost always run with full privileges. If a vulnerable component is 
exploited, such an attack can facilitate serious data loss or server takeover. 
Applications using components with known vulnerabilities may undermine 
application defences and enable a range of possible attacks and impacts. 

 
In our system management practices, we ensure that we track vulnerability notices (e.g. from the 
Microsoft Security Newsletter​) and new releases of frameworks we use. We use up-to-date server 
software, and we frequently update the frameworks we use to the latest stable versions. 
 
Furthermore, we grant our software with the minimum privileges it needs to run properly. Our 
application server runs as a user that is especially created for this purpose, which has no access 
to the system beyond what it strictly needs to function. The application server does not run with 
full administrative privileges. 
 
Lastly, our Cloud Services have the built-in Azure Antimalware feature enabled, which runs 
real-time assessments and sends alerts when threats are detected. 
 

7.10 Unvalidated redirects and forwards 
Web applications frequently redirect and forward users to other pages and 
websites, and use untrusted data to determine the destination pages. 
Without proper validation, attackers can redirect victims to phishing or 
malware sites, or use forwards to access unauthorised pages." 

 
The Wipster platform does not have functionality that allows users to set URLs, and we are not 
redirecting or forwarding users to external websites. 

8 Disaster recovery plan 
Wipster uses several mechanisms and processes to mitigate the impact of many types of events 
that could cause system outages. 

8.1 Natural and accidental disasters 
Because Wipster is hosted in Azure, we benefit from the robust infrastructure built by Microsoft. 
The data centres are equipped with climate control, fire detection/suppression, and power 
management systems (among others).  Azure also protects against ​forces majeures​ such as 
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earthquakes, floods, and hurricanes via procedures tested on a regular basis, and because of 
their multi-data centre architecture.  14

 
Our application server can be quickly restored via repeatable procedures. Our database server 
has a standby in another data centre that will failover automatically. We maintain encrypted 
database backups using third-party software from Cherry Safe , that are created automatically 15

and backed up to a separate Azure data centre. 

8.2 Disaster related to human actions 

8.2.1 Loss of key staff 
Ultimate responsibility for the Wipster technical platform rests with the VP of Product, Robyn 
Haugh. To reduce key-person risk, trusted senior developers have access to parts of our 
production infrastructure and related systems. Mechanisms are in place to revoke access when it 
is no longer required, or when an employee leaves. 

8.2.2 Human error 
Limited access to production systems combined with repeatable procedures to rebuild 
environments allows us to control risk without slowing down our small team. 

8.2.3 Malicious internet-based attacks 
Our application is designed to scale horizontally by adding more resources as demand ramps up. 
This can help during a distributed denial of service (DDOS) attack. Additionally, the Azure 
platform itself has a DDOS protection mesh on inbound, outbound, and cross-Azure region 
connectivity.  16

8.3 Recovery plan 
In case of a disaster that causes serious damage to Azure’s physical infrastructure, they have DR 
procedures to recover operations. If a disaster affects all the geographically redundant data 
centres that host the Wipster platform, we can use our existing provisioning mechanisms to 
configure a production system in one of Microsoft’s other data centres across the world. 
 
Wipster has detailed disaster recovery plans and procedures to address narrow or wide outages 
and/or interruptions across the platform. 

14 Azure SOC information: 
https://www.microsoft.com/en-us/trustcenter/Compliance/SOC?downloadDocument=1&documentId=becf
e3cc-5f7a-4a36-bd8a-351395fe38e7 
15 ​https://www.cherrysafe.com/  
16 ​https://docs.microsoft.com/en-us/azure/best-practices-network-security 
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9 Appendix 

9.1 Wipster marketing website 
Wipster makes use of the Squarespace platform to run our marketing website, available at 
https://wipster.io/​. This system is completely separate from our application infrastructure on 
Azure, and is hosted entirely on Squarespace systems. 
 
Key security features of this platform: 
 

● Runs entirely on HTTPS 
● Has a separate administration site for editing content 
● Administration site requires credentialed access, with accounts created only for 

employees who need them for their job requirements. These accounts are created under 
@wipster.io​ email addresses. 

● Information given by end users to Wipster via the Squarespace site is transported to 
Squarespace servers via HTTPS, and subsequently emailed by Squarespace to Wipster 
using SendGrid, which uses TLS to securely send email  17

 

9.2 Azure compliance 
Microsoft Azure holds a wide variety of certifications - more than any other cloud provider. For 
detail on compliance (e.g. SOC 1, SOC 2, ISO/IEC 27001), visit the Microsoft Trust Center at: 
https://azure.microsoft.com/en-us/support/trust-center/  
 

9.3 Azure penetration testing 
Microsoft have a defined process for conducting penetration testing against their cloud 
infrastructure: ​https://gallery.technet.microsoft.com/Cloud-Red-Teaming-b837392e 
 

17 ​https://sendgrid.com/blog/sendgrid-and-the-future-of-email-security/ 
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