
1

Open Banking and Consumer Data Right (AU)

Smarter, Faster,
More Productive:

ebook

Creating a Developer Platform that Empowers
Publishers and Consumers

2

Content

Abstract

Introduction

Challenges to building a developer platform

Slowed development process during API design

Legacy API gateways don’t easily integrate with CI/CD

Lack of a purpose-built developer portal to

discover API specs

Managing Kubernetes and gateways separately

How to overcome these challenges

Using spec-driven development to build

consistent APIs

Configuring a CI/CD pipeline for API deployment

Use a contract-first approach

Ensure the testability of your API

Conform to semantic versioning

Developer portals enable rapid publishing and

API consumption

GitOps (automating Kubernetes deployment tasks)

Conclusion

References

3

4

6

7

8

9

10

11

11

13

13

14

14

15

16

18

19

3

Abstract

Organizations embracing distributed architectures
risk slowing development velocity, increasing
management overhead and reducing service
discoverability due to their legacy API platforms.
Legacy solutions lack CI/CD integrations, cannot
deploy natively on Kubernetes and don’t provide
visibility into services. Organizations will be able
to maximize speed without sacrificing quality
or control by bringing end-to-end automation,
streamlined developer onboarding, and native
integrations with containers and Kubernetes to
their developer platforms.

4

Introduction

Building a compelling, attractive and highly useful
developer platform has become essential for many
software, computing and service companies. For
our purposes, we define a developer platform
that is built for distributed architectures as one
that features end-to-end automation, streamlined
developer onboarding, and native integrations with
containers and Kubernetes. A high-performance
platform maximizes speed without sacrificing
quality or control.

The days are long gone in which API consumers
are seen as a passive audience. Today, many are
potential distribution partners and play a key role
in redefining business value. Increasingly, modern
business is focusing on facilitating specific roles and
types of transactions, and less on owning the means
of production. The leaders of future interconnectable
ecosystems will run centers of excellence. They will
create and maintain platforms on which customers
have many incentives to innovate, curate and
consume non-linear transactions in a collaborative
developer ecosystem.

Leveraging an API strategy that moves your
organization toward a developer platform may
have been a decision you made long ago when
first exploring an API-centric business model.
To be successful in building a solid, readily
useful ecosystem around one or more APIs, your
company must also commit and invest resources
to cultivate an engaged developer community.

5

Developers are very particular business customers.
They have serious objectives, motivations,
perspectives and pain points. Typically, developers
are cynical in the face of conventional marketing and
look for solutions that are quickly implementable.
Beyond this generalization, it’s important to keep in
mind that many types of developers might want to
use your API.

For organizations that want to succeed in building
an engaging developer platform, a pressing need
is to achieve a proper balance of infrastructure
flexibility and performance elasticity to address
developer needs, while also managing increasing
geographic dispersion and unpredictable usage
volumes. Such companies realize that it’s necessary
to move to decentralized architecture and
infrastructure, which includes serious consideration
of cloud native platforms, establishment of a CI/
CD pipeline, containerization and microservices, to
name a few. Furthermore, organizations are facing
these developments with a strong sense of urgency,
recognizing an imperative to adapt quickly or risk
becoming irrelevant.

6

To better prepare for the future, it’s important to
understand this rising technology trend. In this
e-book, we examine the challenges to building
a developer platform for a world of distributed
architectures and explore how to overcome these
challenges and take advantage of the future of
cloud native software.

Challenges to building a
developer platform

Because of the inefficiency and inflexibility of
their legacy API platforms, organizations that
seek to embrace distributed architectures actually
risk slowing development velocity, increasing
management overhead and reducing service
discoverability. Such legacy systems commonly
lack CI/CD integrations, cannot deploy natively
on Kubernetes and don’t provide visibility into
services. These problems typically nullify the
benefits of distributed architectures.

There are the serious challenges that face any
development teams that aim to provide an
accessible, navigable, programmable API platform:

• Slowed development process during API
design

• Legacy API gateways cannot easily integrate
with CI/CD

• Lack of a purpose-built developer portal to
discover API specs

• Managing Kubernetes and gateways separately

7

After considering each of these challenges below,
we’ll have a look at how best to address them.

Slowed development process during API design

Ironically, rushing into API implementation often
ends up slowing down the development process.
When API designers complete an implementation
and fail to adequately test it or get feedback from
consumers, the result is needing to go back to the
drawing board. At the core of the challenge is the
specification. API designers end up needing to
revise the specification once their implementation
runs into challenges. Not only does this slow down
the whole process—it also increases the risk of
breaking changes (modifying a specification and
implementation in a way that impacts the API
consumers negatively).

Legacy API gateways don't integrate easiy with CI/CD

High overhead of managing
Kubernetes and gateways separately

Slowed down
development process

Lack of a purpose-built
developer portal to discover

API specs

8

This is why mocking is an important feature for
enabling developers to test your API. Mocking
provides a sandbox that mimics API interactions,
without imposing the need to create an actual
account or alter live-system data. The sandbox
should be easy to deploy and reset whenever the
developer needs to do so. Developers need to have
the ability to use the sandbox very much like they
would employ your production API. The primary
difference here is that the sandbox endpoint should
have its own URL. The goal is to have the developer
test against the sandbox, gain experience and
confidence in using it, and then quickly move to the
production API when they are ready.

Legacy API gateways don’t easily integrate with
CI/CD

Legacy systems tend to be tightly coupled, static,
monolithic blocks consisting of interwoven
procedural code. A majority of legacy systems
have been built long ago to operate in batch
mode—from the core outward. Testing often
requires cycling and backtracking through
multiple business days, as these systems were
not built for the CI/CD workflows that focus on
daily, incremental, iterative deliveries to common
repositories governed by testing automation.
This flatly limits the level of agility that you would
otherwise want to cultivate in an organization.

There are a variety of solution approaches for
overcoming such architectural challenges, ranging
from killing an application entirely, migrating
to modern platforms or refactoring much of
the legacy code. It should come as no surprise

9

that the best approach depends largely on
your context. The promise of a microservices
architecture is certainly appealing, but there are
many questions to tackle prior to any transition
from monolith to microservices. (Learn more in the
Kong e-book, Blowing Up the Monolith: Adopting a
Microservices Architecture.)

Lack of a purpose-built developer portal to
discover API specs

Most portals are found to be lacking in many
important respects, such as initialization,
troubleshooting resources and poor support.

Familiarity and initialization is where it’s won or
lost for a developer portal. How long does it take
a developer to start using your API? The signup
process should be very straightforward, but a
developer should be able to readily obtain all the
necessary information. On the homepage of your
API, a developer should be able to get going with
the basics within five minutes:

• Understand the purpose of your API within one
minute

• Identify the entry point within the next minute
• Create a new account, make a call to the

system and capture a key result in less than
three minutes

When it comes to the quality of the portal,
developers are without question the most
important focus for your API. If you built your API
like a product and treat your developers as target
customers, then you will surely offer a better portal

10

and a better experience. The API reflects the
product you’re selling. If you haven’t gotten to the
point of a solid product-market fit, then the time is
now. Start to pivot and rethink your strategy.

High overhead of managing Kubernetes and
gateways separately

Today, building applications using a microservices
design pattern and deploying these services onto
Kubernetes has become commonplace for running
cloud native applications. In a microservice
architecture, a single application consists of many
microservices—each of which is typically built and
managed by a small team.

As these teams are increasingly managing their
environments via Kubernetes, it is becoming
painful to rely on API management solutions that
lack native CRD support. This leads to two big
challenges in managing a Kubernetes gateway
and app configuration separately, namely (a) the
risk of incurring substantial downtime and (b)
configuration drift. Furthermore, the responsibility
for addressing these challenges commonly
extends from the edge of the system where the
user requests arrive through to the service’s
business logic and down into the associated
messaging and data store schema.

11

How to overcome these
challenges

Overcoming these challenges involves:

• Using spec-driven development to build
consistent APIs

• Configuring a CI/CD development pipeline
• Building developer portals to enable rapid

publishing and consuming of APIs
• Kubernetes-native declarative configuration for

your gateway

Using spec-driven development to build
consistent APIs

Using spec-driven
development to build

consistent APIs

Developer portals enable
rapid publishing and API

consumption

Configuring a CI/CD pipeline for
API deployment

Automate Kubernetes Deployment
Tasks with GitOps

12

One of the easiest ways to build consistent, readily
consumable APIs is to implement spec-driven
development. Essentially, this means building
your API in two different stages: design and
development. In the design stage, the development
team crafts an API specification with extensive user
input. The goal here is to create a blueprint of how
the API should work. There are several templates
available to help you do this, including the Open API
Specification (OAS, formerly Swagger).

Spec-driven development is a process that
employs an API specification as the key guide to
implementation. Inputs and outputs become test
cases to ensure that the API does everything it
promises. There is one essential requirement to
use this approach: Write the API documentation
first. The more that can be done beforehand, the
better. It’s quite sensible to go agile and increment
the documentation in cycles, similar to what is
done when coding.

The OAS has strong documentation and is highly
compatible with lesser-used languages. It offers
quick setup and a solid support community. Most
importantly, OAS is a bottom-up specification in
that it specifies the behavior which affects the API
to create complex, integral systems.

The second stage of spec-driven development
is the actual writing of the code for all of the
API layers. With a strong blueprint in hand, your
developers can quickly and confidently build
out the API, with little worry about how each of
their resources will work with those of another
developer—or how the schemas will match.

13

The big idea here is this: in the design phase,
you eliminate nearly all of the design flaws and
potential design bugs. Of course, this depends on
the team conforming to the design specification
all the way through development. If there is any
deviation (without a carefully and sensible change
to the design specification), then the result will be
a ‘seat-of-the-pants’ API that is poorly documented
and difficult to consume.

Configuring a CI/CD pipeline for API deployment

If you have APIs, it’s usually beneficial to deploy your
API from a CI/CD pipeline. For many API development
teams, deploying an API from a CI/CD pipeline is
an essential activity of comprehensive API lifecycle
management.

Here are the key principles for API deployment from a
CI/CD pipeline:

Use a contract-first approach

Although a code-first approach doesn’t prevent you
from deploying your API from a CI/CD pipeline, using a
contract-first approach will reshape your processes to
be much more efficient and reliable.

In this approach, the team crafts the API contract
well in advance of the implementation phase. Writing
this contract should be a collaboration among
the architect, product owner, developers and early
adopters of the product.

14

Ensure the testability of your API

Thorough testing is absolutely critical to configure
deployment of your API from a CI/CD pipeline. At a
minimum, you need to accommodate these types
of tests into your pipeline:

• Unit tests — individual testing of each software
component

• Integration tests — test modules and
collections of software components

• Acceptance tests — these ensure that business
expectations are met

• End-to-end tests — verify that all software
components function collaboratively and
comprehensively—in an environment that is
very close to production conditions

• Performance tests — verify that performance
remains acceptable and doesn’t degrade by the
introduction of any fix or new feature

Conform to semantic versioning

For any new version of your API, it’s critical to
adhere to the semantic versioning. This improves
the ability of your CI/CD pipeline to handle the new
release. A new minor version will be backward-
compatible, and it is deployable in-place. Any
major version will have to be deployed side-by-side
to provide an option for existing customers.

15

Developer portals enable rapid publishing and API
consumption

In the early stages of an API program, a developer
portal may simply be a documentation repository,
but its role should expand as the program grows
and extends to external API consumers.

At minimum, a developer portal should include:

• Simply service discovery via search
• Engaging documentation with interactive

consoles and sandbox environments
• Code snippets as well ascode for a sample

application—in a number of languages that
match well with your target

• Terms of Service and Service Level Agreement
• Self-service API registration
• A public-facing API specification format

file that uses the OAS or other human- and
machine-readable metadata about your API

• An interactive API console that provides
sample responses from each of the resources
in the API

• A developer playground, preferably driven by an
API mocking service, in which developers can
sample with their own code

• Enterprise support

16

GitOps (automating Kubernetes deployment tasks)

GitOps leverages a version control system such
as Git to contain all documentation, information
and code for a Kubernetes deployment. This
sets the stage for deployment automation and
programmable infrastructure. The benefits
of employing GitOps to automate Kubernetes
deployment tasks encompass and enable all
stages of the development lifecycle—including
designing, publishing and consuming APIs.

The key benefits for GitOps include:

• Productivity increases through continuous
deployment automation

• Significant enhancements to the developer
experience by enabling the pushing of code—
not containers

• Improved stability through automatic audit
logging of all cluster changes

• Higher reliability from the Git revert-rollback
and forking capabilities—which are built-in and
result in a single source of truth

• Standardization and consistency end-to-end
workflows

If you’re convinced of these GitOps benefits, the
next step is understanding Kubernetes, Docker
and Git—the tools necessary to actually implement
GitOps. To paraphrase The New Stack:
Kubernetes is probably the most influential system
in the world of information technology to arise in
recent years. Quite simply, you can’t implement
GitOps without a running Kubernetes cluster.

17

By definition, Kubernetes is an open source
system for automating deployment, scaling and
management of container applications. Everything
in GitOps begins and ends with Kubernetes.

Kubernetes can’t function without Docker. Indeed,
you must first install Docker before you can
install Kubernetes on your server. Docker is a set
of platform-as-a-service products for managing
and delivering software in packages known as
containers. A container is a package of software
that bundles code and all its dependencies so the
application runs quickly and reliably in multiple
computing environments. A Docker container
image is a standalone, lightweight, executable
package of software that includes everything
necessary to run an application: code, runtime,
system tools, system libraries and settings.

Finally, Git is essential for GitOps. It’s the
central hub for GitOps, since it stores all of
your documentation, configurations and code
necessary to deploy and maintain your cluster.
However, don’t think of Git only as a repository for
use by humans to make the Kubernetes cluster
function. There are also automators that cooperate
with Git to make everything seamless and
automatic. Configurations are read from Git, and
if any changes are found,the cluster automatically
updates in accordance with the changes.

18

Conclusion

We’ve identified how distributed architectures
change the requirements for developer platforms
and presented key strategies to overcoming
these challenges. While tactically the next step is
considering which aspects of the vision shared
are most relevant for your team and organization,
the broader takeaway is understanding why taking
a legacy approach does not work in a world of
distributed architectures. Your team wants to
take its service to market faster and reduce the
total cost of ownership for doing so. With teams
looking for every opportunity to do more with
less, organizations who have created a developer
platform for the distributed world are dramatically
reducing TCO and increasing productivity. For
example, Cargill achieved 65x faster deployments
by integrating Kong with CI/CD tools and using
Kong with Kubernetes to auto-scale based on
demand. Reach out to Kong, and we will be happy
to share how we have seen hundreds of our
enterprise customers reduce costs by automating
the design, publishing and consumption of APIs
and services.

19

References
https://metova.com/yes-you-have-apis-but-they-suck/
https://www.codeproject.com/Articles/837868/
Building-Your-API-using-Spec-Driven-Development
https://www.programmableweb.com/news/abcs-
building-api-developer-portals/analysis/2017/09/27
https://nordicapis.com/5-reasons-why-developers-are-
not-using-your-api/
https://nordicapis.com/how-to-design-frictionless-
apis/
https://www.pingidentity.com/en/company/blog/
posts/2014/why-developers-hate-your-api.html
https://developers.redhat.com/blog/2019/07/26/5-
principles-for-deploying-your-api-from-a-ci-cd-pipeline/
https://devops.com/devops-legacy-systems-mission-
impossible/
https://yos.io/2018/02/14/api-developer-portal-best-
practices/
https://thenewstack.io/the-tools-you-need-to-run-
gitops-based-automated-deployments/

Konghq.com

Kong Inc.
contact@konghq.com

150 Spear Street, Suite 1600
San Francisco, CA 94105
USA

