
Code Property Graph

What is the code property graph?

Service Dependency Graph

Component graph -
Application, Dependencies

Security critical information
flows

Methods, Types, Call Graph,
Type Hierarchy

Instruction level -Syntax,
control flow, data-flow
semantics

THE

CPG
PYRAMID

CPG constitutes the code represented in the form of a layered graph that can be queried to obtain security relevant
information about the code. For each statement/expression of the code - whether in bytecode form or source code
form - a syntax tree is included in the code property graph that decomposes it into its language elements. These
syntax trees are connected via control flow edges to form control flow graphs. Taking into account known semantics
of library functions, a data flow representation is constructed that enables interprocedural data flow analysis similar
to that possible via system dependence graphs. Throughout the analysis, additional nodes and edges are created that
represent analysis results, however, without introducing additional external information. The complete representation
is packaged into a binary that is stored in encrypted cloud storage and cannot be accessed or decrypted.

Yes, the individual elements constituting the CPG and their specifications are outlined below:

1.	 https://docs.shiftleft.io/core-concepts/code-property-graph
2.	 https://github.com/ShiftLeftSecurity/codepropertygraph

Is the code property graph specification open source?

http://www.shiftleft.io
1.	https://docs.shiftleft.io/core-concepts/code-property-graph
2.	https://github.com/ShiftLeftSecurity/codepropertygraph

For Java, code property graphs are created from Java Archives (JARs), and hence, from the bytecode representation
of the program. In contrast, for Javascript, C, C++, C#, Golang and Python, they are constructed from source code.
Configuration files are analyzed selectively for secrets detection but are largely ignored to date. Dependencies are
named in the code property graph, but their implementations are skipped whenever such implementations are
detected. The build configuration is not included in the code property graph to date.

Example : https://docs.shiftleft.io/ngsast/analyzing-applications/java

How is code mapped to this intermediate representation?

Code property graphs as created by the ̀ sl` tool are serialized property graphs, that is, they are given by a set of nodes
carrying key-value pairs and a set of labeled edges that connect these nodes, where edges may also carry key-value
pairs. Depending on the source programming language, the graphs are stored either as ShiftLeft OverflowDB graph
database files or as Google protocol buffers. Both of these are optimal binary data representations as opposed to
textual representations such as JSON or XML.

Source Code (depending on the programming language) consists of variables, literal, expressions, functional blocks,
scoped modules/packages, macros and type information. Depending on the LR grammar of the programming
language, all of these properties and represented on a contextual graph

The basic idea is to parse the source code, represent it as a graph which extends on the standard abstract syntax tree
(AST) to include information about data and control flow, and store it in a graph representation.

What is the ondisk-based representation of a CPG?

What is the constitution of a CPG and how does it differ from
source code?

http://www.shiftleft.io
https://docs.shiftleft.io/ngsast/analyzing-applications/java

ShiftLeft currently supports : Java, .NET (C#), JSP, JavaScript, TypeScript, Python, Golang, C, C++, Scala, Kotlin
(Coming Soon!).

Depending on the type of programming language, strongly typed takes approximately ~2-3 months and untyped or
typed inferenced (dynamic) takes approximately ~4-8 months. The basis/foundation was set when we onboarded
Java (strongly typed) and JavaScript (untyped).

The CPG can be created in the customer’s CI sandbox using ShiftLeft’s sl command

 sl analyze --app <name> --java [<path-to-JAR/WAR>]

This command can be executed as a CI action in the CI sandbox (Jenkins/Travis/Circle/GitHub Action/Azure pipelines,
etc) leading to the CPG being created (and obfuscated) on the sandbox. Thereafter the graph is compressed, signed
and securely transmitted to the tenant account in our SaaS cloud.

The on-disk representation of the CPG is encrypted using server-side encryption with customer master keys (CMKs)
stored in a Key Management Service.

The encrypted format on SaaS storage units are only accessible by our internal APIs. Even upon access, they can only
be parsed by ShiftLeft’s proprietary tools and hence, on-disk the graphs are extremely secure. All access points are
restricted based on Admin RBAC controls governed by SOC-2 type 2 standards.

Besides the AST, the CPG combines:

•	 the control flow graph (CFG), which represents the order in which statements are executed depending on the
conditions, and

•	 The program dependence graph (PDG), which tells us how taint (attacker controlled or exposed variables) travel
to security sensitive functions after being validated, transformed, etc.

CPG is also programming language agnostic.

In summary CPG contains the AST + CFG + PDG. No configuration, environmental setup scripts, etc are carried over
into the graph.

What are the current languages supported and how long does it take to
onboard a new language?

How and where can the CPG be created and what are the security
controls established in the SaaS infrastructure?

http://www.shiftleft.io

No, it cannot be reversed for the the following reasons

1.	 The representation (based on CPG specification) contains only certain properties (metadata representing syntax
trees, variable declarations, blocks, scope, type information, etc) and NOT the full code representation

2.	 The representation (as CPG) is in a binary/obfuscated form that cannot be queried upon or loaded without
ShiftLeft’s proprietary toolchain (for analysis)

3.	 All CPGs stored in ShifLeft’s SaaS infrastructure and governed and restricted by automated controls defined by
SOC-2

Can the CPG be reverse engineered or reconstituted to the target source
representation?

http://www.shiftleft.io

