
ShiftLeft
How ShiftLeft Achieved the Highest 
SAST Score on the OWASP Benchmark



Table of Contents
Overview ..................................................................................................................................................... 03 

Towards a new generation of static analysis products ..................................................................................... 03 

Results on the OWASP benchmark ................................................................................................................ 04 

Ingredient #1: Our data flow tracker ............................................................................................................... 05

Ingredient #2: High-level information flows  ................................................................................................... 06

Analysis of false positives ............................................................................................................................. 08 

Conclusion ................................................................................................................................................... 10

ShiftLeft Inspect’s FREE version ..................................................................................................................... 10

Joern: An open source vulnerability research tool ........................................................................................... 11

2  (877) 331-9092    |      www.shiftleft.io    |      Santa Clara, CA 

http://www.shiftleft.io


3

This  paper  presents  the  results  of  ShiftLeft’s  static  analysis  pipeline  on  the  OWASP  1.2  benchmark,  where  

we  achieve a true positive rate of 100% at 25% false positives. With a resulting Youden Index of 75%, this makes 

our Static Application Security Testing (SAST) the best in class, beating the commercial average by 45%, and being 

 the only product capable of identifying all of the included vulnerabilities. We find that the false positives result from 

our decision to overtaint collections and strings - a deliberate design choice, as we leave precise collection and  string  

tracking  to  our  runtime  agent.  The  success  of  our  analyzer  rests  on  two  primary  pillars:  hard  work  on  

merging existing approaches from academia into an industry-grade data flow engine, and a novel approach for  

modeling, extracting, and evaluating high-level information flows. This work is part of our ongoing effort to  

develop a new generation of code analysis technology as software continues to conquer one industry after another.  

As  the  amount  of  code  written  and  deployed  steadily  increases  each  day,  so  does  the  demand  for   

automation  in  vulnerability  discovery.  Previously  existing  security  products  employ  techniques  from  both   

static  program  analysis (“SAST” products) and dynamic program analysis (“DAST/IAST” products), and as both  

approaches have their strengths and weaknesses, there is considerable interest in ways of combining the two to 

complement each other. While static analysis excels at comprehensively identifying vulnerabilities, it usually  

introduces a prohibitive amount of false positives. Dynamic analysis, on the other hand, has trouble achieving the 

same level of coverage and  induces  a  high  runtime  cost  if  employed  for  an  entire  application.  It  is,  however, 

very  effective  at  verifying  whether a vulnerability is indeed triggerable. False negatives are the problem for  

dynamic analysis, not false positives.

At ShiftLeft,  we  have  developed  a  product  which  combines  the  strength  of  both  approaches  by  statically 

identifying vulnerabilities at compile time, and leveraging these findings to dynamically mitigate their impact at  

runtime. As a result, the runtime cost is lower as instrumentation is performed selectively. Moreover, the negative 

effect of false positives on developer productivity is significantly reduced by allowing developers to focus on findings 

that can demonstrably be triggered at runtime.

The ability to filter false positives at runtime is powerful, however, as it true for all IAST products, it also requires integration  of  a  

runtime  agent  into  a  Q/A  or  even  production  environment.  In  many  organizations,  this  is  too  intrusive, and so it comes 

as no surprise that SAST - being capable of working on a copy of the code - is the most widely used code analysis technique.

The quality of SAST products, however, is problematic. Not to discredit the work of those who came before us, it  

is evident from the OWASP benchmark that existing static analyzers leave room for improvement both in terms of true 

positive and false positive rate. With a top Youden-Index of 39%, much work is to be done to push static analysis  to  where  

it  needs  to  be.  At  ShiftLeft,  we  are  determined  to  play  a  key  role  in  this  push  towards  a  new  generation of static 

analysis products. The next generation of static analysis needs to scale to the large amount of code processed in today’s  

organizations, integrate into new software development lifecycles, and bring developers and operators closer together. 

While a lot of work is ahead of us, we have already made quite some progress in the last 1.5 years, as we discuss in the following.

Overview

Towards a new generation of static analysis products

http://www.shiftleft.io


4

The OWASP benchmark is a sample application containing thousands of vulnerabilities from 11 categories. The 

benchmark includes code fragments that are hard to process via static analysis, e.g., indirect calls, unreachable 

branches, reflection, or values that depend on configuration files. To quote the README:

As Chris Wysopal of Veracode also points out, the OWASP benchmark provides a script to trigger all test cases, and 

this means that the challenge of achieving coverage that purely dynamic approaches face is not accounted for by the 

benchmark[1]. We therefore evaluate only our static analyzer on this benchmark and leave our runtime components 

out of the game. Overall, we achieve a Youden index of 0.78. However, in the OWASP benchmark, overall scores are 

calculated as averages over the categories, in order to give each category the same weight. This is debatable, as it 

means that decisions in categories with fewer samples are more relevant. With this rule in place, our score is 0.75. 

Table 1: OWASP Benchmark 1.2 and evaluation results. P/N is the number of positive/negative samples, TP/FP is 

the number of true/false positives, TN/FN is the number of true/false negatives, TPR and FPR are the true positive 

and false positive rates, and finally, Y is the Youden Index. We show results per category, results averaged over all 

categories, and results over all samples.

[1]https://www.veracode.com/blog/2015/09/no-one-technology-silver-bullet

Results on the OWASP benchmark

“[...]The OWASP Benchmark Project is a Java test suite designed to verify the speed and accuracy of  

vulnerability detection tools. The initial version is intended to support Static Analysis Security Testing  

Tools (SAST). A future release will support Dynamic Analysis Security Testing Tools (DAST), like  

OWASP ZAP, and Interactive Analysis Security Testing Tools (IAST).[...] ”

Category P N TP FP TN FN TPR FPR Y

Command Injection (cmdi)
Weak Cryptography (crypto)

Weak Randomness (hash)
LDAP Injection (ldapi)

Path Traversal (pathtraver)
Secure Cookie Flag securecookie)

SQL Injection (sqli)
Trust Boundary Violation (trustbound)

Weak Randomization (weakrand)
XPATH Injection (xpathi)
Cross Site Scripting (xss)

126
130
129
27

133
36

272
83

218
15

246

125
116
107
32

135
31

232
43
275
20

209

126
130
129
27

133
36

272
83

218
15

246

45
0
0
13
66
0

87
24
0
7

48

80
116
107
19
69
31

145
19

275
13

161

0
0
0
0
0
0
0
0
0
0
0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

0.36
0.0
0.0

0.41
0.49
0.0

0.375
0.56
0.0

0.35
0.23

0.64
1.0
1.0

0.59
0.51
1.0

0.63
0.44
1.0

0.65
0.77

Average
All

1415
1415

1325
1325

1415
1415

290
290

1035
1035

0
0

1.0
1.0

0.25
0.22

0.75
0.78

https://www.owasp.org/index.php/ZAP
http://www.shiftleft.io


5

In direct comparison to other tools (see Table 2), ShiftLeft is the only tool which achieves 100% coverage, followed 

by FBwFindSecBugs, which achieves 97%, however, at the cost of a 58% false positive rate. The next best 

commercial tool achieves a score of 33%.

Table 2: OWASP Benchmark results for 9 static analyzers. The commercial SAST tools 01-06 are known to include 
Checkmarx CxSAST, HP Fortify, IBM AppScan Source, Coverity Code Advisor, Parasoft Jtest, SourceMeter, and 
Veracode SAST. 

Analyzer Benchmark version TPR FPR Y

ShiftLeft
FBwFindSecBugs

SonarQube
SAST-04
SAST-06
SAST-02
SAST-03
SAST-05
SAST-01

PMD

1.2
1.2
1.2
1.1
1.1
1.1
1.1
1.1
1.1
1.2

1.0
0.97
0.50
0.61
0.85
0.56
0.46
0.48
0.29
0.00

0.25
0.58
0.17
0.29
0.52
0.26

0.214
0.29
0.12
0.00

0.75
0.39
0.33
0.33
0.33
0.31
0.25
0.19
0.17
0.00

The workhorse of our analysis is a state-of-the-art data-flow tracker, which we arrive at by merging many of the  

techniques developed and employed in academia for automated vulnerability discovery in the past decade. Our  

data-flow tracker is interprocedural, flow-sensitive, context-sensitive, field-sensitive, and operates on an 

intermediate code representation (see semantic code property graphs). The engine performs on-the-fly 

points-to analysis to resolve call sites and is able to benefit from the results of constant propagation, control flow graph 

pruning, and framework analysis passes. Framework analysis passes are able to process configuration files if 

present. The data flow engine provides a configurable set of heuristics to allow reporting of findings in an 

acceptable time frame. For example, we allow limiting the number of branches considered in strongly connected  

components, the maximum path length, and the total number of computation steps. The data-flow tracker caches 

where possible, and compromises where it must. There is still room for improvement, but even today, we are able to 

identify all relevant data flows in the OWASP benchmark in under 10 minutes on an Intel Xeon CPU E5-1650 v3 @ 3.50GHz.

Ingredient #1: Our data flow tracker

https://blog.shiftleft.io/semantic-code-property-graphs-and-security-profiles-b3b5933517c1
http://www.shiftleft.io


6

High-level information flows are the second core ingredient that contributes to the precision of our 

analysis. The idea is simple: for high-level programming languages such as Java, it is not sufficient to track single 

data-flows between APIs to understand the high-level flow of information. Instead, the information from multiple 

low-level flows needs to be combined. Let me illustrate this with an example. Consider the flow highlighted in bold 

in Listing 1: an HTTP request is passed to a post handler, a map holding parameters is extracted via the method 

`getParameterMap`, and the parameter `vector` is retrieved from this map via the method `get`. The parameter 

is then stored in the variable `param`, escaped via `htmlEscape`, renamed to `bar`, used in the initialization of an  

array, and finally, this array is passed to the method `printf`. On a higher level of abstraction, this is a flow of an 

HTTP request into the HTTP server’s response, and more specifically, into the a “text/html” response. The only other 

relevant aspect of the flow is that data passes through an escaping routine, turning this into a sample of 

non-vulnerable code.

The high level flow of information cannot be determined using the primary data flow from the servlet request 

to `printf` alone. In particular, this flow alone does not tell us where data is written, that is, back into the HTTP 

response, and that this response is not simply a plain text response. Without knowing this, it is impossible to 

determine whether this is a cross-site-scripting vulnerability, regardless of whether data is escaped or not.

Instead, we need to look at multiple flows: the primary data flow, and all flows that initialize sources, sinks, and 

transformations. We refer to these as descriptor flows. Inspired by UNIX file descriptors, the idea is to mark 

parameters of sources, sinks, and transformations, that provide information on where data comes from, where it 

goes, or how it is transformed, similar to how file descriptors are just integers, but their initialization determines 

whether data is written to a file, socket or a terminal.

Listing 1: (Low-level) primary flow from servlet request to `printf`. Escaping is performed to avoid cross site

scripting. The logical destination of the `printf` call is unclear unless the initialization 

Ingredient #2: High-level information flows

http://www.shiftleft.io


7

In our example, there is a single relevant descriptor flow, namely the flow that initializes the PrintWriter instance 

passed to the method `printf`. Looking at the primary data flow alone, all we see is that the method `java.io. 

PrintWriter.printf` is called. Taking into the account the descriptor flow highlighted in Listing 2, we see that the 

PrintWriter is initialized from the HttpServletResponse, and hence, that the data will be written into an HTTP 

response. We also see that the data will be returned as “text/html”, since the method `setContentType` is called on 

the descriptor as part of its initialization.

By combining the primary data flow with its descriptor flow, we can derive high-level data flows, and formulate rules 

for their classification. For example, we use the following rule to describe reflected cross site scripting vulnerabilities.

CONCLUSION reflected-xss = FLOW IO (http) 

-> DATA (NOT encrypted AND NOT hashed AND NOT escaped AND NOT encoded)

-> IO (print AND http-html)

This rule specifies that a data flow from http to a print operation known to write HTML to HTTP  is a reflected 

cross-site-scripting vulnerability, if the data is not encrypted, hashed, escaped or encoded on the way.

Listing 2: (Low level) descriptor flow that provides information about the initialization and configuration of the data 
destination. In combination with the primary data flow, and descriptor flows for the source and all transformations, 
we obtain a high-level information flow.

http://www.shiftleft.io


8

We analyzed false positives to better understand the capabilities and limitations of our analyzer. We found that the 

OWASP benchmark consists of code snippets, which are connected to form test cases, and that all false positives 

are caused only by the following three snippets.

1. Overtainting of collections (variant 1). The listing below shows the first snippet. A map is populated 

with a tainted (`param`) and an untainted value (`“a_Value”`), and the untainted value is retrieved from the map 

(into `bar`). We overtaint collections, meaning that, if parts of a collection are tainted, we assume that the entire  

collection is tainted, resulting in a false positive as we retrieve an untainted part of the collection in this example.

2. Overtainting of collections (variant 2). In this code, an untainted value(`“safe”`), a tainted value 

(`param`), and another untainted value (`“moresafe”`) are added to a list. The first value is subsequently removed 

from the start of the list, and the list element at index 1 is retrieved, that is, the untainted value `“moresafe”` is read. 

Again, we overtaint collection, resulting in a false positive.

Analysis of false positives

http://www.shiftleft.io


9

3. Disabled branches. Finally, the listing below shows the last of the three snippets that cause false positives. 

In this snippet, the second character is taken from the string “ABC”. If this is a constant, the result is always `B`, and 

hence, all of the branches of a following switch statement, except for one, are unreachable. This problem could be 

solved by modeling the semantics of `charAt`, replacing `switchTarget` accordingly, and performing constant 

propagation and control flow graph pruning. As we do not model `charAt`, we receive false positives for this 

snippet.

Creating passes to deal with these constructs statically is possible, with the second case being the most evolved as 

it required modelling of lists. It would have been possible, and allowed us to achieve a false positive rate of 0%, 

however, it would have been intellectually dishonest, as we would never put this expensive computation into 

production. The amount of computation required to solve such problems in general statically is high, and the cases 

in which it is relevant are too few to justify it. Instead, handling these cases with a runtime agent is cheaper, simpler, 

and can achieve sufficient precision. 

http://www.shiftleft.io


10

Increased automation is crucial in vulnerability discovery to scale to the large amount of code that need to be 

secured in today’s industries. The ability to statically identify vulnerabilities comprehensively, efficiently, and with 

few false positives is an important primitive to achieve this, and at ShiftLeft, we put considerable work and energy 

into achieving this goal. Today, we are happy to demonstrate successes in this area, by providing the first static 

data-flow tracker capable of detecting 100% of the vulnerabilities in the OWASP benchmark, at a false positive rate 

of 25%. This false positive rate is considerably lower than that of other static analyzers and can be attributed entirely 

to overtainting of collections and strings, a problem we handle via runtime analysis in practice.

To experience ShiftLeft Inspect in your own environment a fully functional free version is available. The free version 

includes up to:

• 200,000 lines of code 

• 300 scans per app, per year

• 5 users

Conclusion

ShiftLeft Inspect’s FREE version

Acknowledgements 

While many people at ShiftLeft made these numbers possible, I would like to highlight the contributions by Markus 

Lottmann and Niko Schmidt specifically. Thank you for all your hard work!

To create your free account, please visit: www.shiftleft.io/register

http://www.shiftleft.io
http://www.shiftleft.io/register


11 

Joern is a vulnerability research platform for robust analysis of C/C++ code.

Joern: An open source vulnerability research tool

Joern generates semantic code property graphs, a graph representation of code for cross-language code analysis. 

Semantic code property graphs are stored in a custom graph database. This allows code to be mined using search 

queries formulated in a domain-specific query language based on the graph traversal language Gremlin. Joern 

provides a peek into the underlying technology that powers the commercial code analyzer ShiftLeft Ocular.

The core features of Joern are:

Fuzzy Parsing of C/C++. Joern employs a fuzzy parser for C/C++ based on the concept of Island grammars. The 

parser enables importing arbitrary code even if a working build environment cannot be supplied or parts of the

code are missing.

Semantic Code Property Graphs. Joern creates semantic code property graphs from the fuzzy parser 

output and stores them in an in-memory graph database. SCPGs are a language-agnostic intermediate 

representation of code designed for query-based code analysis. For background information on code 

property graphs, we strongly encourage you to read the original paper on the topic (https://fabs.codeminers.org/pa-

pers/2014-ieeesp.pdf) and the specification of the semantic CPG at https://github.com/ShiftLeftSecurity/codeprop-

ertygraph .

Intelligent Search Queries. Joern offers a stronly-typed Scala-based extensible query language for code 

analysis based on Gremlin-Scala. This language can be used to manually formulate search queries for vulnerabilities as 

well as automatically infer them using machine learning techniques.

Extendable via CPG passes. Semantic code property graphs are multi-layered, offering information about 

code on different levels of abstraction. Joern comes with many default passes, but also allows users to add passes to 

include additional information in the graph, and extend the query language accordingly.

https://joern.io/docs/ https://github.com/Shift-
LeftSecurity/joern

http://www.shiftleft.io
https://ocular.shiftleft.io/
https://fabs.codeminers.org/papers/2014-ieeesp.pdf
https://fabs.codeminers.org/papers/2014-ieeesp.pdf
https://github.com/ShiftLeftSecurity/codepropertygraph
https://github.com/ShiftLeftSecurity/codepropertygraph
https://joern.io/docs/
https://github.com/ShiftLeftSecurity/joern
https://github.com/ShiftLeftSecurity/joern
https://joern.io/docs/
https://github.com/ShiftLeftSecurity/joern

