
Microsoft Certified: Azure Cosmos DB Developer

Specialty – Skills Measured

NOTE: The bullets that follow each of the skills measured are intended to illustrate how we are

assessing that skill. This list is NOT definitive or exhaustive.

NOTE: Most questions cover features that are General Availability (GA). The exam may contain

questions on Preview features if those features are commonly used.

Exam DP-420: Designing and Implementing Cloud-Native

Applications Using Microsoft Azure Cosmos DB

Design and Implement Data Models (35–40%)

Design and implement a non-relational data model for Azure Cosmos DB Core API

 develop a design by storing multiple entity types in the same container

 develop a design by storing multiple related entities in the same document

 develop a model that denormalizes data across documents

 develop a design by referencing between documents

 identify primary and unique keys

 identify data and associated access patterns

 specify a default TTL on a container for a transactional store

Design a data partitioning strategy for Azure Cosmos DB Core API

 choose a partition strategy based on a specific workload

 choose a partition key

 plan for transactions when choosing a partition key

 evaluate the cost of using a cross-partition query

 calculate and evaluate data distribution based on partition key selection

 calculate and evaluate throughput distribution based on partition key selection

 construct and implement a synthetic partition key

 design partitioning for workloads that require multiple partition keys

Plan and implement sizing and scaling for a database created with Azure Cosmos DB

 evaluate the throughput and data storage requirements for a specific workload

 choose between serverless and provisioned models

 choose when to use database-level provisioned throughput

 design for granular scale units and resource governance

 evaluate the cost of the global distribution of data

 configure throughput for Azure Cosmos DB by using the Azure portal

Implement client connectivity options in the Azure Cosmos DB SDK

 choose a connectivity mode (gateway versus direct)

 implement a connectivity mode

 create a connection to a database

 enable offline development by using the Azure Cosmos DB emulator

 handle connection errors

 implement a singleton for the client

 specify a region for global distribution

 configure client-side threading and parallelism options

 enable SDK logging

Implement data access by using the Azure Cosmos DB SQL language

 implement queries that use arrays, nested objects, aggregation, and ordering

 implement a correlated subquery

 implement queries that use array and type-checking functions

 implement queries that use mathematical, string, and date functions

 implement queries based on variable data

Implement data access by using SQL API SDKs

 choose when to use a point operation versus a query operation

 implement a point operation that creates, updates, and deletes documents

 implement an update by using a patch operation

 manage multi-document transactions using SDK Transactional Batch

 perform a multi-document load using SDK Bulk

 implement optimistic concurrency control using ETags

 implement session consistency by using session tokens

 implement a query operation that includes pagination

 implement a query operation by using a continuation token

 handle transient errors and 429s

 specify TTL for a document

 retrieve and use query metrics

Implement server-side programming in Azure Cosmos DB Core API by using JavaScript

 write, deploy, and call a stored procedure

 design stored procedures to work with multiple items transactionally

 implement triggers

 implement a user-defined function

Design and Implement Data Distribution (5–10%)

Design and implement a replication strategy for Azure Cosmos DB

 choose when to distribute data

 define automatic failover policies for regional failure for Azure Cosmos DB Core API

 perform manual failovers to move single master write regions

 choose a consistency model

 identify use cases for different consistency models

 evaluate the impact of consistency model choices on availability and associated RU cost

 evaluate the impact of consistency model choices on performance and latency

 specify application connections to replicated data

Design and implement multi-region write

 choose when to use multi-region write

 implement multi-region write

 implement a custom conflict resolution policy for Azure Cosmos DB Core API

Integrate an Azure Cosmos DB Solution (5–10%)

Enable Azure Cosmos DB analytical workloads

 enable Azure Synapse Link

 choose between Azure Synapse Link and Spark Connector

 enable the analytical store on a container

 enable a connection to an analytical store and query from Azure Synapse Spark or Azure

Synapse SQL

 perform a query against the transactional store from Spark

 write data back to the transactional store from Spark

Implement solutions across services

 integrate events with other applications by using Azure Functions and Azure Event Hubs

 denormalize data by using Change Feed and Azure Functions

 enforce referential integrity by using Change Feed and Azure Functions

 aggregate data by using Change Feed and Azure Functions, including reporting

 archive data by using Change Feed and Azure Functions

 implement Azure Cognitive Search for an Azure Cosmos DB solution

Optimize an Azure Cosmos DB Solution (15–20%)

Optimize query performance in Azure Cosmos DB Core API

 adjust indexes on the database

 calculate the cost of the query

 retrieve request unit cost of a point operation or query

 implement Azure Cosmos DB integrated cache

Design and implement change feeds for an Azure Cosmos DB Core API

 develop an Azure Functions trigger to process a change feed

 consume a change feed from within an application by using the SDK

 manage the number of change feed instances by using the change feed estimator

 implement denormalization by using a change feed

 implement referential enforcement by using a change feed

 implement aggregation persistence by using a change feed

 implement data archiving by using a change feed

Define and implement an indexing strategy for an Azure Cosmos DB Core API

 choose when to use a read-heavy versus write-heavy index strategy

 choose an appropriate index type

 configure a custom indexing policy by using the Azure portal

 implement a composite index

 optimize index performance

Maintain an Azure Cosmos DB Solution (25–30%)

Monitor and troubleshoot an Azure Cosmos DB solution

 evaluate response status code and failure metrics

 monitor metrics for normalized throughput usage by using Azure Monitor

 monitor server-side latency metrics by using Azure Monitor

 monitor data replication in relation to latency and availability

 configure Azure Monitor alerts for Azure Cosmos DB

 implement and query Azure Cosmos DB logs

 monitor throughput across partitions

 monitor distribution of data across partitions

 monitor security by using logging and auditing

Implement backup and restore for an Azure Cosmos DB solution

 choose between periodic and continuous backup

 configure periodic backup

 configure continuous backup and recovery

 locate a recovery point for a point-in-time recovery

 recover a database or container from a recovery point

Implement security for an Azure Cosmos DB solution

 choose between service-managed and customer-managed encryption keys

 configure network-level access control for Azure Cosmos DB

 configure data encryption for Azure Cosmos DB

 manage control plane access to Azure Cosmos DB by using Azure role-based access

control (RBAC)

 manage data plane access to Azure Cosmos DB by using keys

 manage data plane access to Azure Cosmos DB by using Azure Active Directory

 configure Cross-Origin Resource Sharing (CORS) settings

 manage account keys by using Azure Key Vault

 implement customer-managed keys for encryption

 implement Always Encrypted

Implement data movement for an Azure Cosmos DB solution

 choose a data movement strategy

 move data by using client SDK bulk operations

 move data by using Azure Data Factory and Azure Synapse pipelines

 move data by using a Kafka connector

 move data by using Azure Stream Analytics

 move data by using the Azure Cosmos DB Spark Connector

Implement a DevOps process for an Azure Cosmos DB solution

 choose when to use declarative versus imperative operations

 provision and manage Azure Cosmos DB resources by using Azure Resource Manager

templates (ARM templates)

 migrate between standard and autoscale throughput by using PowerShell or Azure CLI

 initiate a regional failover by using PowerShell or Azure CLI

 maintain index policies in production by using ARM templates

