
Microsoft Certified: Azure Cosmos DB Developer

Specialty – Skills Measured

NOTE: The bullets that follow each of the skills measured are intended to illustrate how we are

assessing that skill. This list is NOT definitive or exhaustive.

NOTE: Most questions cover features that are General Availability (GA). The exam may contain

questions on Preview features if those features are commonly used.

Exam DP-420: Designing and Implementing Cloud-Native

Applications Using Microsoft Azure Cosmos DB

Design and Implement Data Models (35–40%)

Design and implement a non-relational data model for Azure Cosmos DB Core API

 develop a design by storing multiple entity types in the same container

 develop a design by storing multiple related entities in the same document

 develop a model that denormalizes data across documents

 develop a design by referencing between documents

 identify primary and unique keys

 identify data and associated access patterns

 specify a default TTL on a container for a transactional store

Design a data partitioning strategy for Azure Cosmos DB Core API

 choose a partition strategy based on a specific workload

 choose a partition key

 plan for transactions when choosing a partition key

 evaluate the cost of using a cross-partition query

 calculate and evaluate data distribution based on partition key selection

 calculate and evaluate throughput distribution based on partition key selection

 construct and implement a synthetic partition key

 design partitioning for workloads that require multiple partition keys

Plan and implement sizing and scaling for a database created with Azure Cosmos DB

 evaluate the throughput and data storage requirements for a specific workload

 choose between serverless and provisioned models

 choose when to use database-level provisioned throughput

 design for granular scale units and resource governance

 evaluate the cost of the global distribution of data

 configure throughput for Azure Cosmos DB by using the Azure portal

Implement client connectivity options in the Azure Cosmos DB SDK

 choose a connectivity mode (gateway versus direct)

 implement a connectivity mode

 create a connection to a database

 enable offline development by using the Azure Cosmos DB emulator

 handle connection errors

 implement a singleton for the client

 specify a region for global distribution

 configure client-side threading and parallelism options

 enable SDK logging

Implement data access by using the Azure Cosmos DB SQL language

 implement queries that use arrays, nested objects, aggregation, and ordering

 implement a correlated subquery

 implement queries that use array and type-checking functions

 implement queries that use mathematical, string, and date functions

 implement queries based on variable data

Implement data access by using SQL API SDKs

 choose when to use a point operation versus a query operation

 implement a point operation that creates, updates, and deletes documents

 implement an update by using a patch operation

 manage multi-document transactions using SDK Transactional Batch

 perform a multi-document load using SDK Bulk

 implement optimistic concurrency control using ETags

 implement session consistency by using session tokens

 implement a query operation that includes pagination

 implement a query operation by using a continuation token

 handle transient errors and 429s

 specify TTL for a document

 retrieve and use query metrics

Implement server-side programming in Azure Cosmos DB Core API by using JavaScript

 write, deploy, and call a stored procedure

 design stored procedures to work with multiple items transactionally

 implement triggers

 implement a user-defined function

Design and Implement Data Distribution (5–10%)

Design and implement a replication strategy for Azure Cosmos DB

 choose when to distribute data

 define automatic failover policies for regional failure for Azure Cosmos DB Core API

 perform manual failovers to move single master write regions

 choose a consistency model

 identify use cases for different consistency models

 evaluate the impact of consistency model choices on availability and associated RU cost

 evaluate the impact of consistency model choices on performance and latency

 specify application connections to replicated data

Design and implement multi-region write

 choose when to use multi-region write

 implement multi-region write

 implement a custom conflict resolution policy for Azure Cosmos DB Core API

Integrate an Azure Cosmos DB Solution (5–10%)

Enable Azure Cosmos DB analytical workloads

 enable Azure Synapse Link

 choose between Azure Synapse Link and Spark Connector

 enable the analytical store on a container

 enable a connection to an analytical store and query from Azure Synapse Spark or Azure

Synapse SQL

 perform a query against the transactional store from Spark

 write data back to the transactional store from Spark

Implement solutions across services

 integrate events with other applications by using Azure Functions and Azure Event Hubs

 denormalize data by using Change Feed and Azure Functions

 enforce referential integrity by using Change Feed and Azure Functions

 aggregate data by using Change Feed and Azure Functions, including reporting

 archive data by using Change Feed and Azure Functions

 implement Azure Cognitive Search for an Azure Cosmos DB solution

Optimize an Azure Cosmos DB Solution (15–20%)

Optimize query performance in Azure Cosmos DB Core API

 adjust indexes on the database

 calculate the cost of the query

 retrieve request unit cost of a point operation or query

 implement Azure Cosmos DB integrated cache

Design and implement change feeds for an Azure Cosmos DB Core API

 develop an Azure Functions trigger to process a change feed

 consume a change feed from within an application by using the SDK

 manage the number of change feed instances by using the change feed estimator

 implement denormalization by using a change feed

 implement referential enforcement by using a change feed

 implement aggregation persistence by using a change feed

 implement data archiving by using a change feed

Define and implement an indexing strategy for an Azure Cosmos DB Core API

 choose when to use a read-heavy versus write-heavy index strategy

 choose an appropriate index type

 configure a custom indexing policy by using the Azure portal

 implement a composite index

 optimize index performance

Maintain an Azure Cosmos DB Solution (25–30%)

Monitor and troubleshoot an Azure Cosmos DB solution

 evaluate response status code and failure metrics

 monitor metrics for normalized throughput usage by using Azure Monitor

 monitor server-side latency metrics by using Azure Monitor

 monitor data replication in relation to latency and availability

 configure Azure Monitor alerts for Azure Cosmos DB

 implement and query Azure Cosmos DB logs

 monitor throughput across partitions

 monitor distribution of data across partitions

 monitor security by using logging and auditing

Implement backup and restore for an Azure Cosmos DB solution

 choose between periodic and continuous backup

 configure periodic backup

 configure continuous backup and recovery

 locate a recovery point for a point-in-time recovery

 recover a database or container from a recovery point

Implement security for an Azure Cosmos DB solution

 choose between service-managed and customer-managed encryption keys

 configure network-level access control for Azure Cosmos DB

 configure data encryption for Azure Cosmos DB

 manage control plane access to Azure Cosmos DB by using Azure role-based access

control (RBAC)

 manage data plane access to Azure Cosmos DB by using keys

 manage data plane access to Azure Cosmos DB by using Azure Active Directory

 configure Cross-Origin Resource Sharing (CORS) settings

 manage account keys by using Azure Key Vault

 implement customer-managed keys for encryption

 implement Always Encrypted

Implement data movement for an Azure Cosmos DB solution

 choose a data movement strategy

 move data by using client SDK bulk operations

 move data by using Azure Data Factory and Azure Synapse pipelines

 move data by using a Kafka connector

 move data by using Azure Stream Analytics

 move data by using the Azure Cosmos DB Spark Connector

Implement a DevOps process for an Azure Cosmos DB solution

 choose when to use declarative versus imperative operations

 provision and manage Azure Cosmos DB resources by using Azure Resource Manager

templates (ARM templates)

 migrate between standard and autoscale throughput by using PowerShell or Azure CLI

 initiate a regional failover by using PowerShell or Azure CLI

 maintain index policies in production by using ARM templates

