
www.cloudvector.com

Beyond Common
Gateway Protection:
Advanced API Risks

WHITE PA PER

www.cloudvector.com

www.cloudvector.com

DIGITAL TRANSFORMATION IS
CREATING A NEW SET OF RISKS

Digital Transformation makes “every company
a software company.” Business applications
are migrating to cloud infrastructure. DevOps
and SecOps are adopting an agile Continuous
Integration/Continuous Development (CI/CD)
process. Rapid development and changes to
business applications have become necessary to
keep pace with changing business needs.

APIs have become the de facto data transport
because its custom specification enables maximum
flexibility for custom business applications to
communicate.

However, this rapid evolution of apps has not
translated to a rapid change in app infrastructure
and security. On the contrary, rapid development
of apps has been made possible by the
commoditization of infrastructures, including core
security functionality once considered advanced
features.

For example, most cloud infrastructure providers
now offer OS/container platform security,
segmentation, and data encryption at rest and in
transit. Common Web protection against DDoS,
Bot, and OWASP Top 10 type attacks are now
baseline features. However, a major limitation of
gateways is that they are only useful for north-
south traffic because they are only deployed at the
perimeters.

When it comes to API security, solutions seem
focused on protecting infrastructure risks. Some
gateways offer protection for common API
security risks, such as access management for API
Gateways (e.g. Mulesoft, Apigee, Kong). Other
gateways (e.g. L7 Defense and Salt Security)
piggyback on Web Application Firewalls (WAF)
to leverage AI models that recognize and protect
common API functions.

One example of such a common function is the
“login” action. Some advanced API protection
solutions include inspection and monitoring of the
login action to detect abuses such as credential
stuffing. Another example is the detection of bad
bot behaviors based on telemetries such as the
source of calls and call volume. As these solutions
are only mitigating risks common to all APIs, they
are not addressing risks specific to individual
application API transport. In essence, these
solutions are only providing API infrastructure
security.

However, even in a state-of-the-art cloud
environment with all of its infrastructure security
enabled, there are still risks specific to custom APIs
themselves. Left unaddressed, this is the new risk
surface for data breaches.

APIs create new risks that cannot be addressed by commoditized solutions alone. In

particular this risk is caused by a lack of visibility into API specs, deep at the payload level.

Executive Summary

www.cloudvector.com

NEW CATEGORIES OF RISKS

Beyond the OWASP Top 10, there is now a new
OWASP API Security Top 101 , which highlights
specific risks at the custom API data transport
level.

RISKS DUE TO UNKNOWN/
OUTDATED API BLUEPRINTS

APIs are powerful because their data transport is
highly customizable. Their custom attributes are
usually called an API Specification or Spec for
short. Popular spec formats are OpenAPI (formerly
Swagger) and RAML. A complete, up-todate API
spec is usually a requirement for any API security
testing/assessment tools.

Application services exposing public APIs for third-
party developers are usually quite good at keeping
their published API specs up-to-date as external
users serve a forcing function. However, this is not
the case for APIs developed for private use, which
are the majority of business app APIs.

The general lack of complete, up-to-date API specs
is because they are often manually generated
by developers at the beginning of a project. And
as a manual process, there is little validation or
enforcement to keep these specs up-to-date when
the app evolves.

RISK 1: No API Specs

RISK 2: Loosely Defined API Specs

In the remainder of this document, we will dissect
key API risks in the following categories:

• Risks due to unknown/outdated API blueprints

• Risks due to uninspected API calls

• Risks due to uncontrolled third-party APIs

• Risks due to lack of in-depth object/function
inspection

If business applications expose APIs without
creating API specs, then the custom API transport
represents an entirely undocumented data risk
surface area.

SecOps realize the need to have an accurate API
asset registry or a Live API Catalog, but the manual
process and updates make it easier said than done.

A loosely defined API spec is not properly
protected because it is missing information.

This information is an undocumented risk surface.

1 OWASP API Security Project

1

2

OWASP API SECURITY TOP 10

A1 Broken Object Level Authorization

A2 Broken Authentication

A3 Excessive Data Exposure

A4 Lack of Resource & Rate Limiting

A5 Broken Function Level Authorization

A6 Mass Assignment

A7 Security Misconfiguration

A8 Injection

A9 Improper Asset Management

A10 Insufficient Logging and Monitoring

https://owasp.org/www-project-api-security/

www.cloudvector.com

RISKS DUE TO UNINSPECTED API
CALLS

Modern application architectures, such as
containers and micro-services, have introduced
the notion of “east-west” traffic: APIs are used by
not only front-end web services but also back-
end, service-toservice transactions. Conventional
“ingress controller” (“north-south”) type gateways
are not deployed to inspect east-west API calls.

RISKS DUE TO UNCONTROLLED

THIRD-PARTY APIS

APIs are not limited to ingress calls from enterprise
users or partners, they are also made by business
applications to external services. Public cloud
infrastructure services expose API access as part of
their standard offering. If not inspected, these API
calls can be vectors of data leakage.

RISK 3: Out-of-Spec API Calls
RISK 5: API Calls Not Inspected
by Network Detection Due to
Encryption

RISK 6: Egress API Calls to External
Services

RISK 4: API Calls Not Inspected by
a Conventional Gateway

An API spec can be incomplete or out of sync
due to rapid changes during implementation. Bad
actors can leverage out-of-spec API functions or
parameters to extract data. Two recent examples
include:

• A massive data leak was reported in a T-Mobile
app. The app API inadvertently exposed an
undocumented “shadow API parameter,”
which enabled external callers aware of the
hidden parameter to access T-Mobile customer
account data.2

• The Harbor Registry API vulnerability allowed a
user to elevate a guest account registration to
“admin” status by simply adding an out-of-spec
parameter administration=”yes”.3

There are network detection methods (e.g. those
provided by ImVision) that can potentially inspect
service-to-service (eastwest) API calls without
relying on a gateway. However, the increased use
of encryption makes such inspection less and less
effective—in the case of the Hostinger breach,
the API calls made by the bad actors used TLS
encryption.

Business applications are the “clients” of external
services, but the egress API calls they make can
be abused to exfiltrate data. For example, storage
service APIs exposed by Microsoft Azure have been
reportedly leveraged by bad actors to exfiltrate
data to unauthorized accounts.

Bad actors are known to use compromised servers
to launch “lateral” attacks against services with
custom APIs to bypass gateways. For example,
a major data breach was reported by a hosting
company, Hostinger, in which a lightly protected
server was compromised, then used to exfiltrate
data from another database service.4

3 5

6

4

2 ZDNet

3 Unit 42

4 Threat Post

https://www.zdnet.com/article/tmobile-bug-let-anyone-see-any-customers-account-details/
https://unit42.paloaltonetworks.com/critical-vulnerability-in-harbor-enables-privilege-escalation-from-zero-to-admin-cve-2019-16097/
https://threatpost.com/hostinger-data-breach-14m-passwords/147681/

www.cloudvector.com

RISK DUE TO LACK OF IN-DEPTH

OBJECT/FUNCTION INSPECTION

As discussed previously, object/function level
inspection requires a complete and up-to-date API
blueprint, which is often missing for privately used
APIs. Lack of object/function inspection leaves
application business logic exposed to exploits.

CONCLUSION

According to Gartner, “By 2022, API abuses will
be the most-frequent attack vector resulting in
data breaches for enterprise web applications.”9
Unfortunately, most solutions only address
common threats. App-specific API data transport
will become the major data risksurface.

RISK 7: Public API Access to
Enterprise Private Resources

RISK 9: API Session and Query
Parameter Mismatch

RISK 8: API Parameters Out of
Critical Range

Many public cloud services enable standard,
public API access. For example, unlike a private
data center, AWS S3 API network access cannot
be turned off for an enterprise customer.
Authenticated user roles provide the only access
control. In the case of CapitalOne5, compromised
credentials enabled access to all S3 buckets
belonging to the company. Data exfiltration
was not detected for months due to the lack of
additional monitoring and alerting.

It is a common but extremely damaging application
logic mistake to miss crosschecking the login
session and query parameter. Worst, if a front-
end service is missing such cross check queries
of a backend service on the user’s behalf, it is
impossible for the back-end service to detect such
data exfiltration as the original caller credentials are
no longer visible to back-end service.

Without ensuring the query parameters are
properly “pinned” to the login user-session user,
an API session belonging to user X can be abused
to retrieve data belonging to user Y. There are
numerous data breaches due to this kind of
vulnerability. A few are listed below:

• US Postal Office’s end-user privacy reporting
API itself was found to have a vulnerability for
more than 12 months, allowing a login user to
retrieve any other user’s private information.7

• The Facebook “ViewAs” privacy breach that
exposed approx. 50 Million users’ private data is
another example of the lack of session and data
retrieval “pinning.”8

APIs, especially those used for control purposes
(e.g. IoT), may be abused if certain parameters
are set out of range. Conventional anomaly
detection methods cannot detect small deviations
(e.g. adding a ‘0’ to a parameter) in an otherwise
normal call. In one attack, an industrial furnace was
physically damaged when a bad actor issued rouge
API calls to sabotage its temperature control unit.6

7 9

7

5 Security Boulevard

6 Wired

7 Krebs on Security

8 Auth0

9 Gartner

https://securityboulevard.com/2019/07/what-we-know-about-the-capital-one-data-breach/
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users/
https://auth0.com/blog/facebook-access-token-data-breach-early-look/
https://auth0.com/blog/facebook-access-token-data-breach-early-look/

