
MCSA: Universal Windows Platform – Skills Measured 

 

NOTE: The bullets that appear below each of the skills measured are intended to illustrate how 

we are assessing that skill. This list is not definitive or exhaustive. 

NOTE: In most cases, exams do NOT cover preview features, and some features will only be 

added to an exam when they are GA (General Availability). 

Exam 70-483: Programming in C# 

Manage Program Flow (25-30%) 

Implement multithreading and asynchronous processing  

 use the Task Parallel library, including theParallel.For method, PLINQ, Tasks;create 

continuation tasks; spawn threads by using ThreadPool; unblock the UI; use async and 

await keywords; manage data by using concurrent collections 

Manage multithreading  

 synchronize resources; implement locking; cancel a long-running task; implement 

thread-safe methods to handle race conditions 

Implement program flow  

 iterate across collection and array items; program decisions by using switch statements, 

if/then, and operators; evaluate expressions 

Create and implement events and callbacks  

 create event handlers; subscribe to and unsubscribe from events; use built-in delegate 

types to create events; create delegates; lambda expressions; anonymous methods 

Implement exception handling  

 handle exception types, including SQL exceptions, network exceptions, communication 

exceptions, network timeout exceptions; use catch statements; use base class of an 

exception; implement try-catchfinally blocks; throw exceptions; rethrow an exception; 

create custom exceptions; handle inner exceptions; handle aggregate exception 

Create and Use Types (25-30%) 



Create types  

 create value types, including structs and enum; create reference types, generic types, 

constructors, static variables, methods, classes, extension methods; create optional and 

named parameters; create indexed properties; create overloaded and overriden methods 

Consume types  

 box or unbox to convert between value types; cast types; convert types; handle dynamic 

types; ensure interoperability with code that accesses COM APIs  

Enforce encapsulation  

 enforce encapsulation by using properties; enforce encapsulation by using accessors, 

including public, private, protected, and internal; enforce encapsulation by using explicit 

interface implementation 

Create and implement a class hierarchy  

 design and implement an interface; inherit from a base class; create and implement 

classes based on the IComparable, IEnumerable, IDisposable, and IUnknown interfaces 

Find, execute, and create types at runtime by using reflection  

 create and apply attributes; read attributes; generate code at runtime by using CodeDom 

and Lambda expressions; use types from the System.Reflection namespace, including 

Assembly, PropertyInfo, MethodInfo, Type  

Manage the object life cycle  

 manage unmanaged resources; implement IDisposable, including interaction with 

finalization; manage IDisposable by using the Using statement; manage finalization and 

garbage collection 

Manipulate strings  

 manipulate strings by using the StringBuilder, StringWriter, and StringReader classes; 

search strings; enumerate string methods; format strings; use string interpolation 

Debug Applications and Implement Security (25-30%) 

Validate application input  



 validate JSON data; choose the appropriate data collection type; manage data integrity; 

evaluate a regular expression to validate the input format; use built-in functions to 

validate data type and content 

Perform symmetric and asymmetric encryption  

 choose an appropriate encryption algorithm; manage and create certificates; implement 

key management; implement the System.Security namespace; hash data; encrypt streams 

Manage assemblies  

 version assemblies; sign assemblies using strong names; implement side-by-side hosting; 

put an assembly in the global assembly cache; create a WinMD assembly 

Debug an application  

 create and manage preprocessor directives; choose an appropriate build type; manage 

program database files (debug symbols) 

Implement diagnostics in an application  

 implement logging and tracing; profiling applications; create and monitor performance 

counters; write to the event log 

Implement Data Access (25-30%) 

Perform I/O operations  

 read and write files and streams; read and write from the network by using classes in the 

System.Net namespace; implement asynchronous I/O operations 

Consume data  

 retrieve data from a database; update data in a database; consume JSON and XML data; 

retrieve data by using web services 

Query and manipulate data and objects by using LINQ  

 query data by using operators, including projection, join, group, take, skip, aggregate; 

create methodbased LINQ queries; query data by using query comprehension syntax; 

select data by using anonymous types; force execution of a query; read, filter, create, and 

modify data structures by using LINQ to XML 

Serialize and deserialize data  



 serialize and deserialize data by using binary serialization, custom serialization, XML 

Serializer, JSON Serializer, and Data Contract Serializer 

Store data in and retrieve data from collections  

 store and retrieve data by using dictionaries, arrays, lists, sets, and queues; choose a 

collection type; initialize a collection; add and remove items from a collection; use typed 

vs. non-typed collections; implement custom collections; implement collection interfaces 

 

Exam 70-357: Developing Mobile Apps 

Develop a XAML page layout for an adaptive UI (10–15%) 

Construct a page layout 

 configure a RelativePanel layout; select the appropriate XAML layout panel based on the 

UI requirement; configure a grid with appropriate column and row properties; configure 

alignment, margins, and padding 

Implement responsive and adaptive UI behaviors 

 differentiate between responsive and adaptive UI behaviors, create responsive and 

adaptive UIs by using VisualStateManager and AdaptiveTriggers, implement settings 

syntax for element properties and attached properties 

Create and use custom controls within an adaptive UI 

 evaluate when to create a custom control; create a custom control; implement styles, 

themes, and resource dictionaries; apply styles to custom controls by using Generic.xaml 

Optimize a page layout 

 reduce complexity for performance gains, reduce unnecessary nesting 

Implement page navigation and lifecycle events (10–15%) 

Choose the appropriate navigation structure for an app 

 evaluate when to implement the Hub, Master/Details, Tabs and Pivot, and Nav Pane 

navigation patterns; evaluate when to implement a custom navigation pattern 

Implement Nav Pane navigation 



 load page content by using Frame.Navigate, implement page navigation by using the 

Nav Pane pattern; implement a SplitView control for use as a navigation pane; support 

accessibility requirements within navigation by implementing key based navigation, UI 

automation, and narrator; handle Back button behavior for different Windows 10 device 

families 

Manage app activation 

 launch an app, activate an app on Startup, implement activation from a deep link, 

implement activation based on Search integration, implement activation from a 

secondary tile 

Manage app suspension and resuming 

 prepare an app for suspension, resume from suspension or termination, extend 

execution and monitor suspension errors 

Implement data access and data binding (20–25%) 

Access data by using Entity Framework (EF) 

 access data by using EFCore with SQLite, implement a local SQLite database 

Implement the {Binding} extension 

Implement the {x:Bind} extension 

Implement MVVM classes and class interactions 

 implement event binding by applying command patterns, implement a Dispatcher to 

update the UI thread with async return data 

Implement app-to-app communications 

 integrate a Share contract to share content with another app, integrate drag-and-drop, 

launch an app for results, implement app extensions, implement App Services 

Implement REST Web Services 

 implement JSON and data serialization, access cloud data and Web APIs by using 

HttpClient 

Implement file system access 



 manage storage by using StorageFile, StorageFolder, and StorageItem; access a file 

location by using FilePickers; implement data roaming and roaming folders 

Implement feature detection for adaptive coding (10–15%) 

Implement API detection within adaptive code 

Implement Type detection within adaptive code 

Implement supported capabilities 

 implement support for a microphone, implement support for a webcam, implement 

support for location, implement support for enterprise authentication 

Manage user input and custom user interactions (10–15%) 

Implement command bars, flyouts, and dialogs 

 implement command bars and AppBarButton buttons, implement context menus and 

menu flyouts, implement content dialogs, display a tooltip by using ToolTipService, 

display a pop-up menu, implement control over app settings 

Implement support for traditional and touch input devices 

 support touch input, support mouse input, support keyboard and virtual keyboard input 

Implement speech and voice commands 

 support speech synthesis, support speech recognition, support Cortana integration, 

support Personal Assistant Launch capability, support voice commands 

Implement alternative forms of input 

 implement inking, implement camera input, implement location services and GPS input 

Manage authentication and identity management (10–15%) 

Implement authentication using Web Authentication Broker 

 implement web service authentication, implement OAuth, implement Azure Active 

Directory authentication 

Manage credentials securely with Credential Locker 

Implement two-factor authentication 



 implement two-factor authentication using Microsoft Passport, implement two-factor 

authentication using Windows Hello 

Implement notifications, background tasks, and reusable components 

(15–20%) 

Create and consume class libraries and Windows Runtime components 

 develop Windows Runtime components, develop class libraries, integrate class libraries 

and Windows Runtime components 

Implement tile and toast notifications 

 implement adaptive and interactive toast notifications, implement local tile notifications 

Create and register a background task 

 create a background task project and reference the background task within a project, 

implement background task event triggers and conditions 

Implement and manage a background task 

 monitor background task progress and completion, manage task lifecycle, share data 

and events between an app and its background tasks, call a background task directly 

Create and consume a Universal Windows Platform (UWP) app service 

 specify the AppService extension, implement app service as a background task, deploy 

the app service provider, call app services 


