
MTA: Software Development Fundamentals – Skills 

Measured 

 

NOTE: The bullets that appear below each of the skills measured are intended to illustrate how 

we are assessing that skill. This list is not definitive or exhaustive. 

NOTE: In most cases, exams do NOT cover preview features, and some features will only be 

added to an exam when they are GA (General Availability). 

Exam 98-361: Software Development Fundamentals 

Understanding core programming (15-20%) 

Understand computer storage and data types 

 how a computer stores programs and the instructions in computer memory, memory 

stacks and heaps, memory size requirements for the various data storage types, numeric 

data and textual data 

Understand computer decision structures 

 various decision structures used in all computer programming languages; If decision 

structures; multiple decision structures, such as If…Else and switch/Select Case; reading 

flowcharts; decision tables; evaluating expressions 

Identify the appropriate method for handling repetition 

 For loops, While loops, Do...While loops, and recursion 

Understand error handling 

 structured exception handling 

Understanding object-oriented programming (20-25%) 

Understand the fundamentals of classes 

 properties, methods, events, and constructors; how to create a class; how to use classes 

in code 

Understand inheritance 



 inheriting the functionality of a base class into a derived class 

Understand polymorphism 

 extending the functionality in a class after inheriting from a base class, overriding 

methods in the derived class 

Understand encapsulation 

 creating classes that hide their implementation details while still allowing access to the 

required functionality through the interface, access modifiers 

Understanding general software development (15-20%) 

Understand application life cycle management 

 phases of application life cycle management, software testing 

Interpret application specifications 

 reading application specifications and translating them into prototypes, code, select 

appropriate application type, and components 

Understand algorithms and data structures 

 arrays, stacks, queues, linked lists, and sorting algorithms; performance implications of 

various data structures; choosing the right data structure 

Understanding web applications (15-20%) 

Understand web page development 

 HTML, Cascading Style Sheets (CSS), JavaScript 

Understand Microsoft ASP.NET web application development 

 page life cycle, event model, state management, client-side versus server-side 

programming 

Understand web hosting 

 creating virtual directories and websites, deploying web applications, understanding the 

role of Internet Information Services 

Understand web services 



 web services that will be consumed by client applications, accessing web services from a 

client application, SOAP and Web Service Definition Language (WSDL) 

Understanding desktop applications (15-20%) 

Understand Windows apps 

 UI design guideline categories, characteristics and capabilities of Store Apps, identify 

gestures 

Understand console-based applications 

 characteristics and capabilities of console-based applications 

Understand Windows Services 

 characteristics and capabilities of Windows Services 

Understanding databases (15-20%) 

Understand relational database management systems 

 characteristics and capabilities of database products, database design, Entity 

Relationship Diagrams (ERDs), normalization concepts 

Understand database query methods 

 Structured query language (SQL), creating and accessing stored procedures, updating 

data and selecting data 

Understand database connection methods 

 connecting to various types of data stores, such as flat file; XML file; in-memory object; 

resource optimization 


