
使用 Azure 整合物聯網設備之解決方案

Peter Chou

發佈日期: 2021 年 05 月 10 日

物聯網設備種類及技術日新月異,根據研調機構 IoT Analytics 在 2020 年的研究報告(Top 10 IoT applications in 2020) ,舉凡交通運輸、能源、零售、智慧城市、醫療保健、供應鏈、智慧農業、智慧建築等,皆有相關之應用。

(引用圖片來源: IoT Analytics)

當這些數量龐大的物聯網設備在各端點收集資料後, 如何進行大量資料的集中儲存?

如何將這些原始資料經過分析工具,轉化為有價值的數據?

且由於收集的資料數量龐大,如何兼顧成本及效益也是重要的衡量指標。

若以傳統的方式自行建置,上述的需求,至少需要下列元件:

- 1. 收集各物聯網設備資料的集中閘道。
- 2. 儲存原始資料的儲存空間。
- 3. 萃取資料的分析工具及儲存分析資料的資料庫。
- 4. 呈現結果的報表系統。

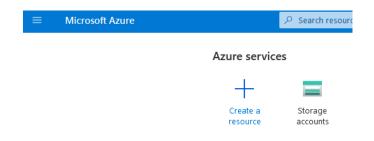
從頭打造這些元件,不但曠日費時,且使組織無法專注於真正重要的工作上。

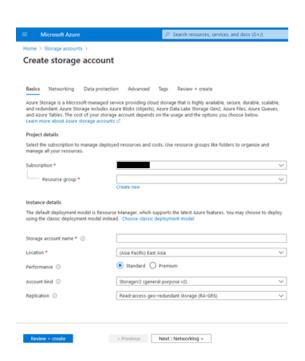
現在利用 Azure 即可快速打造出從物聯網設備資料收集、轉存、分析,並產製 報表的完整解決方案。

這套系統所需使用的 Azure 元件及其扮演角色,如下表:

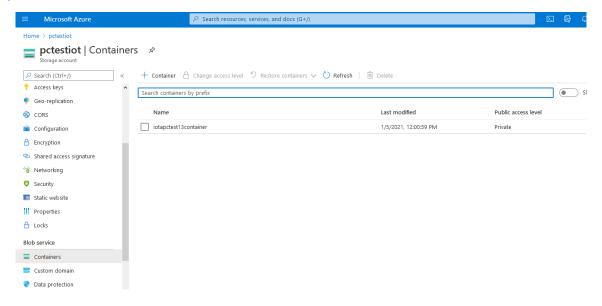
元件	扮演角色
Azure IoT Hub	物聯網設備資料的集中閘道
Azure Blob Storage	儲存原始資料的儲存空間
Azure Stream Analytics	萃取資料的分析工具
Azure SQL Database	儲存分析資料的資料庫
Power BI	呈現結果的報表系統

將各元件串接形成整個系統的流程,如下圖。



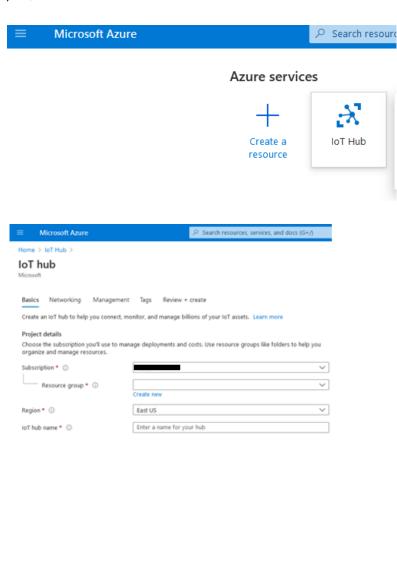

儲存原始資料

Blob storage


以下說明各元件的建置方式:

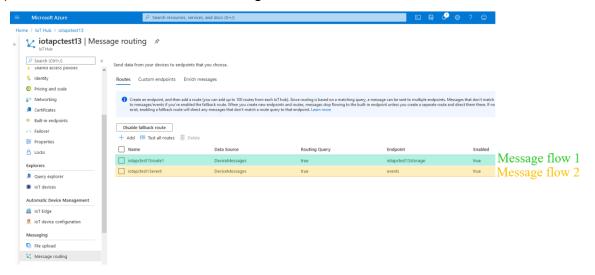
- Azure Blob Storage
 建立 Blob Storage 做為儲存原始資料的儲存空間。
 - (1) 建立 Blob Storage

(2) 新增 container

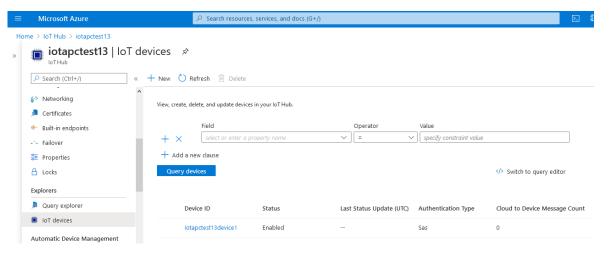


2. Azure IoT Hub

Azure IoT Hub 可讓大量的 IoT 裝置集中傳送資料到 Azure,並將資料轉存到 Azure 的儲存體(目前支援將資料寫入 JSON 或 AVRO 格式的 Blob 儲存體)或其他應用。


簡而言之,IOT Hub 是負責管理與連接物聯網裝置並協助蒐集、處理從物聯網裝置上所產 生資料的元件。

(1) 建立 IoT Hub



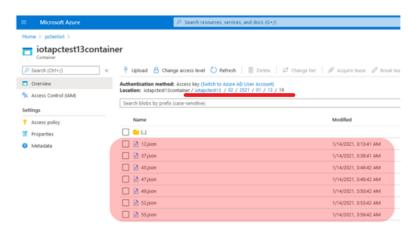
Review + create < Previous Next: Networking > Automation options

(2) 設定資料流,分別導向 Blob storage 及 Event 端點

(3) 建立 IoT devices

建立 IoT Device 後,使用 azure command 可取得連接資訊,

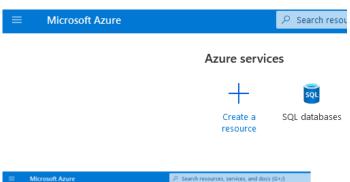
將此連接資訊設定於 IoT 設備上,即可讓 IoT 設備與 IoT Hub 建立連結並進行資料傳送。


取得連接資訊的 Azure command 語法範例如下:

az iot hub device-identity connection-string show --hub-name IoT-Hub-name --device-id IoT-Hub-DeviceID --output table

peter@Azure:~\$ az iot hub device-identity connection-string show --hub-name iotapctest13 --device-id iotapctest13device1 --output table
ConnectionString
HostWame=iotapctest13.azure-devices.net;Device1d=iotapctest13device1;SharedAccessKey=qS1dKehLSHP2PvCJbzVjZ+Ru60TV36U6HXH3cuG/9jA=

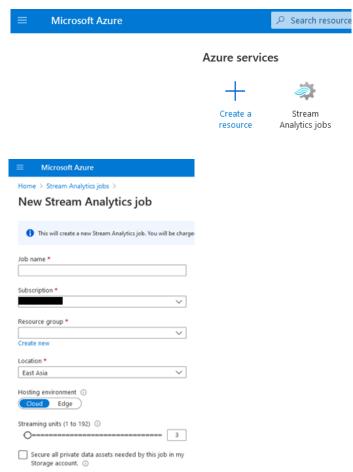
(4) 確認資料已接收


在 container 中會依資料收到的日期時間, 做為階層式架構的資料夾名稱, 在本案例中, 存放的是 json 格式的檔案。

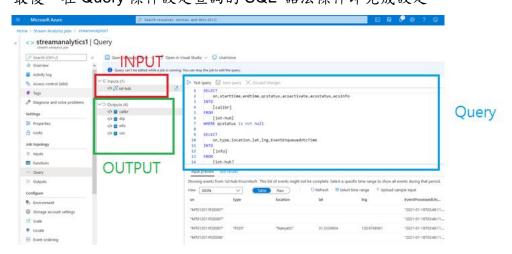
3. Azure SQL Database

建立 SQL Database 以儲存分析後的資料。

(1) 建立 SQL Database



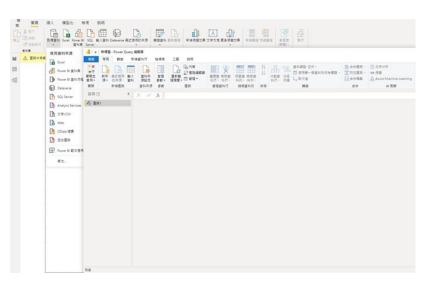
4. Azure Stream Analytics

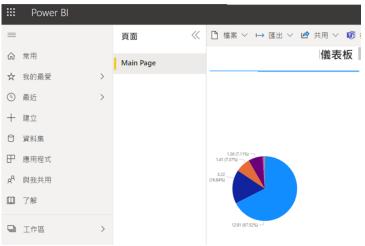

Azure Stream Analytics 是即時分析與處理複雜事件的引擎,主要用來同時分析和處理多個來源的串流資料。 可以從多個輸入來源中擷取資訊,並觸發動作啟動工作流程。 在本案例中,使用它來分析資料並轉存到資料庫以供之後使用。

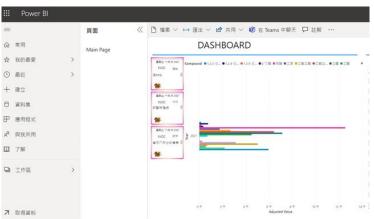
(1) 建立 Stream Analytics

(2) 設定分析條件

建立 Stream Analytics jobs 後,先在 Input 設定來源(本例為 IoT Hub) ,並在 Output 設定要轉存資料的目的地(本例為 SQL Database)。 最後,在 Query 條件設定查詢的 SQL 語法條件即完成設定。


Query 範例如下:




5. 利用 Power Bl 產製報表

Power BI 是 Microsoft 提供的業務分析服務。旨在提供交互式可視化和商業智能功能,可供用戶創建自己的報表和儀表板。

本案例中,SQL database 的資料做為 Power BI 的持續性資料來源,利用這些資料,可在 Power BI 中產出自訂的統計報表。

經由上述的設定流程,就可讓 IOT 設備透過集中管理上傳資料、儲存資料、建立 邏輯分析,最後產出報表,將零散的資料轉化為有用的資訊。