
Contents

 Overview
 Developer guide
 SDKs and tools

 Quickstart
 Web Apps
 Virtual machines

 Linux
 Windows

 Serverless
 Microservices

 Service Fabric
 Container Service
 Azure Spring Cloud

 Tutorials
 Create and deploy a web app

 .NET with SQL DB
 Node.js with Mongo DB
 PHP with MySQL
 Java with MySQL

 Deploy complex VM templates
 Linux
 Windows

 Create an Azure connected function
 Docker deploy web app on Linux

 Samples
 Azure CLI

 Web Apps
 Linux VM
 Windows VM

https://aka.ms/azsdkpackages
https://docs.microsoft.com/previous-versions/azure/container-service/dcos-swarm/container-service-intro
https://github.com/Azure-Samples/azure-cli-samples/tree/master/virtual-machine
https://github.com/Azure-Samples/azure-cli-samples/tree/master/virtual-machine

 Azure PowerShell
 Web Apps
 Linux VM
 Windows VM

 Concepts
 Billing and subscriptions
 Hosting comparisons
 What is App Service?
 Virtual machines

 Linux VMs
 Windows VMs

 Service Fabric overview
 How to guides

 Plan
 Web application architectures
 VM architectures
 Connect to on-premises networks
 Microservices patterns/scenarios

 Develop
 Linux VM
 Windows VM
 Serverless apps
 Microservices cluster

 Deploy
 Web and mobile apps from source control
 Microservices locally
 Linux VM
 Windows VM

 Store data
 Blobs
 File shares
 Key-value pairs

https://github.com/Azure/azure-docs-powershell-samples/tree/master/virtual-machine
https://github.com/Azure/azure-docs-powershell-samples/tree/master/virtual-machine
https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app
https://docs.microsoft.com/azure/architecture/reference-architectures/virtual-machines-windows/
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/

 JSON documents
 Relational tables
 Message queues

 Scale
 Web and mobile apps
 Virtual machines
 Microservice apps

 Secure
 Web and mobile apps

 Backup
 Web and mobile apps
 Virtual machines

 Monitor
 Web and mobile apps
 Windows VM
 Microservices
 Billing alerts

 Automate
 Scale Linux VM
 Scale Windows VM

 Reference
 REST
 SDKs

 .NET
 Java
 Node.js
 PHP
 Python
 Ruby

 Command line interfaces
 Azure CLI
 Azure PowerShell

https://docs.microsoft.com/rest/api/
https://docs.microsoft.com/dotnet/api/
https://docs.microsoft.com/java/api/
https://azure.github.io/azure-sdk-for-node/
https://github.com/Azure/azure-sdk-for-php/blob/master/README.md
https://github.com/Azure/azure-sdk-for-python/blob/master/README.md
https://github.com/Azure/azure-sdk-for-ruby/blob/master/README.md
https://docs.microsoft.com/cli/azure/
https://docs.microsoft.com/powershell/

 Billing
 Resources

 Azure limits and quotas
 Azure regions
 Azure Roadmap
 Pricing calculator
 Samples
 Videos

https://azure.microsoft.com/regions/
https://azure.microsoft.com/roadmap/
https://azure.microsoft.com/pricing/calculator/
https://azure.microsoft.com/resources/samples/
https://azure.microsoft.com/resources/videos/home/

Get started guide for Azure developers
 6/10/2021 • 21 minutes to read • Edit Online

 What is Azure?

 Where do I start?

 Application hosting

Azure is a complete cloud platform that can host your existing applications and streamline new application

development. Azure can even enhance on-premises applications. Azure integrates the cloud services that you

need to develop, test, deploy, and manage your applications, all while taking advantage of the efficiencies of

cloud computing.

By hosting your applications in Azure, you can start small and easily scale your application as your customer

demand grows. Azure also offers the reliability that's needed for high-availability applications, even including

failover between different regions. The Azure portal lets you easily manage all your Azure services. You can also

manage your services programmatically by using service-specific APIs and templates.

This guide is an introduction to the Azure platform for application developers. It provides guidance and direction

that you need to start building new applications in Azure or migrating existing applications to Azure.

With all the services that Azure offers, it can be an intimidating task to figure out which services you need to

support your solution architecture. This section highlights the Azure services that developers commonly use. For

a list of all Azure services, see the Azure documentation.

First, you must decide on how to host your application in Azure. Do you need to manage your entire

infrastructure as a virtual machine (VM)? Can you use the platform management facilities that Azure provides?

Maybe you need a serverless framework to host code execution only?

Your application needs cloud storage, which Azure provides several options for. You can take advantage of

Azure's enterprise authentication. There are also tools for cloud-based development and monitoring, and most

hosting services offer DevOps integration.

Now, let's look at some of the specific services that we recommend investigating for your applications.

Azure provides several cloud-based compute offerings to run your application so that you don't have to worry

about the infrastructure details. You can easily scale up or scale out your resources as your application usage

grows.

Azure offers services that support your application development and hosting needs. Azure provides

Infrastructure as a Service (IaaS) to give you full control over your application hosting. Azure's Platform as a

Service (PaaS) offerings provide the fully managed services needed to power your apps. There's even true

serverless hosting in Azure where all you need to do is write your code.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/guides/developer/azure-developer-guide.md
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/index

Azure App Service

 Azure Virtual Machines

 Azure Functions (serverless)

When you want the quickest path to publish your web-based projects, consider Azure App Service. App Service

makes it easy to extend your web apps to support your mobile clients and publish easily consumed REST APIs.

This platform provides authentication by using social providers, traffic-based autoscaling, testing in production,

and continuous and container-based deployments.

You can create web apps, mobile app back ends, and API apps.

Because all three app types share the App Service runtime, you can host a website, support mobile clients, and

expose your APIs in Azure, all from the same project or solution. To learn more about App Service, see What is

Azure Web Apps.

App Service has been designed with DevOps in mind. It supports various tools for publishing and continuous

integration deployments. These tools include GitHub webhooks, Jenkins, Azure DevOps, TeamCity, and others.

You can migrate your existing applications to App Service by using the online migration tool.

When to use: Use App Service when you're migrating existing web applications to Azure, and when you

need a fully-managed hosting platform for your web apps. You can also use App Service when you need to

support mobile clients or expose REST APIs with your app.

Get star ted : App Service makes it easy to create and deploy your first web app, mobile app, or API app.

Tr y it now : App Service lets you provision a short-lived app to try the platform without having to sign up

for an Azure account. Try the platform and create your Azure App Service app.

As an Infrastructure as a Service (IaaS) provider, Azure lets you deploy to or migrate your application to either

Windows or Linux VMs. Together with Azure Virtual Network, Azure Virtual Machines supports the deployment

of Windows or Linux VMs to Azure. With VMs, you have total control over the configuration of the machine.

When using VMs, you're responsible for all server software installation, configuration, maintenance, and

operating system patches.

Because of the level of control that you have with VMs, you can run a wide range of server workloads on Azure

that don't fit into a PaaS model. These workloads include database servers, Windows Server Active Directory,

and Microsoft SharePoint. For more information, see the Virtual Machines documentation for either Linux or

Windows.

When to use: Use Virtual Machines when you want full control over your application infrastructure or to

migrate on-premises application workloads to Azure without having to make changes.

Get star ted : Create a Linux VM or Windows VM from the Azure portal.

Rather than worrying about building out and managing a whole application or the infrastructure to run your

code, what if you could just write your code and have it run in response to events or on a schedule? Azure

Functions is a "serverless"-style offering that lets you write just the code you need. With Functions, you can

trigger code execution with HTTP requests, webhooks, cloud service events, or on a schedule. You can code in

your development language of choice, such as C#, F#, Node.js, Python, or PHP. With consumption-based billing,

you pay only for the time that your code executes, and Azure scales as needed.

When to use: Use Azure Functions when you have code that is triggered by other Azure services, by web-

based events, or on a schedule. You can also use Functions when you don't need the overhead of a complete

hosted project or when you only want to pay for the time that your code runs. To learn more, see Azure

Functions Overview.

https://appmigration.microsoft.com/
https://docs.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore
https://docs.microsoft.com/en-us/previous-versions/azure/app-service-mobile/app-service-mobile-ios-get-started
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-rest-api
https://tryappservice.azure.com/
https://docs.microsoft.com/en-us/azure/virtual-machines/index
https://docs.microsoft.com/en-us/azure/virtual-machines/index
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview

 Azure Service Fabric

 Azure Spring Cloud

 Enhance your applications with Azure services

 Hosted storage and data access

Get star ted : Follow the Functions quickstart tutorial to create your first function from the portal.

Tr y it now : Azure Functions lets you run your code without having to sign up for an Azure account. Try it

now at and create your first Azure Function.

Azure Service Fabric is a distributed systems platform. This platform makes it easy to build, package, deploy, and

manage scalable and reliable microservices. It also provides comprehensive application management

capabilities such as:

Provisioning

Deploying

Monitoring

Upgrading/patching

Deleting

Apps, which run on a shared pool of machines, can start small and scale to hundreds or thousands of machines

as needed.

Service Fabric supports WebAPI with Open Web Interface for .NET (OWIN) and ASP.NET Core. It provides SDKs

for building services on Linux in both .NET Core and Java. To learn more about Service Fabric, see the Service

Fabric documentation.

When to use: Service Fabric is a good choice when you're creating an application or rewriting an existing

application to use a microservice architecture. Use Service Fabric when you need more control over, or direct

access to, the underlying infrastructure.

Get star ted: Create your first Azure Service Fabric application.

Azure Spring Cloud is a serverless microservices platform that enables you to build, deploy, scale and monitor

your applications in the cloud. Use Spring Cloud to bring modern microservice patterns to Spring Boot apps,

eliminating boilerplate code to quickly build robust Java apps.

Leverage managed versions of Spring Cloud Service Discovery and Config Server, while we ensure those

critical components are running in optimum conditions.

Focus on building your business logic and we will take care of your service runtime with security patches,

compliance standards and high availability.

Manage application lifecycle (e.g.: deploy, start, stop, scale) on top of Azure Kubernetes Service.

Easily bind connections between your apps and Azure services such as Azure Database for MySQL and Azure

Cache for Redis.

Monitor and troubleshoot microservices and applications using enterprise-grade unified monitoring tools

that offer deep insights on application dependencies and operational telemetry.

When to use: As a fully managed service Azure Spring Cloud is a good choice when you're minimizing

operational cost running Spring Boot/Spring Cloud based microservices on Azure.

Get star ted: Deploy your first Azure Spring Cloud application.

Along with application hosting, Azure provides service offerings that can enhance the functionality. Azure can

also improve the development and maintenance of your applications, both in the cloud and on-premises.

https://tryappservice.azure.com/
https://docs.microsoft.com/en-us/azure/service-fabric/index

 Docker support

Most applications must store data, so however you decide to host your application in Azure, consider one or

more of the following storage and data services.

Azure Cosmos DB: A globally distributed, multi-model database service. This database enables you to

elastically scale throughput and storage across any number of geographical regions with a

comprehensive SLA.

When to use: When your application needs document, table, or graph databases, including

MongoDB databases, with multiple well-defined consistency models.

Get star ted : Build an Azure Cosmos DB web app. If you're a MongoDB developer, see Build a

MongoDB web app with Azure Cosmos DB.

Azure Storage: Offers durable, highly available storage for blobs, queues, files, and other kinds of

nonrelational data. Storage provides the storage foundation for VMs.

When to use: When your app stores nonrelational data, such as key-value pairs (tables), blobs, files

shares, or messages (queues).

Get star ted : Choose from one of these types storage: blobs, tables, queues, or files.

Azure SQL Database: An Azure-based version of the Microsoft SQL Server engine for storing relational

tabular data in the cloud. SQL Database provides predictable performance, scalability with no downtime,

business continuity, and data protection.

When to use: When your application requires data storage with referential integrity, transactional

support, and support for TSQL queries.

Get star ted : Create a database in Azure SQL Database in minutes by using the Azure portal.

You can use Azure Data Factory to move existing on-premises data to Azure. If you aren't ready to move data to

the cloud, Hybrid Connections in Azure App Service lets you connect your App Service hosted app to on-

premises resources. You can also connect to Azure data and storage services from your on-premises

applications.

Docker containers, a form of OS virtualization, let you deploy applications in a more efficient and predictable

way. A containerized application works in production the same way as on your development and test systems.

You can manage containers by using standard Docker tools. You can use your existing skills and popular open-

source tools to deploy and manage container-based applications on Azure.

Azure provides several ways to use containers in your applications.

Azure Kubernetes Ser vice : Lets you create, configure, and manage a cluster of virtual machines that

are preconfigured to run containerized applications. To learn more about Azure Kubernetes Service, see

Azure Kubernetes Service introduction.

When to use: When you need to build production-ready, scalable environments that provide

additional scheduling and management tools, or when you're deploying a Docker Swarm cluster.

Get star ted : Deploy a Kubernetes Service cluster.

Docker Machine: Lets you install and manage a Docker Engine on virtual hosts by using docker-

machine commands.

When to use: When you need to quickly prototype an app by creating a single Docker host.

https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-table-dotnet
https://docs.microsoft.com/en-us/azure/data-factory/introduction
https://docs.microsoft.com/en-us/azure/app-service/app-service-hybrid-connections
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster

 Authentication

 Monitoring

 DevOps integration

Custom Docker image for App Ser vice : Lets you use Docker containers from a container registry or

a customer container when you deploy a web app on Linux.

When to use: When deploying a web app on Linux to a Docker image.

Get star ted : Use a custom Docker image for App Service on Linux.

It's crucial to not only know who is using your applications, but also to prevent unauthorized access to your

resources. Azure provides several ways to authenticate your app clients.

Azure Active Director y (Azure AD) : The Microsoft multitenant, cloud-based identity and access

management service. You can add single-sign on (SSO) to your applications by integrating with Azure AD.

You can access directory properties by using the Azure AD Graph API directly or the Microsoft Graph API.

You can integrate with Azure AD support for the OAuth2.0 authorization framework and Open ID

Connect by using native HTTP/REST endpoints and the multiplatform Azure AD authentication libraries.

When to use: When you want to provide an SSO experience, work with Graph-based data, or

authenticate domain-based users.

Get star ted : To learn more, see the Azure Active Directory developer's guide.

App Ser vice Authentication : When you choose App Service to host your app, you also get built-in

authentication support for Azure AD, along with social identity providers—including Facebook, Google,

Microsoft, and Twitter.

When to use: When you want to enable authentication in an App Service app by using Azure AD,

social identity providers, or both.

Get star ted : To learn more about authentication in App Service, see Authentication and

authorization in Azure App Service.

To learn more about security best practices in Azure, see Azure security best practices and patterns.

With your application up and running in Azure, you need to monitor performance, watch for issues, and see how

customers are using your app. Azure provides several monitoring options.

Application Insights : An Azure-hosted extensible analytics service that integrates with Visual Studio to

monitor your live web applications. It gives you the data that you need to improve the performance and

usability of your apps continuously. This improvement occurs whether you host your applications on

Azure or not.

Get star ted : Follow the Application Insights tutorial.

Azure Monitor : A service that helps you to visualize, query, route, archive, and act on the metrics and

logs that you generate with your Azure infrastructure and resources. Monitor is a single source for

monitoring Azure resources and provides the data views that you see in the Azure portal.

Get star ted : Get started with Azure Monitor.

Whether it's provisioning VMs or publishing your web apps with continuous integration, Azure integrates with

most of the popular DevOps tools. You can work with the tools that you already have and maximize your

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-us/azure/security/fundamentals/best-practices-and-patterns
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview

 Azure regions

 Choose the best region for your application and data

 Multi-region apps

 How do I manage my applications and projects?

 Command-line interfaces and PowerShell

existing experience with support for tools like:

Jenkins

GitHub

Puppet

Chef

TeamCity

Ansible

Azure DevOps

Get star ted : To see DevOps options for an App Service app, see Continuous Deployment to Azure App

Service.

Tr y it now: Try out several of the DevOps integrations.

Azure is a global cloud platform that is generally available in many regions around the world. When you

provision a service, application, or VM in Azure, you're asked to select a region. This region represents a specific

datacenter where your application runs or where your data is stored. These regions correspond to specific

locations, which are published on the Azure regions page.

One of the benefits of using Azure is that you can deploy your applications to various datacenters around the

globe. The region that you choose can affect the performance of your application. For example, it's better to

choose a region that's closer to most of your customers to reduce latency in network requests. You might also

want to select your region to meet the legal requirements for distributing your app in certain countries/regions.

It's always a best practice to store application data in the same datacenter or in a datacenter as near as possible

to the datacenter that is hosting your application.

Although unlikely, it's not impossible for an entire datacenter to go offline because of an event such as a natural

disaster or Internet failure. It's a best practice to host vital business applications in more than one datacenter to

provide maximum availability. Using multiple regions can also reduce latency for global users and provide

additional opportunities for flexibility when updating applications.

Some services, such as Virtual Machine and App Services, use Azure Traffic Manager to enable multi-region

support with failover between regions to support high-availability enterprise applications. For an example, see

Azure reference architecture: Run a web application in multiple regions.

When to use: When you have enterprise and high-availability applications that benefit from failover and

replication.

Azure provides a rich set of experiences for you to create and manage your Azure resources, applications, and

projects—both programmatically and in the Azure portal.

Azure provides two ways to manage your applications and services from the command line. You can use tools

like Bash, Terminal, the command prompt, or your command-line tool of choice. Usually, you can do the same

tasks from the command line as in the Azure portal—such as creating and configuring virtual machines, virtual

networks, web apps, and other services.

https://azure.microsoft.com/try/devops/
https://azure.microsoft.com/regions/
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/app-service-web-app/multi-region
https://portal.azure.com/

 Azure portal

 REST APIs

 APIs

 Azure Resource Manager

Azure Command-Line Interface (CLI): Lets you connect to an Azure subscription and program various

tasks against Azure resources from the command line.

Azure PowerShell: Provides a set of modules with cmdlets that enable you to manage Azure resources by

using Windows PowerShell.

The Azure portal is a web-based application. You can use the Azure portal to create, manage, and remove Azure

resources and services. It includes:

A configurable dashboard

Azure resource management tools

Access to subscription settings and billing information. For more information, see the Azure portal overview.

Azure is built on a set of REST APIs that support the Azure portal UI. Most of these REST APIs are also supported

to let you programmatically provision and manage your Azure resources and applications from any Internet-

enabled device. For the complete set of REST API documentation, see the Azure REST SDK reference.

Along with REST APIs, many Azure services also let you programmatically manage resources from your

applications by using platform-specific Azure SDKs, including SDKs for the following development platforms:

.NET

Node.js

Java

PHP

Python

Ruby

Go

Services such as Mobile Apps and Azure Media Services provide client-side SDKs to let you access services from

web and mobile client apps.

Running your app on Azure likely involves working with multiple Azure services. These services follow the same

life cycle and can be thought of as a logical unit. For example, a web app might use Web Apps, SQL Database,

Storage, Azure Cache for Redis, and Azure Content Delivery Network services. Azure Resource Manager lets you

work with the resources in your application as a group. You can deploy, update, or delete all the resources in a

single, coordinated operation.

Along with logically grouping and managing related resources, Azure Resource Manager includes deployment

capabilities that let you customize the deployment and configuration of related resources. For example, you can

use Resource Manager deploy and configure an application. This application can consist of multiple virtual

machines, a load balancer, and a database in Azure SQL Database as a single unit.

You develop these deployments by using an Azure Resource Manager template, which is a JSON-formatted

document. Templates let you define a deployment and manage your applications by using declarative templates,

rather than scripts. Your templates can work for different environments, such as testing, staging, and production.

For example, you can use templates to add a button to a GitHub repo that deploys the code in the repo to a set

of Azure services with a single click.

When to use: Use Resource Manager templates when you want a template-based deployment for your app

that you can manage programmatically by using REST APIs, the Azure CLI, and Azure PowerShell.

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://portal.azure.com
https://azure.microsoft.com/features/azure-portal/
https://docs.microsoft.com/en-us/rest/api/
https://docs.microsoft.com/en-us/dotnet/api/
https://docs.microsoft.com/en-us/azure/developer/javascript/
https://docs.microsoft.com/en-us/java/azure
https://github.com/Azure/azure-sdk-for-php/blob/master/README.md
https://docs.microsoft.com/en-us/azure/python/
https://github.com/Azure/azure-sdk-for-ruby/blob/master/README.md
https://docs.microsoft.com/en-us/azure/go
https://docs.microsoft.com/en-us/previous-versions/azure/app-service-mobile/app-service-mobile-dotnet-how-to-use-client-library
https://docs.microsoft.com/en-us/azure/media-services/previous/media-services-dotnet-how-to-use
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview

 Understanding accounts, subscriptions, and billing

 What is an Azure account?

 Manage your subscriptions

 Resource groups

 Grant access to resources

Get star ted : To get started using templates, see Authoring Azure Resource Manager templates.

As developers, we like to dive right into the code and try to get started as fast as possible with making our

applications run. We certainly want to encourage you to start working in Azure as easily as possible. To help

make it easy, Azure offers a free trial. Some services even have a "Try it for free" functionality, like Azure App

Service, which doesn't require you to even create an account. As fun as it is to dive into coding and deploying

your application to Azure, it's also important to take some time to understand how Azure works. Specifically, you

should understand how it works from a standpoint of user accounts, subscriptions, and billing.

To create or work with an Azure subscription, you must have an Azure account. An Azure account is simply an

identity in Azure AD or in a directory, such as a work or school organization, that Azure AD trusts. If you don't

belong to such an organization, you can always create a subscription by using your Microsoft Account, which is

trusted by Azure AD. To learn more about integrating on-premises Windows Server Active Directory with Azure

AD, see Integrating your on-premises identities with Azure Active Directory.

Every Azure subscription has a trust relationship with an Azure AD instance. This means that it trusts that

directory to authenticate users, services, and devices. Multiple subscriptions can trust the same directory, but a

subscription trusts only one directory. To learn more, see How Azure subscriptions are associated with Azure

Active Directory.

As well as defining individual Azure account identities, also called users, you can define groups in Azure AD.

Creating user groups is a good way to manage access to resources in a subscription by using role-based access

control (RBAC). To learn how to create groups, see Create a group in Azure Active Directory preview. You can

also create and manage groups by using PowerShell.

A subscription is a logical grouping of Azure services that is linked to an Azure account. A single Azure account

can contain multiple subscriptions. Billing for Azure services is done on a per-subscription basis. For a list of the

available subscription offers by type, see Microsoft Azure Offer Details. Azure subscriptions have an Account

Administrator who has full control over the subscription. They also have a Service Administrator who has

control over all services in the subscription. For information about classic subscription administrators, see Add

or change Azure subscription administrators. Individual accounts can be granted detailed control of Azure

resources using Azure role-based access control (Azure RBAC).

When you provision new Azure services, you do so in a given subscription. Individual Azure services, which are

also called resources, are created in the context of a resource group. Resource groups make it easier to deploy

and manage your application's resources. A resource group should contain all the resources for your application

that you want to work with as a unit. You can move resources between resource groups and even to different

subscriptions. To learn about moving resources, see Move resources to new resource group or subscription.

The Azure Resource Explorer is a great tool for visualizing the resources that you've already created in your

subscription. To learn more, see Use Azure Resource Explorer to view and modify resources.

When you allow access to Azure resources, it's always a best practice to provide users with the least privilege

that's required to do a given task.

Azure role-based access control (Azure RBAC) : In Azure, you can grant access to user accounts

(principals) at a specified scope: subscription, resource group, or individual resources. Azure RBAC lets

you deploy resources into a resource group and grant permissions to a specific user or group. It also lets

you limit access to only the resources that belong to the target resource group. You can also grant access

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/syntax
https://azure.microsoft.com/free/
https://tryappservice.azure.com/
https://docs.microsoft.com/en-us/azure/active-directory/hybrid/whatis-hybrid-identity
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-how-subscriptions-associated-directory
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-groups-create-azure-portal
https://docs.microsoft.com/en-us/azure/active-directory/enterprise-users/groups-settings-v2-cmdlets
https://azure.microsoft.com/support/legal/offer-details/
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/add-change-subscription-administrator
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/move-resource-group-and-subscription
https://docs.microsoft.com/en-us/rest/api/

 Tags

 Billing

 Get resource usage data

 Predict future costs

to a single resource, such as a virtual machine or virtual network. To grant access, you assign a role to the

user, group, or service principal. There are many predefined roles, and you can also define your own

custom roles. To learn more, see What is Azure role-based access control (Azure RBAC)?.

When to use: When you need fine-grained access management for users and groups or when you

need to make a user an owner of a subscription.

Get star ted : To learn more, see Assign Azure roles using the Azure portal.

Ser vice pr incipal objects : Along with providing access to user principals and groups, you can grant the

same access to a service principal.

When to use: When you're programmatically managing Azure resources or granting access for

applications. For more information, see Create Active Directory application and service principal.

Azure Resource Manager lets you assign custom tags to individual resources. Tags, which are key-value pairs,

can be helpful when you need to organize resources for billing or monitoring. Tags provide you a way to track

resources across multiple resource groups. You can assign tags the following ways:

In the portal

In the Azure Resource Manager template

Using the REST API

Using the Azure CLI

Using PowerShell

You can assign multiple tags to each resource. To learn more, see Using tags to organize your Azure resources.

In the move from on-premises computing to cloud-hosted services, tracking and estimating service usage and

related costs are significant concerns. It's important to estimate what new resources cost to run on a monthly

basis. You can also project how the billing looks for a given month based on the current spending.

Azure provides a set of Billing REST APIs that give access to resource consumption and metadata information

for Azure subscriptions. These Billing APIs give you the ability to better predict and manage Azure costs. You can

track and analyze spending in hourly increments and create spending alerts. You can also predict future billing

based on current usage trends.

Get star ted : To learn more about using the Billing APIs, see Azure consumption API overview

Although it's challenging to estimate costs ahead of time, Azure has tools that can help. It has a pricing calculator

to help estimate the cost of deployed resources. You can also use the Billing resources in the portal and the

Billing REST APIs to estimate future costs, based on current consumption.

Get star ted : See Azure consumption API overview.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/tag-resources
https://azure.microsoft.com/pricing/calculator/

Create a static HTML web app in Azure
 4/13/2021 • 3 minutes to read • Edit Online

 Use Azure Cloud Shell

O P T IO N EXA M P L E/ L IN K

Select Tr y It in the upper-right corner of a code block.
Selecting Tr y It doesn't automatically copy the code to
Cloud Shell.

Go to https://shell.azure.com, or select the Launch Cloud
Shell button to open Cloud Shell in your browser.

Select the Cloud Shell button on the menu bar at the
upper right in the Azure portal.

Azure App Service provides a highly scalable, self-patching web hosting service. This quickstart shows how to

deploy a basic HTML+CSS site to Azure App Service. You'll complete this quickstart in Cloud Shell, but you can

also run these commands locally with Azure CLI.

If you don't have an Azure subscription, create a free account before you begin.

Azure hosts Azure Cloud Shell, an interactive shell environment that you can use through your browser. You can

use either Bash or PowerShell with Cloud Shell to work with Azure services. You can use the Cloud Shell

preinstalled commands to run the code in this article without having to install anything on your local

environment.

To start Azure Cloud Shell:

To run the code in this article in Azure Cloud Shell:

1. Start Cloud Shell.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/quickstart-html.md
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://shell.azure.com
https://shell.azure.com
https://portal.azure.com

 Download the sample

mkdir quickstart

cd $HOME/quickstart

git clone https://github.com/Azure-Samples/html-docs-hello-world.git

 Create a web app

cd html-docs-hello-world

az webapp up --location westeurope --name <app_name> --html

{
 "app_url": "https://<app_name>.azurewebsites.net",
 "location": "westeurope",
 "name": "<app_name>",
 "os": "Windows",
 "resourcegroup": "appsvc_rg_Windows_westeurope",
 "serverfarm": "appsvc_asp_Windows_westeurope",
 "sku": "FREE",
 "src_path": "/home/<username>/quickstart/html-docs-hello-world ",
 < JSON data removed for brevity. >
}

 Browse to the app

2. Select the Copy button on a code block to copy the code.

3. Paste the code into the Cloud Shell session by selecting Ctr l +Shift+V on Windows and Linux or by

selecting Cmd+Shift+V on macOS.

4. Select Enter to run the code.

In the Cloud Shell, create a quickstart directory and then change to it.

Next, run the following command to clone the sample app repository to your quickstart directory.

Change to the directory that contains the sample code and run the az webapp up command. In the following

example, replace <app_name> with a unique app name. Static content is indicated by the --html flag.

The az webapp up command does the following actions:

Create a default resource group.

Create a default app service plan.

Create an app with the specified name.

Zip deploy files from the current working directory to the web app.

This command may take a few minutes to run. While running, it displays information similar to the following

example:

Make a note of the resourceGroup value. You need it for the clean up resources section.

https://docs.microsoft.com/en-us/azure/app-service/deploy-zip

 Update and redeploy the app

az webapp up --location westeurope --name <app_name> --html

In a browser, go to the app URL: http://<app_name>.azurewebsites.net .

The page is running as an Azure App Service web app.

Congratulations! You've deployed your first HTML app to App Service.

In the Cloud Shell, type nano index.html to open the nano text editor. In the <h1> heading tag, change "Azure

App Service - Sample Static HTML Site" to "Azure App Service", as shown below.

Save your changes and exit nano. Use the command ^O to save and ^X to exit.

You'll now redeploy the app with the same az webapp up command.

Once deployment has completed, switch back to the browser window that opened in the Browse to the app

step, and refresh the page.

 Manage your new Azure app
To manage the web app you created, in the Azure portal, search for and select App Ser vices .

On the App Ser vices page, select the name of your Azure app.

https://portal.azure.com

 Clean up resources

You see your web app's Overview page. Here, you can perform basic management tasks like browse, stop, start,

restart, and delete.

The left menu provides different pages for configuring your app.

In the preceding steps, you created Azure resources in a resource group. If you don't expect to need these

resources in the future, delete the resource group by running the following command in the Cloud Shell.

Remember that the resource group name was automatically generated for you in the create a web app step.

az group delete --name appsvc_rg_Windows_westeurope

 Next steps

This command may take a minute to run.

Map custom domain

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain

Quickstart: Create a Linux virtual machine in the
Azure portal

 4/14/2021 • 3 minutes to read • Edit Online

 Sign in to Azure

 Create virtual machine

Azure virtual machines (VMs) can be created through the Azure portal. The Azure portal is a browser-based user

interface to create Azure resources. This quickstart shows you how to use the Azure portal to deploy a Linux

virtual machine (VM) running Ubuntu 18.04 LTS. To see your VM in action, you also SSH to the VM and install

the NGINX web server.

If you don't have an Azure subscription, create a free account before you begin.

Sign in to the Azure portal if you haven't already.

1. Type vir tual machines in the search.

2. Under Ser vices , select Vir tual machines .

3. In the Vir tual machines page, select Add. The Create a vir tual machine page opens.

4. In the Basics tab, under Project details , make sure the correct subscription is selected and then choose

to Create new resource group. Type myResourceGroup for the name.*.

5. Under Instance details , type myVM for the Vir tual machine name , choose East US for your Region,

and choose Ubuntu 18.04 LTS for your Image. Leave the other defaults.

6. Under Administrator account, select SSH public key .

7. In Username type azureuser.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/linux/quick-create-portal.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com

8. For SSH public key source, leave the default of Generate new key pair , and then type myKey for the

Key pair name .

9. Under Inbound por t rules > Public inbound por ts , choose Allow selected por ts and then select

SSH (22) and HTTP (80) from the drop-down.

10. Leave the remaining defaults and then select the Review + create button at the bottom of the page.

11. On the Create a vir tual machine page, you can see the details about the VM you are about to create.

When you are ready, select Create.

12. When the Generate new key pair window opens, select Download private key and create

resource. Your key file will be download as myKey.pem. Make sure you know where the .pem file was

downloaded, you will need the path to it in the next step.

13. When the deployment is finished, select Go to resource.

14. On the page for your new VM, select the public IP address and copy it to your clipboard.

NOTE

 Connect to virtual machine

ssh -i .\Downloads\myKey1.pem azureuser@10.111.12.123

TIP

 Install web server

sudo apt-get -y update
sudo apt-get -y install nginx

 View the web server in action

Azure provides an ephemeral IP for Azure Virtual Machines which aren't assigned a public IP address, or are in the

backend pool of an internal Basic Azure Load Balancer. The ephemeral IP mechanism provides an outbound IP address

that isn't configurable.

The ephemeral IP is disabled when a public IP address is assigned to the virtual machine or the virtual machine is placed

in the backend pool of a Standard Load Balancer with or without outbound rules. If a Azure Virtual Network NAT gateway

resource is assigned to the subnet of the virtual machine, the ephemeral IP is disabled.

For more information on outbound connections in Azure, see Using Source Network Address Translation (SNAT) for

outbound connections.

Create an SSH connection with the VM.

1. If you are on a Mac or Linux machine, open a Bash prompt. If you are on a Windows machine, open a

PowerShell prompt.

2. At your prompt, open an SSH connection to your virtual machine. Replace the IP address with the one

from your VM, and replace the path to the .pem with the path to where the key file was downloaded.

The SSH key you created can be used the next time your create a VM in Azure. Just select the Use a key stored in

Azure for SSH public key source the next time you create a VM. You already have the private key on your computer,

so you won't need to download anything.

To see your VM in action, install the NGINX web server. From your SSH session, update your package sources

and then install the latest NGINX package.

When done, type exit to leave the SSH session.

Use a web browser of your choice to view the default NGINX welcome page. Type the public IP address of the

VM as the web address. The public IP address can be found on the VM overview page or as part of the SSH

connection string you used earlier.

https://docs.microsoft.com/en-us/azure/virtual-network/nat-overview
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-outbound-connections

 Clean up resources

 Next steps

When no longer needed, you can delete the resource group, virtual machine, and all related resources. To do so,

select the resource group for the virtual machine, select Delete, then confirm the name of the resource group to

delete.

In this quickstart, you deployed a simple virtual machine, created a Network Security Group and rule, and

installed a basic web server. To learn more about Azure virtual machines, continue to the tutorial for Linux VMs.

Azure Linux virtual machine tutorials

Quickstart: Create a Windows virtual machine in the
Azure portal

 6/14/2021 • 3 minutes to read • Edit Online

 Sign in to Azure

 Create virtual machine

Azure virtual machines (VMs) can be created through the Azure portal. This method provides a browser-based

user interface to create VMs and their associated resources. This quickstart shows you how to use the Azure

portal to deploy a virtual machine (VM) in Azure that runs Windows Server 2019. To see your VM in action, you

then RDP to the VM and install the IIS web server.

If you don't have an Azure subscription, create a free account before you begin.

Sign in to the Azure portal at https://portal.azure.com.

1. Type vir tual machines in the search.

2. Under Ser vices , select Vir tual machines .

3. In the Vir tual machines page, select Add then Vir tual machine .

4. In the Basics tab, under Project details , make sure the correct subscription is selected and then choose

to Create new resource group. Type myResourceGroup for the name.

5. Under Instance details , type myVM for the Vir tual machine name and choose East US for your

Region. Choose Windows Server 2019 Datacenter for the Image and Standard_DS1_v2 for the S ize.

Leave the other defaults.

6. Under Administrator account, provide a username, such as azureuser and a password. The password

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/quick-create-portal.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com

must be at least 12 characters long and meet the defined complexity requirements.

7. Under Inbound por t rules , choose Allow selected por ts and then select RDP (3389) and HTTP (80)

from the drop-down.

8. Leave the remaining defaults and then select the Review + create button at the bottom of the page.

9. After validation runs, select the Create button at the bottom of the page.

10. After deployment is complete, select Go to resource.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/faq

NOTE

 Connect to virtual machine

 Install web server

Install-WindowsFeature -name Web-Server -IncludeManagementTools

 View the IIS welcome page

Azure provides an ephemeral IP for Azure Virtual Machines which aren't assigned a public IP address, or are in the

backend pool of an internal Basic Azure Load Balancer. The ephemeral IP mechanism provides an outbound IP address

that isn't configurable.

The ephemeral IP is disabled when a public IP address is assigned to the virtual machine or the virtual machine is placed

in the backend pool of a Standard Load Balancer with or without outbound rules. If a Azure Virtual Network NAT gateway

resource is assigned to the subnet of the virtual machine, the ephemeral IP is disabled.

For more information on outbound connections in Azure, see Using Source Network Address Translation (SNAT) for

outbound connections.

Create a remote desktop connection to the virtual machine. These directions tell you how to connect to your VM

from a Windows computer. On a Mac, you need an RDP client such as this Remote Desktop Client from the Mac

App Store.

1. On the overview page for your virtual machine, select the Connect button then select RDP.

2. In the Connect with RDP page, keep the default options to connect by IP address, over port 3389, and

click Download RDP file.

3. Open the downloaded RDP file and click Connect when prompted.

4. In the Windows Security window, select More choices and then Use a different account. Type the

username as localhost\username, enter the password you created for the virtual machine, and then click

OK.

5. You may receive a certificate warning during the sign-in process. Click Yes or Continue to create the

connection.

To see your VM in action, install the IIS web server. Open a PowerShell prompt on the VM and run the following

command:

When done, close the RDP connection to the VM.

In the portal, select the VM and in the overview of the VM, hover over the IP address to show Copy to

clipboard. Copy the IP address and paste it into a browser tab. The default IIS welcome page will open, and

should look like this:

https://docs.microsoft.com/en-us/azure/virtual-network/nat-overview
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-outbound-connections
https://apps.apple.com/app/microsoft-remote-desktop/id1295203466?mt=12

 Clean up resources

 Next steps

When no longer needed, you can delete the resource group, virtual machine, and all related resources.

Go to the resource group for the virtual machine, then select Delete resource group. Confirm the name of the

resource group to finish deleting the resources.

In this quickstart, you deployed a simple virtual machine, opened a network port for web traffic, and installed a

basic web server. To learn more about Azure virtual machines, continue to the tutorial for Windows VMs.

Azure Windows virtual machine tutorials

Getting started with Azure Functions
 3/5/2021 • 3 minutes to read • Edit Online

 Introduction

A C T IO N RESO URC ES

Create your first function Using one of the following tools:

Visual Studio
Visual Studio Code
Command line

See a function running Azure Samples Browser
Azure Community Library

Explore an interactive tutorial Choose the best Azure serverless technology for your
business scenario

Well-Architected Framework - Performance efficiency
Execute an Azure Function with triggers

See Microsoft Learn for a full listing of interactive tutorials.

Review best practices Performance and reliability
Manage connections
Error handling and function retries
Security

Learn more in-depth Learn how functions automatically increase or decrease
instances to match demand

Explore the different deployment methods available
Use built-in monitoring tools to help analyze your

functions
Read the C# language reference

A C T IO N RESO URC ES

Create your first function Using one of the following tools:

Visual Studio Code
Java/Maven function with terminal/command prompt
Gradle
Eclipse
IntelliJ IDEA

See a function running Azure Samples Browser
Azure Community Library

Azure Functions allows you to implement your system's logic into readily-available blocks of code. These code

blocks are called "functions".

Use the following resources to get started.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/azure-functions/functions-get-started.md
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-csharp
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-cli-csharp
https://docs.microsoft.com/en-us/samples/browse/?expanded=azure&languages=csharp&products=azure-functions
https://www.serverlesslibrary.net/?technology=Functions%202.x&language=C%2523
https://docs.microsoft.com/en-us/learn/modules/serverless-fundamentals/
https://docs.microsoft.com/en-us/learn/modules/azure-well-architected-performance-efficiency/
https://docs.microsoft.com/en-us/learn/modules/execute-azure-function-with-triggers/
https://docs.microsoft.com/en-us/learn/browse/?expanded=azure&products=azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/manage-connections
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/azure-functions/functions-dotnet-class-library
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-java
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-cli-java
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-gradle
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-maven-eclipse
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-maven-intellij
https://docs.microsoft.com/en-us/samples/browse/?expanded=azure&languages=java&products=azure-functions
https://www.serverlesslibrary.net/?technology=Functions%202.x&language=Java

Explore an interactive tutorial Choose the best Azure serverless technology for your
business scenario

Well-Architected Framework - Performance efficiency
Develop an App using the Maven Plugin for Azure

Functions

See Microsoft Learn for a full listing of interactive tutorials.

Review best practices Performance and reliability
Manage connections
Error handling and function retries
Security

Learn more in-depth Learn how functions automatically increase or decrease
instances to match demand

Explore the different deployment methods available
Use built-in monitoring tools to help analyze your

functions
Read the Java language reference

A C T IO N RESO URC ES

A C T IO N RESO URC ES

Create your first function Using one of the following tools:

Visual Studio Code
Node.js terminal/command prompt

See a function running Azure Samples Browser
Azure Community Library

Explore an interactive tutorial Choose the best Azure serverless technology for your
business scenario

Well-Architected Framework - Performance efficiency
Build Serverless APIs with Azure Functions
Create serverless logic with Azure Functions
Refactor Node.js and Express APIs to Serverless APIs with

Azure Functions

See Microsoft Learn for a full listing of interactive tutorials.

Review best practices Performance and reliability
Manage connections
Error handling and function retries
Security

Learn more in-depth Learn how functions automatically increase or decrease
instances to match demand

Explore the different deployment methods available
Use built-in monitoring tools to help analyze your

functions
Read the JavaScript or TypeScript language reference

A C T IO N RESO URC ES

Create your first function Using Visual Studio Code

https://docs.microsoft.com/en-us/learn/modules/serverless-fundamentals/
https://docs.microsoft.com/en-us/learn/modules/azure-well-architected-performance-efficiency/
https://docs.microsoft.com/en-us/learn/modules/develop-azure-functions-app-with-maven-plugin/
https://docs.microsoft.com/en-us/learn/browse/?expanded=azure&products=azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/manage-connections
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-node
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-cli-node
https://docs.microsoft.com/en-us/samples/browse/?expanded=azure&languages=javascript%252ctypescript&products=azure-functions
https://www.serverlesslibrary.net/?technology=Functions%202.x&language=JavaScript%252CTypeScript
https://docs.microsoft.com/en-us/learn/modules/serverless-fundamentals/
https://docs.microsoft.com/en-us/learn/modules/azure-well-architected-performance-efficiency/
https://docs.microsoft.com/en-us/learn/modules/build-api-azure-functions/
https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/
https://docs.microsoft.com/en-us/learn/modules/shift-nodejs-express-apis-serverless/
https://docs.microsoft.com/en-us/learn/browse/?expanded=azure&products=azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/manage-connections
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-node
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-node
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-powershell

See a function running Azure Samples Browser
Azure Community Library

Explore an interactive tutorial Choose the best Azure serverless technology for your
business scenario

Well-Architected Framework - Performance efficiency
Build Serverless APIs with Azure Functions
Create serverless logic with Azure Functions
Execute an Azure Function with triggers

See Microsoft Learn for a full listing of interactive tutorials.

Review best practices Performance and reliability
Manage connections
Error handling and function retries
Security

Learn more in-depth Learn how functions automatically increase or decrease
instances to match demand

Explore the different deployment methods available
Use built-in monitoring tools to help analyze your

functions
Read the PowerShell language reference)

A C T IO N RESO URC ES

A C T IO N RESO URC ES

Create your first function Using one of the following tools:

Visual Studio Code
Terminal/command prompt

See a function running Azure Samples Browser
Azure Community Library

Explore an interactive tutorial Choose the best Azure serverless technology for your
business scenario

Well-Architected Framework - Performance efficiency
Build Serverless APIs with Azure Functions
Create serverless logic with Azure Functions

See Microsoft Learn for a full listing of interactive tutorials.

Review best practices Performance and reliability
Manage connections
Error handling and function retries
Security
Improve throughput performance

Learn more in-depth Learn how functions automatically increase or decrease
instances to match demand

Explore the different deployment methods available
Use built-in monitoring tools to help analyze your

functions
Read the Python language reference

 Next steps

https://docs.microsoft.com/en-us/samples/browse/?expanded=azure&languages=powershell&products=azure-functions
https://www.serverlesslibrary.net/?technology=Functions%202.x&language=PowerShell
https://docs.microsoft.com/en-us/learn/modules/serverless-fundamentals/
https://docs.microsoft.com/en-us/learn/modules/azure-well-architected-performance-efficiency/
https://docs.microsoft.com/en-us/learn/modules/build-api-azure-functions/
https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/
https://docs.microsoft.com/en-us/learn/modules/execute-azure-function-with-triggers/
https://docs.microsoft.com/en-us/learn/browse/?expanded=azure&products=azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/manage-connections
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-powershell
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-csharp
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-cli-csharp
https://docs.microsoft.com/en-us/samples/browse/?expanded=azure&languages=python&products=azure-functions
https://www.serverlesslibrary.net/?technology=Functions%202.x&language=Python
https://docs.microsoft.com/en-us/learn/modules/serverless-fundamentals/
https://docs.microsoft.com/en-us/learn/modules/azure-well-architected-performance-efficiency/
https://docs.microsoft.com/en-us/learn/modules/build-api-azure-functions/
https://docs.microsoft.com/en-us/learn/modules/create-serverless-logic-with-azure-functions/
https://docs.microsoft.com/en-us/learn/browse/?expanded=azure&products=azure-functions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/manage-connections
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts
https://docs.microsoft.com/en-us/azure/azure-functions/python-scale-performance-reference
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-deployment-technologies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python

Learn about the anatomy of an Azure Functions application

Tutorial: Create and deploy an application with an
ASP.NET Core Web API front-end service and a
stateful back-end service

 3/5/2021 • 14 minutes to read • Edit Online

 Prerequisites

 Create an ASP.NET Web API service as a reliable service

This tutorial is part one of a series. You will learn how to create an Azure Service Fabric application with an

ASP.NET Core Web API front end and a stateful back-end service to store your data. When you're finished, you

have a voting application with an ASP.NET Core web front-end that saves voting results in a stateful back-end

service in the cluster. This tutorial series requires a Windows developer machine. If you don't want to manually

create the voting application, you can download the source code for the completed application and skip ahead

to Walk through the voting sample application. If you prefer, you can also watch a video walk-through of this

tutorial.

In part one of the series, you learn how to:

Create an ASP.NET Core Web API service as a stateful reliable service

Create an ASP.NET Core Web Application service as a stateless web service

Use the reverse proxy to communicate with the stateful service

In this tutorial series you learn how to:

Build a .NET Service Fabric application

Deploy the application to a remote cluster

Add an HTTPS endpoint to an ASP.NET Core front-end service

Configure CI/CD using Azure Pipelines

Set up monitoring and diagnostics for the application

Before you begin this tutorial:

If you don't have an Azure subscription, create a free account

Install Visual Studio 2019 version 15.5 or later with the Azure development and ASP.NET and web

development workloads.

Install the Service Fabric SDK

First, create the web front-end of the voting application using ASP.NET Core. ASP.NET Core is a lightweight,

cross-platform web development framework that you can use to create modern web UI and web APIs. To get a

complete understanding of how ASP.NET Core integrates with Service Fabric, we strongly recommend reading

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-tutorial-create-dotnet-app.md
https://github.com/Azure-Samples/service-fabric-dotnet-quickstart/
https://channel9.msdn.com/Events/Connect/2017/E100
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-deploy-app-to-party-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-dotnet-app-enable-https-endpoint
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-deploy-app-with-cicd-vsts
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-monitoring-aspnet
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://www.visualstudio.com/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started

through the ASP.NET Core in Service Fabric Reliable Services article. For now, you can follow this tutorial to get

started quickly. To learn more about ASP.NET Core, see the ASP.NET Core Documentation.

1. Launch Visual Studio as an administrator .

2. Create a project with File->New ->Project.

3. In the New Project dialog, choose Cloud > Ser vice Fabric Application .

4. Name the application Voting and click OK.

5. On the New Ser vice Fabric Ser vice page, choose Stateless ASP.NET Core, name your service

VotingWeb, then click OK.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication-aspnetcore
https://docs.microsoft.com/en-us/aspnet/core/

6. The next page provides a set of ASP.NET Core project templates. For this tutorial, choose Web

Application (Model-View-Controller) , then click OK.

Visual Studio creates an application and a service project and displays them in Solution Explorer.

 Update the site.js file

var app = angular.module('VotingApp', ['ui.bootstrap']);
app.run(function () { });

app.controller('VotingAppController', ['$rootScope', '$scope', '$http', '$timeout', function ($rootScope,
$scope, $http, $timeout) {

 $scope.refresh = function () {
 $http.get('api/Votes?c=' + new Date().getTime())
 .then(function (data, status) {
 $scope.votes = data;
 }, function (data, status) {
 $scope.votes = undefined;
 });
 };

 $scope.remove = function (item) {
 $http.delete('api/Votes/' + item)
 .then(function (data, status) {
 $scope.refresh();
 })
 };

 $scope.add = function (item) {
 var fd = new FormData();
 fd.append('item', item);
 $http.put('api/Votes/' + item, fd, {
 transformRequest: angular.identity,
 headers: { 'Content-Type': undefined }
 })
 .then(function (data, status) {
 $scope.refresh();
 $scope.item = undefined;
 })
 };
}]);

 Update the Index.cshtml file

Open wwwroot/js/site.js . Replace its contents with the following JavaScript used by the Home views, then

save your changes.

@{
 ViewData["Title"] = "Service Fabric Voting Sample";
}

<div ng-controller="VotingAppController" ng-init="refresh()">
 <div class="container-fluid">
 <div class="row">
 <div class="col-xs-8 col-xs-offset-2 text-center">
 <h2>Service Fabric Voting Sample</h2>
 </div>
 </div>

 <div class="row">
 <div class="col-xs-8 col-xs-offset-2">
 <form class="col-xs-12 center-block">
 <div class="col-xs-6 form-group">
 <input id="txtAdd" type="text" class="form-control" placeholder="Add voting option"
ng-model="item"/>
 </div>
 <button id="btnAdd" class="btn btn-default" ng-click="add(item)">

 Add
 </button>
 </form>
 </div>
 </div>

 <hr/>

 <div class="row">
 <div class="col-xs-8 col-xs-offset-2">
 <div class="row">
 <div class="col-xs-4">
 Click to vote
 </div>
 </div>
 <div class="row top-buffer" ng-repeat="vote in votes.data">
 <div class="col-xs-8">
 <button class="btn btn-success text-left btn-block" ng-click="add(vote.key)">

 {{vote.Key}}

 {{vote.Value}} Votes

 </button>
 </div>
 <div class="col-xs-4">
 <button class="btn btn-danger pull-right btn-block" ng-click="remove(vote.key)">

 Remove
 </button>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

 Update the _Layout.cshtml file

Open Views/Home/Index.cshtml , the view specific to the Home controller. Replace its contents with the

following, then save your changes.

Open Views/Shared/_Layout.cshtml , the default layout for the ASP.NET app. Replace its contents with the

following, then save your changes.

<!DOCTYPE html>
<html ng-app="VotingApp" xmlns:ng="https://angularjs.org">
<head>
 <meta charset="utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 <title>@ViewData["Title"]</title>

 <link href="~/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet"/>
 <link href="~/css/site.css" rel="stylesheet"/>

</head>
<body>
<div class="container body-content">
 @RenderBody()
</div>

<script src="~/lib/jquery/dist/jquery.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.7.2/angular.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/angular-ui-bootstrap/2.5.0/ui-bootstrap-tpls.js">
</script>
<script src="~/js/site.js"></script>

@RenderSection("Scripts", required: false)
</body>
</html>

 Update the VotingWeb.cs file
Open the VotingWeb.cs file, which creates the ASP.NET Core WebHost inside the stateless service using the

WebListener web server.

Add the using System.Net.Http; directive to the top of the file.

Replace the CreateServiceInstanceListeners() function with the following code, then save your changes.

protected override IEnumerable<ServiceInstanceListener> CreateServiceInstanceListeners()
{
 return new ServiceInstanceListener[]
 {
 new ServiceInstanceListener(
 serviceContext =>
 new KestrelCommunicationListener(
 serviceContext,
 "ServiceEndpoint",
 (url, listener) =>
 {
 ServiceEventSource.Current.ServiceMessage(serviceContext, $"Starting Kestrel on
{url}");

 return new WebHostBuilder()
 .UseKestrel()
 .ConfigureServices(
 services => services
 .AddSingleton<HttpClient>(new HttpClient())
 .AddSingleton<FabricClient>(new FabricClient())
 .AddSingleton<StatelessServiceContext>(serviceContext))
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseStartup<Startup>()
 .UseServiceFabricIntegration(listener, ServiceFabricIntegrationOptions.None)
 .UseUrls(url)
 .Build();
 }))
 };
}

internal static Uri GetVotingDataServiceName(ServiceContext context)
{
 return new Uri($"{context.CodePackageActivationContext.ApplicationName}/VotingData");
}

 Add the VotesController.cs file

Also add the following GetVotingDataServiceName method below CreateServiceInstanceListeners() , then save

your changes. GetVotingDataServiceName returns the service name when polled.

Add a controller, which defines voting actions. Right-click on the Controllers folder, then select Add->New

item->Visual C#->ASP.NET Core->Class . Name the file VotesController.cs , then click Add.

Replace the VotesController.cs file contents with the following, then save your changes. Later, in Update the

VotesController.cs file, this file is modified to read and write voting data from the back-end service. For now, the

controller returns static string data to the view.

namespace VotingWeb.Controllers
{
 using System;
 using System.Collections.Generic;
 using System.Fabric;
 using System.Fabric.Query;
 using System.Linq;
 using System.Net.Http;
 using System.Net.Http.Headers;
 using System.Text;
 using System.Threading.Tasks;
 using Microsoft.AspNetCore.Mvc;
 using Newtonsoft.Json;

 [Produces("application/json")]
 [Route("api/Votes")]
 public class VotesController : Controller
 {
 private readonly HttpClient httpClient;

 public VotesController(HttpClient httpClient)
 {
 this.httpClient = httpClient;
 }

 // GET: api/Votes
 [HttpGet]
 public async Task<IActionResult> Get()
 {
 List<KeyValuePair<string, int>> votes= new List<KeyValuePair<string, int>>();
 votes.Add(new KeyValuePair<string, int>("Pizza", 3));
 votes.Add(new KeyValuePair<string, int>("Ice cream", 4));

 return Json(votes);
 }
 }
}

 Configure the listening port

<Resources>
 <Endpoints>
 <!-- This endpoint is used by the communication listener to obtain the port on which to
 listen. Please note that if your service is partitioned, this port is shared with
 replicas of different partitions that are placed in your code. -->
 <Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input" Port="8080" />
 </Endpoints>
 </Resources>

 Deploy and run the Voting application locally

When the VotingWeb front-end service is created, Visual Studio randomly selects a port for the service to listen

on. The VotingWeb service acts as the front-end for this application and accepts external traffic, so let's bind that

service to a fixed and well-know port. The service manifest declares the service endpoints.

In Solution Explorer, open VotingWeb/PackageRoot/ServiceManifest.xml. Find the Endpoint element in the

Resources section and change the Por t value to 8080 . To deploy and run the application locally, the application

listening port must be open and available on your computer.

Also update the Application URL property value in the Voting project so a web browser opens to the correct port

when you debug your application. In Solution Explorer, select the Voting project and update the Application

URL property to 8080 .

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-and-service-manifests

NOTE

 Add a stateful back-end service to your application

You can now go ahead and run the Voting application for debugging. In Visual Studio, press F5 to deploy the

application to your local Service Fabric cluster in debug mode. The application will fail if you didn't previously

open Visual Studio as administrator .

The first time you run and deploy the application locally, Visual Studio creates a local Service Fabric cluster for debugging.

Cluster creation may take some time. The cluster creation status is displayed in the Visual Studio output window.

After the Voting application has been deployed to your local Service Fabric cluster, your web app will open in a

browser tab automatically and should look like this:

To stop debugging the application, go back to Visual Studio and press Shift+F5 .

Now that an ASP.NET Web API service is running in the application, go ahead and add a stateful reliable service

to store some data in the application.

Service Fabric allows you to consistently and reliably store your data right inside your service by using reliable

collections. Reliable collections are a set of highly available and reliable collection classes that are familiar to

anyone who has used C# collections.

In this tutorial, you create a service which stores a counter value in a reliable collection.

1. In Solution Explorer, right-click Ser vices within the Voting application project and choose Add -> New

Ser vice Fabric Ser vice... .

2. In the New Ser vice Fabric Ser vice dialog, choose Stateful ASP.NET Core, name the service

VotingData, then press OK.

Once your service project is created, you have two services in your application. As you continue to build

your application, you can add more services in the same way. Each can be independently versioned and

upgraded.

3. The next page provides a set of ASP.NET Core project templates. For this tutorial, choose API.

 Add the VoteDataController.cs file

namespace VotingData.Controllers
{
 using System.Collections.Generic;
 using System.Threading;
 using System.Threading.Tasks;
 using Microsoft.AspNetCore.Mvc;
 using Microsoft.ServiceFabric.Data;
 using Microsoft.ServiceFabric.Data.Collections;

 [Route("api/[controller]")]
 public class VoteDataController : Controller
 {
 private readonly IReliableStateManager stateManager;

 public VoteDataController(IReliableStateManager stateManager)
 {
 this.stateManager = stateManager;
 }

Visual Studio creates the VotingData service project and displays it in Solution Explorer.

In the VotingData project, right-click on the Controllers folder, then select Add->New item->Class . Name

the file VoteDataController.cs and click Add. Replace the file contents with the following, then save your

changes.

 // GET api/VoteData
 [HttpGet]
 public async Task<IActionResult> Get()
 {
 CancellationToken ct = new CancellationToken();

 IReliableDictionary<string, int> votesDictionary = await
this.stateManager.GetOrAddAsync<IReliableDictionary<string, int>>("counts");

 using (ITransaction tx = this.stateManager.CreateTransaction())
 {
 Microsoft.ServiceFabric.Data.IAsyncEnumerable<KeyValuePair<string, int>> list = await
votesDictionary.CreateEnumerableAsync(tx);

 Microsoft.ServiceFabric.Data.IAsyncEnumerator<KeyValuePair<string, int>> enumerator =
list.GetAsyncEnumerator();

 List<KeyValuePair<string, int>> result = new List<KeyValuePair<string, int>>();

 while (await enumerator.MoveNextAsync(ct))
 {
 result.Add(enumerator.Current);
 }

 return this.Json(result);
 }
 }

 // PUT api/VoteData/name
 [HttpPut("{name}")]
 public async Task<IActionResult> Put(string name)
 {
 IReliableDictionary<string, int> votesDictionary = await
this.stateManager.GetOrAddAsync<IReliableDictionary<string, int>>("counts");

 using (ITransaction tx = this.stateManager.CreateTransaction())
 {
 await votesDictionary.AddOrUpdateAsync(tx, name, 1, (key, oldvalue) => oldvalue + 1);
 await tx.CommitAsync();
 }

 return new OkResult();
 }

 // DELETE api/VoteData/name
 [HttpDelete("{name}")]
 public async Task<IActionResult> Delete(string name)
 {
 IReliableDictionary<string, int> votesDictionary = await
this.stateManager.GetOrAddAsync<IReliableDictionary<string, int>>("counts");

 using (ITransaction tx = this.stateManager.CreateTransaction())
 {
 if (await votesDictionary.ContainsKeyAsync(tx, name))
 {
 await votesDictionary.TryRemoveAsync(tx, name);
 await tx.CommitAsync();
 return new OkResult();
 }
 else
 {
 return new NotFoundResult();
 }
 }
 }
 }
}

 Connect the services

"nodeTypes": [
 {
 ...
 "httpGatewayEndpointPort": "[variables('nt0fabricHttpGatewayPort')]",
 "isPrimary": true,
 "vmInstanceCount": "[parameters('nt0InstanceCount')]",
 "reverseProxyEndpointPort": "[parameters('SFReverseProxyPort')]"
 }
],

 Update the VotesController.cs file

public class VotesController : Controller
{
 private readonly HttpClient httpClient;
 private readonly FabricClient fabricClient;
 private readonly StatelessServiceContext serviceContext;

 public VotesController(HttpClient httpClient, StatelessServiceContext context, FabricClient
fabricClient)
 {
 this.fabricClient = fabricClient;
 this.httpClient = httpClient;
 this.serviceContext = context;
 }

 // GET: api/Votes
 [HttpGet("")]

In this next step, connect the two services and make the front-end Web application get and set voting

information from the back-end service.

Service Fabric provides complete flexibility in how you communicate with reliable services. Within a single

application, you might have services that are accessible via TCP. Other services that might be accessible via an

HTTP REST API and still other services could be accessible via web sockets. For background on the options

available and the tradeoffs involved, see Communicating with services.

This tutorial uses ASP.NET Core Web API and the Service Fabric reverse proxy so the VotingWeb front-end web

service can communicate with the back-end VotingData service. The reverse proxy is configured by default to

use port 19081 and should work for this tutorial. The reverse proxy port is set in the Azure Resource Manager

template used to set up the cluster. To find which port is used, look in the cluster template in the

Microsoft.Ser viceFabric/clusters resource:

To find the reverse proxy port used in your local development cluster, view the

HttpApplicationGatewayEndpoint element in the local Service Fabric cluster manifest:

1. Open a browser window and navigate to http://localhost:19080 to open the Service Fabric Explorer tool.

2. Select Cluster -> Manifest.

3. Make a note of the HttpApplicationGatewayEndpoint element port. By default this should be 19081. If it is

not 19081, you will need to change the port in the GetProxyAddress method of the following

VotesController.cs code.

In the VotingWeb project, open the Controllers/VotesController.cs file. Replace the VotesController class

definition contents with the following, then save your changes. If the reverse proxy port you discovered in the

pervious step is not 19081, change the port used in the GetProxyAddress method from 19081 to the port that

you discovered.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-and-communicate-with-services
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication-aspnetcore
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy

 public async Task<IActionResult> Get()
 {
 Uri serviceName = VotingWeb.GetVotingDataServiceName(this.serviceContext);
 Uri proxyAddress = this.GetProxyAddress(serviceName);

 ServicePartitionList partitions = await
this.fabricClient.QueryManager.GetPartitionListAsync(serviceName);

 List<KeyValuePair<string, int>> result = new List<KeyValuePair<string, int>>();

 foreach (Partition partition in partitions)
 {
 string proxyUrl =
 $"{proxyAddress}/api/VoteData?PartitionKey={((Int64RangePartitionInformation)
partition.PartitionInformation).LowKey}&PartitionKind=Int64Range";

 using (HttpResponseMessage response = await this.httpClient.GetAsync(proxyUrl))
 {
 if (response.StatusCode != System.Net.HttpStatusCode.OK)
 {
 continue;
 }

 result.AddRange(JsonConvert.DeserializeObject<List<KeyValuePair<string, int>>>(await
response.Content.ReadAsStringAsync()));
 }
 }

 return this.Json(result);
 }

 // PUT: api/Votes/name
 [HttpPut("{name}")]
 public async Task<IActionResult> Put(string name)
 {
 Uri serviceName = VotingWeb.GetVotingDataServiceName(this.serviceContext);
 Uri proxyAddress = this.GetProxyAddress(serviceName);
 long partitionKey = this.GetPartitionKey(name);
 string proxyUrl = $"{proxyAddress}/api/VoteData/{name}?PartitionKey=
{partitionKey}&PartitionKind=Int64Range";

 StringContent putContent = new StringContent($"{{ 'name' : '{name}' }}", Encoding.UTF8,
"application/json");
 putContent.Headers.ContentType = new MediaTypeHeaderValue("application/json");

 using (HttpResponseMessage response = await this.httpClient.PutAsync(proxyUrl, putContent))
 {
 return new ContentResult()
 {
 StatusCode = (int) response.StatusCode,
 Content = await response.Content.ReadAsStringAsync()
 };
 }
 }

 // DELETE: api/Votes/name
 [HttpDelete("{name}")]
 public async Task<IActionResult> Delete(string name)
 {
 Uri serviceName = VotingWeb.GetVotingDataServiceName(this.serviceContext);
 Uri proxyAddress = this.GetProxyAddress(serviceName);
 long partitionKey = this.GetPartitionKey(name);
 string proxyUrl = $"{proxyAddress}/api/VoteData/{name}?PartitionKey=
{partitionKey}&PartitionKind=Int64Range";

 using (HttpResponseMessage response = await this.httpClient.DeleteAsync(proxyUrl))
 {
 if (response.StatusCode != System.Net.HttpStatusCode.OK)
 {

 {
 return this.StatusCode((int) response.StatusCode);
 }
 }

 return new OkResult();
 }

 /// <summary>
 /// Constructs a reverse proxy URL for a given service.
 /// Example: http://localhost:19081/VotingApplication/VotingData/
 /// </summary>
 /// <param name="serviceName"></param>
 /// <returns></returns>
 private Uri GetProxyAddress(Uri serviceName)
 {
 return new Uri($"http://localhost:19081{serviceName.AbsolutePath}");
 }

 /// <summary>
 /// Creates a partition key from the given name.
 /// Uses the zero-based numeric position in the alphabet of the first letter of the name (0-25).
 /// </summary>
 /// <param name="name"></param>
 /// <returns></returns>
 private long GetPartitionKey(string name)
 {
 return Char.ToUpper(name.First()) - 'A';
 }
}

 Walk through the voting sample application

 Debug in Visual Studio

The voting application consists of two services:

Web front-end service (VotingWeb)- An ASP.NET Core web front-end service, which serves the web page and

exposes web APIs to communicate with the backend service.

Back-end service (VotingData)- An ASP.NET Core web service, which exposes an API to store the vote results

in a reliable dictionary persisted on disk.

When you vote in the application the following events occur :

1. A JavaScript sends the vote request to the web API in the web front-end service as an HTTP PUT request.

2. The web front-end service uses a proxy to locate and forward an HTTP PUT request to the back-end

service.

3. The back-end service takes the incoming request, and stores the updated result in a reliable dictionary,

which gets replicated to multiple nodes within the cluster and persisted on disk. All the application's data

is stored in the cluster, so no database is needed.

When debugging application in Visual Studio, you are using a local Service Fabric development cluster. You have

the option to adjust your debugging experience to your scenario. In this application, store data in the back-end

service using a reliable dictionary. Visual Studio removes the application per default when you stop the

debugger. Removing the application causes the data in the back-end service to also be removed. To persist the

data between debugging sessions, you can change the Application Debug Mode as a property on the Voting

project in Visual Studio.

To look at what happens in the code, complete the following steps:

1. Open the VotingWeb\VotesController.cs file and set a breakpoint in the web API's Put method (line

72).

2. Open the VotingData\VoteDataController.cs file and set a breakpoint in this web API's Put method

(line 54).

3. Press F5 to start the application in debug mode.

4. Go back to the browser and click a voting option or add a new voting option. You hit the first breakpoint

in the web front-end's api controller.

a. This is where the JavaScript in the browser sends a request to the web API controller in the front-

end service.

b. First construct the URL to the ReverseProxy for the back-end service (1) .

c. Then send the HTTP PUT Request to the ReverseProxy (2) .

d. Finally the return the response from the back-end service to the client (3) .

5. Press F5 to continue.

a. You are now at the break point in the back-end service.

b. In the first line in the method (1) use the StateManager to get or add a reliable dictionary called

counts .

c. All interactions with values in a reliable dictionary require a transaction, this using statement (2)

creates that transaction.

d. In the transaction, update the value of the relevant key for the voting option and commits the

 Next steps

operation (3) . Once the commit method returns, the data is updated in the dictionary and

replicated to other nodes in the cluster. The data is now safely stored in the cluster, and the back-

end service can fail over to other nodes, still having the data available.

6. Press F5 to continue.

To stop the debugging session, press Shift+F5 .

In this part of the tutorial, you learned how to:

Create an ASP.NET Core Web API service as a stateful reliable service

Create an ASP.NET Core Web Application service as a stateless web service

Use the reverse proxy to communicate with the stateful service

Advance to the next tutorial:

Deploy the application to Azure

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-deploy-app-to-party-cluster

Quickstart: Deploy your first Azure Spring Cloud
application

 6/28/2021 • 11 minutes to read • Edit Online

NOTE

 Prerequisites

 Install Azure CLI extension

az --version

az extension add --name spring-cloud

 Log in to Azure

This quickstart explains how to deploy a simple Azure Spring Cloud microservice application to run on Azure.

Steeltoe support for Azure Spring Cloud is currently offered as a public preview. Public preview offerings allow customers

to experiment with new features prior to their official release. Public preview features and services are not meant for

production use. For more information about support during previews, see the FAQ or file a Support request.

By following this quickstart, you'll learn how to:

Generate a basic Steeltoe .NET Core project

Provision an Azure Spring Cloud service instance

Build and deploy the app with a public endpoint

Stream logs in real time

The application code used in this quickstart is a simple app built with a .NET Core Web API project template.

When you've completed this example, the application will be accessible online and can be managed via the

Azure portal and the Azure CLI.

An Azure account with an active subscription. Create an account for free.

.NET Core 3.1 SDK. The Azure Spring Cloud service supports .NET Core 3.1 and later versions.

Azure CLI version 2.0.67 or later.

Git.

Verify that your Azure CLI version is 2.0.67 or later :

Install the Azure Spring Cloud extension for the Azure CLI using the following command:

az login

1. Log in to the Azure CLI

2. If you have more than one subscription, choose the one you want to use for this quickstart.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/spring-cloud/quickstart.md
https://azure.microsoft.com/support/faq/
https://docs.microsoft.com/en-us/azure/azure-portal/supportability/how-to-create-azure-support-request
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://dotnet.microsoft.com/download/dotnet-core/3.1
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://git-scm.com/

 Generate a Steeltoe .NET Core project

az account list -o table

az account set --subscription <Name or ID of a subscription from the last step>

In Visual Studio, create an ASP.NET Core Web application named as "hello-world" with API project template.

Please notice there will be a auto generated WeatherForecastController which will be our test endpoint later on.

mkdir source-code

cd source-code

dotnet new webapi -n hello-world --framework netcoreapp3.1

cd hello-world

"spring": {
 "application": {
 "name": "hello-world"
 }
},
"eureka": {
 "client": {
 "shouldFetchRegistry": true,
 "shouldRegisterWithEureka": true
 }
}

1. Create a folder for the project source code and generate the project.

2. Navigate into the project directory.

3. Edit the appSettings.json file to add the following settings:

4. Also in appsettings.json, change the log level for the Microsoft category from Warning to Information .

This change ensures that logs will be produced when you view streaming logs in a later step.

The appsettings.json file now looks similar to the following example:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Information",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "AllowedHosts": "*",
 "spring": {
 "application": {
 "name": "hello-world"
 }
 },
 "eureka": {
 "client": {
 "shouldFetchRegistry": true,
 "shouldRegisterWithEureka": true
 }
 }
}

<ItemGroup>
 <PackageReference Include="Steeltoe.Discovery.ClientCore" Version="3.0.0" />
 <PackageReference Include="Microsoft.Azure.SpringCloud.Client" Version="2.0.0-preview.1" />
</ItemGroup>
<Target Name="Publish-Zip" AfterTargets="Publish">
 <ZipDirectory SourceDirectory="$(PublishDir)"
DestinationFile="$(MSBuildProjectDirectory)/deploy.zip" Overwrite="true" />
</Target>

using Microsoft.Azure.SpringCloud.Client;

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .UseAzureSpringCloudService()
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

using Steeltoe.Discovery.Client;

5. Add dependencies and a Zip task to the .csproj file:

The packages are for Steeltoe Service Discovery and the Azure Spring Cloud client library. The Zip task

is for deployment to Azure. When you run the dotnet publish command, it generates the binaries in the

publish folder, and this task zips the publish folder into a .zip file that you upload to Azure.

6. In the Program.cs file, add a using directive and code that uses the Azure Spring Cloud client library:

7. In the Startup.cs file, add a using directive and code that uses the Steeltoe Service Discovery at the end

of the ConfigureServices and Configure methods:

 Provision a service instance

public void ConfigureServices(IServiceCollection services)
{
 // Template code not shown.

 services.AddDiscoveryClient(Configuration);
}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 // Template code not shown.

 app.UseDiscoveryClient();
}

dotnet build

8. Build the project to make sure there are no compile errors.

The following procedure creates an instance of Azure Spring Cloud using the Azure portal.

1. Open the Azure portal.

2. From the top search box, search for Azure Spring Cloud.

3. Select Azure Spring Cloud from the results.

4. On the Azure Spring Cloud page, select + Create.

https://ms.portal.azure.com/

 Build and deploy the app

5. Fill out the form on the Azure Spring Cloud Create page. Consider the following guidelines:

Subscr iption : Select the subscription you want to be billed for this resource.

Resource group: Create a new resource group. The name you enter here will be used in later steps

as <resource group name>.

Ser vice Details/Name : Specify the <ser vice instance name> . The name must be between 4 and

32 characters long and can contain only lowercase letters, numbers, and hyphens. The first character

of the service name must be a letter and the last character must be either a letter or a number.

Region: Select the region for your service instance.

6. Select Review and create.

7. Select Create.

The following procedure builds and deploys the project that you created earlier.

1. Make sure the command prompt is still in the project folder.

 Test the app

https://<service instance name>-hello-world.azuremicroservices.io/weatherforecast

[{"date":"2020-09-08T21:01:50.0198835+00:00","temperatureC":14,"temperatureF":57,"summary":"Bracing"},
{"date":"2020-09-09T21:01:50.0200697+00:00","temperatureC":-14,"temperatureF":7,"summary":"Bracing"},
{"date":"2020-09-10T21:01:50.0200715+00:00","temperatureC":27,"temperatureF":80,"summary":"Freezing"},
{"date":"2020-09-11T21:01:50.0200717+00:00","temperatureC":18,"temperatureF":64,"summary":"Chilly"},
{"date":"2020-09-12T21:01:50.0200719+00:00","temperatureC":16,"temperatureF":60,"summary":"Chilly"}]

 Stream logs in real time

az spring-cloud app logs -n hello-world -s <service instance name> -g <resource group name> --lines 100 -f

dotnet publish -c release -o ./publish

az spring-cloud app create -n hello-world -s <service instance name> -g <resource group name> --
assign-endpoint --runtime-version NetCore_31

az spring-cloud app deploy -n hello-world -s <service instance name> -g <resource group name> --
runtime-version NetCore_31 --main-entry hello-world.dll --artifact-path ./deploy.zip

2. Run the following command to build the project, publish the binaries, and store the binaries in a .zip file

in the project folder.

3. Create an app in your Azure Spring Cloud instance with a public endpoint assigned. Use the same

application name "hello-world" that you specified in appsettings.json.

4. Deploy the .zip file to the app.

The --main-entry option identifies the .dll file that contains the application's entry point. After the service

uploads the .zip file, it extracts all the files and folders and tries to execute the entry point in the .dll file

specified by --main-entry .

It takes a few minutes to finish deploying the application. To confirm that it has deployed, go to the Apps

blade in the Azure portal.

Once deployment has completed, access the app at the following URL:

The app returns JSON data similar to the following example:

Use the following command to get real time logs from the App.

Logs appear in the output:

[Azure Spring Cloud] The following environment variables are loaded:
2020-09-08 20:58:42,432 INFO supervisord started with pid 1
2020-09-08 20:58:43,435 INFO spawned: 'event-gather_00' with pid 9
2020-09-08 20:58:43,436 INFO spawned: 'dotnet-app_00' with pid 10
2020-09-08 20:58:43 [Warning] No managed processes are running. Wait for 30 seconds...
2020-09-08 20:58:44,843 INFO success: event-gather_00 entered RUNNING state, process has stayed up for >
than 1 seconds (startsecs)
2020-09-08 20:58:44,843 INFO success: dotnet-app_00 entered RUNNING state, process has stayed up for > than
1 seconds (startsecs)
←[40m←[32minfo←[39m←[22m←[49m: Steeltoe.Discovery.Eureka.DiscoveryClient[0]
 Starting HeartBeat
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: http://[::]:1025
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Production
info: Microsoft.Hosting.Lifetime[0]
 Content root path: /netcorepublish/6e4db42a-b160-4b83-a771-c91adec18c60
2020-09-08 21:00:13 [Information] [10] Start listening...
info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
 Request starting HTTP/1.1 GET http://asc-svc-hello-world.azuremicroservices.io/weatherforecast
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
 Executing endpoint 'hello_world.Controllers.WeatherForecastController.Get (hello-world)'
info: Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker[3]
 Route matched with {action = "Get", controller = "WeatherForecast"}. Executing controller action with
signature System.Collections.Generic.IEnumerable`1[hello_world.WeatherForecast] Get() on controller
hello_world.Controllers.WeatherForecastController (hello-world).
info: Microsoft.AspNetCore.Mvc.Infrastructure.ObjectResultExecutor[1]
 Executing ObjectResult, writing value of type 'hello_world.WeatherForecast[]'.
info: Microsoft.AspNetCore.Mvc.Infrastructure.ControllerActionInvoker[2]
 Executed action hello_world.Controllers.WeatherForecastController.Get (hello-world) in 1.8902ms
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
 Executed endpoint 'hello_world.Controllers.WeatherForecastController.Get (hello-world)'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
 Request finished in 4.2591ms 200 application/json; charset=utf-8

TIP
Use az spring-cloud app logs -h to explore more parameters and log stream functionalities.

For advanced log analytics features, visit Logs tab in the menu on Azure portal. Logs here have a latency of a

few minutes.

https://portal.azure.com/
file:///T:/hopk/sun2/azure/spring-cloud/media/spring-cloud-quickstart-java/logs-analytics.png#lightbox

 Prerequisites

 Generate a Spring Cloud project

https://start.spring.io/#!type=maven-
project&language=java&platformVersion=2.3.12.RELEASE&packaging=jar&jvmVersion=1.8&groupId=com.example&artifa
ctId=hellospring&name=hellospring&description=Demo%20project%20for%20Spring%20Boot&packageName=com.example.h
ellospring&dependencies=web,cloud-eureka,actuator,cloud-starter-sleuth,cloud-starter-zipkin,cloud-config-
client

This quickstart explains how to deploy a simple Azure Spring Cloud microservice application to run on Azure.

The application code used in this tutorial is a simple app built with Spring Initializr. When you've completed this

example, the application will be accessible online and can be managed via the Azure portal.

This quickstart explains how to:

Generate a basic Spring Cloud project

Provision a service instance

Build and deploy the app with a public endpoint

Stream logs in real time

To complete this quickstart:

Install JDK 8

Sign up for an Azure subscription

(Optional) Install the Azure CLI version 2.0.67 or higher and the Azure Spring Cloud extension with

command: az extension add --name spring-cloud

(Optional) Install the Azure Toolkit for IntelliJ and sign-in

Start with Spring Initializr to generate a sample project with recommended dependencies for Azure Spring

Cloud. The following image shows the Initializr set up for this sample project.

Note that this example uses Java version 8. If you want to use Java version 11, change the option under Project

Metadata.

https://docs.microsoft.com/en-us/java/azure/jdk/
https://azure.microsoft.com/free/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://plugins.jetbrains.com/plugin/8053-azure-toolkit-for-intellij/
https://docs.microsoft.com/en-us/azure/developer/java/toolkit-for-intellij/create-hello-world-web-app#installation-and-sign-in
https://start.spring.io/#!type=maven-project&language=java&platformVersion=2.3.12.RELEASE&packaging=jar&jvmVersion=1.8&groupId=com.example&artifactId=hellospring&name=hellospring&description=Demo%20project%20for%20Spring%20Boot&packageName=com.example.hellospring&dependencies=web,cloud-eureka,actuator,cloud-starter-sleuth,cloud-starter-zipkin,cloud-config-client

 Provision an instance of Azure Spring Cloud

package com.example.hellospring;

import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.bind.annotation.RequestMapping;

@RestController
public class HelloController {

 @RequestMapping("/")
 public String index() {
 return "Greetings from Azure Spring Cloud!";
 }

}

1. Click Generate when all the dependencies are set. Download and unpack the package, then create a web

controller for a simple web application by adding

src/main/java/com/example/hellospring/HelloController.java as follows:

The following procedure creates an instance of Azure Spring Cloud using the Azure portal.

1. In a new tab, open the Azure portal.

2. From the top search box, search for Azure Spring Cloud.

3. Select Azure Spring Cloud from the results.

https://ms.portal.azure.com/

4. On the Azure Spring Cloud page, click + Create.

5. Fill out the form on the Azure Spring Cloud Create page. Consider the following guidelines:

Subscr iption : Select the subscription you want to be billed for this resource.

Resource group: Creating new resource groups for new resources is a best practice. This will be used

in later steps as <resource group name>.

Ser vice Details/Name : Specify the <ser vice instance name> . The name must be between 4 and

32 characters long and can contain only lowercase letters, numbers, and hyphens. The first character

of the service name must be a letter and the last character must be either a letter or a number.

Location: Select the region for your service instance.

 Build and deploy the app

6. Click Review and create.

CLI

IntelliJ

The following procedure builds and deploys the application using the Azure CLI. Execute the following command

at the root of the project.

mvn clean package -DskipTests

az extension add --name spring-cloud

az spring-cloud app create -n hellospring -s <service instance name> -g <resource group name> --
assign-endpoint true

az spring-cloud app deploy -n hellospring -s <service instance name> -g <resource group name> --jar-
path <jar file path>

1. Build the project using Maven:

2. (If you haven't already installed it) Install the Azure Spring Cloud extension for the Azure CLI:

3. Create the app with public endpoint assigned. If you selected Java version 11 when generating the Spring

Cloud project, include the --runtime-version=Java_11 switch.

4. Deploy the Jar file for the app (target\hellospring-0.0.1-SNAPSHOT.jar on Windows):

 Streaming logs in real time

az spring-cloud app logs -n hellospring -s <service instance name> -g <resource group name> --lines 100 -f

TIP

5. It takes a few minutes to finish deploying the application. To confirm that it has deployed, go to the Apps

blade in the Azure portal. You should see the status of the application.

Once deployment has completed, you can access the app at

https://<service instance name>-hellospring.azuremicroservices.io/ .

CLI

IntelliJ

Use the following command to get real time logs from the App.

Logs appear in the results:

Use az spring-cloud app logs -h to explore more parameters and log stream functionalities.

For advanced logs analytics features, visit Logs tab in the menu on Azure portal. Logs here have a latency of a

few minutes.

file:///T:/hopk/sun2/azure/spring-cloud/media/spring-cloud-quickstart-java/access-app-browser.png#lightbox
file:///T:/hopk/sun2/azure/spring-cloud/media/spring-cloud-quickstart-java/streaming-logs.png#lightbox
https://portal.azure.com/

 Clean up resources

az group delete --name <your resource group name; for example: hellospring-1558400876966-rg> --yes

 Next steps

In the preceding steps, you created Azure resources that will continue to accrue charges while they remain in

your subscription. If you don't expect to need these resources in the future, delete the resource group from the

portal or by running the following command in the Azure CLI:

In this quickstart, you learned how to:

Generate a basic Azure Spring Cloud project

Provision a service instance

Build and deploy the app with a public endpoint

Stream logs in real time

To learn how to use more Azure Spring capabilities, advance to the quickstart series that deploys a sample

application to Azure Spring Cloud:

Build and Run Microservices

More samples are available on GitHub: Azure Spring Cloud Samples.

file:///T:/hopk/sun2/azure/spring-cloud/media/spring-cloud-quickstart-java/logs-analytics.png#lightbox
https://docs.microsoft.com/en-us/azure/spring-cloud/quickstart-sample-app-introduction
https://github.com/Azure-Samples/Azure-Spring-Cloud-Samples

Tutorial: Deploy an ASP.NET app to Azure with
Azure SQL Database

 3/19/2021 • 12 minutes to read • Edit Online

 Prerequisites

 Download the sample

Azure App Service provides a highly scalable, self-patching web hosting service. This tutorial shows you how to

deploy a data-driven ASP.NET app in App Service and connect it to Azure SQL Database. When you're finished,

you have an ASP.NET app running in Azure and connected to SQL Database.

In this tutorial, you learn how to:

Create a database in Azure SQL Database

Connect an ASP.NET app to SQL Database

Deploy the app to Azure

Update the data model and redeploy the app

Stream logs from Azure to your terminal

Manage the app in the Azure portal

If you don't have an Azure subscription, create a free account before you begin.

To complete this tutorial:

Install Visual Studio 2019 with the ASP.NET and web development workload.

If you've installed Visual Studio already, add the workloads in Visual Studio by clicking Tools > Get Tools and

Features .

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/app-service-web-tutorial-dotnet-sqldatabase.md
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://www.visualstudio.com/downloads/

 Run the app

 Publish ASP.NET application to Azure

1. Download the sample project.

2. Extract (unzip) the dotnet-sqldb-tutorial-master.zip file.

The sample project contains a basic ASP.NET MVC create-read-update-delete (CRUD) app using Entity

Framework Code First.

1. Open the dotnet-sqldb-tutorial-master/DotNetAppSqlDb.sln file in Visual Studio.

2. Type Ctrl+F5 to run the app without debugging. The app is displayed in your default browser.

3. Select the Create New link and create a couple to-do items.

4. Test the Edit, Details , and Delete links.

The app uses a database context to connect with the database. In this sample, the database context uses a

connection string named MyDbConnection . The connection string is set in the Web.config file and referenced in

the Models/MyDatabaseContext.cs file. The connection string name is used later in the tutorial to connect the

Azure app to an Azure SQL Database.

1. In the Solution Explorer , right-click your DotNetAppSqlDb project and select Publish .

https://github.com/Azure-Samples/dotnet-sqldb-tutorial/archive/master.zip
https://www.asp.net/mvc
https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application

 Sign in and add an app

 Configure the web app name

NOTE

2. Select Azure as your target and click Next.

3. Make sure that Azure App Ser vice (Windows) is selected and click Next.

1. In the Publish dialog, click Add an account from the account manager drop down.

2. Sign in to your Azure subscription. If you're already signed into a Microsoft account, make sure that

account holds your Azure subscription. If the signed-in Microsoft account doesn't have your Azure

subscription, click it to add the correct account.

3. In the App Ser vice instances pane, click +.

You can keep the generated web app name, or change it to another unique name (valid characters are a-z ,

0-9 , and -). The web app name is used as part of the default URL for your app (<app_name>.azurewebsites.net ,

where <app_name> is your web app name). The web app name needs to be unique across all apps in Azure.

Don't select Create yet.

 Create a resource group

 Create an App Service plan

A resource group is a logical container into which Azure resources, such as web apps, databases, and storage

accounts, are deployed and managed. For example, you can choose to delete the entire resource group in one

simple step later.

1. Next to Resource Group, click New .

2. Name the resource group myResourceGroup.

An App Service plan specifies the location, size, and features of the web server farm that hosts your app. You can

save money when you host multiple apps by configuring the web apps to share a single App Service plan.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans

App Service plans define:

Region (for example: North Europe, East US, or Southeast Asia)

Instance size (small, medium, or large)

Scale count (1 to 20 instances)

SKU (Free, Shared, Basic, Standard, or Premium)

SET T IN G SUGGEST ED VA L UE F O R M O RE IN F O RM AT IO N

App Ser vice Plan myAppServicePlan App Service plans

Location West Europe Azure regions

Size Free Pricing tiers

1. Next to Hosting Plan, click New .

2. In the Configure App Ser vice Plan dialog, configure the new App Service plan with the following

settings and click OK:

3. Click Create and wait for the Azure resources to be created.

4. The Publish dialog shows the resources you've configured. Click Finish .

https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://azure.microsoft.com/regions/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://azure.microsoft.com/pricing/details/app-service/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio

 Create a server and database

Before creating a database, you need a logical SQL server. A logical SQL server is a logical construct that

contains a group of databases managed as a group.

1. In the Publish dialog, scroll down to the Ser vice Dependencies section. Next to SQL Ser ver

Database, click Configure.

2. Select Azure SQL Database and click Next.

3. In the Configure Azure SQL Database dialog, click +.

4. Next to Database ser ver , click New .

A server name is generated. This name is used as part of the default URL for your server,

<server_name>.database.windows.net . It must be unique across all servers in Azure SQL. You can change

the server name, but for this tutorial, keep the generated value.

5. Add an administrator username and password. For password complexity requirements, see Password

Policy.

Remember this username and password. You need them to manage the server later.

https://docs.microsoft.com/en-us/azure/azure-sql/database/logical-servers
https://docs.microsoft.com/en-us/sql/relational-databases/security/password-policy

IMPORTANT
Even though your password in the connection strings is masked (in Visual Studio and also in App Service), the fact

that it's maintained somewhere adds to the attack surface of your app. App Service can use managed service

identities to eliminate this risk by removing the need to maintain secrets in your code or app configuration at all.

For more information, see Next steps.

6. Click OK.

7. In the Azure SQL Database dialog, keep the default generated Database Name. Select Create and

wait for the database resources to be created.

https://docs.microsoft.com/en-us/azure/app-service/overview-managed-identity

 Configure database connection

 Deploy your ASP.NET app

1. When the wizard finishes creating the database resources, click Next.

2. In the Database connection str ing Name , type MyDbConnection. This name must match the

connection string that is referenced in Models/MyDatabaseContext.cs.

3. In Database connection user name and Database connection password, type the administrator

username and password you used in Create a server.

4. Make sure Azure App Settings is selected and click Finish .

5. Wait for configuration wizard to finish and click Close.

1. In the Publish tab scroll back up to the top and click Publish . Once your ASP.NET app is deployed to

Azure. Your default browser is launched with the URL to the deployed app.

2. Add a few to-do items.

Congratulations! Your data-driven ASP.NET application is running live in Azure App Service.

Access the database locally

 Create a database connection

 Configure the database connection

 Allow client connection from your computer

Visual Studio lets you explore and manage your new database in Azure easily in the SQL Ser ver Object

Explorer . The new database already opened its firewall to the App Service app that you created, but to access it

from your local computer (such as from Visual Studio), you must open a firewall for your local machine's public

IP address. If your internet service provider changes your public IP address, you need to reconfigure the firewall

to access the Azure database again.

1. From the View menu, select SQL Ser ver Object Explorer .

2. At the top of SQL Ser ver Object Explorer , click the Add SQL Ser ver button.

1. In the Connect dialog, expand the Azure node. All your SQL Database instances in Azure are listed here.

2. Select the database that you created earlier. The connection you created earlier is automatically filled at

the bottom.

3. Type the database administrator password you created earlier and click Connect.

The Create a new firewall rule dialog is opened. By default, a server only allows connections to its databases

from Azure services, such as your Azure app. To connect to your database from outside of Azure, create a

firewall rule at the server level. The firewall rule allows the public IP address of your local computer.

The dialog is already filled with your computer's public IP address.

1. Make sure that Add my client IP is selected and click OK.

 Update app with Code First Migrations

Once Visual Studio finishes creating the firewall setting for your SQL Database instance, your connection

shows up in SQL Ser ver Object Explorer .

Here, you can perform the most common database operations, such as run queries, create views and

stored procedures, and more.

2. Expand your connection > Databases > <your database> > Tables . Right-click on the Todoes table

and select View Data.

You can use the familiar tools in Visual Studio to update your database and app in Azure. In this step, you use

 Update your data model

public bool Done { get; set; }

 Run Code First Migrations locally

 Use the new property

Code First Migrations in Entity Framework to make a change to your database schema and publish it to Azure.

For more information about using Entity Framework Code First Migrations, see Getting Started with Entity

Framework 6 Code First using MVC 5.

Open Models\Todo.cs in the code editor. Add the following property to the ToDo class:

Run a few commands to make updates to your local database.

Enable-Migrations

Add-Migration AddProperty

Update-Database

1. From the Tools menu, click NuGet Package Manager > Package Manager Console.

2. In the Package Manager Console window, enable Code First Migrations:

3. Add a migration:

4. Update the local database:

5. Type Ctrl+F5 to run the app. Test the edit, details, and create links.

If the application loads without errors, then Code First Migrations has succeeded. However, your page still looks

the same because your application logic is not using this new property yet.

Make some changes in your code to use the Done property. For simplicity in this tutorial, you're only going to

change the Index and Create views to see the property in action.

public ActionResult Create([Bind(Include = "Description,CreatedDate,Done")] Todo todo)

1. Open Controllers\TodosController.cs.

2. Find the Create() method on line 52 and add Done to the list of properties in the Bind attribute. When

you're done, your Create() method signature looks like the following code:

3. Open Views\Todos\Create.cshtml.

4. In the Razor code, you should see a <div class="form-group"> element that uses model.Description , and

then another <div class="form-group"> element that uses model.CreatedDate . Immediately following

these two elements, add another <div class="form-group"> element that uses model.Done :

https://docs.microsoft.com/en-us/aspnet/mvc/overview/getting-started/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application

 Enable Code First Migrations in Azure

<div class="form-group">
 @Html.LabelFor(model => model.Done, htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 <div class="checkbox">
 @Html.EditorFor(model => model.Done)
 @Html.ValidationMessageFor(model => model.Done, "", new { @class = "text-danger" })
 </div>
 </div>
</div>

<th>
 @Html.DisplayNameFor(model => model.Done)
</th>

<td>
 @Html.DisplayFor(modelItem => item.Done)
</td>

5. Open Views\Todos\Index.cshtml.

6. Search for the empty <th></th> element. Just above this element, add the following Razor code:

7. Find the <td> element that contains the Html.ActionLink() helper methods. Above this <td> , add

another <td> element with the following Razor code:

That's all you need to see the changes in the Index and Create views.

8. Type Ctrl+F5 to run the app.

You can now add a to-do item and check Done. Then it should show up in your homepage as a completed item.

Remember that the Edit view doesn't show the Done field, because you didn't change the Edit view.

Now that your code change works, including database migration, you publish it to your Azure app and update

your SQL Database with Code First Migrations too.

1. Just like before, right-click your project and select Publish .

2. Click More actions > Edit to open the publish settings.

3. In the MyDatabaseContext dropdown, select the database connection for your Azure SQL Database.

4. Select Execute Code First Migrations (runs on application star t) , then click Save.

 Publish your changes

Now that you enabled Code First Migrations in your Azure app, publish your code changes.

1. In the publish page, click Publish .

2. Try adding to-do items again and select Done, and they should show up in your homepage as a

completed item.

All your existing to-do items are still displayed. When you republish your ASP.NET application, existing data in

your SQL Database is not lost. Also, Code First Migrations only changes the data schema and leaves your

existing data intact.

Stream application logs

 Enable log streaming

 Change trace levels

You can stream tracing messages directly from your Azure app to Visual Studio.

Open Controllers\TodosController.cs.

Each action starts with a Trace.WriteLine() method. This code is added to show you how to add trace messages

to your Azure app.

1. From the View menu, select Cloud Explorer .

2. In Cloud Explorer , expand the Azure subscription that has your app and expand App Ser vice .

3. Right-click your Azure app and select View Streaming Logs .

The logs are now streamed into the Output window.

However, you don't see any of the trace messages yet. That's because when you first select View

Streaming Logs , your Azure app sets the trace level to Error , which only logs error events (with the

Trace.TraceError() method).

1. To change the trace levels to output other trace messages, go back to Cloud Explorer .

2. Right-click your app again and select Open in Por tal .

3. In the portal management page for your app, from the left menu, select App Ser vice logs .

4. Under Application Logging (File System) , select Verbose in Level . Click Save.

 Stop log streaming

 Manage your Azure app

TIP

Application: 2017-04-06T23:30:41 PID[8132] Verbose GET /Todos/Index
Application: 2017-04-06T23:30:43 PID[8132] Verbose GET /Todos/Create
Application: 2017-04-06T23:30:53 PID[8132] Verbose POST /Todos/Create
Application: 2017-04-06T23:30:54 PID[8132] Verbose GET /Todos/Index

You can experiment with different trace levels to see what types of messages are displayed for each level. For

example, the Information level includes all logs created by Trace.TraceInformation() ,

Trace.TraceWarning() , and Trace.TraceError() , but not logs created by Trace.WriteLine() .

5. In your browser navigate to your app again at http://<your app name>.azurewebsites.net, then try

clicking around the to-do list application in Azure. The trace messages are now streamed to the Output

window in Visual Studio.

To stop the log-streaming service, click the Stop monitor ing button in the Output window.

Go to the Azure portal to manage the web app. Search for and select App Ser vices .

https://portal.azure.com

Select the name of your Azure app.

You have landed in your app's page.

By default, the portal shows the Over view page. This page gives you a view of how your app is doing. Here,

you can also perform basic management tasks like browse, stop, start, restart, and delete. The tabs on the left

side of the page show the different configuration pages you can open.

 Clean up resources

 Next steps

In the preceding steps, you created Azure resources in a resource group. If you don't expect to need these

resources in the future, you can delete them by deleting the resource group.

1. From your web app's Over view page in the Azure portal, select the myResourceGroup link under

Resource group.

2. On the resource group page, make sure that the listed resources are the ones you want to delete.

3. Select Delete, type myResourceGroup in the text box, and then select Delete.

In this tutorial, you learned how to:

Create a database in Azure SQL Database

Connect an ASP.NET app to SQL Database

Deploy the app to Azure

Update the data model and redeploy the app

Stream logs from Azure to your terminal

Manage the app in the Azure portal

Advance to the next tutorial to learn how to easily improve the security of your connection Azure SQL Database.

Access SQL Database securely using managed identities for Azure resources

More resources:

Configure ASP.NET app

Want to optimize and save on your cloud spending?

Start analyzing costs with Cost Management

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-connect-msi
https://docs.microsoft.com/en-us/azure/app-service/configure-language-dotnet-framework
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis

Tutorial: Build a Node.js and MongoDB app in
Azure

 6/25/2021 • 17 minutes to read • Edit Online

 Prerequisites

Azure App Service provides a highly scalable, self-patching web hosting service. This tutorial shows how to

create a Node.js app in App Service on Windows and connect it to a MongoDB database. When you're done,

you'll have a MEAN application (MongoDB, Express, AngularJS, and Node.js) running in Azure App Service. For

simplicity, the sample application uses the MEAN.js web framework.

Azure App Service provides a highly scalable, self-patching web hosting service using the Linux operating

system. This tutorial shows how to create a Node.js app in App Service on Linux, connect it locally to a MongoDB

database, then deploy it to a database in Azure Cosmos DB's API for MongoDB. When you're done, you'll have a

MEAN application (MongoDB, Express, AngularJS, and Node.js) running in App Service on Linux. For simplicity,

the sample application uses the MEAN.js web framework.

What you'll learn:

Create a MongoDB database in Azure

Connect a Node.js app to MongoDB

Deploy the app to Azure

Update the data model and redeploy the app

Stream diagnostic logs from Azure

Manage the app in the Azure portal

If you don't have an Azure subscription, create a free account before you begin.

To complete this tutorial:

Install Git

Install Node.js and NPM

Install Bower (required by MEAN.js)

Install Gulp.js (required by MEAN.js)

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/tutorial-nodejs-mongodb-app.md
https://meanjs.org/
https://meanjs.org/
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://git-scm.com/
https://nodejs.org/
https://bower.io/
https://meanjs.org/docs/0.5.x/#getting-started
https://gulpjs.com/
https://meanjs.org/docs/0.5.x/#getting-started

 Test local MongoDB

mongo

 Create local Node.js app

 Clone the sample application

git clone https://github.com/Azure-Samples/meanjs.git

 Run the application

cd meanjs
npm install
npm start

Install and run MongoDB Community Edition

Use the Bash environment in Azure Cloud Shell.

If you prefer, install the Azure CLI to run CLI reference commands.

If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish

the authentication process, follow the steps displayed in your terminal. For additional sign-in

options, see Sign in with the Azure CLI.

When you're prompted, install Azure CLI extensions on first use. For more information about

extensions, see Use extensions with the Azure CLI.

Run az version to find the version and dependent libraries that are installed. To upgrade to the

latest version, run az upgrade.

Open the terminal window and cd to the bin directory of your MongoDB installation. You can use this

terminal window to run all the commands in this tutorial.

Run mongo in the terminal to connect to your local MongoDB server.

If your connection is successful, then your MongoDB database is already running. If not, make sure that your

local MongoDB database is started by following the steps at Install MongoDB Community Edition. Often,

MongoDB is installed, but you still need to start it by running mongod .

When you're done testing your MongoDB database, type Ctrl+C in the terminal.

In this step, you set up the local Node.js project.

In the terminal window, cd to a working directory.

Run the following command to clone the sample repository.

This sample repository contains a copy of the MEAN.js repository. It is modified to run on App Service (for more

information, see the MEAN.js repository README file).

Run the following commands to install the required packages and start the application.

Ignore the config.domain warning. When the app is fully loaded, you see something similar to the following

https://docs.mongodb.com/manual/administration/install-community/
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index#az_login
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/azure-cli-extensions-overview
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_version
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_upgrade
https://docs.mongodb.com/manual/administration/install-community/
https://github.com/meanjs/mean
https://github.com/Azure-Samples/meanjs/blob/master/README.md

--
MEAN.JS - Development Environment

Environment: development
Server: http://0.0.0.0:3000
Database: mongodb://localhost/mean-dev
App version: 0.5.0
MEAN.JS version: 0.5.0
--

 Create production MongoDB

 Create a resource group

az group create --name myResourceGroup --location "West Europe"

message:

Navigate to http://localhost:3000 in a browser. Click S ign Up in the top menu and create a test user.

The MEAN.js sample application stores user data in the database. If you are successful at creating a user and

signing in, then your app is writing data to the local MongoDB database.

Select Admin > Manage Ar ticles to add some articles.

To stop Node.js at any time, press Ctrl+C in the terminal.

In this step, you create a MongoDB database in Azure. When your app is deployed to Azure, it uses this cloud

database.

For MongoDB, this tutorial uses Azure Cosmos DB. Cosmos DB supports MongoDB client connections.

A resource group is a logical container into which Azure resources, such as web apps, databases, and storage

accounts, are deployed and managed. For example, you can choose to delete the entire resource group in one

simple step later.

In the Cloud Shell, create a resource group with the az group create command. The following example creates

a resource group named myResourceGroup in the West Europe location. To see all supported locations for App

Service in Free tier, run the az appservice list-locations --sku FREE command.

You generally create your resource group and the resources in a region near you.

https://docs.microsoft.com/en-us/azure/documentdb/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/cli/azure/group
https://docs.microsoft.com/en-us/cli/azure/appservice

 Create a Cosmos DB account

NOTE

az cosmosdb create --name <cosmosdb-name> --resource-group myResourceGroup --kind MongoDB

{
 "consistencyPolicy":
 {
 "defaultConsistencyLevel": "Session",
 "maxIntervalInSeconds": 5,
 "maxStalenessPrefix": 100
 },
 "databaseAccountOfferType": "Standard",
 "documentEndpoint": "https://<cosmosdb-name>.documents.azure.com:443/",
 "failoverPolicies":
 ...
 < Output truncated for readability >
}

 Connect app to production MongoDB

 Retrieve the database key

az cosmosdb keys list --name <cosmosdb-name> --resource-group myResourceGroup

When the command finishes, a JSON output shows you the resource group properties.

There is a cost to creating the Azure Cosmos DB databases in this tutorial in your own Azure subscription. To use a free

Azure Cosmos DB account for seven days, you can use the Try Azure Cosmos DB for free experience. Just click the Create

button in the MongoDB tile to create a free MongoDB database on Azure. Once the database is created, navigate to

Connection String in the portal and retrieve your Azure Cosmos DB connection string for use later in the tutorial.

In the Cloud Shell, create a Cosmos DB account with the az cosmosdb create command.

In the following command, substitute a unique Cosmos DB name for the <cosmosdb-name> placeholder. This

name is used as the part of the Cosmos DB endpoint, https://<cosmosdb-name>.documents.azure.com/ , so the

name needs to be unique across all Cosmos DB accounts in Azure. The name must contain only lowercase

letters, numbers, and the hyphen (-) character, and must be between 3 and 50 characters long.

The --kind MongoDB parameter enables MongoDB client connections.

When the Cosmos DB account is created, the Azure CLI shows information similar to the following example:

In this step, you connect your MEAN.js sample application to the Cosmos DB database you just created, using a

MongoDB connection string.

To connect to the Cosmos DB database, you need the database key. In the Cloud Shell, use the

az cosmosdb keys list command to retrieve the primary key.

The Azure CLI shows information similar to the following example:

https://azure.microsoft.com/try/cosmosdb/
https://docs.microsoft.com/en-us/cli/azure/cosmosdb#az_cosmosdb_create
https://docs.microsoft.com/en-us/cli/azure/cosmosdb#az_cosmosdb_keys_list

{
 "primaryMasterKey":
"RS4CmUwzGRASJPMoc0kiEvdnKmxyRILC9BWisAYh3Hq4zBYKr0XQiSE4pqx3UchBeO4QRCzUt1i7w0rOkitoJw==",
 "primaryReadonlyMasterKey":
"HvitsjIYz8TwRmIuPEUAALRwqgKOzJUjW22wPL2U8zoMVhGvregBkBk9LdMTxqBgDETSq7obbwZtdeFY7hElTg==",
 "secondaryMasterKey":
"Lu9aeZTiXU4PjuuyGBbvS1N9IRG3oegIrIh95U6VOstf9bJiiIpw3IfwSUgQWSEYM3VeEyrhHJ4rn3Ci0vuFqA==",
 "secondaryReadonlyMasterKey":
"LpsCicpVZqHRy7qbMgrzbRKjbYCwCKPQRl0QpgReAOxMcggTvxJFA94fTi0oQ7xtxpftTJcXkjTirQ0pT7QFrQ=="
}

 Configure the connection string in your Node.js application

module.exports = {
 db: {
 uri: 'mongodb://<cosmosdb-name>:<primary-master-key>@<cosmosdb-name>.documents.azure.com:10250/mean?
ssl=true&sslverifycertificate=false'
 }
};

 Test the application in production mode

gulp prod

Bash
NODE_ENV=production node server.js

Windows PowerShell
$env:NODE_ENV = "production"
node server.js

Copy the value of primaryMasterKey . You need this information in the next step.

In your local MEAN.js repository, in the config/env/ folder, create a file named local-production.js. .gitignore is

already configured to keep this file out of the repository.

Copy the following code into it. Be sure to replace the two <cosmosdb-name> placeholders with your Cosmos

DB database name, and replace the <primary-master-key> placeholder with the key you copied in the previous

step.

The ssl=true option is required because Cosmos DB requires TLS/SSL.

Save your changes.

In a local terminal window, run the following command to minify and bundle scripts for the production

environment. This process generates the files needed by the production environment.

In a local terminal window, run the following command to use the connection string you configured in

config/env/local-production.js. Ignore the certificate error and the config.domain warning.

NODE_ENV=production sets the environment variable that tells Node.js to run in the production environment.

node server.js starts the Node.js server with server.js in your repository root. This is how your Node.js

application is loaded in Azure.

When the app is loaded, check to make sure that it's running in the production environment:

https://docs.microsoft.com/en-us/azure/cosmos-db/connect-mongodb-account

--
MEAN.JS

Environment: production
Server: http://0.0.0.0:8443
Database: mongodb://<cosmosdb-name>:<primary-master-key>@<cosmosdb-
name>.documents.azure.com:10250/mean?ssl=true&sslverifycertificate=false
App version: 0.5.0
MEAN.JS version: 0.5.0

 Deploy app to Azure

 Configure a deployment user

az webapp deployment user set --user-name <username> --password <password>

 Create an App Service plan

az appservice plan create --name myAppServicePlan --resource-group myResourceGroup --sku FREE

Navigate to http://localhost:8443 in a browser. Click S ign Up in the top menu and create a test user. If you are

successful creating a user and signing in, then your app is writing data to the Cosmos DB database in Azure.

In the terminal, stop Node.js by typing Ctrl+C .

In this step, you deploy your MongoDB-connected Node.js application to Azure App Service.

FTP and local Git can deploy to an Azure web app by using a deployment user. Once you configure your

deployment user, you can use it for all your Azure deployments. Your account-level deployment username and

password are different from your Azure subscription credentials.

To configure the deployment user, run the az webapp deployment user set command in Azure Cloud Shell.

Replace <username> and <password> with a deployment user username and password.

The username must be unique within Azure, and for local Git pushes, must not contain the ‘@’ symbol.

The password must be at least eight characters long, with two of the following three elements: letters,

numbers, and symbols.

The JSON output shows the password as null . If you get a 'Conflict'. Details: 409 error, change the

username. If you get a 'Bad Request'. Details: 400 error, use a stronger password.

Record your username and password to use to deploy your web apps.

In the Cloud Shell, create an App Service plan with the az appservice plan create command.

The following example creates an App Service plan named myAppServicePlan in the Free pricing tier :

When the App Service plan has been created, the Azure CLI shows information similar to the following example:

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment/user#az_webapp_deployment_user_set
https://docs.microsoft.com/en-us/cli/azure/appservice/plan

{
 "adminSiteName": null,
 "appServicePlanName": "myAppServicePlan",
 "geoRegion": "West Europe",
 "hostingEnvironmentProfile": null,
 "id": "/subscriptions/0000-
0000/resourceGroups/myResourceGroup/providers/Microsoft.Web/serverfarms/myAppServicePlan",
 "kind": "app",
 "location": "West Europe",
 "maximumNumberOfWorkers": 1,
 "name": "myAppServicePlan",
 < JSON data removed for brevity. >
 "targetWorkerSizeId": 0,
 "type": "Microsoft.Web/serverfarms",
 "workerTierName": null
}

az appservice plan create --name myAppServicePlan --resource-group myResourceGroup --sku FREE --is-linux

{
 "freeOfferExpirationTime": null,
 "geoRegion": "West Europe",
 "hostingEnvironmentProfile": null,
 "id": "/subscriptions/0000-
0000/resourceGroups/myResourceGroup/providers/Microsoft.Web/serverfarms/myAppServicePlan",
 "kind": "linux",
 "location": "West Europe",
 "maximumNumberOfWorkers": 1,
 "name": "myAppServicePlan",
 < JSON data removed for brevity. >
 "targetWorkerSizeId": 0,
 "type": "Microsoft.Web/serverfarms",
 "workerTierName": null
}

 Create a web app

Bash
az webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"NODE|14-LTS" --deployment-local-git
PowerShell
az --% webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"NODE|14-LTS" --deployment-local-git

In the Cloud Shell, create an App Service plan with the az appservice plan create command.

The following example creates an App Service plan named myAppServicePlan in the Free pricing tier :

When the App Service plan has been created, the Azure CLI shows information similar to the following example:

Create a web app in the myAppServicePlan App Service plan.

In the Cloud Shell, you can use the az webapp create command. In the following example, replace <app-name>

with a globally unique app name (valid characters are a-z , 0-9 , and -). The runtime is set to NODE|14-LTS . To

see all supported runtimes, run az webapp list-runtimes .

When the web app has been created, the Azure CLI shows output similar to the following example:

https://docs.microsoft.com/en-us/cli/azure/appservice/plan
https://docs.microsoft.com/en-us/cli/azure/webapp
https://docs.microsoft.com/en-us/cli/azure/webapp#az_webapp_list_runtimes

Local git is configured with url of 'https://<username>@<app-name>.scm.azurewebsites.net/<app-
name>.git'
{
 "availabilityState": "Normal",
 "clientAffinityEnabled": true,
 "clientCertEnabled": false,
 "cloningInfo": null,
 "containerSize": 0,
 "dailyMemoryTimeQuota": 0,
 "defaultHostName": "<app-name>.azurewebsites.net",
 "deploymentLocalGitUrl": "https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git",
 "enabled": true,
 < JSON data removed for brevity. >
}

NOTE

Bash
az webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"NODE|6.9" --deployment-local-git
PowerShell
az --% webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"NODE|6.9" --deployment-local-git

Local git is configured with url of 'https://<username>@<app-name>.scm.azurewebsites.net/<app-
name>.git'
{
 "availabilityState": "Normal",
 "clientAffinityEnabled": true,
 "clientCertEnabled": false,
 "cloningInfo": null,
 "containerSize": 0,
 "dailyMemoryTimeQuota": 0,
 "defaultHostName": "<app-name>.azurewebsites.net",
 "deploymentLocalGitUrl": "https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git",
 "enabled": true,
 < JSON data removed for brevity. >
}

You’ve created an empty web app, with git deployment enabled.

The URL of the Git remote is shown in the deploymentLocalGitUrl property, with the format

https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git . Save this URL as you need it later.

Create a web app in the myAppServicePlan App Service plan.

In the Cloud Shell, you can use the az webapp create command. In the following example, replace <app-name>

with a globally unique app name (valid characters are a-z , 0-9 , and -). The runtime is set to NODE|6.9 . To

see all supported runtimes, run az webapp list-runtimes --linux .

When the web app has been created, the Azure CLI shows output similar to the following example:

Youâ€™ve created an empty web app, with git deployment enabled.

https://docs.microsoft.com/en-us/cli/azure/webapp
https://docs.microsoft.com/en-us/cli/azure/webapp

NOTE

 Configure an environment variable

az webapp config appsettings set --name <app-name> --resource-group myResourceGroup --settings
MONGODB_URI="mongodb://<cosmosdb-name>:<primary-master-key>@<cosmosdb-name>.documents.azure.com:10250/mean?
ssl=true"

db: {
 uri: ... || process.env.MONGODB_URI || ...,
 ...
},

 Push to Azure from Git

git remote add azure <deploymentLocalGitUrl-from-create-step>

git push azure master

The URL of the Git remote is shown in the deploymentLocalGitUrl property, with the format

https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git . Save this URL as you need it later.

By default, the MEAN.js project keeps config/env/local-production.js out of the Git repository. So for your Azure

app, you use app settings to define your MongoDB connection string.

To set app settings, use the az webapp config appsettings set command in the Cloud Shell.

The following example configures a MONGODB_URI app setting in your Azure app. Replace the <app-name>,

<cosmosdb-name>, and <primary-master-key> placeholders.

In Node.js code, you access this app setting with process.env.MONGODB_URI , just like you would access any

environment variable.

In your local MEAN.js repository, open config/env/production.js (not config/env/local-production.js), which has

production-environment specific configuration. The default MEAN.js app is already configured to use the

MONGODB_URI environment variable that you created.

Back in the local terminal window, add an Azure remote to your local Git repository. Replace

<deploymentLocalGitUrl-from-create-step> with the URL of the Git remote that you saved from Create a web

app.

Push to the Azure remote to deploy your app with the following command. When Git Credential Manager

prompts you for credentials, make sure you enter the credentials you created in Configure a deployment

user , not the credentials you use to sign in to the Azure portal.

This command may take a few minutes to run. While running, it displays information similar to the following

example:

https://docs.microsoft.com/en-us/cli/azure/webapp/config/appsettings#az_webapp_config_appsettings_set
https://docs.microsoft.com/en-us/azure/app-service/configure-language-nodejs

Counting objects: 5, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 489 bytes | 0 bytes/s, done.
Total 5 (delta 3), reused 0 (delta 0)
remote: Updating branch 'master'.
remote: Updating submodules.
remote: Preparing deployment for commit id '6c7c716eee'.
remote: Running custom deployment command...
remote: Running deployment command...
remote: Handling node.js deployment.
.
.
.
remote: Deployment successful.
To https://<app-name>.scm.azurewebsites.net/<app-name>.git
 * [new branch] master -> master

 Browse to the Azure app

http://<app-name>.azurewebsites.net

You may notice that the deployment process runs Gulp after npm install . App Service does not run Gulp or

Grunt tasks during deployment, so this sample repository has two additional files in its root directory to enable

it:

.deployment - This file tells App Service to run bash deploy.sh as the custom deployment script.

deploy.sh - The custom deployment script. If you review the file, you will see that it runs gulp prod after

npm install and bower install .

You can use this approach to add any step to your Git-based deployment. If you restart your Azure app at any

point, App Service doesn't rerun these automation tasks. For more information, see Run Grunt/Bower/Gulp.

Browse to the deployed app using your web browser.

Click S ign Up in the top menu and create a dummy user.

If you are successful and the app automatically signs in to the created user, then your MEAN.js app in Azure has

connectivity to the MongoDB (Cosmos DB) database.

Select Admin > Manage Ar ticles to add some articles.

https://gulpjs.com/
https://docs.microsoft.com/en-us/azure/app-service/configure-language-nodejs

 Update data model and redeploy

 Update the data model

const ArticleSchema = new Schema({
 ...,
 user: {
 type: Schema.ObjectId,
 ref: 'User'
 },
 comment: {
 type: String,
 default: '',
 trim: true
 }
});

 Update the articles code

exports.update = function (req, res) {
 let article = req.article;

 article.title = req.body.title;
 article.content = req.body.content;
 article.comment = req.body.comment;

 ...
};

<p class="lead" ng-bind="vm.article.comment"></p>

Congratulations! You're running a data-driven Node.js app in Azure App Service.

In this step, you change the article data model and publish your change to Azure.

In your local MEAN.js repository, open modules/articles/server/models/article.server.model.js.

In ArticleSchema , add a String type called comment . When you're done, your schema code should look like

this:

Update the rest of your articles code to use comment .

There are five files you need to modify: the server controller and the four client views.

Open modules/articles/server/controllers/articles.server.controller.js.

In the update function, add an assignment for article.comment . The following code shows the completed

update function:

Open modules/articles/client/views/view-article.client.view.html.

Just above the closing </section> tag, add the following line to display comment along with the rest of the

article data:

Open modules/articles/client/views/list-articles.client.view.html.

Just above the closing tag, add the following line to display comment along with the rest of the article

data:

<p class="list-group-item-text" ng-bind="article.comment"></p>

<p class="list-group-item-text" data-ng-bind="article.comment"></p>

<div class="form-group">
 <button type="submit" class="btn btn-default">{{vm.article._id ? 'Update' : 'Create'}}</button>
</div>

<div class="form-group">
 <label class="control-label" for="comment">Comment</label>
 <textarea name="comment" data-ng-model="vm.article.comment" id="comment" class="form-control" cols="30"
rows="10" placeholder="Comment"></textarea>
</div>

 Test your changes locally

Bash
gulp prod
NODE_ENV=production node server.js

Windows PowerShell
gulp prod
$env:NODE_ENV = "production"
node server.js

Open modules/articles/client/views/admin/list-articles.client.view.html.

Inside the <div class="list-group"> element and just above the closing tag, add the following line to

display comment along with the rest of the article data:

Open modules/articles/client/views/admin/form-article.client.view.html.

Find the <div class="form-group"> element that contains the submit button, which looks like this:

Just above this tag, add another <div class="form-group"> element that lets people edit the comment field. Your

new element should look like this:

Save all your changes.

In the local terminal window, test your changes in production mode again.

Navigate to http://localhost:8443 in a browser and make sure that you're signed in.

Select Admin > Manage Ar ticles , then add an article by selecting the + button.

You see the new Comment textbox now.

 Publish changes to Azure

git commit -am "added article comment"
git push azure master

In the terminal, stop Node.js by typing Ctrl+C .

In the local terminal window, commit your changes in Git, then push the code changes to Azure.

Once the git push is complete, navigate to your Azure app and try out the new functionality.

If you added any articles earlier, you still can see them. Existing data in your Cosmos DB is not lost. Also, your

updates to the data schema and leaves your existing data intact.

 Stream diagnostic logs

az webapp log tail --name <app-name> --resource-group myResourceGroup

az webapp log config --resource-group <resource-group-name> --name <app-name> --application-logging true --
level Verbose

az webapp log tail --resource-group <resource-group-name> --name <app-name>

NOTE

 Manage your Azure app

While your Node.js application runs in Azure App Service, you can get the console logs piped to your terminal.

That way, you can get the same diagnostic messages to help you debug application errors.

To start log streaming, use the az webapp log tail command in the Cloud Shell.

Once log streaming has started, refresh your Azure app in the browser to get some web traffic. You now see

console logs piped to your terminal.

Stop log streaming at any time by typing Ctrl+C .

To access the console logs generated from inside your application code in App Service, turn on diagnostics

logging by running the following command in the Cloud Shell:

Possible values for --level are: Error , Warning , Info , and Verbose . Each subsequent level includes the

previous level. For example: Error includes only error messages, and Verbose includes all messages.

Once diagnostic logging is turned on, run the following command to see the log stream:

If you don't see console logs immediately, check again in 30 seconds.

You can also inspect the log files from the browser at https://<app-name>.scm.azurewebsites.net/api/logs/docker .

To stop log streaming at any time, type Ctrl + C .

Go to the Azure portal to see the app you created.

From the left menu, click App Ser vices , then click the name of your Azure app.

https://docs.microsoft.com/en-us/cli/azure/webapp/log#az_webapp_log_tail
https://shell.azure.com
https://portal.azure.com

 Clean up resources

az group delete --name myResourceGroup

 Next steps

By default, the portal shows your app's Over view page. This page gives you a view of how your app is doing.

Here, you can also perform basic management tasks like browse, stop, start, restart, and delete. The tabs on the

left side of the page show the different configuration pages you can open.

In the preceding steps, you created Azure resources in a resource group. If you don't expect to need these

resources in the future, delete the resource group by running the following command in the Cloud Shell:

This command may take a minute to run.

What you learned:

Create a MongoDB database in Azure

Connect a Node.js app to MongoDB

Deploy the app to Azure

Update the data model and redeploy the app

Stream logs from Azure to your terminal

Manage the app in the Azure portal

Advance to the next tutorial to learn how to map a custom DNS name to the app.

Map an existing custom DNS name to Azure App Service

Or, check out other resources:

Configure Node.js app

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/configure-language-nodejs

Tutorial: Build a PHP and MySQL app in Azure App
Service

 4/21/2021 • 20 minutes to read • Edit Online

Azure App Service provides a highly scalable, self-patching web hosting service using the Windows operating

system. This tutorial shows how to create a PHP app in Azure and connect it to a MySQL database. When you're

finished, you'll have a Laravel app running on Azure App Service on Windows.

Azure App Service provides a highly scalable, self-patching web hosting service using the Linux operating

system. This tutorial shows how to create a PHP app in Azure and connect it to a MySQL database. When you're

finished, you'll have a Laravel app running on Azure App Service on Linux.

In this tutorial, you learn how to:

Create a MySQL database in Azure

Connect a PHP app to MySQL

Deploy the app to Azure

Update the data model and redeploy the app

Stream diagnostic logs from Azure

Manage the app in the Azure portal

If you don't have an Azure subscription, create a free account before you begin.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/tutorial-php-mysql-app.md
https://laravel.com/
https://laravel.com/
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio

 Prerequisites

 Prepare local MySQL

 Connect to local MySQL server

mysql -u root -p

 Create a database locally

CREATE DATABASE sampledb;

quit

 Create a PHP app locally

To complete this tutorial:

Install Git

Install PHP 5.6.4 or above

Install Composer

Enable the following PHP extensions Laravel needs: OpenSSL, PDO-MySQL, Mbstring, Tokenizer, XML

Install and start MySQL

Use the Bash environment in Azure Cloud Shell.

If you prefer, install the Azure CLI to run CLI reference commands.

If you're using a local installation, sign in to the Azure CLI by using the az login command. To finish

the authentication process, follow the steps displayed in your terminal. For additional sign-in

options, see Sign in with the Azure CLI.

When you're prompted, install Azure CLI extensions on first use. For more information about

extensions, see Use extensions with the Azure CLI.

Run az version to find the version and dependent libraries that are installed. To upgrade to the

latest version, run az upgrade.

In this step, you create a database in your local MySQL server for your use in this tutorial.

In a terminal window, connect to your local MySQL server. You can use this terminal window to run all the

commands in this tutorial.

If you're prompted for a password, enter the password for the root account. If you don't remember your root

account password, see MySQL: How to Reset the Root Password.

If your command runs successfully, then your MySQL server is running. If not, make sure that your local MySQL

server is started by following the MySQL post-installation steps.

At the mysql prompt, create a database.

Exit your server connection by typing quit .

https://git-scm.com/
https://php.net/downloads.php
https://getcomposer.org/doc/00-intro.md
https://dev.mysql.com/doc/refman/5.7/en/installing.html
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/reference-index#az_login
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/cli/azure/azure-cli-extensions-overview
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_version
https://docs.microsoft.com/en-us/cli/azure/reference-index?#az_upgrade
https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/5.7/en/postinstallation.html

 Clone the sample

git clone https://github.com/Azure-Samples/laravel-tasks

cd laravel-tasks
composer install

 Configure MySQL connection

APP_ENV=local
APP_DEBUG=true
APP_KEY=

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_DATABASE=sampledb
DB_USERNAME=root
DB_PASSWORD=<root_password>

 Run the sample locally

php artisan migrate

php artisan key:generate

php artisan serve

In this step, you get a Laravel sample application, configure its database connection, and run it locally.

In the terminal window, cd to a working directory.

Run the following command to clone the sample repository.

cd to your cloned directory. Install the required packages.

In the repository root, create a file named .env. Copy the following variables into the .env file. Replace the

<root_password> placeholder with the MySQL root user's password.

For information on how Laravel uses the .env file, see Laravel Environment Configuration.

Run Laravel database migrations to create the tables the application needs. To see which tables are created in

the migrations, look in the database/migrations directory in the Git repository.

Generate a new Laravel application key.

Run the application.

Navigate to http://localhost:8000 in a browser. Add a few tasks in the page.

https://laravel.com/docs/5.4/configuration#environment-configuration
https://laravel.com/docs/5.4/migrations

 Create MySQL in Azure

 Create a resource group

az group create --name myResourceGroup --location "West Europe"

 Create a MySQL server

To stop PHP, type Ctrl + C in the terminal.

In this step, you create a MySQL database in Azure Database for MySQL. Later, you configure the PHP

application to connect to this database.

A resource group is a logical container into which Azure resources, such as web apps, databases, and storage

accounts, are deployed and managed. For example, you can choose to delete the entire resource group in one

simple step later.

In the Cloud Shell, create a resource group with the az group create command. The following example creates

a resource group named myResourceGroup in the West Europe location. To see all supported locations for App

Service in Free tier, run the az appservice list-locations --sku FREE command.

You generally create your resource group and the resources in a region near you.

When the command finishes, a JSON output shows you the resource group properties.

In the Cloud Shell, create a server in Azure Database for MySQL with the az mysql server create command.

In the following command, substitute a unique server name for the <mysql-server-name> placeholder, a user

name for the <admin-user>, and a password for the <admin-password> placeholder. The server name is used

https://docs.microsoft.com/en-us/azure/mysql/index
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/cli/azure/group
https://docs.microsoft.com/en-us/cli/azure/appservice
https://docs.microsoft.com/en-us/cli/azure/mysql/server#az_mysql_server_create

az mysql server create --resource-group myResourceGroup --name <mysql-server-name> --location "West Europe"
--admin-user <admin-user> --admin-password <admin-password> --sku-name B_Gen5_1

{
 "administratorLogin": "<admin-user>",
 "administratorLoginPassword": null,
 "fullyQualifiedDomainName": "<mysql-server-name>.mysql.database.azure.com",
 "id": "/subscriptions/00000000-0000-0000-0000-
000000000000/resourceGroups/myResourceGroup/providers/Microsoft.DBforMySQL/servers/<mysql-
server-name>",
 "location": "westeurope",
 "name": "<mysql-server-name>",
 "resourceGroup": "myResourceGroup",
 ...
 - < Output has been truncated for readability >
}

 Configure server firewall

az mysql server firewall-rule create --name allAzureIPs --server <mysql-server-name> --resource-group
myResourceGroup --start-ip-address 0.0.0.0 --end-ip-address 0.0.0.0

TIP

az mysql server firewall-rule create --name AllowLocalClient --server <mysql-server-name> --resource-group
myResourceGroup --start-ip-address=<your-ip-address> --end-ip-address=<your-ip-address>

 Connect to production MySQL server locally

mysql -u <admin-user>@<mysql-server-name> -h <mysql-server-name>.mysql.database.azure.com -P 3306 -p

 Create a production database

as part of your MySQL endpoint (https://<mysql-server-name>.mysql.database.azure.com), so the name needs to

be unique across all servers in Azure. For details on selecting MySQL DB SKU, see Create an Azure Database for

MySQL server.

When the MySQL server is created, the Azure CLI shows information similar to the following example:

In the Cloud Shell, create a firewall rule for your MySQL server to allow client connections by using the

az mysql server firewall-rule create command. When both starting IP and end IP are set to 0.0.0.0, the firewall

is only opened for other Azure resources.

You can be even more restrictive in your firewall rule by using only the outbound IP addresses your app uses.

In the Cloud Shell, run the command again to allow access from your local computer by replacing <your-ip-

address> with your local IPv4 IP address.

In the local terminal window, connect to the MySQL server in Azure. Use the value you specified previously for

<admin-user> and <mysql-server-name>. When prompted for a password, use the password you specified

when you created the database in Azure.

At the mysql prompt, create a database.

https://docs.microsoft.com/en-us/azure/mysql/quickstart-create-mysql-server-database-using-azure-cli
https://docs.microsoft.com/en-us/cli/azure/mysql/server/firewall-rule#az_mysql_server_firewall_rule_create
https://docs.microsoft.com/en-us/azure/app-service/overview-inbound-outbound-ips
https://www.whatsmyip.org/

CREATE DATABASE sampledb;

 Create a user with permissions

CREATE USER 'phpappuser' IDENTIFIED BY 'MySQLAzure2017';
GRANT ALL PRIVILEGES ON sampledb.* TO 'phpappuser';

quit

 Connect app to Azure MySQL

 Configure the database connection

APP_ENV=production
APP_DEBUG=true
APP_KEY=

DB_CONNECTION=mysql
DB_HOST=<mysql-server-name>.mysql.database.azure.com
DB_DATABASE=sampledb
DB_USERNAME=phpappuser@<mysql-server-name>
DB_PASSWORD=MySQLAzure2017
MYSQL_SSL=true

TIP

 Configure TLS/SSL certificate

Create a database user called phpappuser and give it all privileges in the sampledb database. For simplicity of

the tutorial, use MySQLAzure2017 as the password.

Exit the server connection by typing quit .

In this step, you connect the PHP application to the MySQL database you created in Azure Database for MySQL.

In the repository root, create an .env.production file and copy the following variables into it. Replace the

placeholder_<mysql-server-name>_ in both DB_HOST and DB_USERNAME.

Save the changes.

To secure your MySQL connection information, this file is already excluded from the Git repository (See .gitignore in the

repository root). Later, you learn how to configure environment variables in App Service to connect to your database in

Azure Database for MySQL. With environment variables, you don't need the .env file in App Service.

By default, Azure Database for MySQL enforces TLS connections from clients. To connect to your MySQL

database in Azure, you must use the .pem certificate supplied by Azure Database for MySQL.

Open config/database.php and add the sslmode and options parameters to connections.mysql , as shown in

the following code.

https://docs.microsoft.com/en-us/azure/mysql/howto-configure-ssl

'mysql' => [
 ...
 'sslmode' => env('DB_SSLMODE', 'prefer'),
 'options' => (env('MYSQL_SSL')) ? [
 PDO::MYSQL_ATTR_SSL_KEY => '/ssl/BaltimoreCyberTrustRoot.crt.pem',
] : []
],

'mysql' => [
 ...
 'sslmode' => env('DB_SSLMODE', 'prefer'),
 'options' => (env('MYSQL_SSL') && extension_loaded('pdo_mysql')) ? [
 PDO::MYSQL_ATTR_SSL_KEY => '/ssl/BaltimoreCyberTrustRoot.crt.pem',
] : []
],

 Test the application locally

php artisan migrate --env=production --force

php artisan key:generate --env=production --force

php artisan serve --env=production

The certificate BaltimoreCyberTrustRoot.crt.pem is provided in the repository for convenience in this tutorial.

Run Laravel database migrations with .env.production as the environment file to create the tables in your

MySQL database in Azure Database for MySQL. Remember that .env.production has the connection information

to your MySQL database in Azure.

.env.production doesn't have a valid application key yet. Generate a new one for it in the terminal.

Run the sample application with .env.production as the environment file.

Navigate to http://localhost:8000 . If the page loads without errors, the PHP application is connecting to the

MySQL database in Azure.

Add a few tasks in the page.

 Commit your changes

git add .
git commit -m "database.php updates"

 Deploy to Azure

 Configure a deployment user

To stop PHP, type Ctrl + C in the terminal.

Run the following Git commands to commit your changes:

Your app is ready to be deployed.

In this step, you deploy the MySQL-connected PHP application to Azure App Service.

FTP and local Git can deploy to an Azure web app by using a deployment user. Once you configure your

deployment user, you can use it for all your Azure deployments. Your account-level deployment username and

password are different from your Azure subscription credentials.

To configure the deployment user, run the az webapp deployment user set command in Azure Cloud Shell.

Replace <username> and <password> with a deployment user username and password.

The username must be unique within Azure, and for local Git pushes, must not contain the ‘@’ symbol.

The password must be at least eight characters long, with two of the following three elements: letters,

numbers, and symbols.

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment/user#az_webapp_deployment_user_set

az webapp deployment user set --user-name <username> --password <password>

 Create an App Service plan

az appservice plan create --name myAppServicePlan --resource-group myResourceGroup --sku FREE

{
 "adminSiteName": null,
 "appServicePlanName": "myAppServicePlan",
 "geoRegion": "West Europe",
 "hostingEnvironmentProfile": null,
 "id": "/subscriptions/0000-
0000/resourceGroups/myResourceGroup/providers/Microsoft.Web/serverfarms/myAppServicePlan",
 "kind": "app",
 "location": "West Europe",
 "maximumNumberOfWorkers": 1,
 "name": "myAppServicePlan",
 < JSON data removed for brevity. >
 "targetWorkerSizeId": 0,
 "type": "Microsoft.Web/serverfarms",
 "workerTierName": null
}

az appservice plan create --name myAppServicePlan --resource-group myResourceGroup --sku FREE --is-linux

The JSON output shows the password as null . If you get a 'Conflict'. Details: 409 error, change the

username. If you get a 'Bad Request'. Details: 400 error, use a stronger password.

Record your username and password to use to deploy your web apps.

In the Cloud Shell, create an App Service plan with the az appservice plan create command.

The following example creates an App Service plan named myAppServicePlan in the Free pricing tier :

When the App Service plan has been created, the Azure CLI shows information similar to the following example:

In the Cloud Shell, create an App Service plan with the az appservice plan create command.

The following example creates an App Service plan named myAppServicePlan in the Free pricing tier :

When the App Service plan has been created, the Azure CLI shows information similar to the following example:

https://docs.microsoft.com/en-us/cli/azure/appservice/plan
https://docs.microsoft.com/en-us/cli/azure/appservice/plan

{
 "freeOfferExpirationTime": null,
 "geoRegion": "West Europe",
 "hostingEnvironmentProfile": null,
 "id": "/subscriptions/0000-
0000/resourceGroups/myResourceGroup/providers/Microsoft.Web/serverfarms/myAppServicePlan",
 "kind": "linux",
 "location": "West Europe",
 "maximumNumberOfWorkers": 1,
 "name": "myAppServicePlan",
 < JSON data removed for brevity. >
 "targetWorkerSizeId": 0,
 "type": "Microsoft.Web/serverfarms",
 "workerTierName": null
}

 Create a web app

Bash
az webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"PHP|7.2" --deployment-local-git
PowerShell
az --% webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"PHP|7.2" --deployment-local-git

Local git is configured with url of 'https://<username>@<app-name>.scm.azurewebsites.net/<app-
name>.git'
{
 "availabilityState": "Normal",
 "clientAffinityEnabled": true,
 "clientCertEnabled": false,
 "cloningInfo": null,
 "containerSize": 0,
 "dailyMemoryTimeQuota": 0,
 "defaultHostName": "<app-name>.azurewebsites.net",
 "deploymentLocalGitUrl": "https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git",
 "enabled": true,
 < JSON data removed for brevity. >
}

NOTE

Create a web app in the myAppServicePlan App Service plan.

In the Cloud Shell, you can use the az webapp create command. In the following example, replace <app-name>

with a globally unique app name (valid characters are a-z , 0-9 , and -). The runtime is set to PHP|7.2 . To see

all supported runtimes, run az webapp list-runtimes --linux .

When the web app has been created, the Azure CLI shows output similar to the following example:

You’ve created an empty new web app, with git deployment enabled.

The URL of the Git remote is shown in the deploymentLocalGitUrl property, with the format

https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git . Save this URL as you need it later.

Create a web app in the myAppServicePlan App Service plan.

https://docs.microsoft.com/en-us/cli/azure/webapp#az_webapp_create
https://docs.microsoft.com/en-us/cli/azure/webapp#az_webapp_list_runtimes

Bash
az webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"PHP|7.2" --deployment-local-git
PowerShell
az --% webapp create --resource-group myResourceGroup --plan myAppServicePlan --name <app-name> --runtime
"PHP|7.2" --deployment-local-git

Local git is configured with url of 'https://<username>@<app-name>.scm.azurewebsites.net/<app-
name>.git'
{
 "availabilityState": "Normal",
 "clientAffinityEnabled": true,
 "clientCertEnabled": false,
 "cloningInfo": null,
 "containerSize": 0,
 "dailyMemoryTimeQuota": 0,
 "defaultHostName": "<app-name>.azurewebsites.net",
 "deploymentLocalGitUrl": "https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git",
 "enabled": true,
 < JSON data removed for brevity. >
}

NOTE

 Configure database settings

az webapp config appsettings set --name <app-name> --resource-group myResourceGroup --settings DB_HOST="
<mysql-server-name>.mysql.database.azure.com" DB_DATABASE="sampledb" DB_USERNAME="phpappuser@<mysql-server-
name>" DB_PASSWORD="MySQLAzure2017" MYSQL_SSL="true"

In the Cloud Shell, you can use the az webapp create command. In the following example, replace <app-name>

with a globally unique app name (valid characters are a-z , 0-9 , and -). The runtime is set to PHP|7.2 . To see

all supported runtimes, run az webapp list-runtimes --linux .

When the web app has been created, the Azure CLI shows output similar to the following example:

You’ve created an empty new web app, with git deployment enabled.

The URL of the Git remote is shown in the deploymentLocalGitUrl property, with the format

https://<username>@<app-name>.scm.azurewebsites.net/<app-name>.git . Save this URL as you need it later.

In App Service, you set environment variables as app settings by using the az webapp config appsettings set

command.

The following command configures the app settings DB_HOST , DB_DATABASE , DB_USERNAME , and DB_PASSWORD .

Replace the placeholders <app-name> and <mysql-server-name>.

You can use the PHP getenv method to access the settings. the Laravel code uses an env wrapper over the PHP

getenv . For example, the MySQL configuration in config/database.php looks like the following code:

https://docs.microsoft.com/en-us/cli/azure/webapp#az_webapp_create
https://docs.microsoft.com/en-us/cli/azure/webapp#az_webapp_list_runtimes
https://docs.microsoft.com/en-us/cli/azure/webapp/config/appsettings#az_webapp_config_appsettings_set
https://www.php.net/manual/en/function.getenv.php
https://laravel.com/docs/5.4/helpers#method-env

'mysql' => [
 'driver' => 'mysql',
 'host' => env('DB_HOST', 'localhost'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 ...
],

 Configure Laravel environment variables

php artisan key:generate --show

az webapp config appsettings set --name <app-name> --resource-group myResourceGroup --settings APP_KEY="
<output_of_php_artisan_key:generate>" APP_DEBUG="true"

 Set the virtual application path

az resource update --name web --resource-group myResourceGroup --namespace Microsoft.Web --resource-type
config --parent sites/<app_name> --set properties.virtualApplications[0].physicalPath="site\wwwroot\public"
--api-version 2015-06-01

 Push to Azure from Git

Laravel needs an application key in App Service. You can configure it with app settings.

In the local terminal window, use php artisan to generate a new application key without saving it to .env.

In the Cloud Shell, set the application key in the App Service app by using the az webapp config appsettings set

command. Replace the placeholders <app-name> and <outputofphpartisankey:generate>.

APP_DEBUG="true" tells Laravel to return debugging information when the deployed app encounters errors.

When running a production application, set it to false , which is more secure.

Set the virtual application path for the app. This step is required because the Laravel application lifecycle begins

in the public directory instead of the application's root directory. Other PHP frameworks whose lifecycle start in

the root directory can work without manual configuration of the virtual application path.

In the Cloud Shell, set the virtual application path by using the az resource update command. Replace the

<app-name> placeholder.

By default, Azure App Service points the root virtual application path (/) to the root directory of the deployed

application files (sites\wwwroot).

Laravel application lifecycle begins in the public directory instead of the application's root directory. The default

PHP Docker image for App Service uses Apache, and it doesn't let you customize the DocumentRoot for Laravel.

However, you can use .htaccess to rewrite all requests to point to /public instead of the root directory. In the

repository root, an .htaccess is added already for this purpose. With it, your Laravel application is ready to be

deployed.

For more information, see Change site root.

Back in the local terminal window, add an Azure remote to your local Git repository. Replace

<deploymentLocalGitUrl-from-create-step> with the URL of the Git remote that you saved from Create a web

app.

https://docs.microsoft.com/en-us/cli/azure/webapp/config/appsettings#az_webapp_config_appsettings_set
https://laravel.com/docs/5.4/lifecycle
https://docs.microsoft.com/en-us/cli/azure/resource#az_resource_update
https://laravel.com/docs/5.4/lifecycle
https://docs.microsoft.com/en-us/azure/app-service/configure-language-php

git remote add azure <deploymentLocalGitUrl-from-create-step>

git push azure master

Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 291 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Updating branch 'main'.
remote: Updating submodules.
remote: Preparing deployment for commit id 'a5e076db9c'.
remote: Running custom deployment command...
remote: Running deployment command...
...
< Output has been truncated for readability >

NOTE

git remote add azure <deploymentLocalGitUrl-from-create-step>

git push azure master

Push to the Azure remote to deploy your app with the following command. When Git Credential Manager

prompts you for credentials, make sure you enter the credentials you created in Configure a deployment

user , not the credentials you use to sign in to the Azure portal.

This command may take a few minutes to run. While running, it displays information similar to the following

example:

You may notice that the deployment process installs Composer packages at the end. App Service does not run these

automations during default deployment, so this sample repository has three additional files in its root directory to enable

it:

.deployment - This file tells App Service to run bash deploy.sh as the custom deployment script.

deploy.sh - The custom deployment script. If you review the file, you will see that it runs

php composer.phar install after npm install .

composer.phar - The Composer package manager.

You can use this approach to add any step to your Git-based deployment to App Service. For more information, see

Custom Deployment Script.

Back in the local terminal window, add an Azure remote to your local Git repository. Replace

<deploymentLocalGitUrl-from-create-step> with the URL of the Git remote that you saved from Create a web

app.

Push to the Azure remote to deploy your app with the following command. When Git Credential Manager

prompts you for credentials, make sure you enter the credentials you created in Configure a deployment

user , not the credentials you use to sign in to the Azure portal.

This command may take a few minutes to run. While running, it displays information similar to the following

example:

https://getcomposer.org/
https://github.com/projectkudu/kudu/wiki/Custom-Deployment-Script

Counting objects: 3, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 291 bytes | 0 bytes/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Updating branch 'main'.
remote: Updating submodules.
remote: Preparing deployment for commit id 'a5e076db9c'.
remote: Running custom deployment command...
remote: Running deployment command...
...
< Output has been truncated for readability >

 Browse to the Azure app

 Update model locally and redeploy

 Add a column

Browse to http://<app-name>.azurewebsites.net and add a few tasks to the list.

Congratulations, you're running a data-driven PHP app in Azure App Service.

In this step, you make a simple change to the task data model and the webapp, and then publish the update to

Azure.

For the tasks scenario, you modify the application so that you can mark a task as complete.

In the local terminal window, navigate to the root of the Git repository.

php artisan make:migration add_complete_column --table=tasks

public function up()
{
 Schema::table('tasks', function (Blueprint $table) {
 $table->boolean('complete')->default(False);
 });
}

public function down()
{
 Schema::table('tasks', function (Blueprint $table) {
 $table->dropColumn('complete');
 });
}

php artisan migrate

 Update application logic

/**
 * Toggle Task completeness
 */
Route::post('/task/{id}', function ($id) {
 error_log('INFO: post /task/'.$id);
 $task = Task::findOrFail($id);

 $task->complete = !$task->complete;
 $task->save();

 return redirect('/');
});

 Update the view

Generate a new database migration for the tasks table:

This command shows you the name of the migration file that's generated. Find this file in database/migrations

and open it.

Replace the up method with the following code:

The preceding code adds a boolean column in the tasks table called complete .

Replace the down method with the following code for the rollback action:

In the local terminal window, run Laravel database migrations to make the change in the local database.

Based on the Laravel naming convention, the model Task (see app/Task.php) maps to the tasks table by

default.

Open the routes/web.php file. The application defines its routes and business logic here.

At the end of the file, add a route with the following code:

The preceding code makes a simple update to the data model by toggling the value of complete .

Open the resources/views/tasks.blade.php file. Find the <tr> opening tag and replace it with:

https://laravel.com/docs/5.4/eloquent#defining-models

<tr class="{{ $task->complete ? 'success' : 'active' }}" >

<td class="table-text"><div>{{ $task->name }}</div></td>

<td>
 <form action="{{ url('task/'.$task->id) }}" method="POST">
 {{ csrf_field() }}

 <button type="submit" class="btn btn-xs">
 <i class="fa {{$task->complete ? 'fa-check-square-o' : 'fa-square-o'}}"></i>
 </button>
 {{ $task->name }}
 </form>
</td>

 Test the changes locally

php artisan serve

The preceding code changes the row color depending on whether the task is complete.

In the next line, you have the following code:

Replace the entire line with the following code:

The preceding code adds the submit button that references the route that you defined earlier.

In the local terminal window, run the development server from the root directory of the Git repository.

To see the task status change, navigate to http://localhost:8000 and select the checkbox.

 Publish changes to Azure

php artisan migrate --env=production --force

git add .
git commit -m "added complete checkbox"
git push azure main

To stop PHP, type Ctrl + C in the terminal.

In the local terminal window, run Laravel database migrations with the production connection string to make the

change in the Azure database.

Commit all the changes in Git, and then push the code changes to Azure.

Once the git push is complete, navigate to the Azure app and test the new functionality.

 Stream diagnostic logs

az webapp log tail --name <app_name> --resource-group myResourceGroup

az webapp log config --resource-group <resource-group-name> --name <app-name> --application-logging true --
level Verbose

If you added any tasks, they are retained in the database. Updates to the data schema leave existing data intact.

While the PHP application runs in Azure App Service, you can get the console logs piped to your terminal. That

way, you can get the same diagnostic messages to help you debug application errors.

To start log streaming, use the az webapp log tail command in the Cloud Shell.

Once log streaming has started, refresh the Azure app in the browser to get some web traffic. You can now see

console logs piped to the terminal. If you don't see console logs immediately, check again in 30 seconds.

To stop log streaming at any time, type Ctrl + C .

To access the console logs generated from inside your application code in App Service, turn on diagnostics

logging by running the following command in the Cloud Shell:

Possible values for --level are: Error , Warning , Info , and Verbose . Each subsequent level includes the

previous level. For example: Error includes only error messages, and Verbose includes all messages.

Once diagnostic logging is turned on, run the following command to see the log stream:

https://docs.microsoft.com/en-us/cli/azure/webapp/log#az_webapp_log_tail
https://shell.azure.com

az webapp log tail --resource-group <resource-group-name> --name <app-name>

NOTE

TIP

 Manage the Azure app

If you don't see console logs immediately, check again in 30 seconds.

You can also inspect the log files from the browser at https://<app-name>.scm.azurewebsites.net/api/logs/docker .

To stop log streaming at any time, type Ctrl + C .

A PHP application can use the standard error_log() to output to the console. The sample application uses this approach in

app/Http/routes.php.

As a web framework, Laravel uses Monolog as the logging provider. To see how to get Monolog to output messages to

the console, see PHP: How to use monolog to log to console (php://out).

Go to the Azure portal to manage the app you created.

From the left menu, click App Ser vices , and then click the name of your Azure app.

You see your app's Overview page. Here, you can perform basic management tasks like stop, start, restart,

browse, and delete.

The left menu provides pages for configuring your app.

https://php.net/manual/function.error-log.php
https://laravel.com/docs/5.4/errors
https://stackoverflow.com/questions/25787258/php-how-to-use-monolog-to-log-to-console-php-out
https://portal.azure.com

 Clean up resources

az group delete --name myResourceGroup

 Next steps

In the preceding steps, you created Azure resources in a resource group. If you don't expect to need these

resources in the future, delete the resource group by running the following command in the Cloud Shell:

This command may take a minute to run.

In this tutorial, you learned how to:

Create a MySQL database in Azure

Connect a PHP app to MySQL

Deploy the app to Azure

Update the data model and redeploy the app

Stream diagnostic logs from Azure

Manage the app in the Azure portal

Advance to the next tutorial to learn how to map a custom DNS name to the app.

Tutorial: Map custom DNS name to your app

Or, check out other resources:

Configure PHP app

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/configure-language-php

Tutorial: Build a Java Spring Boot web app with
Azure App Service on Linux and Azure Cosmos DB

 6/28/2021 • 6 minutes to read • Edit Online

This tutorial walks you through the process of building, configuring, deploying, and scaling Java web apps on

Azure. When you are finished, you will have a Spring Boot application storing data in Azure Cosmos DB running

on Azure App Service on Linux.

In this tutorial, you learn how to:

Create a Cosmos DB database.

Connect a sample app to the database and test it locally

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/tutorial-java-spring-cosmosdb.md
https://projects.spring.io/spring-boot/
https://docs.microsoft.com/en-us/azure/cosmos-db/index

 Prerequisites

 Clone the sample TODO app and prepare the repo

git clone --recurse-submodules https://github.com/Azure-Samples/e2e-java-experience-in-app-service-linux-
part-2.git
cd e2e-java-experience-in-app-service-linux-part-2
yes | cp -rf .prep/* .

 Create an Azure Cosmos DB

Deploy the sample app to Azure

Stream diagnostic logs from App Service

Add additional instances to scale out the sample app

If you don't have an Azure subscription, create a free account before you begin.

Azure CLI, installed on your own computer.

Git

Java JDK

Maven

This tutorial uses a sample TODO list app with a web UI that calls a Spring REST API backed by Spring Data

Azure Cosmos DB. The code for the app is available on GitHub. To learn more about writing Java apps using

Spring and Cosmos DB, see the Spring Boot Starter with the Azure Cosmos DB SQL API tutorial and the Spring

Data Azure Cosmos DB quick start.

Run the following commands in your terminal to clone the sample repo and set up the sample app

environment.

Follow these steps to create an Azure Cosmos DB database in your subscription. The TODO list app will connect

to this database and store its data when running, persisting the application state no matter where you run the

application.

az login
az account set -s <your-subscription-id>

az group create -n <your-azure-group-name> \
 -l <your-resource-group-region>

az cosmosdb create --kind GlobalDocumentDB \
 -g <your-azure-group-name> \
 -n <your-azure-COSMOS-DB-name-in-lower-case-letters>

1. Login to your Azure CLI, and optionally set your subscription if you have more than one connected to

your login credentials.

2. Create an Azure Resource Group, noting the resource group name.

3. Create Azure Cosmos DB with the GlobalDocumentDB kind. The name of Cosmos DB must use only lower

case letters. Note down the documentEndpoint field in the response from the command.

https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://docs.microsoft.com/en-us/cli/azure/overview
https://git-scm.com/
https://docs.microsoft.com/en-us/azure/developer/java/fundamentals/java-jdk-long-term-support
https://maven.apache.org
https://github.com/Microsoft/spring-data-cosmosdb
https://github.com/Microsoft/spring-todo-app
https://docs.microsoft.com/en-us/java/azure/spring-framework/configure-spring-boot-starter-java-app-with-cosmos-db
https://github.com/Microsoft/spring-data-cosmosdb#quick-start

 Configure the TODO app properties

cd initial/spring-todo-app
cp set-env-variables-template.sh .scripts/set-env-variables.sh

export COSMOSDB_URI=<put-your-COSMOS-DB-documentEndpoint-URI-here>
export COSMOSDB_KEY=<put-your-COSMOS-DB-primaryMasterKey-here>
export COSMOSDB_DBNAME=<put-your-COSMOS-DB-name-here>

App Service Linux Configuration
export RESOURCEGROUP_NAME=<put-your-resource-group-name-here>
export WEBAPP_NAME=<put-your-Webapp-name-here>
export REGION=<put-your-REGION-here>

source .scripts/set-env-variables.sh

azure.cosmosdb.uri=${COSMOSDB_URI}
azure.cosmosdb.key=${COSMOSDB_KEY}
azure.cosmosdb.database=${COSMOSDB_DBNAME}

@Repository
public interface TodoItemRepository extends DocumentDbRepository<TodoItem, String> {
}

@Document
public class TodoItem {
 private String id;
 private String description;
 private String owner;
 private boolean finished;

az cosmosdb keys list -g <your-azure-group-name> -n <your-azure-COSMOSDB-name>

4. Get your Azure Cosmos DB key to connect to the app. Keep the primaryMasterKey , documentEndpoint

nearby as you'll need them in the next step.

Open a terminal on your computer. Copy the sample script file in the cloned repo so you can customize it for

your Cosmos DB database you just created.

Edit .scripts/set-env-variables.sh in your favorite editor and supply Azure Cosmos DB connection info. For the

App Service Linux configuration, use the same region as before (your-resource-group-region) and resource

group (your-azure-group-name) used when creating the Cosmos DB database. Choose a WEBAPP_NAME that is

unique since it cannot duplicate any web app name in any Azure deployment.

Then run the script:

These environment variables are used in application.properties in the TODO list app. The fields in the

properties file set up a default repository configuration for Spring Data:

Then the sample app uses the @Document annotation imported from

com.microsoft.azure.spring.data.cosmosdb.core.mapping.Document to set up an entity type to be stored and

managed by Cosmos DB:

 Run the sample app

mvn package spring-boot:run

bash-3.2$ mvn package spring-boot:run
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building spring-todo-app 2.0-SNAPSHOT
[INFO] --
[INFO]

[INFO] SimpleUrlHandlerMapping - Mapped URL path [/webjars/**] onto handler of type [class
org.springframework.web.servlet.resource.ResourceHttpRequestHandler]
[INFO] SimpleUrlHandlerMapping - Mapped URL path [/**] onto handler of type [class
org.springframework.web.servlet.resource.ResourceHttpRequestHandler]
[INFO] WelcomePageHandlerMapping - Adding welcome page: class path resource [static/index.html]
2018-10-28 15:04:32.101 INFO 7673 --- [main] c.m.azure.documentdb.DocumentClient :
Initializing DocumentClient with serviceEndpoint [https://sample-cosmos-db-westus.documents.azure.com:443/],
ConnectionPolicy [ConnectionPolicy [requestTimeout=60, mediaRequestTimeout=300, connectionMode=Gateway,
mediaReadMode=Buffered, maxPoolSize=800, idleConnectionTimeout=60, userAgentSuffix=;spring-
data/2.0.6;098063be661ab767976bd5a2ec350e978faba99348207e8627375e8033277cb2,
retryOptions=com.microsoft.azure.documentdb.RetryOptions@6b9fb84d, enableEndpointDiscovery=true,
preferredLocations=null]], ConsistencyLevel [null]
[INFO] AnnotationMBeanExporter - Registering beans for JMX exposure on startup
[INFO] TomcatWebServer - Tomcat started on port(s): 8080 (http) with context path ''
[INFO] TodoApplication - Started TodoApplication in 45.573 seconds (JVM running for 76.534)

Use Maven to run the sample.

The output should look like the following.

You can access Spring TODO App locally using this link once the app is started: http://localhost:8080/ .

 Configure Azure deployment

If you see exceptions instead of the "Started TodoApplication" message, check that the bash script in the

previous step exported the environment variables properly and that the values are correct for the Azure Cosmos

DB database you created.

Open the pom.xml file in the initial/spring-boot-todo directory and add the following Azure Web App Plugin

for Maven configuration.

https://github.com/Microsoft/azure-maven-plugins/blob/develop/azure-webapp-maven-plugin/README.md

<plugins>

 <!--***-->
 <!-- Deploy to Java SE in App Service Linux -->
 <!--***-->

 <plugin>
 <groupId>com.microsoft.azure</groupId>
 <artifactId>azure-webapp-maven-plugin</artifactId>
 <version>2.0.0</version>
 <configuration>
 <schemaVersion>v2</schemaVersion>

 <!-- Web App information -->
 <resourceGroup>${RESOURCEGROUP_NAME}</resourceGroup>
 <appName>${WEBAPP_NAME}</appName>
 <region>${REGION}</region>
 <pricingTier>P1v2</pricingTier>
 <!-- Java Runtime Stack for Web App on Linux-->
 <runtime>
 <os>linux</os>
 <javaVersion>Java 8</javaVersion>
 <webContainer>Java SE</webContainer>
 </runtime>
 <deployment>
 <resources>
 <resource>
 <directory>${project.basedir}/target</directory>
 <includes>
 <include>*.jar</include>
 </includes>
 </resource>
 </resources>
 </deployment>

 <appSettings>
 <property>
 <name>COSMOSDB_URI</name>
 <value>${COSMOSDB_URI}</value>
 </property>
 <property>
 <name>COSMOSDB_KEY</name>
 <value>${COSMOSDB_KEY}</value>
 </property>
 <property>
 <name>COSMOSDB_DBNAME</name>
 <value>${COSMOSDB_DBNAME}</value>
 </property>
 <property>
 <name>JAVA_OPTS</name>
 <value>-Dserver.port=80</value>
 </property>
 </appSettings>

 </configuration>
 </plugin>
 ...
</plugins>

 Deploy to App Service on Linux
Use the mvn azure-webapp:deploy Maven goal to deploy the TODO app to Azure App Service on Linux.

Deploy
bash-3.2$ mvn azure-webapp:deploy
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building spring-todo-app 2.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- azure-webapp-maven-plugin:2.0.0:deploy (default-cli) @ spring-todo-app ---
Auth Type: AZURE_CLI
Default subscription: xxxxxxxxx
Username: xxxxxxxxx
[INFO] Subscription: xxxxxxxxx
[INFO] Creating App Service Plan 'ServicePlanb6ba8178-5bbb-49e7'...
[INFO] Successfully created App Service Plan.
[INFO] Creating web App spring-todo-app...
[INFO] Successfully created Web App spring-todo-app.
[INFO] Trying to deploy artifact to spring-todo-app...
[INFO] Successfully deployed the artifact to https://spring-todo-app.azurewebsites.net
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 02:19 min
[INFO] Finished at: 2019-11-06T15:32:03-07:00
[INFO] Final Memory: 50M/574M
[INFO] --

explorer https://spring-todo-app.azurewebsites.net

The output contains the URL to your deployed application (in this example,

https://spring-todo-app.azurewebsites.net). You can copy this URL into your web browser or run the following

command in your Terminal window to load your app.

You should see the app running with the remote URL in the address bar :

 Stream diagnostic logs

az webapp log config --resource-group <resource-group-name> --name <app-name> --application-logging true --
level Verbose

az webapp log tail --resource-group <resource-group-name> --name <app-name>

To access the console logs generated from inside your application code in App Service, turn on diagnostics

logging by running the following command in the Cloud Shell:

Possible values for --level are: Error , Warning , Info , and Verbose . Each subsequent level includes the

previous level. For example: Error includes only error messages, and Verbose includes all messages.

Once diagnostic logging is turned on, run the following command to see the log stream:

https://shell.azure.com

NOTE

 Scale out the TODO App

az appservice plan update --number-of-workers 2 \
 --name ${WEBAPP_PLAN_NAME} \
 --resource-group <your-azure-group-name>

 Clean up resources

az group delete --name <your-azure-group-name> --yes

 Next steps

If you don't see console logs immediately, check again in 30 seconds.

You can also inspect the log files from the browser at https://<app-name>.scm.azurewebsites.net/api/logs/docker .

To stop log streaming at any time, type Ctrl + C .

Scale out the application by adding another worker :

If you don't need these resources for another tutorial (see Next steps), you can delete them by running the

following command in the Cloud Shell:

Azure for Java Developers Spring Boot, Spring Data for Cosmos DB, Azure Cosmos DB and App Service Linux.

Learn more about running Java apps on App Service on Linux in the developer guide.

Java in App Service Linux dev guide

https://docs.microsoft.com/en-us/java/azure/
https://spring.io/projects/spring-boot
https://docs.microsoft.com/en-us/azure/developer/java/spring-framework/configure-spring-boot-starter-java-app-with-cosmos-db
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/app-service/configure-language-java

Tutorial: Create and Manage Linux VMs with the
Azure CLI

 4/22/2021 • 8 minutes to read • Edit Online

 Create resource group

az group create --name myResourceGroupVM --location eastus

 Create virtual machine

az vm create \
 --resource-group myResourceGroupVM \
 --name myVM \
 --image UbuntuLTS \
 --admin-username azureuser \
 --generate-ssh-keys

Azure virtual machines provide a fully configurable and flexible computing environment. This tutorial covers

basic Azure virtual machine deployment items such as selecting a VM size, selecting a VM image, and deploying

a VM. You learn how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

This tutorial uses the CLI within the Azure Cloud Shell, which is constantly updated to the latest version. To open

the Cloud Shell, select Tr y it from the top of any code block.

If you choose to install and use the CLI locally, this tutorial requires that you are running the Azure CLI version

2.0.30 or later. Run az --version to find the version. If you need to install or upgrade, see Install Azure CLI.

Create a resource group with the az group create command.

An Azure resource group is a logical container into which Azure resources are deployed and managed. A

resource group must be created before a virtual machine. In this example, a resource group named

myResourceGroupVM is created in the eastus region.

The resource group is specified when creating or modifying a VM, which can be seen throughout this tutorial.

Create a virtual machine with the az vm create command.

When you create a virtual machine, several options are available such as operating system image, disk sizing,

and administrative credentials. The following example creates a VM named myVM that runs Ubuntu Server. A

user account named azureuser is created on the VM, and SSH keys are generated if they do not exist in the

default key location (~/.ssh):

It may take a few minutes to create the VM. Once the VM has been created, the Azure CLI outputs information

about the VM. Take note of the publicIpAddress , this address can be used to access the virtual machine..

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/linux/tutorial-manage-vm.md
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/group
https://docs.microsoft.com/en-us/cli/azure/vm

{
 "fqdns": "",
 "id": "/subscriptions/d5b9d4b7-6fc1-0000-0000-
000000000000/resourceGroups/myResourceGroupVM/providers/Microsoft.Compute/virtualMachines/myVM",
 "location": "eastus",
 "macAddress": "00-0D-3A-23-9A-49",
 "powerState": "VM running",
 "privateIpAddress": "10.0.0.4",
 "publicIpAddress": "52.174.34.95",
 "resourceGroup": "myResourceGroupVM"
}

 Connect to VM

ssh azureuser@52.174.34.95

exit

 Understand VM images

az vm image list --output table

You can now connect to the VM with SSH in the Azure Cloud Shell or from your local computer. Replace the

example IP address with the publicIpAddress noted in the previous step.

Once logged in to the VM, you can install and configure applications. When you are finished, you close the SSH

session as normal:

The Azure marketplace includes many images that can be used to create VMs. In the previous steps, a virtual

machine was created using an Ubuntu image. In this step, the Azure CLI is used to search the marketplace for a

CentOS image, which is then used to deploy a second virtual machine.

To see a list of the most commonly used images, use the az vm image list command.

The command output returns the most popular VM images on Azure.

https://docs.microsoft.com/en-us/cli/azure/vm/image

Offer Publisher Sku Urn
UrnAlias Version
------------- ---------------------- ------------------ ---
------------- ------------------- ---------
WindowsServer MicrosoftWindowsServer 2016-Datacenter MicrosoftWindowsServer:WindowsServer:2016-
Datacenter:latest Win2016Datacenter latest
WindowsServer MicrosoftWindowsServer 2012-R2-Datacenter MicrosoftWindowsServer:WindowsServer:2012-R2-
Datacenter:latest Win2012R2Datacenter latest
WindowsServer MicrosoftWindowsServer 2008-R2-SP1 MicrosoftWindowsServer:WindowsServer:2008-R2-
SP1:latest Win2008R2SP1 latest
WindowsServer MicrosoftWindowsServer 2012-Datacenter MicrosoftWindowsServer:WindowsServer:2012-
Datacenter:latest Win2012Datacenter latest
UbuntuServer Canonical 16.04-LTS Canonical:UbuntuServer:16.04-LTS:latest
UbuntuLTS latest
CentOS OpenLogic 7.3 OpenLogic:CentOS:7.3:latest
CentOS latest
openSUSE-Leap SUSE 42.2 SUSE:openSUSE-Leap:42.2:latest
openSUSE-Leap latest
RHEL RedHat 7.3 RedHat:RHEL:7.3:latest
RHEL latest
SLES SUSE 12-SP2 SUSE:SLES:12-SP2:latest
SLES latest
Debian credativ 8 credativ:Debian:8:latest
Debian latest
CoreOS CoreOS Stable CoreOS:CoreOS:Stable:latest
CoreOS latest

az vm image list --offer CentOS --all --output table

Offer Publisher Sku Urn Version
---------------- ---------------- ---- -------------------------------------- -----------
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.201501 6.5.201501
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.201503 6.5.201503
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.201506 6.5.201506
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.20150904 6.5.20150904
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.20160309 6.5.20160309
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.20170207 6.5.20170207

az vm create --resource-group myResourceGroupVM --name myVM2 --image OpenLogic:CentOS:6.5:latest --generate-
ssh-keys

 Understand VM sizes

 VM Sizes

A full list can be seen by adding the --all argument. The image list can also be filtered by --publisher or

–-offer . In this example, the list is filtered for all images with an offer that matches CentOS.

Partial output:

To deploy a VM using a specific image, take note of the value in the Urn column, which consists of the publisher,

offer, SKU, and optionally a version number to identify the image. When specifying the image, the image version

number can be replaced with “latest”, which selects the latest version of the distribution. In this example, the

--image argument is used to specify the latest version of a CentOS 6.5 image.

A virtual machine size determines the amount of compute resources such as CPU, GPU, and memory that are

made available to the virtual machine. Virtual machines need to be sized appropriately for the expected work

load. If workload increases, an existing virtual machine can be resized.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/cli-ps-findimage

T Y P E C O M M O N SIZ ES DESC RIP T IO N

General purpose B, Dsv3, Dv3, DSv2, Dv2, Av2, DC Balanced CPU-to-memory. Ideal for
dev / test and small to medium
applications and data solutions.

Compute optimized Fsv2 High CPU-to-memory. Good for
medium traffic applications, network
appliances, and batch processes.

Memory optimized Esv3, Ev3, M, DSv2, Dv2 High memory-to-core. Great for
relational databases, medium to large
caches, and in-memory analytics.

Storage optimized Lsv2, Ls High disk throughput and IO. Ideal for
Big Data, SQL, and NoSQL databases.

GPU NV, NVv2, NC, NCv2, NCv3, ND Specialized VMs targeted for heavy
graphic rendering and video editing.

High performance H Our most powerful CPU VMs with
optional high-throughput network
interfaces (RDMA).

 Find available VM sizes

az vm list-sizes --location eastus --output table

The following table categorizes sizes into use cases.

To see a list of VM sizes available in a particular region, use the az vm list-sizes command.

Partial output:

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://docs.microsoft.com/en-us/cli/azure/vm

 MaxDataDiskCount MemoryInMb Name NumberOfCores OsDiskSizeInMb
ResourceDiskSizeInMb
------------------ ------------ ---------------------- --------------- ---------------- ---------------

 2 3584 Standard_DS1 1 1047552
7168
 4 7168 Standard_DS2 2 1047552
14336
 8 14336 Standard_DS3 4 1047552
28672
 16 28672 Standard_DS4 8 1047552
57344
 4 14336 Standard_DS11 2 1047552
28672
 8 28672 Standard_DS12 4 1047552
57344
 16 57344 Standard_DS13 8 1047552
114688
 32 114688 Standard_DS14 16 1047552
229376
 1 768 Standard_A0 1 1047552
20480
 2 1792 Standard_A1 1 1047552
71680
 4 3584 Standard_A2 2 1047552
138240
 8 7168 Standard_A3 4 1047552
291840
 4 14336 Standard_A5 2 1047552
138240
 16 14336 Standard_A4 8 1047552
619520
 8 28672 Standard_A6 4 1047552
291840
 16 57344 Standard_A7 8 1047552
619520

 Create VM with specific size

az vm create \
 --resource-group myResourceGroupVM \
 --name myVM3 \
 --image UbuntuLTS \
 --size Standard_F4s \
 --generate-ssh-keys

 Resize a VM

az vm show --resource-group myResourceGroupVM --name myVM --query hardwareProfile.vmSize

az vm list-vm-resize-options --resource-group myResourceGroupVM --name myVM --query [].name

In the previous VM creation example, a size was not provided, which results in a default size. A VM size can be

selected at creation time using az vm create and the --size argument.

After a VM has been deployed, it can be resized to increase or decrease resource allocation. You can view the

current of size of a VM with az vm show:

Before resizing a VM, check if the desired size is available on the current Azure cluster. The az vm list-vm-resize-

options command returns the list of sizes.

https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm

az vm resize --resource-group myResourceGroupVM --name myVM --size Standard_DS4_v2

az vm deallocate --resource-group myResourceGroupVM --name myVM

az vm resize --resource-group myResourceGroupVM --name myVM --size Standard_GS1

az vm start --resource-group myResourceGroupVM --name myVM

 VM power states

 Power states

P O W ER STAT E DESC RIP T IO N

Starting Indicates the virtual machine is being started.

Running Indicates that the virtual machine is running.

Stopping Indicates that the virtual machine is being stopped.

Stopped Indicates that the virtual machine is stopped. Virtual
machines in the stopped state still incur compute charges.

Deallocating Indicates that the virtual machine is being deallocated.

Deallocated Indicates that the virtual machine is removed from the
hypervisor but still available in the control plane. Virtual
machines in the Deallocated state do not incur compute
charges.

- Indicates that the power state of the virtual machine is
unknown.

 Find the power state

If the desired size is available, the VM can be resized from a powered-on state, however it is rebooted during the

operation. Use the az vm resize command to perform the resize.

If the desired size is not on the current cluster, the VM needs to be deallocated before the resize operation can

occur. Use the az vm deallocate command to stop and deallocate the VM. Note, when the VM is powered back

on, any data on the temp disk may be removed. The public IP address also changes unless a static IP address is

being used.

Once deallocated, the resize can occur.

After the resize, the VM can be started.

An Azure VM can have one of many power states. This state represents the current state of the VM from the

standpoint of the hypervisor.

To retrieve the state of a particular VM, use the az vm get-instance-view command. Be sure to specify a valid

name for a virtual machine and resource group.

https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm

az vm get-instance-view \
 --name myVM \
 --resource-group myResourceGroupVM \
 --query instanceView.statuses[1] --output table

ode DisplayStatus Level
------------------ --------------- -------
PowerState/running VM running Info

 Management tasks

 Get IP address

az vm list-ip-addresses --resource-group myResourceGroupVM --name myVM --output table

 Stop virtual machine

az vm stop --resource-group myResourceGroupVM --name myVM

 Start virtual machine

az vm start --resource-group myResourceGroupVM --name myVM

 Delete resource group

az group delete --name myResourceGroupVM --no-wait --yes

 Next steps

Output:

To retrieve the power state of all the VMs in your subscription, use the Virtual Machines - List All API with

parameter statusOnly set to true.

During the life-cycle of a virtual machine, you may want to run management tasks such as starting, stopping, or

deleting a virtual machine. Additionally, you may want to create scripts to automate repetitive or complex tasks.

Using the Azure CLI, many common management tasks can be run from the command line or in scripts.

This command returns the private and public IP addresses of a virtual machine.

Deleting a resource group also deletes all resources contained within, such as the VM, virtual network, and disk.

The --no-wait parameter returns control to the prompt without waiting for the operation to complete. The

--yes parameter confirms that you wish to delete the resources without an additional prompt to do so.

In this tutorial, you learned about basic VM creation and management such as how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

Advance to the next tutorial to learn about VM disks.

https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines/listall

Create and Manage VM disks

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-manage-disks

Tutorial: Create and Manage Windows VMs with
Azure PowerShell

 3/10/2021 • 7 minutes to read • Edit Online

 Launch Azure Cloud Shell

 Create resource group

New-AzResourceGroup `
 -ResourceGroupName "myResourceGroupVM" `
 -Location "EastUS"

 Create a VM

$cred = Get-Credential

Azure virtual machines provide a fully configurable and flexible computing environment. This tutorial covers

basic Azure virtual machine (VM) deployment tasks like selecting a VM size, selecting a VM image, and

deploying a VM. You learn how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

The Azure Cloud Shell is a free interactive shell that you can use to run the steps in this article. It has common

Azure tools preinstalled and configured to use with your account.

To open the Cloud Shell, just select Tr y it from the upper right corner of a code block. You can also launch Cloud

Shell in a separate browser tab by going to https://shell.azure.com/powershell. Select Copy to copy the blocks

of code, paste it into the Cloud Shell, and press enter to run it.

Create a resource group with the New-AzResourceGroup command.

An Azure resource group is a logical container into which Azure resources are deployed and managed. A

resource group must be created before a virtual machine. In the following example, a resource group named

myResourceGroupVM is created in the EastUS region:

The resource group is specified when creating or modifying a VM, which can be seen throughout this tutorial.

When creating a VM, several options are available like operating system image, network configuration, and

administrative credentials. This example creates a VM named myVM, running the default version of Windows

Server 2016 Datacenter.

Set the username and password needed for the administrator account on the VM with Get-Credential:

Create the VM with New-AzVM.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/tutorial-manage-vm.md
https://shell.azure.com/powershell
https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azresourcegroup
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-credential
https://docs.microsoft.com/en-us/powershell/module/az.compute/new-azvm

New-AzVm `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" `
 -Location "EastUS" `
 -VirtualNetworkName "myVnet" `
 -SubnetName "mySubnet" `
 -SecurityGroupName "myNetworkSecurityGroup" `
 -PublicIpAddressName "myPublicIpAddress" `
 -Credential $cred

 Connect to VM

Get-AzPublicIpAddress `
 -ResourceGroupName "myResourceGroupVM" | Select IpAddress

mstsc /v:<publicIpAddress>

 Understand marketplace images

Get-AzVMImagePublisher -Location "EastUS"

Get-AzVMImageOffer `
 -Location "EastUS" `
 -PublisherName "MicrosoftWindowsServer"

After the deployment has completed, create a remote desktop connection with the VM.

Run the following commands to return the public IP address of the VM. Take note of this IP Address so you can

connect to it with your browser to test web connectivity in a future step.

Use the following command, on your local machine, to create a remote desktop session with the VM. Replace

the IP address with the publicIPAddress of your VM. When prompted, enter the credentials used when creating

the VM.

In the Windows Security window, select More choices and then Use a different account. Type the

username and password you created for the VM and then click OK.

The Azure marketplace includes many images that can be used to create a new VM. In the previous steps, a VM

was created using the Windows Server 2016 Datacenter image. In this step, the PowerShell module is used to

search the marketplace for other Windows images, which can also be used as a base for new VMs. This process

consists of finding the publisher, offer, SKU, and optionally a version number to identify the image.

Use the Get-AzVMImagePublisher command to return a list of image publishers:

Use the Get-AzVMImageOffer to return a list of image offers. With this command, the returned list is filtered on

the specified publisher named MicrosoftWindowsServer :

The results will look something like this example:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/cli-ps-findimage
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimagepublisher
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimageoffer

Offer PublisherName Location
----- ------------- --------
Windows-HUB MicrosoftWindowsServer EastUS
WindowsServer MicrosoftWindowsServer EastUS
WindowsServer-HUB MicrosoftWindowsServer EastUS

Get-AzVMImageSku `
 -Location "EastUS" `
 -PublisherName "MicrosoftWindowsServer" `
 -Offer "WindowsServer"

Skus Offer PublisherName Location
---- ----- ------------- --------
2008-R2-SP1 WindowsServer MicrosoftWindowsServer EastUS
2008-R2-SP1-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2012-Datacenter WindowsServer MicrosoftWindowsServer EastUS
2012-Datacenter-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2012-R2-Datacenter WindowsServer MicrosoftWindowsServer EastUS
2012-R2-Datacenter-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-Server-Core WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-Server-Core-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-with-Containers WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-with-Containers-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-with-RDSH WindowsServer MicrosoftWindowsServer EastUS
2016-Nano-Server WindowsServer MicrosoftWindowsServer EastUS

New-AzVm `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM2" `
 -Location "EastUS" `
 -VirtualNetworkName "myVnet" `
 -SubnetName "mySubnet" `
 -SecurityGroupName "myNetworkSecurityGroup" `
 -PublicIpAddressName "myPublicIpAddress2" `
 -ImageName "MicrosoftWindowsServer:WindowsServer:2016-Datacenter-with-Containers:latest" `
 -Credential $cred `
 -AsJob

 Understand VM sizes

 VM Sizes

The Get-AzVMImageSku command will then filter on the publisher and offer name to return a list of image

names.

The results will look something like this example:

This information can be used to deploy a VM with a specific image. This example deploys a VM using the latest

version of a Windows Server 2016 with Containers image.

The -AsJob parameter creates the VM as a background task, so the PowerShell prompts return to you. You can

view details of background jobs with the Get-Job cmdlet.

The VM size determines the amount of compute resources like CPU, GPU, and memory that are made available

to the VM. Virtual machines should be created using a VM size appropriate for the workload. If a workload

increases, an existing virtual machine can also be resized.

https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimagesku

T Y P E C O M M O N SIZ ES DESC RIP T IO N

General purpose B, Dsv3, Dv3, DSv2, Dv2, Av2, DC Balanced CPU-to-memory. Ideal for
dev / test and small to medium
applications and data solutions.

Compute optimized Fsv2 High CPU-to-memory. Good for
medium traffic applications, network
appliances, and batch processes.

Memory optimized Esv3, Ev3, M, DSv2, Dv2 High memory-to-core. Great for
relational databases, medium to large
caches, and in-memory analytics.

Storage optimized Lsv2, Ls High disk throughput and IO. Ideal for
Big Data, SQL, and NoSQL databases.

GPU NV, NVv2, NC, NCv2, NCv3, ND Specialized VMs targeted for heavy
graphic rendering and video editing.

High performance H Our most powerful CPU VMs with
optional high-throughput network
interfaces (RDMA).

 Find available VM sizes

Get-AzVMSize -Location "EastUS"

 Resize a VM

Get-AzVMSize -ResourceGroupName "myResourceGroupVM" -VMName "myVM"

$vm = Get-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -VMName "myVM"
$vm.HardwareProfile.VmSize = "Standard_DS3_v2"
Update-AzVM `
 -VM $vm `
 -ResourceGroupName "myResourceGroupVM"

The following table categorizes sizes into use cases.

To see a list of VM sizes available in a particular region, use the Get-AzVMSize command.

After a VM has been deployed, it can be resized to increase or decrease resource allocation.

Before resizing a VM, check if the size you want is available on the current VM cluster. The Get-AzVMSize

command returns a list of sizes.

If the size is available, the VM can be resized from a powered-on state, however it is rebooted during the

operation.

If the size you want isn't available on the current cluster, the VM needs to be deallocated before the resize

operation can occur. Deallocating a VM will remove any data on the temp disk, and the public IP address will

change unless a static IP address is being used.

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmsize
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmsize

Stop-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" -Force
$vm = Get-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -VMName "myVM"
$vm.HardwareProfile.VmSize = "Standard_E2s_v3"
Update-AzVM -VM $vm `
 -ResourceGroupName "myResourceGroupVM"
Start-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name $vm.name

 VM power states

P O W ER STAT E DESC RIP T IO N

Starting The virtual machine is being started.

Running The virtual machine is running.

Stopping The virtual machine is being stopped.

Stopped The VM is stopped. Virtual machines in the stopped state
still incur compute charges.

Deallocating The VM is being deallocated.

Deallocated Indicates that the VM is removed from the hypervisor but is
still available in the control plane. Virtual machines in the
Deallocated state do not incur compute charges.

- The power state of the VM is unknown.

Get-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" `
 -Status | Select @{n="Status"; e={$_.Statuses[1].Code}}

Status

PowerState/running

 Management tasks

An Azure VM can have one of many power states.

To get the state of a particular VM, use the Get-AzVM command. Be sure to specify a valid name for a VM and

resource group.

The output will look something like this example:

To retrieve the power state of all the VMs in your subscription, use the Virtual Machines - List All API with

parameter statusOnly set to true.

https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvm
https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines/listall

 Stop a VM

Stop-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" -Force

 Start a VM

Start-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM"

 Delete resource group

Remove-AzResourceGroup `
 -Name "myResourceGroupVM" `
 -Force

 Next steps

During the lifecycle of a VM, you may want to run management tasks like starting, stopping, or deleting a VM.

Additionally, you may want to create scripts to automate repetitive or complex tasks. Using Azure PowerShell,

many common management tasks can be run from the command line or in scripts.

Stop and deallocate a VM with Stop-AzVM:

If you want to keep the VM in a provisioned state, use the -StayProvisioned parameter.

Everything inside of a resource group is deleted when you delete the resource group.

In this tutorial, you learned about basic VM creation and management such as how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

Advance to the next tutorial to learn about VM disks.

Create and Manage VM disks

https://docs.microsoft.com/en-us/powershell/module/az.compute/stop-azvm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-manage-data-disk

Create a function triggered by Azure Queue
storage

 11/2/2020 • 5 minutes to read • Edit Online

 Prerequisites

 Create an Azure Function app

Learn how to create a function that is triggered when messages are submitted to an Azure Storage queue.

An Azure subscription. If you don't have one, create a free account before you begin.

SET T IN G SUGGEST ED VA L UE DESC RIP T IO N

Subscription Your subscription The subscription under which this
new function app is created.

Resource Group myResourceGroup Name for the new resource group in
which to create your function app.

Function App name Globally unique name Name that identifies your new
function app. Valid characters are
a-z (case insensitive), 0-9 , and

- .

Publish Code Option to publish code files or a
Docker container.

Runtime stack Preferred language Choose a runtime that supports
your favorite function programming
language. In-portal editing is only
available for JavaScript, PowerShell,
TypeScript, and C# script. C# class
library, Java, and Python functions
must be developed locally.

Version Version number Choose the version of your installed
runtime.

Region Preferred region Choose a region near you or near
other services your functions access.

1. From the Azure portal menu or the Home page, select Create a resource.

2. In the New page, select Compute > Function App.

3. On the Basics page, use the function app settings as specified in the following table.

4. Select Next : Hosting. On the Hosting page, enter the following settings.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/azure-functions/functions-create-storage-queue-triggered-function.md
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://azure.microsoft.com/regions/

SET T IN G SUGGEST ED VA L UE DESC RIP T IO N

Storage account Globally unique name Create a storage account used by
your function app. Storage account
names must be between 3 and 24
characters in length and can contain
numbers and lowercase letters only.
You can also use an existing
account, which must meet the
storage account requirements.

Operating system Windows An operating system is pre-selected
for you based on your runtime stack
selection, but you can change the
setting if necessary. In-portal
editing is only supported on
Windows.

Plan Consumption (Ser verless) Hosting plan that defines how
resources are allocated to your
function app. In the default
Consumption plan, resources are
added dynamically as required by
your functions. In this serverless
hosting, you pay only for the time
your functions run. When you run in
an App Service plan, you must
manage the scaling of your function
app.

SET T IN G SUGGEST ED VA L UE DESC RIP T IO N

Application Insights Default Creates an Application Insights
resource of the same App name in
the nearest supported region. By
expanding this setting or selecting
Create new, you can change the
Application Insights name or choose
a different region in an Azure
geography where you want to store
your data.

5. Select Next : Monitor ing . On the Monitor ing page, enter the following settings.

6. Select Review + create to review the app configuration selections.

7. On the Review + create page, review your settings, and then select Create to provision and deploy the

function app.

8. Select the Notifications icon in the upper-right corner of the portal and watch for the Deployment

succeeded message.

9. Select Go to resource to view your new function app. You can also select Pin to dashboard. Pinning

makes it easier to return to this function app resource from your dashboard.

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/azure-functions/storage-considerations
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://azure.microsoft.com/overview/serverless-computing/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://azure.microsoft.com/global-infrastructure/geographies/

 Create a Queue triggered function

Next, you create a function in the new function app.

1. Select Functions , and then select + Add to add a new function.

SET T IN G SUGGEST ED VA L UE DESC RIP T IO N

Name Unique in your function app Name of this queue triggered
function.

Queue name myqueue-items Name of the queue to connect to in
your Storage account.

Storage account connection AzureWebJobsStorage You can use the storage account
connection already being used by
your function app, or create a new
one.

2. Choose the Azure Queue Storage tr igger template.

3. Use the settings as specified in the table below the image.

4. Select Create Function to create your function.

 Create the queue

Next, you connect to your Azure storage account and create the myqueue-items storage queue.

1. In your function, on the Over view page, select your resource group.

2. Find and select your resource group's storage account.

3. Choose Queues , and then choose + Queue.

4. In the Name field, type myqueue-items , and then select Create.

 Test the function

Now that you have a storage queue, you can test the function by adding a message to the queue.

1. Back in the Azure portal, browse to your function expand the Logs at the bottom of the page and make

sure that log streaming isn't paused.

2. In a separate browser window, go to your resource group in the Azure portal, and select the storage

account.

3. Select Queues , and then select the myqueue-items container.

 Clean up resources

4. Select Add message, and type "Hello World!" in Message text. Select OK.

5. Wait for a few seconds, then go back to your function logs and verify that the new message has been

read from the queue.

6. Back in your storage queue, select Refresh and verify that the message has been processed and is no

longer in the queue.

 Next steps

Other quickstarts in this collection build upon this quickstart. If you plan to work with subsequent quickstarts,

tutorials, or with any of the services you have created in this quickstart, do not clean up the resources.

Resources in Azure refer to function apps, functions, storage accounts, and so forth. They're grouped into

resource groups, and you can delete everything in a group by deleting the group.

You created resources to complete these quickstarts. You may be billed for these resources, depending on your

account status and service pricing. If you don't need the resources anymore, here's how to delete them:

1. In the Azure portal, go to the Resource group page.

To get to that page from the function app page, select the Over view tab and then select the link under

Resource group.

To get to that page from the dashboard, select Resource groups , and then select the resource group

that you used for this article.

2. In the Resource group page, review the list of included resources, and verify that they're the ones you

want to delete.

3. Select Delete resource group, and follow the instructions.

Deletion may take a couple of minutes. When it's done, a notification appears for a few seconds. You can

also select the bell icon at the top of the page to view the notification.

You have created a function that runs when a message is added to a storage queue. For more information about

Queue storage triggers, see Azure Functions Storage queue bindings.

Now that you have a created your first function, let's add an output binding to the function that writes a

message back to another queue.

Add messages to an Azure Storage queue using Functions

https://azure.microsoft.com/account/
https://azure.microsoft.com/pricing/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-integrate-storage-queue-output-binding

Run a custom container in Azure
 3/5/2021 • 7 minutes to read • Edit Online

NOTE

 Prerequisites

 Create an ASP.NET web app

Azure App Service provides pre-defined application stacks on Windows like ASP.NET or Node.js, running on IIS.

The preconfigured Windows container environment locks down the operating system from administrative

access, software installations, changes to the global assembly cache, and so on. For more information, see

Operating system functionality on Azure App Service. If your application requires more access than the

preconfigured environment allows, you can deploy a custom Windows container instead.

This quickstart shows how to deploy an ASP.NET app, in a Windows image, to Docker Hub from Visual Studio.

You run the app in a custom container in Azure App Service.

Windows Containers is limited to Azure Files and does not currently support Azure Blob.

To complete this tutorial:

Sign up for a Docker Hub account

Install Docker for Windows.

Switch Docker to run Windows containers.

Install Visual Studio 2019 with the ASP.NET and web development and Azure development

workloads. If you've installed Visual Studio 2019 already:

Install the latest updates in Visual Studio by selecting Help > Check for Updates .

Add the workloads in Visual Studio by selecting Tools > Get Tools and Features .

Create an ASP.NET web app by following these steps:

1. Open Visual Studio and then select Create a new project.

2. In Create a new project, find and choose ASP.NET Web Application (.NET Framework) for C#, then

select Next.

3. In Configure your new project, name the application myfirstazurewebapp, and then select Create.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/quickstart-custom-container.md
https://docs.microsoft.com/en-us/azure/app-service/operating-system-functionality
https://hub.docker.com/
https://hub.docker.com/
https://docs.docker.com/docker-for-windows/install/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-start-windows-10
https://www.visualstudio.com/downloads/

FROM mcr.microsoft.com/dotnet/framework/aspnet:4.7.2-windowsservercore-ltsc2019

4. You can deploy any type of ASP.NET web app to Azure. For this quickstart, choose the MVC template.

5. Select Docker suppor t , and make sure authentication is set to No Authentication. Select Create.

6. If the Dockerfile file isn't opened automatically, open it from the Solution Explorer .

7. You need a supported parent image. Change the parent image by replacing the FROM line with the

following code and save the file:

https://docs.microsoft.com/en-us/azure/app-service/configure-custom-container

 Publish to Docker Hub

8. From the Visual Studio menu, select Debug > Star t Without Debugging to run the web app locally.

1. In Solution Explorer , right-click the myfirstazurewebapp project and select Publish .

2. Choose App Ser vice and then select Publish .

3. In Pick a publish target, select Container Registr y and Docker Hub, and then click Publish .

4. Supply your Docker Hub account credentials and select Save.

 Create a Windows container app

Wait for the deployment to complete. The Publish page now shows the repository name to use later.

5. Copy this repository name for later.

1. Sign in to the Azure portal.

2. Choose Create a resource in the upper left-hand corner of the Azure portal.

3. In the search box above the list of Azure Marketplace resources, search for Web App for Containers ,

and select Create.

4. In Web App Create, choose your subscription and a Resource Group. You can create a new resource

group if needed.

5. Provide an app name, such as win-container-demo and choose Windows for Operating System. Select

Next: Docker to continue.

https://portal.azure.com

6. For Image Source, choose Docker Hub and for Image and tag, enter the repository name you copied

in Publish to Docker Hub.

If you have a custom image elsewhere for your web application, such as in Azure Container Registry or in

https://docs.microsoft.com/en-us/azure/container-registry/index

 Browse to the container app

any other private repository, you can configure it here.

7. Select Review and Create and then Create and wait for Azure to create the required resources.

When the Azure operation is complete, a notification box is displayed.

1. Click Go to resource.

2. In the overview of this resource, follow the link next to URL .

A new browser page opens to the following page:

Wait a few minutes and try again, until you get the default ASP.NET home page:

 See container start-up logs

https://<app_name>.scm.azurewebsites.net/api/logstream

2018-07-27T12:03:11 Welcome, you are now connected to log-streaming service.
27/07/2018 12:04:10.978 INFO - Site: win-container-demo - Start container succeeded. Container:
facbf6cb214de86e58557a6d073396f640bbe2fdec88f8368695c8d1331fc94b
27/07/2018 12:04:16.767 INFO - Site: win-container-demo - Container start complete
27/07/2018 12:05:05.017 INFO - Site: win-container-demo - Container start complete
27/07/2018 12:05:05.020 INFO - Site: win-container-demo - Container started successfully

 Update locally and redeploy

Congratulations! You're running your first custom Windows container in Azure App Service.

It may take some time for the Windows container to load. To see the progress, navigate to the following URL by

replacing <app_name> with the name of your app.

The streamed logs looks like this:

<div class="jumbotron">
 <h1>ASP.NET in Azure!</h1>
 <p class="lead">This is a simple app that we've built that demonstrates how to deploy a .NET app
to Azure App Service.</p>
</div>

1. In Visual Studio, in Solution Explorer , open Views > Home > Index.cshtml .

2. Find the <div class="jumbotron"> HTML tag near the top, and replace the entire element with the

following code:

3. To redeploy to Azure, right-click the myfirstazurewebapp project in Solution Explorer and choose

Publish .

4. On the publish page, select Publish and wait for publishing to complete.

 Next steps

 Prerequisites

5. To tell App Service to pull in the new image from Docker Hub, restart the app. Back in the app page in the

portal, click Restar t > Yes .

Browse to the container app again. As you refresh the webpage, the app should revert to the "Starting up" page

at first, then display the updated webpage again after a few minutes.

Migrate to Windows container in Azure

Or, check out other resources:

Configure custom container

App Service on Linux provides pre-defined application stacks on Linux with support for languages such as .NET,

PHP, Node.js and others. You can also use a custom Docker image to run your web app on an application stack

that is not already defined in Azure. This quickstart shows you how to deploy an image from an Azure Container

Registry (ACR) to App Service.

An Azure account

Docker

Visual Studio Code

The Azure App Service extension for VS Code. You can use this extension to create, manage, and deploy Linux

Web Apps on the Azure Platform as a Service (PaaS).

The Docker extension for VS Code. You can use this extension to simplify the management of local Docker

images and commands and to deploy built app images to Azure.

https://docs.microsoft.com/en-us/azure/app-service/tutorial-custom-container
https://docs.microsoft.com/en-us/azure/app-service/configure-custom-container
https://docs.microsoft.com/en-us/azure/container-registry/index
https://azure.microsoft.com/free/?utm_source=campaign&utm_campaign=vscode-tutorial-docker-extension&mktingSource=vscode-tutorial-docker-extension
https://www.docker.com/community-edition
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azureappservice
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker

 Create an image

IMPORTANT

 Sign in

 Check prerequisites

docker --version

To complete this quickstart, you will need a suitable web app image stored in an Azure Container Registry.

Follow the instructions in Quickstart: Create a private container registry using the Azure portal, but use the

mcr.microsoft.com/azuredocs/go image instead of the hello-world image. For reference, the sample Dockerfile

is found in Azure Samples repo.

Be sure to set the Admin User option to Enable when you create the container registry. You can also set it from the

Access keys section of your registry page in the Azure portal. This setting is required for App Service access.

Next, launch VS Code and log into your Azure account using the App Service extension. To do this, select the

Azure logo in the Activity Bar, navigate to the APP SERVICE explorer, then select S ign in to Azure and follow

the instructions.

Now you can check whether you have all the prerequisites installed and configured properly.

In VS Code, you should see your Azure email address in the Status Bar and your subscription in the APP

SERVICE explorer.

Next, verify that you have Docker installed and running. The following command will display the Docker version

if it is running.

https://docs.microsoft.com/en-us/azure/container-registry/index
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://github.com/Azure-Samples/go-docs-hello-world

 Deploy the image to Azure App Service

 Browse the website

Finally, ensure that your Azure Container Registry is connected. To do this, select the Docker logo in the Activity

Bar, then navigate to REGISTRIES .

Now that everything is configured, you can deploy your image to Azure App Service directly from the Docker

extension explorer.

Find the image under the Registr ies node in the DOCKER explorer, and expand it to show its tags. Right-click a

tag and then select Deploy Image to Azure App Ser vice .

From here, follow the prompts to choose a subscription, a globally unique app name, a Resource Group, and an

App Service Plan. Choose B1 Basic for the pricing tier, and a region.

After deployment, your app is available at http://<app name>.azurewebsites.net .

A Resource Group is a named collection of all your application's resources in Azure. For example, a Resource

Group can contain a reference to a website, a database, and an Azure Function.

An App Ser vice Plan defines the physical resources that will be used to host your website. This quickstart uses

a Basic hosting plan on L inux infrastructure, which means the site will be hosted on a Linux machine alongside

other websites. If you start with the Basic plan, you can use the Azure portal to scale up so that yours is the only

site running on a machine.

The Output panel will open during deployment to indicate the status of the operation. When the operation

completes, find the app you created in the APP SERVICE explorer, right-click it, then select Browse Website to

open the site in your browser.

I ran into an issue

https://azure.microsoft.com/services/app-service/
https://www.research.net/r/PWZWZ52?tutorial=quickstart-docker&step=deploy-app

Next steps
Congratulations, you've successfully completed this quickstart!

Next, check out the other Azure extensions.

Cosmos DB

Azure Functions

Azure CLI Tools

Azure Resource Manager Tools

Or get them all by installing the Azure Tools extension pack.

Check out other resources:

Configure custom container

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-cosmosdb
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions
https://marketplace.visualstudio.com/items?itemName=ms-vscode.azurecli
https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools
https://marketplace.visualstudio.com/items?itemName=ms-vscode.vscode-node-azure-pack
https://docs.microsoft.com/en-us/azure/app-service/configure-custom-container

CLI samples for Azure App Service
 6/23/2021 • 2 minutes to read • Edit Online

SC RIP T DESC RIP T IO N

Create app

Create an app and deploy files with FTP Creates an App Service app and deploys a file to it using FTP.

Create an app and deploy code from GitHub Creates an App Service app and deploys code from a public
GitHub repository.

Create an app with continuous deployment from GitHub Creates an App Service app with continuous publishing from
a GitHub repository you own.

Create an app and deploy code from a local Git repository Creates an App Service app and configures code push from
a local Git repository.

Create an app and deploy code to a staging environment Creates an App Service app with a deployment slot for
staging code changes.

Create an ASP.NET Core app in a Docker container Creates an App Service app on Linux and loads a Docker
image from Docker Hub.

Create an app and expose it with a Private Endpoint Creates an App Service app and a Private Endpoint

Configure app

Map a custom domain to an app Creates an App Service app and maps a custom domain
name to it.

Bind a custom TLS/SSL certificate to an app Creates an App Service app and binds the TLS/SSL certificate
of a custom domain name to it.

Scale app

Scale an app manually Creates an App Service app and scales it across 2 instances.

Scale an app worldwide with a high-availability architecture Creates two App Service apps in two different geographical
regions and makes them available through a single endpoint
using Azure Traffic Manager.

Protect app

Integrate with Azure Application Gateway Creates an App Service app and integrates it with
Application Gateway using service endpoint and access
restrictions.

Connect app to resources

The following table includes links to bash scripts built using the Azure CLI.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/samples-cli.md
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-deploy-ftp
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-deploy-github
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-continuous-deployment-github
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-deploy-staging-environment
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-linux-docker-aspnetcore
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-deploy-privateendpoint
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-configure-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-scale-manual
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-scale-high-availability
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-integrate-app-service-with-application-gateway

Connect an app to a SQL Database Creates an App Service app and a database in Azure SQL
Database, then adds the database connection string to the
app settings.

Connect an app to a storage account Creates an App Service app and a storage account, then
adds the storage connection string to the app settings.

Connect an app to an Azure Cache for Redis Creates an App Service app and an Azure Cache for Redis,
then adds the redis connection details to the app settings.)

Connect an app to Cosmos DB Creates an App Service app and a Cosmos DB, then adds
the Cosmos DB connection details to the app settings.

Backup and restore app

Backup an app Creates an App Service app and creates a one-time backup
for it.

Create a scheduled backup for an app Creates an App Service app and creates a scheduled backup
for it.

Restores an app from a backup Restores an App Service app from a backup.

Monitor app

Monitor an app with web server logs Creates an App Service app, enables logging for it, and
downloads the logs to your local machine.

SC RIP T DESC RIP T IO N

https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-connect-to-sql
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-connect-to-storage
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-connect-to-redis
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-connect-to-documentdb
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-backup-onetime
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-backup-scheduled
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-backup-restore
https://docs.microsoft.com/en-us/azure/app-service/scripts/cli-monitor

PowerShell samples for Azure App Service
 11/2/2020 • 2 minutes to read • Edit Online

SC RIP T DESC RIP T IO N

Create app

Create an app with deployment from GitHub Creates an App Service app that pulls code from GitHub.

Create an app with continuous deployment from GitHub Creates an App Service app that continuously deploys code
from GitHub.

Create an app and deploy code with FTP Creates an App Service app and upload files from a local
directory using FTP.

Create an app and deploy code from a local Git repository Creates an App Service app and configures code push from
a local Git repository.

Create an app and deploy code to a staging environment Creates an App Service app with a deployment slot for
staging code changes.

Create an app and expose your app with a Private Endpoint Creates an App Service app with a Private Endpoint.

Configure app

Map a custom domain to an app Creates an App Service app and maps a custom domain
name to it.

Bind a custom TLS/SSL certificate to an app Creates an App Service app and binds the TLS/SSL certificate
of a custom domain name to it.

Scale app

Scale an app manually Creates an App Service app and scales it across 2 instances.

Scale an app worldwide with a high-availability architecture Creates two App Service apps in two different geographical
regions and makes them available through a single endpoint
using Azure Traffic Manager.

Connect app to resources

Connect an app to a SQL Database Creates an App Service app and a database in Azure SQL
Database, then adds the database connection string to the
app settings.

Connect an app to a storage account Creates an App Service app and a storage account, then
adds the storage connection string to the app settings.

Back up and restore app

The following table includes links to PowerShell scripts built using the Azure PowerShell.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/samples-powershell.md
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-deploy-github
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-continuous-deployment-github
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-deploy-ftp
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-deploy-local-git
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-deploy-staging-environment
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-deploy-private-endpoint
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-configure-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-scale-manual
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-scale-high-availability
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-connect-to-sql
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-connect-to-storage

Back up an app Creates an App Service app and creates a one-time backup
for it.

Create a scheduled backup for an app Creates an App Service app and creates a scheduled backup
for it.

Delete a backup for an app Deletes an existing backup for an app.

Restore an app from backup Restores an app from a previously completed backup.

Restore a backup across subscriptions Restores a web app from a backup in another subscription.

Monitor app

Monitor an app with web server logs Creates an App Service app, enables logging for it, and
downloads the logs to your local machine.

SC RIP T DESC RIP T IO N

https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-backup-onetime
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-backup-scheduled
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-backup-delete
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-backup-restore
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-backup-restore-diff-sub
https://docs.microsoft.com/en-us/azure/app-service/scripts/powershell-monitor

What is Azure Cost Management + Billing?
 3/5/2021 • 6 minutes to read • Edit Online

By using the Microsoft cloud, you can significantly improve the technical performance of your business

workloads. It can also reduce your costs and the overhead required to manage organizational assets. However,

the business opportunity creates a risk because of the potential for waste and inefficiencies that are introduced

into your cloud deployments. Azure Cost Management + Billing is a suite of tools provided by Microsoft that

help you analyze, manage, and optimize the costs of your workloads. Using the suite helps ensure that your

organization is taking advantage of the benefits provided by the cloud.

You can think of your Azure workloads like the lights in your home. When you leave to go out for the day, are

you leaving the lights on? Could you use different bulbs that are more efficient to help reduce your monthly

energy bill? Do you have more lights in one room than are needed? You can use Azure Cost Management +

Billing to apply a similar thought process to the workloads used by your organization.

With Azure products and services, you only pay for what you use. As you create and use Azure resources, you’re

charged for the resources. Because of the deployment ease for new resources, the costs of your workloads can

jump significantly without proper analysis and monitoring. You use Azure Cost Management + Billing features

to:

Conduct billing administrative tasks such as paying your bill

Manage billing access to costs

Download cost and usage data that was used to generate your monthly invoice

Proactively apply data analysis to your costs

Set spending thresholds

Identify opportunities for workload changes that can optimize your spending

To learn more about how to approach cost management as an organization, take a look at the Azure Cost

Management best practices article.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cost-management-billing/cost-management-billing-overview.md
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/cost-mgt-best-practices

 Understand Azure Billing

 Billing accounts

 Understand Azure Cost Management

Azure Billing features are used to review your invoiced costs and manage access to billing information. In larger

organizations, procurement and finance teams usually conduct billing tasks.

A billing account is created when you sign up to use Azure. You use your billing account to manage your

invoices, payments, and track costs. You can have access to multiple billing accounts. For example, you might

have signed up for Azure for your personal projects. So, you might have an individual Azure subscription with a

billing account. You could also have access through your organization's Enterprise Agreement or Microsoft

Customer Agreement. For each scenario, you would have a separate billing account.

The Azure portal currently supports the following types of billing accounts:

Microsoft Online Ser vices Program : An individual billing account for a Microsoft Online Services

Program is created when you sign up for Azure through the Azure website. For example, when you sign

up for an Azure Free Account, account with pay-as-you-go rates or as a Visual studio subscriber.

Enterprise Agreement: A billing account for an Enterprise Agreement is created when your

organization signs an Enterprise Agreement (EA) to use Azure.

Microsoft Customer Agreement: A billing account for a Microsoft Customer Agreement is created

when your organization works with a Microsoft representative to sign a Microsoft Customer Agreement.

Some customers in select regions, who sign up through the Azure website for an account with pay-as-

you-go rates or upgrade their Azure Free Account may have a billing account for a Microsoft Customer

Agreement as well.

https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/create-free-services
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/create-free-services

 Plan and control expenses

 Cloudyn deprecation

 Additional Azure tools

Although related, billing differs from cost management. Billing is the process of invoicing customers for goods

or services and managing the commercial relationship.

Cost Management shows organizational cost and usage patterns with advanced analytics. Reports in Cost

Management show the usage-based costs consumed by Azure services and third-party Marketplace offerings.

Costs are based on negotiated prices and factor in reservation and Azure Hybrid Benefit discounts. Collectively,

the reports show your internal and external costs for usage and Azure Marketplace charges. Other charges, such

as reservation purchases, support, and taxes aren't yet shown in reports. The reports help you understand your

spending and resource use and can help find spending anomalies. Predictive analytics are also available. Cost

Management uses Azure management groups, budgets, and recommendations to show clearly how your

expenses are organized and how you might reduce costs.

You can use the Azure portal or various APIs for export automation to integrate cost data with external systems

and processes. Automated billing data export and scheduled reports are also available.

Watch the Azure Cost Management overview video for a quick overview about how Azure Cost Management

can help you save money in Azure. To watch other videos, visit the Cost Management YouTube channel.

The ways that Cost Management help you plan for and control your costs include: Cost analysis, budgets,

recommendations, and exporting cost management data.

You use cost analysis to explore and analyze your organizational costs. You can view aggregated costs by

organization to understand where costs are accrued and to identify spending trends. And you can see

accumulated costs over time to estimate monthly, quarterly, or even yearly cost trends against a budget.

Budgets help you plan for and meet financial accountability in your organization. They help prevent cost

thresholds or limits from being surpassed. Budgets can also help you inform others about their spending to

proactively manage costs. And with them, you can see how spending progresses over time.

Recommendations show how you can optimize and improve efficiency by identifying idle and underutilized

resources. Or, they can show less expensive resource options. When you act on the recommendations, you

change the way you use your resources to save money. To act, you first view cost optimization

recommendations to view potential usage inefficiencies. Next, you act on a recommendation to modify your

Azure resource use to a more cost-effective option. Then you verify the action to make sure that the change you

make is successful.

If you use external systems to access or review cost management data, you can easily export the data from

Azure. And you can set a daily scheduled export in CSV format and store the data files in Azure storage. Then,

you can access the data from your external system.

Cloudyn is an Azure service related to Cost Management that is being deprecated by the end of 2020. Existing

Cloudyn features are being integrated directly into the Azure portal wherever possible. No new customers are

being onboarded at this time, but support will remain for the product until it is fully deprecated.

Azure has other tools that aren't a part of the Azure Cost Management + Billing feature set. However, they play

an important role in the cost management process. To learn more about these tools, see the following links.

Azure Pricing Calculator - Use this tool to estimate your up-front cloud costs.

Azure Migrate - Assess your current datacenter workload for insights about what's needed from an Azure

replacement solution.

Azure Advisor - Identify unused VMs and receive recommendations about Azure reserved instance

https://www.youtube.com/c/AzureCostManagement
https://www.youtube-nocookie.com/embed/el4yN5cHsJ0
https://azure.microsoft.com/pricing/calculator/
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview
https://docs.microsoft.com/en-us/azure/advisor/advisor-overview

 Next steps

purchases.

Azure Hybrid Benefit - Use your current on-premises Windows Server or SQL Server licenses for VMs in

Azure to save.

Now that you're familiar with Cost Management + Billing, the next step is to start using the service.

Start using Azure Cost Management to analyze costs.

You can also read more about Azure Cost Management best practices.

https://azure.microsoft.com/pricing/hybrid-benefit/
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/cost-mgt-best-practices

App Service overview
 4/28/2021 • 5 minutes to read • Edit Online

 Why use App Service?

Azure App Service is an HTTP-based service for hosting web applications, REST APIs, and mobile back ends. You

can develop in your favorite language, be it .NET, .NET Core, Java, Ruby, Node.js, PHP, or Python. Applications run

and scale with ease on both Windows and Linux-based environments.

App Service not only adds the power of Microsoft Azure to your application, such as security, load balancing,

autoscaling, and automated management. You can also take advantage of its DevOps capabilities, such as

continuous deployment from Azure DevOps, GitHub, Docker Hub, and other sources, package management,

staging environments, custom domain, and TLS/SSL certificates.

With App Service, you pay for the Azure compute resources you use. The compute resources you use are

determined by the App Service plan that you run your apps on. For more information, see Azure App Service

plans overview.

Here are some key features of App Service:

Multiple languages and frameworks - App Service has first-class support for ASP.NET, ASP.NET Core,

Java, Ruby, Node.js, PHP, or Python. You can also run PowerShell and other scripts or executables as

background services.

Managed production environment - App Service automatically patches and maintains the OS and

language frameworks for you. Spend time writing great apps and let Azure worry about the platform.

Container ization and Docker - Dockerize your app and host a custom Windows or Linux container in App

Service. Run multi-container apps with Docker Compose. Migrate your Docker skills directly to App Service.

DevOps optimization - Set up continuous integration and deployment with Azure DevOps, GitHub,

BitBucket, Docker Hub, or Azure Container Registry. Promote updates through test and staging

environments. Manage your apps in App Service by using Azure PowerShell or the cross-platform

command-line interface (CLI).

Global scale with high availability - Scale up or out manually or automatically. Host your apps anywhere

in Microsoft's global datacenter infrastructure, and the App Service SLA promises high availability.

Connections to SaaS platforms and on-premises data - Choose from more than 50 connectors for

enterprise systems (such as SAP), SaaS services (such as Salesforce), and internet services (such as

Facebook). Access on-premises data using Hybrid Connections and Azure Virtual Networks.

Security and compliance - App Service is ISO, SOC, and PCI compliant. Authenticate users with Azure

Active Directory, Google, Facebook, Twitter, or Microsoft account. Create IP address restrictions and manage

service identities.

Application templates - Choose from an extensive list of application templates in the Azure Marketplace,

such as WordPress, Joomla, and Drupal.

Visual Studio and Visual Studio Code integration - Dedicated tools in Visual Studio and Visual Studio

Code streamline the work of creating, deploying, and debugging.

API and mobile features - App Service provides turn-key CORS support for RESTful API scenarios, and

simplifies mobile app scenarios by enabling authentication, offline data sync, push notifications, and more.

Ser ver less code - Run a code snippet or script on-demand without having to explicitly provision or

manage infrastructure, and pay only for the compute time your code actually uses (see Azure Functions).

Besides App Service, Azure offers other services that can be used for hosting websites and web applications. For

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/overview.md
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
https://docs.microsoft.com/en-us/azure/app-service/overview-patch-os-runtime
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-get-started
https://azure.microsoft.com/support/legal/sla/app-service/
https://docs.microsoft.com/en-us/azure/connectors/apis-list
https://docs.microsoft.com/en-us/azure/app-service/app-service-hybrid-connections
https://docs.microsoft.com/en-us/azure/app-service/web-sites-integrate-with-vnet
https://www.microsoft.com/en-us/trustcenter
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-aad
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-google
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-facebook
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-twitter
https://docs.microsoft.com/en-us/azure/app-service/configure-authentication-provider-microsoft
https://docs.microsoft.com/en-us/azure/app-service/app-service-ip-restrictions
https://docs.microsoft.com/en-us/azure/app-service/overview-managed-identity
https://azure.microsoft.com/marketplace/
https://docs.microsoft.com/en-us/azure/azure-functions/index

 App Service on Linux

 Built-in languages and frameworks

 Limitations

 Next steps

most scenarios, App Service is the best choice. For microservice architecture, consider Azure Spring-Cloud

Service or Service Fabric. If you need more control over the VMs on which your code runs, consider Azure

Virtual Machines. For more information about how to choose between these Azure services, see Azure App

Service, Virtual Machines, Service Fabric, and Cloud Services comparison.

App Service can also host web apps natively on Linux for supported application stacks. It can also run custom

Linux containers (also known as Web App for Containers).

App Service on Linux supports a number of language specific built-in images. Just deploy your code. Supported

languages include: Node.js, Java (JRE 8 & JRE 11), PHP, Python, .NET Core, and Ruby. Run

az webapp list-runtimes --linux to view the latest languages and supported versions. If the runtime your

application requires is not supported in the built-in images, you can deploy it with a custom container.

Outdated runtimes are periodically removed from the Web Apps Create and Configuration blades in the Portal.

These runtimes are hidden from the Portal when they are deprecated by the maintaining organization or found

to have significant vulnerabilities. These options are hidden to guide customers to the latest runtimes where

they will be the most successful.

When an outdated runtime is hidden from the Portal, any of your existing sites using that version will continue

to run. If a runtime is fully removed from the App Service platform, your Azure subscription owner(s) will

receive an email notice before the removal.

If you need to create another web app with an outdated runtime version that is no longer shown on the Portal

see the language configuration guides for instructions on how to get the runtime version of your site. You can

use the Azure CLI to create another site with the same runtime. Alternatively, you can use the Expor t Template

button on the web app blade in the Portal to export an ARM template of the site. You can reuse this template to

deploy a new site with the same runtime and configuration.

App Service on Linux is not supported on Shared pricing tier.

You can't mix Windows and Linux apps in the same App Service plan.

Historically, you can't mix Windows and Linux apps in the same resource group. However, all resource groups

created on or after January 21, 2021 do support this scenario. For resource groups created before January

21, 2021, the ability to add mixed platform deployments will be rolled out across Azure regions (including

National cloud regions) soon.

The Azure portal shows only features that currently work for Linux apps. As features are enabled, they're

activated on the portal.

When deployed to built-in images, your code and content are allocated a storage volume for web content,

backed by Azure Storage. The disk latency of this volume is higher and more variable than the latency of the

container filesystem. Apps that require heavy read-only access to content files may benefit from the custom

container option, which places files in the container filesystem instead of on the content volume.

Create your first web app.

ASP.NET Core (on Windows or Linux)

ASP.NET (on Windows)

PHP (on Windows or Linux)

https://docs.microsoft.com/en-us/azure/spring-cloud/index
https://azure.microsoft.com/documentation/services/service-fabric
https://azure.microsoft.com/documentation/services/virtual-machines/
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/en-us/cli/azure/webapp#az_webapp_list_runtimes
https://azure.microsoft.com/pricing/details/app-service/plans/
https://docs.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore
https://docs.microsoft.com/en-us/azure/app-service/quickstart-dotnetcore
https://docs.microsoft.com/en-us/azure/app-service/quickstart-php

Ruby (on Linux)

Node.js (on Windows or Linux)

Java (on Windows or Linux)

Python (on Linux)

HTML (on Windows or Linux)

Custom container (Windows or Linux)

https://docs.microsoft.com/en-us/azure/app-service/quickstart-ruby
https://docs.microsoft.com/en-us/azure/app-service/quickstart-nodejs
https://docs.microsoft.com/en-us/azure/app-service/quickstart-java
https://docs.microsoft.com/en-us/azure/app-service/quickstart-python
https://docs.microsoft.com/en-us/azure/app-service/tutorial-custom-container

Linux virtual machines in Azure
 3/10/2021 • 5 minutes to read • Edit Online

 What do I need to think about before creating a VM?

 Locations

M ET H O D DESC RIP T IO N

Azure portal Select a location from the list when you create a VM.

Azure PowerShell Use the Get-AzLocation command.

Azure Virtual Machines (VM) is one of several types of on-demand, scalable computing resources that Azure

offers. Typically, you choose a VM when you need more control over the computing environment than the other

choices offer. This article gives you information about what you should consider before you create a VM, how

you create it, and how you manage it.

An Azure VM gives you the flexibility of virtualization without having to buy and maintain the physical hardware

that runs it. However, you still need to maintain the VM by performing tasks, such as configuring, patching, and

installing the software that runs on it.

Azure virtual machines can be used in various ways. Some examples are:

Development and test – Azure VMs offer a quick and easy way to create a computer with specific

configurations required to code and test an application.

Applications in the cloud – Because demand for your application can fluctuate, it might make economic

sense to run it on a VM in Azure. You pay for extra VMs when you need them and shut them down when you

don’t.

Extended datacenter – Virtual machines in an Azure virtual network can easily be connected to your

organization’s network.

The number of VMs that your application uses can scale up and out to whatever is required to meet your needs.

There are always a multitude of design considerations when you build out an application infrastructure in Azure.

These aspects of a VM are important to think about before you start:

The names of your application resources

The location where the resources are stored

The size of the VM

The maximum number of VMs that can be created

The operating system that the VM runs

The configuration of the VM after it starts

The related resources that the VM needs

All resources created in Azure are distributed across multiple geographical regions around the world. Usually,

the region is called location when you create a VM. For a VM, the location specifies where the virtual hard disks

are stored.

This table shows some of the ways you can get a list of available locations.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/linux/overview.md
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/n-tier/linux-vm
https://azure.microsoft.com/regions/
https://docs.microsoft.com/en-us/powershell/module/az.resources/get-azlocation

REST API Use the List locations operation.

Azure CLI Use the az account list-locations operation.

M ET H O D DESC RIP T IO N

 Availability

 VM Size

 VM Limits

 Managed Disks

 Distributions

Azure announced an industry leading single instance virtual machine Service Level Agreement of 99.9%

provided you deploy the VM with premium storage for all disks. In order for your deployment to qualify for the

standard 99.95% VM Service Level Agreement, you still need to deploy two or more VMs running your

workload inside of an availability set. An availability set ensures that your VMs are distributed across multiple

fault domains in the Azure data centers as well as deployed onto hosts with different maintenance windows. The

full Azure SLA explains the guaranteed availability of Azure as a whole.

The size of the VM that you use is determined by the workload that you want to run. The size that you choose

then determines factors such as processing power, memory, and storage capacity. Azure offers a wide variety of

sizes to support many types of uses.

Azure charges an hourly price based on the VM’s size and operating system. For partial hours, Azure charges

only for the minutes used. Storage is priced and charged separately.

Your subscription has default quota limits in place that could impact the deployment of many VMs for your

project. The current limit on a per subscription basis is 20 VMs per region. Limits can be raised by filing a

support ticket requesting an increase

Managed Disks handles Azure Storage account creation and management in the background for you, and

ensures that you do not have to worry about the scalability limits of the storage account. You specify the disk

size and the performance tier (Standard or Premium), and Azure creates and manages the disk. As you add disks

or scale the VM up and down, you don't have to worry about the storage being used. If you're creating new VMs,

use the Azure CLI or the Azure portal to create VMs with Managed OS and data disks. If you have VMs with

unmanaged disks, you can convert your VMs to be backed with Managed Disks.

You can also manage your custom images in one storage account per Azure region, and use them to create

hundreds of VMs in the same subscription. For more information about Managed Disks, see the Managed Disks

Overview.

Microsoft Azure supports running a number of popular Linux distributions provided and maintained by a

number of partners. You can find available distributions in the Azure Marketplace. Microsoft actively works with

various Linux communities to add even more flavors to the Azure endorsed Linux Distros list.

If your preferred Linux distro of choice is not currently present in the gallery, you can "Bring your own Linux"

VM by creating and uploading a Linux VHD in Azure.

Microsoft works closely with partners to ensure the images available are updated and optimized for an Azure

runtime. For more information on Azure partner offers, see the following links:

https://docs.microsoft.com/en-us/rest/api/resources/subscriptions
https://docs.microsoft.com/en-us/cli/azure/account
https://azure.microsoft.com/support/legal/sla/virtual-machines/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes
https://azure.microsoft.com/pricing/details/virtual-machines/linux/
https://docs.microsoft.com/en-us/azure/azure-portal/supportability/resource-manager-core-quotas-request
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-cli
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/convert-unmanaged-to-managed-disks
https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/endorsed-distros
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/create-upload-generic

 Cloud-init

 Storage

 Networking

 Data residency

 Next steps

Linux on Azure - Endorsed Distributions

SUSE - Azure Marketplace - SUSE Linux Enterprise Server

Red Hat - Azure Marketplace - Red Hat Enterprise Linux

Canonical - Azure Marketplace - Ubuntu Server

Debian - Azure Marketplace - Debian

FreeBSD - Azure Marketplace - FreeBSD

Flatcar - Azure Marketplace - Flatcar Container Linux

RancherOS - Azure Marketplace - RancherOS

Bitnami - Bitnami Library for Azure

Mesosphere - Azure Marketplace - Mesosphere DC/OS on Azure

Docker - Azure Marketplace - Docker images

Jenkins - Azure Marketplace - CloudBees Jenkins Platform

To achieve a proper DevOps culture, all infrastructure must be code. When all the infrastructure lives in code it

can easily be recreated. Azure works with all the major automation tooling like Ansible, Chef, SaltStack, and

Puppet. Azure also has its own tooling for automation:

Azure Templates

Azure VMaccess

Azure supports for cloud-init across most Linux Distros that support it. We are actively working with our

endorsed Linux distro partners in order to have cloud-init enabled images available in the Azure marketplace.

These images will make your cloud-init deployments and configurations work seamlessly with VMs and virtual

machine scale sets.

Using cloud-init on Azure Linux VMs

Introduction to Microsoft Azure Storage

Add a disk to a Linux VM using the azure-cli

How to attach a data disk to a Linux VM in the Azure portal

Virtual Network Overview

IP addresses in Azure

Opening ports to a Linux VM in Azure

Create a Fully Qualified Domain Name in the Azure portal

In Azure, the feature to enable storing customer data in a single region is currently only available in the

Southeast Asia Region (Singapore) of the Asia Pacific Geo and Brazil South (Sao Paulo State) Region of Brazil

Geo. For all other regions, customer data is stored in Geo. For more information, see Trust Center.

Create your first VM!

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/endorsed-distros
https://azuremarketplace.microsoft.com/marketplace/apps?page=1&search=suse
https://azuremarketplace.microsoft.com/marketplace/apps?search=Red%20Hat%20Enterprise%20Linux
https://azuremarketplace.microsoft.com/marketplace/apps/Canonical.UbuntuServer
https://azuremarketplace.microsoft.com/marketplace/apps?search=Debian&page=1
https://azuremarketplace.microsoft.com/marketplace/apps?search=freebsd&page=1
https://azuremarketplace.microsoft.com/marketplace/apps?search=Flatcar&page=1
https://azuremarketplace.microsoft.com/marketplace/apps/rancher.rancheros
https://azure.bitnami.com/
https://azure.microsoft.com/services/kubernetes-service/mesosphere/
https://azuremarketplace.microsoft.com/marketplace/apps?search=docker&page=1&filters=virtual-machine-images
https://azuremarketplace.microsoft.com/marketplace/apps/cloudbees.cloudbees-core-contact
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/vmaccess
https://cloud-init.io/
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/using-cloud-init
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/add-disk
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/attach-disk-portal
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/virtual-network/public-ip-addresses
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/nsg-quickstart
https://docs.microsoft.com/en-us/azure/virtual-machines/create-fqdn
https://azure.microsoft.com/global-infrastructure/data-residency/

Portal

Azure CLI

PowerShell

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-cli
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-powershell

Windows virtual machines in Azure
 4/11/2021 • 5 minutes to read • Edit Online

 What do I need to think about before creating a VM?

 Locations

M ET H O D DESC RIP T IO N

Azure portal Select a location from the list when you create a VM.

Azure PowerShell Use the Get-AzLocation command.

Azure Virtual Machines (VM) is one of several types of on-demand, scalable computing resources that Azure

offers. Typically, you choose a VM when you need more control over the computing environment than the other

choices offer. This article gives you information about what you should consider before you create a VM, how

you create it, and how you manage it.

An Azure VM gives you the flexibility of virtualization without having to buy and maintain the physical hardware

that runs it. However, you still need to maintain the VM by performing tasks, such as configuring, patching, and

installing the software that runs on it.

Azure virtual machines can be used in various ways. Some examples are:

Development and test – Azure VMs offer a quick and easy way to create a computer with specific

configurations required to code and test an application.

Applications in the cloud – Because demand for your application can fluctuate, it might make economic

sense to run it on a VM in Azure. You pay for extra VMs when you need them and shut them down when you

don’t.

Extended datacenter – Virtual machines in an Azure virtual network can easily be connected to your

organization’s network.

The number of VMs that your application uses can scale up and out to whatever is required to meet your needs.

There are always a multitude of design considerations when you build out an application infrastructure in Azure.

These aspects of a VM are important to think about before you start:

The names of your application resources

The location where the resources are stored

The size of the VM

The maximum number of VMs that can be created

The operating system that the VM runs

The configuration of the VM after it starts

The related resources that the VM needs

All resources created in Azure are distributed across multiple geographical regions around the world. Usually,

the region is called location when you create a VM. For a VM, the location specifies where the virtual hard disks

are stored.

This table shows some of the ways you can get a list of available locations.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/overview.md
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/n-tier/windows-vm
https://azure.microsoft.com/regions/
https://docs.microsoft.com/en-us/powershell/module/az.resources/get-azlocation

REST API Use the List locations operation.

Azure CLI Use the az account list-locations operation.

M ET H O D DESC RIP T IO N

 Availability

 VM size

 VM Limits

 Operating system disks and images

M ET H O D DESC RIP T IO N

Azure portal The values are automatically specified for you when you
select an image to use.

Azure PowerShell Get-AzVMImagePublisher -Location location
Get-AzVMImageOffer -Location location -Publisher
publisherName
Get-AzVMImageSku -Location location -Publisher
publisherName -Offer offerName

Azure announced an industry leading single instance virtual machine Service Level Agreement of 99.9%

provided you deploy the VM with premium storage for all disks. In order for your deployment to qualify for the

standard 99.95% VM Service Level Agreement, you still need to deploy two or more VMs running your

workload inside of an availability set. An availability set ensures that your VMs are distributed across multiple

fault domains in the Azure data centers as well as deployed onto hosts with different maintenance windows. The

full Azure SLA explains the guaranteed availability of Azure as a whole.

The size of the VM that you use is determined by the workload that you want to run. The size that you choose

then determines factors such as processing power, memory, and storage capacity. Azure offers a wide variety of

sizes to support many types of uses.

Azure charges an hourly price based on the VM’s size and operating system. For partial hours, Azure charges

only for the minutes used. Storage is priced and charged separately.

Your subscription has default quota limits in place that could impact the deployment of many VMs for your

project. The current limit on a per subscription basis is 20 VMs per region. Limits can be raised by filing a

support ticket requesting an increase

Virtual machines use virtual hard disks (VHDs) to store their operating system (OS) and data. VHDs are also

used for the images you can choose from to install an OS.

Azure provides many marketplace images to use with various versions and types of Windows Server operating

systems. Marketplace images are identified by image publisher, offer, sku, and version (typically version is

specified as latest). Only 64-bit operating systems are supported. For more information on the supported guest

operating systems, roles, and features, see Microsoft server software support for Microsoft Azure virtual

machines.

This table shows some ways that you can find the information for an image.

https://docs.microsoft.com/en-us/rest/api/resources/subscriptions/listlocations
https://docs.microsoft.com/en-us/cli/azure/account
https://azure.microsoft.com/support/legal/sla/virtual-machines/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes
https://azure.microsoft.com/pricing/details/virtual-machines/windows/
https://docs.microsoft.com/en-us/azure/azure-portal/supportability/resource-manager-core-quotas-request
https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://azuremarketplace.microsoft.com/marketplace/apps?filters=virtual-machine-images%253Bwindows&page=1
https://support.microsoft.com/help/2721672/microsoft-server-software-support-for-microsoft-azure-virtual-machines
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimagepublisher
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimageoffer
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimagesku

REST APIs List image publishers
List image offers
List image skus

Azure CLI az vm image list-publishers --location location
az vm image list-offers --location location --publisher
publisherName
az vm image list-skus --location location --publisher
publisherName --offer offerName

M ET H O D DESC RIP T IO N

 Extensions

 Related resources

RESO URC E REQ UIRED DESC RIP T IO N

Resource group Yes The VM must be contained in a
resource group.

Storage account Yes The VM needs the storage account to
store its virtual hard disks.

Virtual network Yes The VM must be a member of a virtual
network.

Public IP address No The VM can have a public IP address
assigned to it to remotely access it.

Network interface Yes The VM needs the network interface to
communicate in the network.

Data disks No The VM can include data disks to
expand storage capabilities.

 Data residency

You can choose to upload and use your own image and when you do, the publisher name, offer, and sku aren’t

used.

VM extensions give your VM additional capabilities through post deployment configuration and automated

tasks.

These common tasks can be accomplished using extensions:

Run custom scr ipts – The Custom Script Extension helps you configure workloads on the VM by running

your script when the VM is provisioned.

Deploy and manage configurations – The PowerShell Desired State Configuration (DSC) Extension helps

you set up DSC on a VM to manage configurations and environments.

Collect diagnostics data – The Azure Diagnostics Extension helps you configure the VM to collect

diagnostics data that can be used to monitor the health of your application.

The resources in this table are used by the VM and need to exist or be created when the VM is created.

In Azure, the feature to enable storing customer data in a single region is currently only available in the

Southeast Asia Region (Singapore) of the Asia Pacific Geo and Brazil South (Sao Paulo State) Region of Brazil

https://docs.microsoft.com/en-us/rest/api/compute/platformimages/platformimages-list-publishers
https://docs.microsoft.com/en-us/rest/api/compute/platformimages/platformimages-list-publisher-offers
https://docs.microsoft.com/en-us/rest/api/compute/platformimages/platformimages-list-publisher-offer-skus
https://docs.microsoft.com/en-us/cli/azure/vm/image
https://docs.microsoft.com/en-us/cli/azure/vm/image
https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/upload-generalized-managed
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/features-windows
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-windows
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/dsc-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/diagnostics-template
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/virtual-network/public-ip-addresses
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-network-interface
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/attach-managed-disk-portal

 Next steps

Geo. For all other regions, customer data is stored in Geo. For more information, see Trust Center.

Create your first VM!

Portal

PowerShell

Azure CLI

https://azure.microsoft.com/global-infrastructure/data-residency/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-powershell
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-cli

Overview of Azure Service Fabric
 3/5/2021 • 2 minutes to read • Edit Online

 Container orchestration

 Stateless and stateful microservices

Azure Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage

scalable and reliable microservices and containers. Service Fabric also addresses the significant challenges in

developing and managing cloud native applications.

A key differentiator of Service Fabric is its strong focus on building stateful services. You can use the Service

Fabric programming model or run containerized stateful services written in any language or code. You can

create Service Fabric clusters anywhere, including Windows Server and Linux on premises and other public

clouds, in addition to Azure.

Service Fabric powers many Microsoft services today, including Azure SQL Database, Azure Cosmos DB,

Cortana, Microsoft Power BI, Microsoft Intune, Azure Event Hubs, Azure IoT Hub, Dynamics 365, Skype for

Business, and many core Azure services.

Service Fabric is Microsoft's container orchestrator for deploying and managing microservices across a cluster

of machines, benefiting from the lessons learned running Microsoft services at massive scale. Service Fabric can

deploy applications in seconds, at high density with hundreds or thousands of applications or containers per

machine. With Service Fabric, you can mix both services in processes and services in containers in the same

application.

Learn more about Service Fabric core concepts, programming models, application lifecycle, testing, clusters, and

health monitoring.

Service Fabric provides a sophisticated, lightweight runtime that supports stateless and stateful microservices. A

key differentiator of Service Fabric is its robust support for building stateful services, either with Service Fabric

built-in programming models or containerized stateful services.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-overview.md
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-content-roadmap
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework

 Application lifecycle management

 Any OS, any cloud

 Compliance

 Next steps

Learn more about application scenarios that benefit from Service Fabric stateful services.

Service Fabric provides support for the full application lifecycle and CI/CD of cloud applications including

containers: development through deployment, daily monitoring, management, and maintenance, to eventual

decommissioning. Service Fabric is integrated with CI/CD tools such as Azure Pipelines, Jenkins, and Octopus

Deploy and can be used with any other popular CI/CD tool.

For more information about application lifecycle management, read Application lifecycle. For deploying existing

applications to Service Fabric, see Deploy a guest executable.

You can create clusters for Service Fabric in many environments, including Azure or on premises, on Windows

Server or Linux. You can even create clusters on other public clouds. The development environment in the

Service Fabric SDK is identical to the production environment, with no emulators involved. In other words, what

runs on your local development cluster is what deploys to your clusters in other environments.

For Windows development, the Service Fabric .NET SDK is integrated with Visual Studio and PowerShell. For

Linux development, the Service Fabric Java SDK is integrated with Eclipse, and Yeoman is used to generate

templates for Java, .NET Core, and container applications.

Azure Service Fabric Resource Provider is available in all Azure regions and is compliant with all Azure

compliance certifications, including: SOC, ISO, PCI DSS, HIPAA, and GDPR. For a complete list, see Microsoft

Compliance Offerings.

Create and deploy your first application on Azure Service Fabric:

Service Fabric quickstart

https://www.visualstudio.com/team-services/
https://jenkins.io/index.html
https://octopus.com/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-lifecycle
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-existing-app
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-anywhere
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-linux-windows-differences
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-linux
https://www.microsoft.com/trustcenter/compliance/complianceofferings
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-quickstart-dotnet

Service Fabric application scenarios
 3/24/2021 • 4 minutes to read • Edit Online

Azure Service Fabric offers a reliable and flexible platform where you can write and run many types of business

applications and services. These applications and microservices can be stateless or stateful, and they're

resource-balanced across virtual machines to maximize efficiency.

The unique architecture of Service Fabric enables you to perform near real-time data analysis, in-memory

computation, parallel transactions, and event processing in your applications. You can easily scale your

applications in or out depending on your changing resource requirements.

For design guidance on building applications, read Microservices architecture on Azure Service Fabric and Best

practices for application design using Service Fabric.

Consider using the Service Fabric platform for the following types of applications:

Data gathering, processing, and IoT: Service Fabric handles large scale and has low latency through

its stateful services. It can help process data on millions of devices where the data for the device and the

computation are colocated.

Customers who have built IoT services by using Service Fabric include Honeywell, PCL Construction,

Crestron, BMW, Schneider Electric, and Mesh Systems.

Gaming and session-based interactive applications : Service Fabric is useful if your application

requires low-latency reads and writes, such as in online gaming or instant messaging. Service Fabric

enables you to build these interactive, stateful applications without having to create a separate store or

cache. Visit Azure gaming solutions for design guidance on using Service Fabric in gaming services.

Customers who have built gaming services include Next Games and Digamore. Customers who have

built interactive sessions include Honeywell with Hololens.

Data analytics and workflow processing: Applications that must reliably process events or streams

of data benefit from the optimized reads and writes in Service Fabric. Service Fabric also supports

application processing pipelines, where results must be reliable and passed on to the next processing

stage without any loss. These pipelines include transactional and financial systems, where data

consistency and computation guarantees are essential.

Customers who have built business workflow services include Zeiss Group, Quorum Business Solutions,

and Société General.

Computation on data: Service Fabric enables you to build stateful applications that do intensive data

computation. Service Fabric allows the colocation of processing (computation) and data in applications.

Normally, when your application requires access to data, network latency associated with an external data

cache or storage tier limits the computation time. Stateful Service Fabric services eliminate that latency,

enabling more optimized reads and writes.

For example, consider an application that performs near real-time recommendation selections for

customers, with a round-trip time requirement of less than 100 milliseconds. The latency and

performance characteristics of Service Fabric services provide a responsive experience to the user,

compared with the standard implementation model of having to fetch the necessary data from remote

storage. The system is more responsive because the computation of recommendation selection is

colocated with the data and rules.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-application-scenarios.md
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/microservices/service-fabric
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-applications
https://customers.microsoft.com/story/honeywell-builds-microservices-based-thermostats-on-azure
https://customers.microsoft.com/story/pcl-construction-professional-services-azure
https://customers.microsoft.com/story/crestron-partner-professional-services-azure
https://customers.microsoft.com/story/bmw-enables-driver-mobility-via-azure-service-fabric/
https://customers.microsoft.com/story/schneider-electric-powers-engergy-solutions-on-azure-service-fabric
https://customers.microsoft.com/story/mesh-systems-lights-up-the-market-with-iot-based-azure-solutions
https://azure.microsoft.com/solutions/gaming/
https://docs.microsoft.com/en-us/gaming/azure/reference-architectures/multiplayer-synchronous-sf
https://customers.microsoft.com/story/next-games-media-telecommunications-azure
https://customers.microsoft.com/story/digamore-entertainment-scores-with-a-new-gaming-platform-based-on-azure-service-fabric/
https://customers.microsoft.com/story/honeywell-manufacturing-hololens
https://customers.microsoft.com/story/zeiss-group-focuses-on-azure-service-fabric-for-key-integration-platform
https://customers.microsoft.com/en-us/story/quorum-business-solutions-expand-energy-managemant-solutions-using-azure-service-fabric
https://customers.microsoft.com/en-us/story/societe-generale-speeds-real-time-market-quotes-using-azure-service-fabric

 Application design case studies

 Designing applications composed of stateless and stateful
microservices

Customers who have built computation services include Solidsoft Reply and Infosupport.

Highly available ser vices : Service Fabric provides fast failover by creating multiple secondary service

replicas. If a node, process, or individual service goes down due to hardware or other failure, one of the

secondary replicas is promoted to a primary replica with minimal loss of service.

Scalable ser vices : Individual services can be partitioned, allowing for state to be scaled out across the

cluster. Individual services can also be created and removed on the fly. You can scale out services from a

few instances on a few nodes to thousands of instances on many nodes, and then scale them in again as

needed. You can use Service Fabric to build these services and manage their complete life cycles.

Case studies that show how Service Fabric is used to design applications are published on the Customer stories

and Microservices in Azure sites.

Building applications with Azure Cloud Services worker roles is an example of a stateless service. In contrast,

stateful microservices maintain their authoritative state beyond the request and its response. This functionality

provides high availability and consistency of the state through simple APIs that provide transactional guarantees

backed by replication.

Stateful services in Service Fabric bring high availability to all types of applications, not just databases and other

data stores. This is a natural progression. Applications have already moved from using purely relational

databases for high availability to NoSQL databases. Now the applications themselves can have their "hot" state

and data managed within them for additional performance gains without sacrificing reliability, consistency, or

availability.

When you're building applications that consist of microservices, you typically have a combination of stateless

web apps (like ASP.NET and Node.js) calling onto stateless and stateful business middle-tier services. The apps

and services are all deployed in the same Service Fabric cluster through the Service Fabric deployment

commands. Each of these services is independent with regard to scale, reliability, and resource usage. This

independence improves agility and flexibility in development and life-cycle management.

Stateful microservices simplify application designs because they remove the need for the additional queues and

caches that have traditionally been required to address the availability and latency requirements of purely

stateless applications. Because stateful services have high availability and low latency, there are fewer details to

manage in your application.

The following diagrams illustrate the differences between designing an application that's stateless and one that's

stateful. By taking advantage of the Reliable Services and Reliable Actors programming models, stateful services

reduce application complexity while achieving high throughput and low latency.

Here's an example application that uses stateless services:

https://customers.microsoft.com/story/solidsoft-reply-platform-powers-e-verification-of-pharmaceuticals
https://customers.microsoft.com/story/service-fabric-customer-profile-info-support-and-fudura
https://customers.microsoft.com/search?sq=%2522Azure%20Service%20Fabric%2522&ff=&p=2&so=story_publish_date%20desc
https://azure.microsoft.com/solutions/microservice-applications/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction

 Next steps

Here's an example application that uses stateful services:

Get started building stateless and stateful services with the Service Fabric Reliable Services and Reliable

Actors programming models.

Visit the Azure Architecture Center for guidance on building microservices on Azure.

Go to Azure Service Fabric application and cluster best practices for application design guidance.

See also:

Understanding microservices

Define and manage service state

Availability of services

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-quick-start
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-get-started
https://docs.microsoft.com/en-us/azure/architecture/microservices/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-best-practices-security
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-state
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-availability-services

Scale services

Partition services

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-partitioning

How to create a Linux virtual machine with Azure
Resource Manager templates

 5/3/2021 • 4 minutes to read • Edit Online

 Templates overview

 Create a virtual machine

{
 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "projectName": {
 "type": "string",
 "metadata": {
 "description": "Specifies a name for generating resource names."
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "Specifies the location for all resources."
 }
 },
 "adminUsername": {
 "type": "string",

Learn how to create a Linux virtual machine (VM) by using an Azure Resource Manager template and the Azure

CLI from the Azure Cloud shell. To create a Windows virtual machine, see Create a Windows virtual machine

from a Resource Manager template.

An alternative is to deploy the template from the Azure portal. To open the template in the portal, select the

Deploy to Azure button.

Azure Resource Manager templates are JSON files that define the infrastructure and configuration of your Azure

solution. By using a template, you can repeatedly deploy your solution throughout its lifecycle and have

confidence your resources are deployed in a consistent state. To learn more about the format of the template

and how you construct it, see Quickstart: Create and deploy Azure Resource Manager templates by using the

Azure portal. To view the JSON syntax for resources types, see Define resources in Azure Resource Manager

templates.

Creating an Azure virtual machine usually includes two steps:

1. Create a resource group. An Azure resource group is a logical container into which Azure resources are

deployed and managed. A resource group must be created before a virtual machine.

2. Create a virtual machine.

The following example creates a VM from an Azure Quickstart template. Only SSH authentication is allowed for

this deployment. When prompted, provide the value of your own SSH public key, such as the contents of

~/.ssh/id_rsa.pub. If you need to create an SSH key pair, see How to create and use an SSH key pair for Linux

VMs in Azure. Here is a copy of the template:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/linux/create-ssh-secured-vm-from-template.md
https://portal.azure.com/#create/Microsoft.Template/uri/https%253A%252F%252Fraw.githubusercontent.com%252FAzure%252Fazure-quickstart-templates%252Fmaster%252Fquickstarts%252Fmicrosoft.compute%252Fvm-sshkey%252Fazuredeploy.json
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/quickstart-create-templates-use-the-portal
https://docs.microsoft.com/en-us/azure/templates/microsoft.compute/allversions
https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/quickstarts/microsoft.compute/vm-sshkey/azuredeploy.json
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/mac-create-ssh-keys

 "type": "string",
 "metadata": {
 "description": "Specifies a username for the Virtual Machine."
 }
 },
 "adminPublicKey": {
 "type": "string",
 "metadata": {
 "description": "Specifies the SSH rsa public key file as a string. Use \"ssh-keygen -t rsa -b 2048\"
to generate your SSH key pairs."
 }
 },
 "vmSize": {
 "type": "string",
 "defaultValue": "Standard_D2s_v3",
 "metadata": {
 "description": "description"
 }
 }
 },
 "variables": {
 "vNetName": "[concat(parameters('projectName'), '-vnet')]",
 "vNetAddressPrefixes": "10.0.0.0/16",
 "vNetSubnetName": "default",
 "vNetSubnetAddressPrefix": "10.0.0.0/24",
 "vmName": "[concat(parameters('projectName'), '-vm')]",
 "publicIPAddressName": "[concat(parameters('projectName'), '-ip')]",
 "networkInterfaceName": "[concat(parameters('projectName'), '-nic')]",
 "networkSecurityGroupName": "[concat(parameters('projectName'), '-nsg')]",
 "networkSecurityGroupName2": "[concat(variables('vNetSubnetName'), '-nsg')]"
 },
 "resources": [
 {
 "type": "Microsoft.Network/networkSecurityGroups",
 "apiVersion": "2020-05-01",
 "name": "[variables('networkSecurityGroupName')]",
 "location": "[parameters('location')]",
 "properties": {
 "securityRules": [
 {
 "name": "ssh_rule",
 "properties": {
 "description": "Locks inbound down to ssh default port 22.",
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "destinationPortRange": "22",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*",
 "access": "Allow",
 "priority": 123,
 "direction": "Inbound"
 }
 }
]
 }
 },
 {
 "type": "Microsoft.Network/publicIPAddresses",
 "apiVersion": "2020-05-01",
 "name": "[variables('publicIPAddressName')]",
 "location": "[parameters('location')]",
 "properties": {
 "publicIPAllocationMethod": "Dynamic"
 },
 "sku": {
 "name": "Basic"
 }
 },
 {
 "comments": "Simple Network Security Group for subnet [variables('vNetSubnetName')]",

 "comments": "Simple Network Security Group for subnet [variables('vNetSubnetName')]",
 "type": "Microsoft.Network/networkSecurityGroups",
 "apiVersion": "2020-05-01",
 "name": "[variables('networkSecurityGroupName2')]",
 "location": "[parameters('location')]",
 "properties": {
 "securityRules": [
 {
 "name": "default-allow-22",
 "properties": {
 "priority": 1000,
 "access": "Allow",
 "direction": "Inbound",
 "destinationPortRange": "22",
 "protocol": "Tcp",
 "sourceAddressPrefix": "*",
 "sourcePortRange": "*",
 "destinationAddressPrefix": "*"
 }
 }
]
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "apiVersion": "2020-05-01",
 "name": "[variables('vNetName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/networkSecurityGroups', variables('networkSecurityGroupName2'))]"
],
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('vNetAddressPrefixes')]"
]
 },
 "subnets": [
 {
 "name": "[variables('vNetSubnetName')]",
 "properties": {
 "addressPrefix": "[variables('vNetSubnetAddressPrefix')]",
 "networkSecurityGroup": {
 "id": "[resourceId('Microsoft.Network/networkSecurityGroups',
variables('networkSecurityGroupName2'))]"
 }
 }
 }
]
 }
 },
 {
 "type": "Microsoft.Network/networkInterfaces",
 "apiVersion": "2020-05-01",
 "name": "[variables('networkInterfaceName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/publicIPAddresses', variables('publicIPAddressName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks', variables('vNetName'))]",
 "[resourceId('Microsoft.Network/networkSecurityGroups', variables('networkSecurityGroupName'))]"
],
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig1",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "publicIPAddress": {
 "id": "[resourceId('Microsoft.Network/publicIPAddresses',

variables('publicIPAddressName'))]"
 },
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', variables('vNetName'),
variables('vNetSubnetName'))]"
 }
 }
 }
]
 }
 },
 {
 "type": "Microsoft.Compute/virtualMachines",
 "apiVersion": "2019-12-01",
 "name": "[variables('vmName')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[resourceId('Microsoft.Network/networkInterfaces', variables('networkInterfaceName'))]"
],
 "properties": {
 "hardwareProfile": {
 "vmSize": "[parameters('vmSize')]"
 },
 "osProfile": {
 "computerName": "[variables('vmName')]",
 "adminUsername": "[parameters('adminUsername')]",
 "linuxConfiguration": {
 "disablePasswordAuthentication": true,
 "ssh": {
 "publicKeys": [
 {
 "path": "[concat('/home/', parameters('adminUsername'), '/.ssh/authorized_keys')]",
 "keyData": "[parameters('adminPublicKey')]"
 }
]
 }
 }
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "Canonical",
 "offer": "UbuntuServer",
 "sku": "18.04-LTS",
 "version": "latest"
 },
 "osDisk": {
 "createOption": "fromImage"
 }
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces', variables('networkInterfaceName'))]"
 }
]
 }
 }
 }
]
}

To run the CLI script, Select Tr y it to open the Azure Cloud shell. To paste the script, right-click the shell, and then

select Paste:

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the location (i.e. centralus):" &&
read location &&
echo "Enter the project name (used for generating resource names):" &&
read projectName &&
echo "Enter the administrator username:" &&
read username &&
echo "Enter the SSH public key:" &&
read key &&
az group create --name $resourceGroupName --location "$location" &&
az deployment group create --resource-group $resourceGroupName --template-uri
https://raw.githubusercontent.com/azure/azure-quickstart-templates/master/quickstarts/microsoft.compute/vm-
sshkey/azuredeploy.json --parameters projectName=$projectName adminUsername=$username adminPublicKey="$key"
&&
az vm show --resource-group $resourceGroupName --name "$projectName-vm" --show-details --query publicIps --
output tsv

 Connect to virtual machine

ssh <adminUsername>@<ipAddress>

 Next steps

The last Azure CLI command shows the public IP address of the newly created VM. You need the public IP

address to connect to the virtual machine. See the next section of this article.

In the previous example, you specified a template stored in GitHub. You can also download or create a template

and specify the local path with the --template-file parameter.

Here are some additional resources:

To learn how to develop Resource Manager templates, see Azure Resource Manager documentation.

To see the Azure virtual machine schemas, see Azure template reference.

To see more virtual machine template samples, see Azure Quickstart templates.

You can then SSH to your VM as normal. Provide you own public IP address from the preceding command:

In this example, you created a basic Linux VM. For more Resource Manager templates that include application

frameworks or create more complex environments, browse the Azure Quickstart templates.

To learn more about creating templates, view the JSON syntax and properties for the resources types you

deployed:

Microsoft.Network/networkSecurityGroups

Microsoft.Network/publicIPAddresses

Microsoft.Network/virtualNetworks

Microsoft.Network/networkInterfaces

Microsoft.Compute/virtualMachines

https://docs.microsoft.com/en-us/azure/azure-resource-manager/index
https://docs.microsoft.com/en-us/azure/templates/microsoft.compute/allversions
https://azure.microsoft.com/resources/templates/?resourceType=Microsoft.Compute&pageNumber=1&sort=Popular
https://azure.microsoft.com/resources/templates/?resourceType=Microsoft.Compute&pageNumber=1&sort=Popular
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/networksecuritygroups
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/publicipaddresses
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/en-us/azure/templates/microsoft.compute/virtualmachines

Create a Windows virtual machine from a Resource
Manager template

 5/28/2021 • 5 minutes to read • Edit Online

 Create a virtual machine

{
 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "metadata": {
 "_generator": {
 "name": "bicep",
 "version": "0.4.1.14562",
 "templateHash": "8381960602397537918"
 }
 },
 "parameters": {
 "adminUsername": {
 "type": "string",
 "metadata": {
 "description": "Username for the Virtual Machine."
 }
 },
 "adminPassword": {
 "type": "secureString",
 "minLength": 12,
 "metadata": {
 "description": "Password for the Virtual Machine."
 }
 },
 "dnsLabelPrefix": {
 "type": "string",
 "defaultValue": "[toLower(format('{0}-{1}', parameters('vmName'), uniqueString(resourceGroup().id,
parameters('vmName'))))]",
 "metadata": {
 "description": "Unique DNS Name for the Public IP used to access the Virtual Machine."
 }
 },
 "publicIpName": {

Learn how to create a Windows virtual machine by using an Azure Resource Manager template and Azure

PowerShell from the Azure Cloud shell. The template used in this article deploys a single virtual machine

running Windows Server in a new virtual network with a single subnet. For creating a Linux virtual machine, see

How to create a Linux virtual machine with Azure Resource Manager templates.

An alternative is to deploy the template from the Azure portal. To open the template in the portal, select the

Deploy to Azure button.

Creating an Azure virtual machine usually includes two steps:

Create a resource group. An Azure resource group is a logical container into which Azure resources are

deployed and managed. A resource group must be created before a virtual machine.

Create a virtual machine.

The following example creates a VM from an Azure Quickstart template. Here is a copy of the template:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/ps-template.md
https://portal.azure.com/#create/Microsoft.Template/uri/https%253A%252F%252Fraw.githubusercontent.com%252FAzure%252Fazure-quickstart-templates%252Fmaster%252Fquickstarts%252Fmicrosoft.compute%252Fvm-simple-windows%252Fazuredeploy.json
https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/quickstarts/microsoft.compute/vm-simple-windows/azuredeploy.json

 "publicIpName": {
 "type": "string",
 "defaultValue": "myPublicIP",
 "metadata": {
 "description": "Name for the Public IP used to access the Virtual Machine."
 }
 },
 "publicIPAllocationMethod": {
 "type": "string",
 "defaultValue": "Dynamic",
 "allowedValues": [
 "Dynamic",
 "Static"
],
 "metadata": {
 "description": "Allocation method for the Public IP used to access the Virtual Machine."
 }
 },
 "publicIpSku": {
 "type": "string",
 "defaultValue": "Basic",
 "allowedValues": [
 "Basic",
 "Standard"
],
 "metadata": {
 "description": "SKU for the Public IP used to access the Virtual Machine."
 }
 },
 "OSVersion": {
 "type": "string",
 "defaultValue": "2019-Datacenter",
 "allowedValues": [
 "2008-R2-SP1",
 "2012-Datacenter",
 "2012-R2-Datacenter",
 "2016-Nano-Server",
 "2016-Datacenter-with-Containers",
 "2016-Datacenter",
 "2019-Datacenter",
 "2019-Datacenter-Core",
 "2019-Datacenter-Core-smalldisk",
 "2019-Datacenter-Core-with-Containers",
 "2019-Datacenter-Core-with-Containers-smalldisk",
 "2019-Datacenter-smalldisk",
 "2019-Datacenter-with-Containers",
 "2019-Datacenter-with-Containers-smalldisk"
],
 "metadata": {
 "description": "The Windows version for the VM. This will pick a fully patched image of this given
Windows version."
 }
 },
 "vmSize": {
 "type": "string",
 "defaultValue": "Standard_D2_v3",
 "metadata": {
 "description": "Size of the virtual machine."
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "Location for all resources."
 }
 },
 "vmName": {
 "type": "string",
 "defaultValue": "simple-vm",

 "defaultValue": "simple-vm",
 "metadata": {
 "description": "Name of the virtual machine."
 }
 }
 },
 "functions": [],
 "variables": {
 "storageAccountName": "[format('bootdiags{0}', uniqueString(resourceGroup().id))]",
 "nicName": "myVMNic",
 "addressPrefix": "10.0.0.0/16",
 "subnetName": "Subnet",
 "subnetPrefix": "10.0.0.0/24",
 "virtualNetworkName": "MyVNET",
 "networkSecurityGroupName": "default-NSG"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2021-04-01",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage"
 },
 {
 "type": "Microsoft.Network/publicIPAddresses",
 "apiVersion": "2021-02-01",
 "name": "[parameters('publicIpName')]",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[parameters('publicIpSku')]"
 },
 "properties": {
 "publicIPAllocationMethod": "[parameters('publicIPAllocationMethod')]",
 "dnsSettings": {
 "domainNameLabel": "[parameters('dnsLabelPrefix')]"
 }
 }
 },
 {
 "type": "Microsoft.Network/networkSecurityGroups",
 "apiVersion": "2021-02-01",
 "name": "[variables('networkSecurityGroupName')]",
 "location": "[parameters('location')]",
 "properties": {
 "securityRules": [
 {
 "name": "default-allow-3389",
 "properties": {
 "priority": 1000,
 "access": "Allow",
 "direction": "Inbound",
 "destinationPortRange": "3389",
 "protocol": "Tcp",
 "sourcePortRange": "*",
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "*"
 }
 }
]
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks",
 "apiVersion": "2021-02-01",
 "name": "[variables('virtualNetworkName')]",
 "location": "[parameters('location')]",

 "location": "[parameters('location')]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[variables('addressPrefix')]"
]
 }
 }
 },
 {
 "type": "Microsoft.Network/virtualNetworks/subnets",
 "apiVersion": "2021-02-01",
 "name": "[format('{0}/{1}', variables('virtualNetworkName'), variables('subnetName'))]",
 "properties": {
 "addressPrefix": "[variables('subnetPrefix')]",
 "networkSecurityGroup": {
 "id": "[resourceId('Microsoft.Network/networkSecurityGroups',
variables('networkSecurityGroupName'))]"
 }
 },
 "dependsOn": [
 "[resourceId('Microsoft.Network/networkSecurityGroups', variables('networkSecurityGroupName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]"
]
 },
 {
 "type": "Microsoft.Network/networkInterfaces",
 "apiVersion": "2021-02-01",
 "name": "[variables('nicName')]",
 "location": "[parameters('location')]",
 "properties": {
 "ipConfigurations": [
 {
 "name": "ipconfig1",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "publicIPAddress": {
 "id": "[resourceId('Microsoft.Network/publicIPAddresses', parameters('publicIpName'))]"
 },
 "subnet": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets',
variables('virtualNetworkName'), variables('subnetName'))]"
 }
 }
 }
]
 },
 "dependsOn": [
 "[resourceId('Microsoft.Network/publicIPAddresses', parameters('publicIpName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks/subnets', variables('virtualNetworkName'),
variables('subnetName'))]"
]
 },
 {
 "type": "Microsoft.Compute/virtualMachines",
 "apiVersion": "2021-03-01",
 "name": "[parameters('vmName')]",
 "location": "[parameters('location')]",
 "properties": {
 "hardwareProfile": {
 "vmSize": "[parameters('vmSize')]"
 },
 "osProfile": {
 "computerName": "[parameters('vmName')]",
 "adminUsername": "[parameters('adminUsername')]",
 "adminPassword": "[parameters('adminPassword')]"
 },
 "storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindowsServer",

 "publisher": "MicrosoftWindowsServer",
 "offer": "WindowsServer",
 "sku": "[parameters('OSVersion')]",
 "version": "latest"
 },
 "osDisk": {
 "createOption": "FromImage",
 "managedDisk": {
 "storageAccountType": "StandardSSD_LRS"
 }
 },
 "dataDisks": [
 {
 "diskSizeGB": 1023,
 "lun": 0,
 "createOption": "Empty"
 }
]
 },
 "networkProfile": {
 "networkInterfaces": [
 {
 "id": "[resourceId('Microsoft.Network/networkInterfaces', variables('nicName'))]"
 }
]
 },
 "diagnosticsProfile": {
 "bootDiagnostics": {
 "enabled": true,
 "storageUri": "[reference(resourceId('Microsoft.Storage/storageAccounts',
variables('storageAccountName'))).primaryEndpoints.blob]"
 }
 }
 },
 "dependsOn": [
 "[resourceId('Microsoft.Network/networkInterfaces', variables('nicName'))]",
 "[resourceId('Microsoft.Storage/storageAccounts', variables('storageAccountName'))]"
]
 }
],
 "outputs": {
 "hostname": {
 "type": "string",
 "value": "[reference(resourceId('Microsoft.Network/publicIPAddresses',
parameters('publicIpName'))).dnsSettings.fqdn]"
 }
 }
}

To run the PowerShell script, Select Tr y it to open the Azure Cloud shell. To paste the script, right-click the shell,

and then select Paste:

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$adminUsername = Read-Host -Prompt "Enter the administrator username"
$adminPassword = Read-Host -Prompt "Enter the administrator password" -AsSecureString
$dnsLabelPrefix = Read-Host -Prompt "Enter an unique DNS name for the public IP"

New-AzResourceGroup -Name $resourceGroupName -Location "$location"
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateUri "https://raw.githubusercontent.com/Azure/azure-quickstart-
templates/master/quickstarts/microsoft.compute/vm-simple-windows/azuredeploy.json" `
 -adminUsername $adminUsername `
 -adminPassword $adminPassword `
 -dnsLabelPrefix $dnsLabelPrefix

 (Get-AzVm -ResourceGroupName $resourceGroupName).name

 Connect to the virtual machine

 Next Steps

If you choose to install and use the PowerShell locally instead of from the Azure Cloud shell, this tutorial

requires the Azure PowerShell module. Run Get-Module -ListAvailable Az to find the version. If you need to

upgrade, see Install Azure PowerShell module. If you're running PowerShell locally, you also need to run

Connect-AzAccount to create a connection with Azure.

In the previous example, you specified a template stored in GitHub. You can also download or create a template

and specify the local path with the --template-file parameter.

Here are some additional resources:

To learn how to develop Resource Manager templates, see Azure Resource Manager documentation.

To see the Azure virtual machine schemas, see Azure template reference.

To see more virtual machine template samples, see Azure Quickstart templates.

The last PowerShell command from the previous script shows the virtual machine name. To connect to the

virtual machine, see How to connect and sign on to an Azure virtual machine running Windows.

If there were issues with the deployment, you might take a look at Troubleshoot common Azure deployment

errors with Azure Resource Manager.

Learn how to create and manage a virtual machine in Create and manage Windows VMs with the Azure

PowerShell module.

To learn more about creating templates, view the JSON syntax and properties for the resources types you

deployed:

Microsoft.Network/publicIPAddresses

Microsoft.Network/virtualNetworks

Microsoft.Network/networkInterfaces

Microsoft.Compute/virtualMachines

https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/azure/azure-resource-manager/index
https://docs.microsoft.com/en-us/azure/templates/microsoft.compute/allversions
https://azure.microsoft.com/resources/templates/?resourceType=Microsoft.Compute&pageNumber=1&sort=Popular
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/connect-logon
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/common-deployment-errors
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/publicipaddresses
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/en-us/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/en-us/azure/templates/microsoft.compute/virtualmachines

Azure Functions developer guide
 6/8/2021 • 11 minutes to read • Edit Online

 Function code

{
 "disabled":false,
 "bindings":[
 // ... bindings here
 {
 "type": "bindingType",
 "direction": "in",
 "name": "myParamName",
 // ... more depending on binding
 }
]
}

P RO P ERT Y VA L UES T Y P E C O M M EN T S

type Name of binding.

For example,
queueTrigger .

string

direction in , out string Indicates whether the
binding is for receiving data
into the function or sending
data from the function.

In Azure Functions, specific functions share a few core technical concepts and components, regardless of the

language or binding you use. Before you jump into learning details specific to a given language or binding, be

sure to read through this overview that applies to all of them.

This article assumes that you've already read the Azure Functions overview.

A function is the primary concept in Azure Functions. A function contains two important pieces - your code,

which can be written in a variety of languages, and some config, the function.json file. For compiled languages,

this config file is generated automatically from annotations in your code. For scripting languages, you must

provide the config file yourself.

The function.json file defines the function's trigger, bindings, and other configuration settings. Every function has

one and only one trigger. The runtime uses this config file to determine the events to monitor and how to pass

data into and return data from a function execution. The following is an example function.json file.

For more information, see Azure Functions triggers and bindings concepts.

The bindings property is where you configure both triggers and bindings. Each binding shares a few common

settings and some settings which are specific to a particular type of binding. Every binding requires the

following settings:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/azure-functions/functions-reference.md
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings

name Function identifier.

For example, myQueue .

string The name that is used for
the bound data in the
function. For C#, this is an
argument name; for
JavaScript, it's the key in a
key/value list.

P RO P ERT Y VA L UES T Y P E C O M M EN T S

 Function app

NOTE

 Folder structure

NOTE

 Use local tools and publishing

A function app provides an execution context in Azure in which your functions run. As such, it is the unit of

deployment and management for your functions. A function app is comprised of one or more individual

functions that are managed, deployed, and scaled together. All of the functions in a function app share the same

pricing plan, deployment method, and runtime version. Think of a function app as a way to organize and

collectively manage your functions. To learn more, see How to manage a function app.

All functions in a function app must be authored in the same language. In previous versions of the Azure Functions

runtime, this wasn't required.

The code for all the functions in a specific function app is located in a root project folder that contains a host

configuration file. The host.json file contains runtime-specific configurations and is in the root folder of the

function app. A bin folder contains packages and other library files that the function app requires. Specific folder

structures required by the function app depend on language:

C# compiled (.csproj)

C# script (.csx)

F# script

Java

JavaScript

Python

In version 2.x and higher of the Functions runtime, all functions in the function app must share the same

language stack.

The above is the default (and recommended) folder structure for a Function app. If you wish to change the file

location of a function's code, modify the scriptFile section of the function.json file. We also recommend using

package deployment to deploy your project to your function app in Azure. You can also use existing tools like

continuous integration and deployment and Azure DevOps.

If deploying a package manually, make sure to deploy your host.json file and function folders directly to the wwwroot

folder. Do not include the wwwroot folder in your deployments. Otherwise, you end up with wwwroot\wwwroot folders.

Function apps can be authored and published using a variety of tools, including Visual Studio, Visual Studio

Code, IntelliJ, Eclipse, and the Azure Functions Core Tools. For more information, see Code and test Azure

Functions locally.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-how-to-use-azure-function-app-settings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json
https://docs.microsoft.com/en-us/azure/azure-functions/functions-dotnet-class-library
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-fsharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-node
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-python
https://docs.microsoft.com/en-us/azure/azure-functions/deployment-zip-push
https://docs.microsoft.com/en-us/azure/azure-functions/functions-continuous-deployment
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-vs
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-csharp
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-maven-intellij
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-maven-eclipse
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local

 How to edit functions in the Azure portal

 Parallel execution

 Functions runtime versioning

 Repositories

 Bindings

T Y P E 1. X
2. X A N D
H IGH ER T RIGGER IN P UT O UT P UT

Blob storage ✔ ✔ ✔ ✔ ✔

Azure Cosmos
DB

✔ ✔ ✔ ✔ ✔

Dapr ✔ ✔ ✔ ✔

Event Grid ✔ ✔ ✔ ✔

Event Hubs ✔ ✔ ✔ ✔

The Functions editor built into the Azure portal lets you update your code and your function.json file directly

inline. This is recommended only for small changes or proofs of concept - best practice is to use a local

development tool like VS Code.

When multiple triggering events occur faster than a single-threaded function runtime can process them, the

runtime may invoke the function multiple times in parallel. If a function app is using the Consumption hosting

plan, the function app could scale out automatically. Each instance of the function app, whether the app runs on

the Consumption hosting plan or a regular App Service hosting plan, might process concurrent function

invocations in parallel using multiple threads. The maximum number of concurrent function invocations in each

function app instance varies based on the type of trigger being used as well as the resources used by other

functions within the function app.

You can configure the version of the Functions runtime using the FUNCTIONS_EXTENSION_VERSION app setting. For

example, the value "~3" indicates that your function app will use 3.x as its major version. Function apps are

upgraded to each new minor version as they are released. For more information, including how to view the

exact version of your function app, see How to target Azure Functions runtime versions.

The code for Azure Functions is open source and stored in GitHub repositories:

Azure Functions

Azure Functions host

Azure Functions portal

Azure Functions templates

Azure WebJobs SDK

Azure WebJobs SDK Extensions

Here is a table of all supported bindings.

This table shows the bindings that are supported in the major versions of the Azure Functions runtime:

1

3

https://docs.microsoft.com/en-us/azure/azure-functions/event-driven-scaling
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://docs.microsoft.com/en-us/azure/azure-functions/set-runtime-version
https://github.com/Azure/Azure-Functions
https://github.com/Azure/azure-functions-host/
https://github.com/azure/azure-functions-ux
https://github.com/azure/azure-functions-templates
https://github.com/Azure/azure-webjobs-sdk/
https://github.com/Azure/azure-webjobs-sdk-extensions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-cosmosdb-v2
https://github.com/dapr/azure-functions-extension
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-grid
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-hubs

HTTP &
webhooks

✔ ✔ ✔ ✔

IoT Hub ✔ ✔ ✔ ✔

Kafka ✔ ✔ ✔

Mobile Apps ✔ ✔ ✔

Notification
Hubs

✔ ✔

Queue storage ✔ ✔ ✔ ✔

RabbitMQ ✔ ✔ ✔

SendGrid ✔ ✔ ✔

Service Bus ✔ ✔ ✔ ✔

SignalR ✔ ✔ ✔

Table storage ✔ ✔ ✔ ✔

Timer ✔ ✔ ✔

Twilio ✔ ✔ ✔

T Y P E 1. X
2. X A N D
H IGH ER T RIGGER IN P UT O UT P UT

 Connections

 Connection values

2

2

 Starting with the version 2.x runtime, all bindings except HTTP and Timer must be registered. See Register

binding extensions.

1

 Triggers aren't supported in the Consumption plan. Requires runtime-driven triggers.2

 Supported only in Kubernetes, IoT Edge, and other self-hosted modes only.3

Having issues with errors coming from the bindings? Review the Azure Functions Binding Error Codes

documentation.

Your function project references connection information by name from its configuration provider. It does not

directly accept the connection details, allowing them to be changed across environments. For example, a trigger

definition might include a connection property. This might refer to a connection string, but you cannot set the

connection string directly in a function.json . Instead, you would set connection to the name of an

environment variable that contains the connection string.

The default configuration provider uses environment variables. These might be set by Application Settings when

running in the Azure Functions service, or from the local settings file when developing locally.

When the connection name resolves to a single exact value, the runtime identifies the value as a connection

string, which typically includes a secret. The details of a connection string are defined by the service to which

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-iot
https://github.com/azure/azure-functions-kafka-extension
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-mobile-apps
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-notification-hubs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-rabbitmq
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-sendgrid
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-service-bus
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-signalr-service
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-table
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-twilio
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-register
https://docs.microsoft.com/en-us/azure/azure-functions/functions-networking-options
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-error-pages
https://docs.microsoft.com/en-us/azure/azure-functions/functions-how-to-use-azure-function-app-settings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

 Configure an identity-based connection

NOTE

EXT EN SIO N N A M E EXT EN SIO N VERSIO N

Azure Blob Version 5.0.0-beta1 or later

Azure Queue Version 5.0.0-beta1 or later

Azure Event Hubs Version 5.0.0-beta1 or later

Azure Service Bus Version 5.0.0-beta2 or later

 Grant permission to the identity

IMPORTANT

you wish to connect.

However, a connection name can also refer to a collection of multiple configuration items. Environment variables

can be treated as a collection by using a shared prefix that ends in double underscores __ . The group can then

be referenced by setting the connection name to this prefix.

For example, the connection property for a Azure Blob trigger definition might be Storage1 . As long as there is

no single string value configured with Storage1 as its name, Storage1__serviceUri would be used for the

serviceUri property of the connection. The connection properties are different for each service. Refer to the

documentation for the extension that uses the connection.

Some connections in Azure Functions are configured to use an identity instead of a secret. Support depends on

the extension using the connection. In some cases, a connection string may still be required in Functions even

though the service to which you are connecting supports identity-based connections.

Identity-based connections are supported by the following trigger and binding extensions in all plans:

Identity-based connections are not supported with Durable Functions.

The storage connections used by the Functions runtime (AzureWebJobsStorage) may also be configured using an

identity-based connection. See Connecting to host storage with an identity below.

When hosted in the Azure Functions service, identity-based connections use a managed identity. The system-

assigned identity is used by default. When run in other contexts, such as local development, your developer

identity is used instead, although this can be customized using alternative connection parameters.

Whatever identity is being used must have permissions to perform the intended actions. This is typically done

by assigning a role in Azure RBAC or specifying the identity in an access policy, depending on the service to

which you are connecting. Refer to the documentation for each extension on what permissions are needed and

how they can be set.

Some permissions might be exposed by the target service that are not necessary for all contexts. Where possible, adhere

to the principle of least privilege, granting the identity only required privileges. For example, if the app just needs to

read from a blob, use the Storage Blob Data Reader role as the Storage Blob Data Owner includes excessive permissions

for a read operation. The following roles cover the primary permissions needed for each extension in normal operation:

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-blob
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-hubs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-service-bus
https://docs.microsoft.com/en-us/azure/app-service/overview-managed-identity
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

SERVIC E EXA M P L E B UILT - IN RO L ES

Azure Blobs Storage Blob Data Reader, Storage Blob Data Owner

Azure Queues Storage Queue Data Reader, Storage Queue Data Message
Processor, Storage Queue Data Message Sender, Storage
Queue Data Contributor

Event Hubs Azure Event Hubs Data Receiver, Azure Event Hubs Data
Sender, Azure Event Hubs Data Owner

Service Bus Azure Service Bus Data Receiver, Azure Service Bus Data
Sender, Azure Service Bus Data Owner

 Connection properties

P RO P ERT Y
REQ UIRED F O R
EXT EN SIO N S EN VIRO N M EN T VA RIA B L E DESC RIP T IO N

Service URI Azure Blob , Azure Queue <CONNECTION_NAME_PREFIX>__serviceUriThe data plane URI of the
service to which you are
connecting.

Fully Qualified Namespace Event Hubs, Service Bus <CONNECTION_NAME_PREFIX>__fullyQualifiedNamespaceThe fully qualified Event
Hubs and Service Bus
namespace.

 L o c a l d e v e l o p m e n t

NOTE

An identity-based connection for an Azure service accepts the following properties:

1

 Both blob and queue service URI's are required for Azure Blob.1

Additional options may be supported for a given connection type. Please refer to the documentation for the

component making the connection.

When running locally, the above configuration tells the runtime to use your local developer identity. The

connection will attempt to get a token from the following locations, in order :

A local cache shared between Microsoft applications

The current user context in Visual Studio

The current user context in Visual Studio Code

The current user context in the Azure CLI

If none of these options are successful, an error will occur.

In some cases, you may wish to specify use of a different identity. You can add configuration properties for the

connection that point to the alternate identity.

The following configuration options are not supported when hosted in the Azure Functions service.

To connect using an Azure Active Directory service principal with a client ID and secret, define the connection

with the following required properties in addition to the Connection properties above:

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

P RO P ERT Y EN VIRO N M EN T VA RIA B L E DESC RIP T IO N

Tenant ID <CONNECTION_NAME_PREFIX>__tenantId The Azure Active Directory tenant
(directory) ID.

Client ID <CONNECTION_NAME_PREFIX>__clientId The client (application) ID of an app
registration in the tenant.

Client secret <CONNECTION_NAME_PREFIX>__clientSecretA client secret that was generated for
the app registration.

{
 "IsEncrypted": false,
 "Values": {
 "<CONNECTION_NAME_PREFIX>__serviceUri": "<serviceUri>",
 "<CONNECTION_NAME_PREFIX>__tenantId": "<tenantId>",
 "<CONNECTION_NAME_PREFIX>__clientId": "<clientId>",
 "<CONNECTION_NAME_PREFIX>__clientSecret": "<clientSecret>"
 }
}

 Connecting to host storage with an identity

C a u t i o n

 Reporting Issues

IT EM DESC RIP T IO N L IN K

Runtime Script Host, Triggers & Bindings,
Language Support

File an Issue

Templates Code Issues with Creation Template File an Issue

Example of local.settings.json properties required for identity-based connection with Azure Blob:

Azure Functions by default uses the AzureWebJobsStorage connection for core behaviors such as coordinating

singleton execution of timer triggers and default app key storage. This can be configured to leverage an identity

as well.

Some apps reuse AzureWebJobsStorage for storage connections in their triggers, bindings, and/or function code.

Make sure that all uses of AzureWebJobsStorage are able to use the identity-based connection format before

changing this connection from a connection string.

To configure the connection in this way, make sure the app's identity has the Storage Blob Data Owner role in

order to support the core host functionality. You may need additional permissions if you use

"AzureWebJobsStorage" for any other purposes.

If using a storage account that uses the default DNS suffix and service name for global Azure, following the

https://<accountName>.blob/queue/file/table.core.windows.net format, you can set

AzureWebJobsStorage__accountName to the name of your storage account.

If instead using a storage account in a sovereign cloud or with custom DNS, set

AzureWebJobsStorage__serviceUri to the URI for your blob service. If "AzureWebJobsStorage" will be used for

any other service, you may instead specify AzureWebJobsStorage__blobServiceUri ,

AzureWebJobsStorage__queueServiceUri , and AzureWebJobsStorage__tableServiceUri separately.

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://github.com/Azure/azure-webjobs-sdk-script/issues
https://github.com/Azure/azure-webjobs-sdk-templates/issues

Portal User Interface or Experience Issue File an Issue

IT EM DESC RIP T IO N L IN K

 Next steps
For more information, see the following resources:

Azure Functions triggers and bindings

Code and test Azure Functions locally

Best Practices for Azure Functions

Azure Functions C# developer reference

Azure Functions Node.js developer reference

https://github.com/ProjectKudu/AzureFunctionsPortal/issues
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-local
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/functions-dotnet-class-library
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-node

Create a Service Fabric cluster in Azure using the
Azure portal

 11/2/2020 • 11 minutes to read • Edit Online

NOTE

 Cluster security

 Cluster and server certificate (required)

 Client authentication certificates

This is a step-by-step guide that walks you through the steps of setting up a Service Fabric cluster (Linux or

Windows) in Azure using the Azure portal. This guide walks you through the following steps:

Create a cluster in Azure through the Azure portal.

Authenticate administrators using certificates.

For more advanced security options, such as user authentication with Azure Active Directory and setting up certificates

for application security, create your cluster using Azure Resource Manager.

Certificates are used in Service Fabric to provide authentication and encryption to secure various aspects of a

cluster and its applications. For more information on how certificates are used in Service Fabric, see Service

Fabric cluster security scenarios.

If this is the first time you are creating a service fabric cluster or are deploying a cluster for test workloads, you

can skip to the next section (Create cluster in the Azure por tal) and have the system generate certificates

needed for your clusters that run test workloads. If you are setting up a cluster for production workloads, then

continue reading.

This certificate is required to secure a cluster and prevent unauthorized access to it. It provides cluster security in

a couple ways:

Cluster authentication: Authenticates node-to-node communication for cluster federation. Only nodes

that can prove their identity with this certificate can join the cluster.

Ser ver authentication: Authenticates the cluster management endpoints to a management client, so that

the management client knows it is talking to the real cluster. This certificate also provides TLS for the HTTPS

management API and for Service Fabric Explorer over HTTPS.

To serve these purposes, the certificate must meet the following requirements:

The certificate must contain a private key.

The certificate must be created for key exchange, exportable to a Personal Information Exchange (.pfx) file.

The certificate's subject name must match the domain used to access the Service Fabric cluster. This is

required to provide TLS for the cluster's HTTPS management endpoints and Service Fabric Explorer. You

cannot obtain a TLS/SSL certificate from a certificate authority (CA) for the .cloudapp.azure.com domain.

Acquire a custom domain name for your cluster. When you request a certificate from a CA the certificate's

subject name must match the custom domain name used for your cluster.

Additional client certificates authenticate administrators for cluster management tasks. Service Fabric has two

access levels: admin and read-only user . At minimum, a single certificate for administrative access should be

used. For additional user-level access, a separate certificate must be provided. For more information on access

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-cluster-creation-via-portal.md
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-creation-via-arm
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security

NOTE

 Application certificates (optional)

 Create cluster in the Azure portal

 Search for the Service Fabric cluster resource

roles, see role-based access control for Service Fabric clients.

You do not need to upload Client authentication certificates to Key Vault to work with Service Fabric. These

certificates only need to be provided to users who are authorized for cluster management.

Azure Active Directory is the recommended way to authenticate clients for cluster management operations. To use Azure

Active Directory, you must create a cluster using Azure Resource Manager.

Any number of additional certificates can be installed on a cluster for application security purposes. Before

creating your cluster, consider the application security scenarios that require a certificate to be installed on the

nodes, such as:

Encryption and decryption of application configuration values

Encryption of data across nodes during replication

Application certificates cannot be configured when creating a cluster through the Azure portal. To configure

application certificates at cluster setup time, you must create a cluster using Azure Resource Manager. You can

also add application certificates to the cluster after it has been created.

Creating a production cluster to meet your application needs involves some planning, to help you with that, it is

strongly recommended that you read and understand the Service Fabric Cluster planning considerations

document.

Sign in to the Azure portal. Click Create a resource to add a new resource template. Search for the Service

Fabric Cluster template in the Marketplace under Ever ything . Select Ser vice Fabric Cluster from the list.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security-roles
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-creation-via-arm
https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-cluster-creation-via-portal.md
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-creation-via-arm
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-capacity
https://portal.azure.com/

 1. Basics

 2. Cluster configuration

Navigate to the Ser vice Fabric Cluster blade, and click Create.

The Create Ser vice Fabric cluster blade has the following four steps:

In the Basics blade, you need to provide the basic details for your cluster.

NOTE

1. Enter the name of your cluster.

2. Enter a User name and Password for Remote Desktop for the VMs.

3. Make sure to select the Subscr iption that you want your cluster to be deployed to, especially if you have

multiple subscriptions.

4. Create a new Resource group. It is best to give it the same name as the cluster, since it helps in finding

them later, especially when you are trying to make changes to your deployment or delete your cluster.

Although you can decide to use an existing resource group, it is a good practice to create a new resource group.

This makes it easy to delete clusters and all the resources it uses.

5. Select the Location in which you want to create the cluster. If you are planning to use an existing

certificate that you have already uploaded to a key vault, You must use the same region that your Key

vault is in.

NOTE

Configure your cluster nodes. Node types define the VM sizes, the number of VMs, and their properties. Your

cluster can have more than one node type, but the primary node type (the first one that you define on the

portal) must have at least five VMs, as this is the node type where Service Fabric system services are placed. Do

not configure Placement Proper ties because a default placement property of "NodeTypeName" is added

automatically.

A common scenario for multiple node types is an application that contains a front-end service and a back-end service. You

want to put the front-end service on smaller VMs (VM sizes like D2_V2) with ports open to the Internet, and put the

back-end service on larger VMs (with VM sizes like D3_V2, D6_V2, D15_V2, and so on) with no Internet-facing ports

open.

1. Choose a name for your node type (1 to 12 characters containing only letters and numbers).

2. The minimum size of VMs for the primary node type is driven by the Durability tier you choose for the

cluster. The default for the durability tier is bronze. For more information on durability, see how to choose the

Service Fabric cluster durability.

3. Select the Vir tual machine size . D-series VMs have SSD drives and are highly recommended for stateful

applications. Do not use any VM SKU that has partial cores or have less than 10 GB of available disk capacity.

Refer to service fabric cluster planning consideration document for help in selecting the VM size.

4. S ingle node cluster and three node clusters are meant for test use only. They are not supported for any

running production workloads.

5. Choose the Initial v ir tual machine scale set capacity for the node type. You can scale in or out the

number of VMs in a node type later on, but on the primary node type, the minimum is five for production

workloads. Other node types can have a minimum of one VM. The minimum number of VMs for the

primary node type drives the reliability of your cluster.

6. Configure Custom endpoints . This field allows you to enter a comma-separated list of ports that you want

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-capacity
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-capacity

NOTE

 3. Security

 Basic Option

to expose through the Azure Load Balancer to the public Internet for your applications. For example, if you

plan to deploy a web application to your cluster, enter "80" here to allow traffic on port 80 into your cluster.

For more information on endpoints, see communicating with applications

7. Enable reverse proxy . The Service Fabric reverse proxy helps microservices running in a Service Fabric

cluster discover and communicate with other services that have http endpoints.

8. Back in the Cluster configuration blade, under +Show optional settings , configure cluster diagnostics .

By default, diagnostics are enabled on your cluster to assist with troubleshooting issues. If you want to

disable diagnostics change the Status toggle to Off . Turning off diagnostics is not recommended. If you

already have Application Insights project created, then give its key, so that the application traces are routed to

it.

9. Include DNS ser vice . The DNS service an optional service that enables you to find other services using the

DNS protocol.

10. Select the Fabric upgrade mode you want set your cluster to. Select Automatic, if you want the system to

automatically pick up the latest available version and try to upgrade your cluster to it. Set the mode to

Manual , if you want to choose a supported version. For more details on the Fabric upgrade mode see the

Service Fabric Cluster Upgrade document.

We support only clusters that are running supported versions of Service Fabric. By selecting the Manual mode, you are

taking on the responsibility to upgrade your cluster to a supported version.

To make setting up a secure test cluster easy for you, we have provided the Basic option. If you already have a

certificate and have uploaded it to your key vault (and enabled the key vault for deployment), then use the

Custom option

Follow the screens to add or reuse an existing key vault and add a certificate. The addition of the certificate is a

synchronous process and so you will have to wait for the certificate to be created.

Resist the temptation of navigating away from the screen until the preceding process is completed.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-and-communicate-with-services
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reverseproxy
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-dnsservice
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-upgrade
https://docs.microsoft.com/en-us/azure/key-vault/index

Now that the key vault is created, edit the access policies for your key vault.

Click on the Edit access policies , then Show advanced access policies and enable access to Azure Virtual

Machines for deployment. It is recommended that you enable the template deployment as well. Once you have

made your selections, do not forget to click the Save button and close out of the Access policies pane.

 Custom Option

Enter the name of the certificate and click OK.

Skip this section, if you have already performed the steps in the Basic Option.

You need the Source key vault, Certificate URL, and Certificate thumbprint information to complete the security

page. If you do not have it handy, open up another browser window and in the Azure portal do the following

1. Navigate to your key vault service.

2. Select the "Properties" tab and copy the 'RESOURCE ID' to "Source key vault" on the other browser

window

3. Now, select the "Certificates" tab.

4. Click on certificate thumbprint, which takes you to the Versions page.

5. Click on the GUIDs you see under the current Version.

6. You should now be on the screen like below. Copy the hexadecimal SHA-1 Thumbprint to "Certificate

thumbprint" on the other browser window

7. Copy the 'Secret Identifier' to the "Certificate URL" on other browser window.

 4. Summary

Check the Configure advanced settings box to enter client certificates for admin client and read-only

client. In these fields, enter the thumbprint of your admin client certificate and the thumbprint of your read-

only user client certificate, if applicable. When administrators attempt to connect to the cluster, they are granted

access only if they have a certificate with a thumbprint that matches the thumbprint values entered here.

Now you are ready to deploy the cluster. Before you do that, download the certificate, look inside the large blue

informational box for the link. Make sure to keep the cert in a safe place. you need it to connect to your cluster.

Since the certificate you downloaded does not have a password, it is advised that you add one.

To complete the cluster creation, click Create. You can optionally download the template.

 View your cluster status

You can see the creation progress in the notifications. (Click the "Bell" icon near the status bar at the upper right

of your screen.) If you clicked Pin to Star tboard while creating the cluster, you see Deploying Ser vice Fabric

Cluster pinned to the Star t board. This process will take some time.

In order to perform management operations on your cluster using PowerShell or CLI, you need to connect to

your cluster, read more on how to at connecting to your cluster.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-to-secure-cluster

NOTE

 Remote connect to a Virtual Machine Scale Set instance or a cluster
node

 Next steps

Once your cluster is created, you can inspect your cluster in the portal:

1. Go to Browse and click Ser vice Fabric Clusters .

2. Locate your cluster and click it.

3. You can now see the details of your cluster in the dashboard, including the cluster's public endpoint and a

link to Service Fabric Explorer.

The Node Monitor section on the cluster's dashboard blade indicates the number of VMs that are healthy and

not healthy. You can find more details about the cluster's health at Service Fabric health model introduction.

Service Fabric clusters require a certain number of nodes to be up always to maintain availability and preserve state -

referred to as "maintaining quorum". Therefore, it is typically not safe to shut down all machines in the cluster unless you

have first performed a full backup of your state.

Each of the NodeTypes you specify in your cluster results in a Virtual Machine Scale Set getting set-up.

At this point, you have a secure cluster using certificates for management authentication. Next, connect to your

cluster and learn how to manage application secrets. Also, learn about Service Fabric support options.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-backup-restore
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-to-secure-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-secret-management
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-support

Continuous deployment to Azure App Service
 5/26/2021 • 6 minutes to read • Edit Online

NOTE

 Prepare your repository

RUN T IM E RO OT DIREC TO RY F IL ES

ASP.NET (Windows only) *.sln, *.csproj, or default.aspx

ASP.NET Core *.sln or *.csproj

PHP index.php

Ruby (Linux only) Gemfile

Node.js server.js, app.js, or package.json with a start script

Python *.py, requirements.txt, or runtime.txt

HTML default.htm, default.html, default.asp, index.htm, index.html,
or iisstart.htm

WebJobs <job_name>/run.<extension> under
App_Data/jobs/continuous for continuous WebJobs, or
App_Data/jobs/triggered for triggered WebJobs. For more
information, see Kudu WebJobs documentation.

Functions See Continuous deployment for Azure Functions.

NOTE

Azure App Service enables continuous deployment from GitHub, BitBucket, and Azure Repos repositories by

pulling in the latest updates.

The Development Center (Classic) page in the Azure portal, an earlier version of the deployment experience, was

deprecated in March 2021. This change doesn't affect existing deployment settings in your app, and you can continue to

manage app deployment in the Deployment Center page in the portal.

To get automated builds from Azure App Service build server, make sure that your repository root has the

correct files in your project.

To customize your deployment, include a .deployment file in the repository root. For more information, see

Customize deployments and Custom deployment script.

If you develop in Visual Studio, let Visual Studio create a repository for you. The project is immediately ready to be

deployed by using Git.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/deploy-continuous-deployment.md
https://help.github.com/articles/create-a-repo
https://confluence.atlassian.com/get-started-with-bitbucket/create-a-repository-861178559.html
https://docs.microsoft.com/en-us/azure/devops/repos/git/creatingrepo
https://github.com/projectkudu/kudu/wiki/WebJobs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-continuous-deployment
https://github.com/projectkudu/kudu/wiki/Customizing-deployments
https://github.com/projectkudu/kudu/wiki/Custom-Deployment-Script
https://docs.microsoft.com/en-us/azure/devops/repos/git/creatingrepo?tabs=visual-studio

 Configure deployment source

1. In the Azure portal, navigate to the management page for your App Service app.

2. From the left menu, click Deployment Center > Settings .

3. In Source, select one of the CI/CD options.

Choose the tab that corresponds to your selection for the steps.

GitHub

BitBucket

Local Git

Azure Repos

NOTE

4. GitHub Actions is the default build provider. To change it, click Change provider > App Ser vice Build

Ser vice (Kudu) > OK.

To use Azure Pipelines as the build provider for your App Service app, don't configure it in App Service. Instead,

configure CI/CD directly from Azure Pipelines. The Azure Pipelines option just points you in the right direction.

5. If you're deploying from GitHub for the first time, click Authorize and follow the authorization prompts.

If you want to deploy from a different user's repository, click Change Account.

6. Once you authorize your Azure account with GitHub, select the Organization, Repositor y , and Branch

to configure CI/CD for. If you can’t find an organization or repository, you may need to enable additional

permissions on GitHub. For more information, see Managing access to your organization's repositories

7. When GitHub Actions is the chosen build provider, you can select the workflow file you want with the

Runtime stack and Version dropdowns. Azure commits this workflow file into your selected GitHub

repository to handle build and deploy tasks. To see the file before saving your changes, click Preview

file.

https://portal.azure.com
https://docs.github.com/organizations/managing-access-to-your-organizations-repositories

 Disable continuous deployment

 What happens to my app during deployment?

 How the GitHub Actions build provider works

NOTE
App Service detects the language stack setting of your app and selects the most appropriate workflow template. If

you choose a different template, it may deploy an app that doesn't run properly. For more information, see How

the GitHub Actions build provider works.

8. Click Save.

New commits in the selected repository and branch now deploy continuously into your App Service app.

You can track the commits and deployments in the Logs tab.

1. In the Azure portal, navigate to the management page for your App Service app.

2. From the left menu, click Deployment Center > Settings > Disconnect.

3. By default, the GitHub Actions workflow file is preserved in your repository, but it will continue to trigger

deployment to your app. To delete it from your repository, select Delete workflow file.

4. Click OK.

All the officially supported deployment methods make changes to the files in the /home/site/wwwroot folder of

your app. These files are used to run your app. Therefore, the deployment can fail because of locked files. The

app may also behave unpredictably during deployment, because not all the files updated at the same time. This

is undesirable for a customer-facing app. There are a few different ways to avoid these issues:

Run your app from the ZIP package directly without unpacking it.

Stop your app or enable offline mode for your app during deployment. For more information, see Deal with

locked files during deployment.

Deploy to a staging slot with auto swap enabled.

The GitHub Actions build provider is an option for CI/CD from GitHub, and does the following to set up CI/CD:

Deposits a GitHub Actions workflow file into your GitHub repository to handle build and deploy tasks to App

Service.

Adds the publishing profile for your app as a GitHub secret. The workflow file uses this secret to authenticate

with App Service.

Captures information from the workflow run logs and displays it in the Logs tab in your app's Deployment

https://docs.microsoft.com/en-us/azure/app-service/configure-common
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/app-service/deploy-run-package
https://github.com/projectkudu/kudu/wiki/Dealing-with-locked-files-during-deployment
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.github.com/actions/managing-workflow-runs/using-workflow-run-logs

 Authenticate with a service principal

 Deploy from other repositories

Center .

You can customize the GitHub Actions build provider in the following ways:

Customize the workflow file after it's generated in your GitHub repository. For more information, see

Workflow syntax for GitHub Actions. Just make sure that the workflow deploys to App Service with the

azure/webapps-deploy action.

If the selected branch is protected, you can still preview the workflow file without saving the configuration,

then manually add it into your repository. This method doesn't give you the log integration with the Azure

portal.

Instead of a publishing profile, deploy using a service principal in Azure Active Directory.

This optional configuration replaces the default authentication with publishing profiles in the generated

workflow file.

az ad sp create-for-rbac --name "myAppDeployAuth" --role contributor \
 --scopes /subscriptions/<subscription-id>/resourceGroups/<group-
name>/providers/Microsoft.Web/sites/<app-name> \
 --sdk-auth

IMPORTANT

- name: Sign in to Azure
Use the GitHub secret you added
- uses: azure/login@v1
 with:
 creds: ${{ secrets.AZURE_CREDENTIALS }}
- name: Deploy to Azure Web App
Remove publish-profile
- uses: azure/webapps-deploy@v2
 with:
 app-name: '<app-name>'
 slot-name: 'production'
 package: .
- name: Sign out of Azure
 run: |
 az logout

1. Generate a service principal with the az ad sp create-for-rbac command in the Azure CLI. In the following

example, replace <subscription-id>, <group-name>, and <app-name> with your own values:

For security, grant the minimum required access to the service principal. The scope in the previous example is

limited to the specific App Service app and not the entire resource group.

2. Save the entire JSON output for the next step, including the top-level {} .

3. In GitHub, browse your repository, select Settings > Secrets > Add a new secret.

4. Paste the entire JSON output from the Azure CLI command into the secret's value field. Give the secret a

name like AZURE_CREDENTIALS .

5. In the workflow file generated by the Deployment Center , revise the azure/webapps-deploy step with

code like the following example (which is modified from a Node.js workflow file):

https://docs.github.com/actions/reference/workflow-syntax-for-github-actions
https://github.com/Azure/webapps-deploy
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/cli/azure/ad/sp#az_ad_sp_create_for_rbac
https://docs.microsoft.com/en-us/cli/azure/
https://github.com/

 More resources

For Windows apps, you can manually configure continuous deployment from a cloud Git or Mercurial

repository that the portal doesn't directly support, such as GitLab. You do it by choosing External Git in the

Source dropdown. For more information, see Set up continuous deployment using manual steps.

Deploy from Azure Pipelines to Azure App Services

Investigate common issues with continuous deployment

Use Azure PowerShell

Project Kudu

https://gitlab.com/
https://github.com/projectkudu/kudu/wiki/Continuous-deployment#setting-up-continuous-deployment-using-manual-steps
https://docs.microsoft.com/en-us/azure/devops/pipelines/apps/cd/deploy-webdeploy-webapps
https://github.com/projectkudu/kudu/wiki/Investigating-continuous-deployment
https://docs.microsoft.com/en-us/powershell/azure/
https://github.com/projectkudu/kudu/wiki

Deploy and remove applications using PowerShell
 3/5/2021 • 11 minutes to read • Edit Online

NOTE

 Connect to the cluster

Connect-ServiceFabricCluster

Once an application type has been packaged, it's ready for deployment into an Azure Service Fabric cluster.

Deployment involves the following three steps:

1. Upload the application package to the image store.

2. Register the application type with image store relative path.

3. Create the application instance.

Once the deployed application is no longer required, you can delete the application instance and its application

type. To completely remove an application from the cluster involves the following steps:

1. Remove (or delete) the running application instance.

2. Unregister the application type if you no longer need it.

3. Remove the application package from the image store.

If you use Visual Studio for deploying and debugging applications on your local development cluster, all the

preceding steps are handled automatically through a PowerShell script. This script is found in the Scripts folder

of the application project. This article provides background on what that script is doing so that you can perform

the same operations outside of Visual Studio.

Another way to deploy an application is by using external provision. The application package can be packaged as

sfpkg and uploaded to an external store. In this case, upload to the image store is not needed. Deployment

needs the following steps:

1. Upload the sfpkg to an external store. The external store can be any store that exposes a REST http or https

endpoint.

2. Register the application type using the external download URI and the application type information.

3. Create the application instance.

For cleanup, remove the application instances and unregister the application type. Because the package was not

copied to the image store, there is no temporary location to cleanup. Provisioning from external store is

available starting with Service Fabric version 6.1.

Visual Studio does not currently support external provision.

Before you run any PowerShell commands in this article, always start by using Connect-ServiceFabricCluster to

connect to the Service Fabric cluster. To connect to the local development cluster, run the following:

For examples of connecting to a remote cluster or cluster secured using Azure Active Directory, X509

certificates, or Windows Active Directory see Connect to a secure cluster.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-deploy-remove-applications.md
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/en-us/powershell/module/servicefabric/connect-servicefabriccluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-connect-to-secure-cluster

 Upload the application package

$path = 'C:\Users\<user\>\Documents\Visual Studio 2015\Projects\MyApplication\MyApplication\pkg\Debug'
tree /f $path

Folder PATH listing for volume OSDisk
Volume serial number is 0459-2393
C:\USERS\USER\DOCUMENTS\VISUAL STUDIO 2015\PROJECTS\MYAPPLICATION\MYAPPLICATION\PKG\DEBUG
│ ApplicationManifest.xml
│
└───Stateless1Pkg
 │ ServiceManifest.xml
 │
 ├───Code
 │ Microsoft.ServiceFabric.Data.dll
 │ Microsoft.ServiceFabric.Data.Interfaces.dll
 │ Microsoft.ServiceFabric.Internal.dll
 │ Microsoft.ServiceFabric.Internal.Strings.dll
 │ Microsoft.ServiceFabric.Services.dll
 │ ServiceFabricServiceModel.dll
 │ Stateless1.exe
 │ Stateless1.exe.config
 │ Stateless1.pdb
 │ System.Fabric.dll
 │ System.Fabric.Strings.dll
 │
 └───Config
 Settings.xml

Copy-ServiceFabricApplicationPackage -ApplicationPackagePath $path -CompressPackage -SkipCopy
tree /f $path

Uploading the application package puts it in a location that's accessible by internal Service Fabric components. If

you want to verify the application package locally, use the Test-ServiceFabricApplicationPackage cmdlet.

The Copy-ServiceFabricApplicationPackage command uploads the application package to the cluster image

store.

Suppose you build and package an application named MyApplication in Visual Studio 2015. By default, the

application type name listed in the ApplicationManifest.xml is "MyApplicationType". The application package,

which contains the necessary application manifest, service manifests, and code/config/data packages, is located

in C:\Users<username>\Documents\Visual Studio 2015\Projects\MyApplication\MyApplication\pkg\Debug.

The following command lists the contents of the application package:

If the application package is large and/or has many files, you can compress it. The compression reduces the size

and the number of files. This results in faster registering and unregistering of the application type. Upload time

may be slower currently, especially if you include the time to compress the package.

To compress a package, use the same Copy-ServiceFabricApplicationPackage command. Compression can be

done separate from upload, by using the SkipCopy flag, or together with the upload operation. Applying

compression on a compressed package is no-op. To uncompress a compressed package, use the same Copy-

ServiceFabricApplicationPackage command with the UncompressPackage switch.

The following cmdlet compresses the package without copying it to the image store. The package now includes

zipped files for the Code and Config packages. The application and the service manifests are not zipped,

because they are needed for many internal operations (like package sharing, application type name and version

extraction for certain validations). Zipping the manifests would make these operations inefficient.

https://docs.microsoft.com/en-us/powershell/module/servicefabric/test-servicefabricapplicationpackage
https://docs.microsoft.com/en-us/powershell/module/servicefabric/copy-servicefabricapplicationpackage
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/en-us/powershell/module/servicefabric/copy-servicefabricapplicationpackage
https://docs.microsoft.com/en-us/powershell/module/servicefabric/copy-servicefabricapplicationpackage

Folder PATH listing for volume OSDisk
Volume serial number is 0459-2393
C:\USERS\USER\DOCUMENTS\VISUAL STUDIO 2015\PROJECTS\MYAPPLICATION\MYAPPLICATION\PKG\DEBUG
| ApplicationManifest.xml
|
└───Stateless1Pkg
 Code.zip
 Config.zip
 ServiceManifest.xml

IN IT IA L SIZ E (M B) F IL E C O UN T C O M P RESSIO N T IM E
C O M P RESSED PA C KA GE
SIZ E (M B)

100 100 00:00:03.3547592 60

512 100 00:00:16.3850303 307

1024 500 00:00:32.5907950 615

2048 1000 00:01:04.3775554 1231

5012 100 00:02:45.2951288 3074

Copy-ServiceFabricApplicationPackage -ApplicationPackagePath $path -ApplicationPackagePathInImageStore
MyApplicationV1 -TimeoutSec 1800

For large application packages, the compression takes time. For best results, use a fast SSD drive. The

compression times and the size of the compressed package also differ based on the package content. For

example, here is compression statistics for some packages, which show the initial and the compressed package

size, with the compression time.

Once a package is compressed, it can be uploaded to one or multiple Service Fabric clusters as needed. The

deployment mechanism is the same for compressed and uncompressed packages. Compressed packages are

stored as such in the cluster image store. The packages are uncompressed on the node, before the application is

run.

The following example uploads the package to the image store, into a folder named "MyApplicationV1":

If you do not specify the -ApplicationPackagePathInImageStore parameter, the application package is copied into

the "Debug" folder in the image store.

NOTE

PS C:\> Copy-ServiceFabricApplicationPackage -ApplicationPackagePath $path -
ApplicationPackagePathInImageStore MyApplicationV1 -ImageStoreConnectionString (Get-
ImageStoreConnectionStringFromClusterManifest(Get-ServiceFabricClusterManifest)) -TimeoutSec 1800

Import-Module "$ENV:ProgramFiles\Microsoft SDKs\Service
Fabric\Tools\PSModule\ServiceFabricSDK\ServiceFabricSDK.psm1"

 Register the application package

 Register the application package copied to image store

Register-ServiceFabricApplicationType -ApplicationPathInImageStore MyApplicationV1

Register application type succeeded

 Register the application package copied to an external store

Copy-Ser viceFabricApplicationPackage will automatically detect the appropriate image store connection string if the

PowerShell session is connected to a Service Fabric cluster. For Service Fabric versions older than 5.6, the -

ImageStoreConnectionString argument must be explicitly provided.

The Get-ImageStoreConnectionStringFromClusterManifest cmdlet, which is part of the Service Fabric SDK

PowerShell module, is used to get the image store connection string. To import the SDK module, run:

See Understand the image store connection string for supplementary information about the image store and image store

connection string.

The time it takes to upload a package differs depending on multiple factors. Some of these factors are the

number of files in the package, the package size, and the file sizes. The network speed between the source

machine and the Service Fabric cluster also impacts the upload time. The default timeout for Copy-

ServiceFabricApplicationPackage is 30 minutes. Depending on the described factors, you may have to increase

the timeout. If you are compressing the package in the copy call, you need to also consider the compression

time.

The application type and version declared in the application manifest become available for use when the

application package is registered. The system reads the package uploaded in the previous step, verifies the

package, processes the package contents, and copies the processed package to an internal system location.

Run the Register-ServiceFabricApplicationType cmdlet to register the application type in the cluster and make it

available for deployment:

When a package was previously copied to the image store, the register operation specifies the relative path in

the image store.

"MyApplicationV1" is the folder in the image store where the application package is located. The application type

with name "MyApplicationType" and version "1.0.0" (both are found in the application manifest) is now

registered in the cluster.

Starting with Service Fabric version 6.1, provision supports downloading the package from an external store.

The download URI represents the path to the sfpkg application package from where the application package

can be downloaded using HTTP or HTTPS protocols. The package must have been previously uploaded to this

external location. The URI must allow READ access so Service Fabric can download the file. The sfpkg file must

have the extension ".sfpkg". The provision operation should include the application type information, as found in

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-image-store-connection-string
https://docs.microsoft.com/en-us/powershell/module/servicefabric/copy-servicefabricapplicationpackage
https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps

Register-ServiceFabricApplicationType -ApplicationPackageDownloadUri
"https://sftestresources.blob.core.windows.net:443/sfpkgholder/MyAppPackage.sfpkg" -ApplicationTypeName
MyApp -ApplicationTypeVersion V1 -Async

Get-ServiceFabricApplicationType

ApplicationTypeName : MyApplicationType
ApplicationTypeVersion : 1.0.0
Status : Available
DefaultParameters : { "Stateless1_InstanceCount" = "-1" }

 Remove an application package from the image store

Remove-ServiceFabricApplicationPackage -ApplicationPackagePathInImageStore MyApplicationV1

 Create the application

New-ServiceFabricApplication fabric:/MyApp MyApplicationType 1.0.0

ApplicationName : fabric:/MyApp
ApplicationTypeName : MyApplicationType
ApplicationTypeVersion : 1.0.0
ApplicationParameters : {}

the application manifest.

The Register-ServiceFabricApplicationType command returns only after the system has successfully registered

the application package. How long registration takes depends on the size and contents of the application

package. If needed, the -TimeoutSec parameter can be used to supply a longer timeout (the default timeout is

60 seconds).

If you have a large application package or if you are experiencing timeouts, use the -Async parameter. The

command returns when the cluster accepts the register command. The register operation continues as needed.

The Get-ServiceFabricApplicationType command lists the application type versions and their registration status.

You can use this command to determine when the registration is done.

If a package was copied to the image store, you should remove it from the temporary location after the

application is successfully registered. Deleting application packages from the image store frees up system

resources. Keeping unused application packages consumes disk storage and leads to application performance

issues.

You can instantiate an application from any application type version that has been registered successfully by

using the New-ServiceFabricApplication cmdlet. The name of each application must start with the "fabric:"

scheme and must be unique for each application instance. Any default services defined in the application

manifest of the target application type are also created.

Multiple application instances can be created for any given version of a registered application type. Each

application instance runs in isolation, with its own work directory and process.

To see which named apps and services are running in the cluster, run the Get-ServiceFabricApplication and Get-

ServiceFabricService cmdlets:

https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/new-servicefabricapplication
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricapplication
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricservice

Get-ServiceFabricApplication

ApplicationName : fabric:/MyApp
ApplicationTypeName : MyApplicationType
ApplicationTypeVersion : 1.0.0
ApplicationStatus : Ready
HealthState : Ok
ApplicationParameters : {}

Get-ServiceFabricApplication | Get-ServiceFabricService

ServiceName : fabric:/MyApp/Stateless1
ServiceKind : Stateless
ServiceTypeName : Stateless1Type
IsServiceGroup : False
ServiceManifestVersion : 1.0.0
ServiceStatus : Active
HealthState : Ok

 Remove an application

WARNING

Remove-ServiceFabricApplication fabric:/MyApp

Confirm
Continue with this operation?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):
Remove application instance succeeded

Get-ServiceFabricApplication

 Unregister an application type

When an application instance is no longer needed, you can permanently remove it by name using the Remove-

ServiceFabricApplication cmdlet. Remove-ServiceFabricApplication automatically removes all services that

belong to the application as well, permanently removing all service state.

This operation cannot be reversed, and application state cannot be recovered.

When a particular version of an application type is no longer needed, you should unregister the application type

using the Unregister-ServiceFabricApplicationType cmdlet. Unregistering unused application types releases

storage space used by the image store by removing the application type files. Unregistering an application type

does not remove the application package copied to the image store temporary location, if copy to the image

store was used. An application type can be unregistered as long as no applications are instantiated against it and

no pending application upgrades are referencing it.

Run Get-ServiceFabricApplicationType to see the application types currently registered in the cluster :

https://docs.microsoft.com/en-us/powershell/module/servicefabric/remove-servicefabricapplication
https://docs.microsoft.com/en-us/powershell/module/servicefabric/remove-servicefabricapplication
https://docs.microsoft.com/en-us/powershell/module/servicefabric/unregister-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricapplicationtype

Get-ServiceFabricApplicationType

ApplicationTypeName : MyApplicationType
ApplicationTypeVersion : 1.0.0
Status : Available
DefaultParameters : { "Stateless1_InstanceCount" = "-1" }

Unregister-ServiceFabricApplicationType MyApplicationType 1.0.0

 Troubleshooting
 Copy-ServiceFabricApplicationPackage asks for an ImageStoreConnectionString

Get-ImageStoreConnectionStringFromClusterManifest(Get-ServiceFabricClusterManifest)

Import-Module "$ENV:ProgramFiles\Microsoft SDKs\Service
Fabric\Tools\PSModule\ServiceFabricSDK\ServiceFabricSDK.psm1"

<ClusterManifest xmlns:xsd="https://www.w3.org/2001/XMLSchema" xmlns:xsi="https://www.w3.org/2001/XMLSchema-
instance" Name="Server-Default-SingleNode" Version="1.0"
xmlns="http://schemas.microsoft.com/2011/01/fabric">

 [...]

 <Section Name="Management">
 <Parameter Name="ImageStoreConnectionString" Value="file:D:\ServiceFabric\Data\ImageStore" />
 </Section>

 [...]

 Deploy large application package

Run Unregister-ServiceFabricApplicationType to unregister a specific application type:

The Service Fabric SDK environment should already have the correct defaults set up. But if needed, the

ImageStoreConnectionString for all commands should match the value that the Service Fabric cluster is using.

You can find the ImageStoreConnectionString in the cluster manifest, retrieved using the Get-

ServiceFabricClusterManifest and Get-ImageStoreConnectionStringFromClusterManifest commands:

The Get-ImageStoreConnectionStr ingFromClusterManifest cmdlet, which is part of the Service Fabric

SDK PowerShell module, is used to get the image store connection string. To import the SDK module, run:

The ImageStoreConnectionString is found in the cluster manifest:

See Understand the image store connection string for supplementary information about the image store and

image store connection string.

Issue: Copy-ServiceFabricApplicationPackage times out for a large application package (order of GB). Try:

Specify a larger timeout for Copy-ServiceFabricApplicationPackage command, with TimeoutSec parameter.

By default, the timeout is 30 minutes.

Check the network connection between your source machine and cluster. If the connection is slow, consider

using a machine with a better network connection. If the client machine is in another region than the cluster,

consider using a client machine in a closer or same region as the cluster.

https://docs.microsoft.com/en-us/powershell/module/servicefabric/unregister-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricclustermanifest
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-image-store-connection-string
https://docs.microsoft.com/en-us/powershell/module/servicefabric/copy-servicefabricapplicationpackage
https://docs.microsoft.com/en-us/powershell/module/servicefabric/copy-servicefabricapplicationpackage

Get-ServiceFabricApplicationType

ApplicationTypeName : MyApplicationType
ApplicationTypeVersion : 1.0.0
Status : Available
DefaultParameters : { "Stateless1_InstanceCount" = "-1" }

 Deploy application package with many files

Get-ServiceFabricApplicationType

ApplicationTypeName : MyApplicationType
ApplicationTypeVersion : 1.0.0
Status : Available
DefaultParameters : { "Stateless1_InstanceCount" = "-1" }

 Next steps

Check if you are hitting external throttling. For example, when the image store is configured to use azure

storage, upload may be throttled.

Issue: Upload package completed successfully, but Register-ServiceFabricApplicationType times out. Try:

Compress the package before copying to the image store. The compression reduces the size and the number

of files, which in turn reduces the amount of traffic and work that Service Fabric must perform. The upload

operation may be slower (especially if you include the compression time), but register and un-register the

application type are faster.

Specify a larger timeout for Register-ServiceFabricApplicationType with TimeoutSec parameter.

Specify Async switch for Register-ServiceFabricApplicationType. The command returns when the cluster

accepts the command and the registration of the application type continues asynchronously. For this reason,

there is no need to specify a higher timeout in this case. The Get-ServiceFabricApplicationType command lists

all successfully registered application type versions and their registration status. You can use this command

to determine when the registration is done.

Issue: Register-ServiceFabricApplicationType times out for an application package with many files (order of

thousands). Try:

Compress the package before copying to the image store. The compression reduces the number of files.

Specify a larger timeout for Register-ServiceFabricApplicationType with TimeoutSec parameter.

Specify Async switch for Register-ServiceFabricApplicationType. The command returns when the cluster

accepts the command and the registration of the application type continues asynchronously. For this reason,

there is no need to specify a higher timeout in this case. The Get-ServiceFabricApplicationType command lists

all successfully registered application type versions and their registration status. You can use this command

to determine when the registration is done.

Package an application

Service Fabric application upgrade

Service Fabric health introduction

Diagnose and troubleshoot a Service Fabric service

https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/register-servicefabricapplicationtype
https://docs.microsoft.com/en-us/powershell/module/servicefabric/get-servicefabricapplicationtype
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-upgrade
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-how-to-monitor-and-diagnose-services-locally

Model an application in Service Fabric

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model

Tutorial: Create and Manage Linux VMs with the
Azure CLI

 4/22/2021 • 8 minutes to read • Edit Online

 Create resource group

az group create --name myResourceGroupVM --location eastus

 Create virtual machine

az vm create \
 --resource-group myResourceGroupVM \
 --name myVM \
 --image UbuntuLTS \
 --admin-username azureuser \
 --generate-ssh-keys

Azure virtual machines provide a fully configurable and flexible computing environment. This tutorial covers

basic Azure virtual machine deployment items such as selecting a VM size, selecting a VM image, and deploying

a VM. You learn how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

This tutorial uses the CLI within the Azure Cloud Shell, which is constantly updated to the latest version. To open

the Cloud Shell, select Tr y it from the top of any code block.

If you choose to install and use the CLI locally, this tutorial requires that you are running the Azure CLI version

2.0.30 or later. Run az --version to find the version. If you need to install or upgrade, see Install Azure CLI.

Create a resource group with the az group create command.

An Azure resource group is a logical container into which Azure resources are deployed and managed. A

resource group must be created before a virtual machine. In this example, a resource group named

myResourceGroupVM is created in the eastus region.

The resource group is specified when creating or modifying a VM, which can be seen throughout this tutorial.

Create a virtual machine with the az vm create command.

When you create a virtual machine, several options are available such as operating system image, disk sizing,

and administrative credentials. The following example creates a VM named myVM that runs Ubuntu Server. A

user account named azureuser is created on the VM, and SSH keys are generated if they do not exist in the

default key location (~/.ssh):

It may take a few minutes to create the VM. Once the VM has been created, the Azure CLI outputs information

about the VM. Take note of the publicIpAddress , this address can be used to access the virtual machine..

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/linux/tutorial-manage-vm.md
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/group
https://docs.microsoft.com/en-us/cli/azure/vm

{
 "fqdns": "",
 "id": "/subscriptions/d5b9d4b7-6fc1-0000-0000-
000000000000/resourceGroups/myResourceGroupVM/providers/Microsoft.Compute/virtualMachines/myVM",
 "location": "eastus",
 "macAddress": "00-0D-3A-23-9A-49",
 "powerState": "VM running",
 "privateIpAddress": "10.0.0.4",
 "publicIpAddress": "52.174.34.95",
 "resourceGroup": "myResourceGroupVM"
}

 Connect to VM

ssh azureuser@52.174.34.95

exit

 Understand VM images

az vm image list --output table

You can now connect to the VM with SSH in the Azure Cloud Shell or from your local computer. Replace the

example IP address with the publicIpAddress noted in the previous step.

Once logged in to the VM, you can install and configure applications. When you are finished, you close the SSH

session as normal:

The Azure marketplace includes many images that can be used to create VMs. In the previous steps, a virtual

machine was created using an Ubuntu image. In this step, the Azure CLI is used to search the marketplace for a

CentOS image, which is then used to deploy a second virtual machine.

To see a list of the most commonly used images, use the az vm image list command.

The command output returns the most popular VM images on Azure.

https://docs.microsoft.com/en-us/cli/azure/vm/image

Offer Publisher Sku Urn
UrnAlias Version
------------- ---------------------- ------------------ ---
------------- ------------------- ---------
WindowsServer MicrosoftWindowsServer 2016-Datacenter MicrosoftWindowsServer:WindowsServer:2016-
Datacenter:latest Win2016Datacenter latest
WindowsServer MicrosoftWindowsServer 2012-R2-Datacenter MicrosoftWindowsServer:WindowsServer:2012-R2-
Datacenter:latest Win2012R2Datacenter latest
WindowsServer MicrosoftWindowsServer 2008-R2-SP1 MicrosoftWindowsServer:WindowsServer:2008-R2-
SP1:latest Win2008R2SP1 latest
WindowsServer MicrosoftWindowsServer 2012-Datacenter MicrosoftWindowsServer:WindowsServer:2012-
Datacenter:latest Win2012Datacenter latest
UbuntuServer Canonical 16.04-LTS Canonical:UbuntuServer:16.04-LTS:latest
UbuntuLTS latest
CentOS OpenLogic 7.3 OpenLogic:CentOS:7.3:latest
CentOS latest
openSUSE-Leap SUSE 42.2 SUSE:openSUSE-Leap:42.2:latest
openSUSE-Leap latest
RHEL RedHat 7.3 RedHat:RHEL:7.3:latest
RHEL latest
SLES SUSE 12-SP2 SUSE:SLES:12-SP2:latest
SLES latest
Debian credativ 8 credativ:Debian:8:latest
Debian latest
CoreOS CoreOS Stable CoreOS:CoreOS:Stable:latest
CoreOS latest

az vm image list --offer CentOS --all --output table

Offer Publisher Sku Urn Version
---------------- ---------------- ---- -------------------------------------- -----------
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.201501 6.5.201501
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.201503 6.5.201503
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.201506 6.5.201506
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.20150904 6.5.20150904
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.20160309 6.5.20160309
CentOS OpenLogic 6.5 OpenLogic:CentOS:6.5:6.5.20170207 6.5.20170207

az vm create --resource-group myResourceGroupVM --name myVM2 --image OpenLogic:CentOS:6.5:latest --generate-
ssh-keys

 Understand VM sizes

 VM Sizes

A full list can be seen by adding the --all argument. The image list can also be filtered by --publisher or

–-offer . In this example, the list is filtered for all images with an offer that matches CentOS.

Partial output:

To deploy a VM using a specific image, take note of the value in the Urn column, which consists of the publisher,

offer, SKU, and optionally a version number to identify the image. When specifying the image, the image version

number can be replaced with “latest”, which selects the latest version of the distribution. In this example, the

--image argument is used to specify the latest version of a CentOS 6.5 image.

A virtual machine size determines the amount of compute resources such as CPU, GPU, and memory that are

made available to the virtual machine. Virtual machines need to be sized appropriately for the expected work

load. If workload increases, an existing virtual machine can be resized.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/cli-ps-findimage

T Y P E C O M M O N SIZ ES DESC RIP T IO N

General purpose B, Dsv3, Dv3, DSv2, Dv2, Av2, DC Balanced CPU-to-memory. Ideal for
dev / test and small to medium
applications and data solutions.

Compute optimized Fsv2 High CPU-to-memory. Good for
medium traffic applications, network
appliances, and batch processes.

Memory optimized Esv3, Ev3, M, DSv2, Dv2 High memory-to-core. Great for
relational databases, medium to large
caches, and in-memory analytics.

Storage optimized Lsv2, Ls High disk throughput and IO. Ideal for
Big Data, SQL, and NoSQL databases.

GPU NV, NVv2, NC, NCv2, NCv3, ND Specialized VMs targeted for heavy
graphic rendering and video editing.

High performance H Our most powerful CPU VMs with
optional high-throughput network
interfaces (RDMA).

 Find available VM sizes

az vm list-sizes --location eastus --output table

The following table categorizes sizes into use cases.

To see a list of VM sizes available in a particular region, use the az vm list-sizes command.

Partial output:

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://docs.microsoft.com/en-us/cli/azure/vm

 MaxDataDiskCount MemoryInMb Name NumberOfCores OsDiskSizeInMb
ResourceDiskSizeInMb
------------------ ------------ ---------------------- --------------- ---------------- ---------------

 2 3584 Standard_DS1 1 1047552
7168
 4 7168 Standard_DS2 2 1047552
14336
 8 14336 Standard_DS3 4 1047552
28672
 16 28672 Standard_DS4 8 1047552
57344
 4 14336 Standard_DS11 2 1047552
28672
 8 28672 Standard_DS12 4 1047552
57344
 16 57344 Standard_DS13 8 1047552
114688
 32 114688 Standard_DS14 16 1047552
229376
 1 768 Standard_A0 1 1047552
20480
 2 1792 Standard_A1 1 1047552
71680
 4 3584 Standard_A2 2 1047552
138240
 8 7168 Standard_A3 4 1047552
291840
 4 14336 Standard_A5 2 1047552
138240
 16 14336 Standard_A4 8 1047552
619520
 8 28672 Standard_A6 4 1047552
291840
 16 57344 Standard_A7 8 1047552
619520

 Create VM with specific size

az vm create \
 --resource-group myResourceGroupVM \
 --name myVM3 \
 --image UbuntuLTS \
 --size Standard_F4s \
 --generate-ssh-keys

 Resize a VM

az vm show --resource-group myResourceGroupVM --name myVM --query hardwareProfile.vmSize

az vm list-vm-resize-options --resource-group myResourceGroupVM --name myVM --query [].name

In the previous VM creation example, a size was not provided, which results in a default size. A VM size can be

selected at creation time using az vm create and the --size argument.

After a VM has been deployed, it can be resized to increase or decrease resource allocation. You can view the

current of size of a VM with az vm show:

Before resizing a VM, check if the desired size is available on the current Azure cluster. The az vm list-vm-resize-

options command returns the list of sizes.

https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm

az vm resize --resource-group myResourceGroupVM --name myVM --size Standard_DS4_v2

az vm deallocate --resource-group myResourceGroupVM --name myVM

az vm resize --resource-group myResourceGroupVM --name myVM --size Standard_GS1

az vm start --resource-group myResourceGroupVM --name myVM

 VM power states

 Power states

P O W ER STAT E DESC RIP T IO N

Starting Indicates the virtual machine is being started.

Running Indicates that the virtual machine is running.

Stopping Indicates that the virtual machine is being stopped.

Stopped Indicates that the virtual machine is stopped. Virtual
machines in the stopped state still incur compute charges.

Deallocating Indicates that the virtual machine is being deallocated.

Deallocated Indicates that the virtual machine is removed from the
hypervisor but still available in the control plane. Virtual
machines in the Deallocated state do not incur compute
charges.

- Indicates that the power state of the virtual machine is
unknown.

 Find the power state

If the desired size is available, the VM can be resized from a powered-on state, however it is rebooted during the

operation. Use the az vm resize command to perform the resize.

If the desired size is not on the current cluster, the VM needs to be deallocated before the resize operation can

occur. Use the az vm deallocate command to stop and deallocate the VM. Note, when the VM is powered back

on, any data on the temp disk may be removed. The public IP address also changes unless a static IP address is

being used.

Once deallocated, the resize can occur.

After the resize, the VM can be started.

An Azure VM can have one of many power states. This state represents the current state of the VM from the

standpoint of the hypervisor.

To retrieve the state of a particular VM, use the az vm get-instance-view command. Be sure to specify a valid

name for a virtual machine and resource group.

https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm
https://docs.microsoft.com/en-us/cli/azure/vm

az vm get-instance-view \
 --name myVM \
 --resource-group myResourceGroupVM \
 --query instanceView.statuses[1] --output table

ode DisplayStatus Level
------------------ --------------- -------
PowerState/running VM running Info

 Management tasks

 Get IP address

az vm list-ip-addresses --resource-group myResourceGroupVM --name myVM --output table

 Stop virtual machine

az vm stop --resource-group myResourceGroupVM --name myVM

 Start virtual machine

az vm start --resource-group myResourceGroupVM --name myVM

 Delete resource group

az group delete --name myResourceGroupVM --no-wait --yes

 Next steps

Output:

To retrieve the power state of all the VMs in your subscription, use the Virtual Machines - List All API with

parameter statusOnly set to true.

During the life-cycle of a virtual machine, you may want to run management tasks such as starting, stopping, or

deleting a virtual machine. Additionally, you may want to create scripts to automate repetitive or complex tasks.

Using the Azure CLI, many common management tasks can be run from the command line or in scripts.

This command returns the private and public IP addresses of a virtual machine.

Deleting a resource group also deletes all resources contained within, such as the VM, virtual network, and disk.

The --no-wait parameter returns control to the prompt without waiting for the operation to complete. The

--yes parameter confirms that you wish to delete the resources without an additional prompt to do so.

In this tutorial, you learned about basic VM creation and management such as how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

Advance to the next tutorial to learn about VM disks.

https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines/listall

Create and Manage VM disks

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-manage-disks

Tutorial: Create and Manage Windows VMs with
Azure PowerShell

 3/10/2021 • 7 minutes to read • Edit Online

 Launch Azure Cloud Shell

 Create resource group

New-AzResourceGroup `
 -ResourceGroupName "myResourceGroupVM" `
 -Location "EastUS"

 Create a VM

$cred = Get-Credential

Azure virtual machines provide a fully configurable and flexible computing environment. This tutorial covers

basic Azure virtual machine (VM) deployment tasks like selecting a VM size, selecting a VM image, and

deploying a VM. You learn how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

The Azure Cloud Shell is a free interactive shell that you can use to run the steps in this article. It has common

Azure tools preinstalled and configured to use with your account.

To open the Cloud Shell, just select Tr y it from the upper right corner of a code block. You can also launch Cloud

Shell in a separate browser tab by going to https://shell.azure.com/powershell. Select Copy to copy the blocks

of code, paste it into the Cloud Shell, and press enter to run it.

Create a resource group with the New-AzResourceGroup command.

An Azure resource group is a logical container into which Azure resources are deployed and managed. A

resource group must be created before a virtual machine. In the following example, a resource group named

myResourceGroupVM is created in the EastUS region:

The resource group is specified when creating or modifying a VM, which can be seen throughout this tutorial.

When creating a VM, several options are available like operating system image, network configuration, and

administrative credentials. This example creates a VM named myVM, running the default version of Windows

Server 2016 Datacenter.

Set the username and password needed for the administrator account on the VM with Get-Credential:

Create the VM with New-AzVM.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/tutorial-manage-vm.md
https://shell.azure.com/powershell
https://docs.microsoft.com/en-us/powershell/module/az.resources/new-azresourcegroup
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-credential
https://docs.microsoft.com/en-us/powershell/module/az.compute/new-azvm

New-AzVm `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" `
 -Location "EastUS" `
 -VirtualNetworkName "myVnet" `
 -SubnetName "mySubnet" `
 -SecurityGroupName "myNetworkSecurityGroup" `
 -PublicIpAddressName "myPublicIpAddress" `
 -Credential $cred

 Connect to VM

Get-AzPublicIpAddress `
 -ResourceGroupName "myResourceGroupVM" | Select IpAddress

mstsc /v:<publicIpAddress>

 Understand marketplace images

Get-AzVMImagePublisher -Location "EastUS"

Get-AzVMImageOffer `
 -Location "EastUS" `
 -PublisherName "MicrosoftWindowsServer"

After the deployment has completed, create a remote desktop connection with the VM.

Run the following commands to return the public IP address of the VM. Take note of this IP Address so you can

connect to it with your browser to test web connectivity in a future step.

Use the following command, on your local machine, to create a remote desktop session with the VM. Replace

the IP address with the publicIPAddress of your VM. When prompted, enter the credentials used when creating

the VM.

In the Windows Security window, select More choices and then Use a different account. Type the

username and password you created for the VM and then click OK.

The Azure marketplace includes many images that can be used to create a new VM. In the previous steps, a VM

was created using the Windows Server 2016 Datacenter image. In this step, the PowerShell module is used to

search the marketplace for other Windows images, which can also be used as a base for new VMs. This process

consists of finding the publisher, offer, SKU, and optionally a version number to identify the image.

Use the Get-AzVMImagePublisher command to return a list of image publishers:

Use the Get-AzVMImageOffer to return a list of image offers. With this command, the returned list is filtered on

the specified publisher named MicrosoftWindowsServer :

The results will look something like this example:

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/cli-ps-findimage
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimagepublisher
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimageoffer

Offer PublisherName Location
----- ------------- --------
Windows-HUB MicrosoftWindowsServer EastUS
WindowsServer MicrosoftWindowsServer EastUS
WindowsServer-HUB MicrosoftWindowsServer EastUS

Get-AzVMImageSku `
 -Location "EastUS" `
 -PublisherName "MicrosoftWindowsServer" `
 -Offer "WindowsServer"

Skus Offer PublisherName Location
---- ----- ------------- --------
2008-R2-SP1 WindowsServer MicrosoftWindowsServer EastUS
2008-R2-SP1-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2012-Datacenter WindowsServer MicrosoftWindowsServer EastUS
2012-Datacenter-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2012-R2-Datacenter WindowsServer MicrosoftWindowsServer EastUS
2012-R2-Datacenter-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-Server-Core WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-Server-Core-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-with-Containers WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-with-Containers-smalldisk WindowsServer MicrosoftWindowsServer EastUS
2016-Datacenter-with-RDSH WindowsServer MicrosoftWindowsServer EastUS
2016-Nano-Server WindowsServer MicrosoftWindowsServer EastUS

New-AzVm `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM2" `
 -Location "EastUS" `
 -VirtualNetworkName "myVnet" `
 -SubnetName "mySubnet" `
 -SecurityGroupName "myNetworkSecurityGroup" `
 -PublicIpAddressName "myPublicIpAddress2" `
 -ImageName "MicrosoftWindowsServer:WindowsServer:2016-Datacenter-with-Containers:latest" `
 -Credential $cred `
 -AsJob

 Understand VM sizes

 VM Sizes

The Get-AzVMImageSku command will then filter on the publisher and offer name to return a list of image

names.

The results will look something like this example:

This information can be used to deploy a VM with a specific image. This example deploys a VM using the latest

version of a Windows Server 2016 with Containers image.

The -AsJob parameter creates the VM as a background task, so the PowerShell prompts return to you. You can

view details of background jobs with the Get-Job cmdlet.

The VM size determines the amount of compute resources like CPU, GPU, and memory that are made available

to the VM. Virtual machines should be created using a VM size appropriate for the workload. If a workload

increases, an existing virtual machine can also be resized.

https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmimagesku

T Y P E C O M M O N SIZ ES DESC RIP T IO N

General purpose B, Dsv3, Dv3, DSv2, Dv2, Av2, DC Balanced CPU-to-memory. Ideal for
dev / test and small to medium
applications and data solutions.

Compute optimized Fsv2 High CPU-to-memory. Good for
medium traffic applications, network
appliances, and batch processes.

Memory optimized Esv3, Ev3, M, DSv2, Dv2 High memory-to-core. Great for
relational databases, medium to large
caches, and in-memory analytics.

Storage optimized Lsv2, Ls High disk throughput and IO. Ideal for
Big Data, SQL, and NoSQL databases.

GPU NV, NVv2, NC, NCv2, NCv3, ND Specialized VMs targeted for heavy
graphic rendering and video editing.

High performance H Our most powerful CPU VMs with
optional high-throughput network
interfaces (RDMA).

 Find available VM sizes

Get-AzVMSize -Location "EastUS"

 Resize a VM

Get-AzVMSize -ResourceGroupName "myResourceGroupVM" -VMName "myVM"

$vm = Get-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -VMName "myVM"
$vm.HardwareProfile.VmSize = "Standard_DS3_v2"
Update-AzVM `
 -VM $vm `
 -ResourceGroupName "myResourceGroupVM"

The following table categorizes sizes into use cases.

To see a list of VM sizes available in a particular region, use the Get-AzVMSize command.

After a VM has been deployed, it can be resized to increase or decrease resource allocation.

Before resizing a VM, check if the size you want is available on the current VM cluster. The Get-AzVMSize

command returns a list of sizes.

If the size is available, the VM can be resized from a powered-on state, however it is rebooted during the

operation.

If the size you want isn't available on the current cluster, the VM needs to be deallocated before the resize

operation can occur. Deallocating a VM will remove any data on the temp disk, and the public IP address will

change unless a static IP address is being used.

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-general
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-compute
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-memory
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmsize
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmsize

Stop-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" -Force
$vm = Get-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -VMName "myVM"
$vm.HardwareProfile.VmSize = "Standard_E2s_v3"
Update-AzVM -VM $vm `
 -ResourceGroupName "myResourceGroupVM"
Start-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name $vm.name

 VM power states

P O W ER STAT E DESC RIP T IO N

Starting The virtual machine is being started.

Running The virtual machine is running.

Stopping The virtual machine is being stopped.

Stopped The VM is stopped. Virtual machines in the stopped state
still incur compute charges.

Deallocating The VM is being deallocated.

Deallocated Indicates that the VM is removed from the hypervisor but is
still available in the control plane. Virtual machines in the
Deallocated state do not incur compute charges.

- The power state of the VM is unknown.

Get-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" `
 -Status | Select @{n="Status"; e={$_.Statuses[1].Code}}

Status

PowerState/running

 Management tasks

An Azure VM can have one of many power states.

To get the state of a particular VM, use the Get-AzVM command. Be sure to specify a valid name for a VM and

resource group.

The output will look something like this example:

To retrieve the power state of all the VMs in your subscription, use the Virtual Machines - List All API with

parameter statusOnly set to true.

https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvm
https://docs.microsoft.com/en-us/rest/api/compute/virtualmachines/listall

 Stop a VM

Stop-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM" -Force

 Start a VM

Start-AzVM `
 -ResourceGroupName "myResourceGroupVM" `
 -Name "myVM"

 Delete resource group

Remove-AzResourceGroup `
 -Name "myResourceGroupVM" `
 -Force

 Next steps

During the lifecycle of a VM, you may want to run management tasks like starting, stopping, or deleting a VM.

Additionally, you may want to create scripts to automate repetitive or complex tasks. Using Azure PowerShell,

many common management tasks can be run from the command line or in scripts.

Stop and deallocate a VM with Stop-AzVM:

If you want to keep the VM in a provisioned state, use the -StayProvisioned parameter.

Everything inside of a resource group is deleted when you delete the resource group.

In this tutorial, you learned about basic VM creation and management such as how to:

Create and connect to a VM

Select and use VM images

View and use specific VM sizes

Resize a VM

View and understand VM state

Advance to the next tutorial to learn about VM disks.

Create and Manage VM disks

https://docs.microsoft.com/en-us/powershell/module/az.compute/stop-azvm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-manage-data-disk

Quickstart: Azure Blob Storage client library v12 for
.NET

 4/22/2021 • 8 minutes to read • Edit Online

NOTE

 Prerequisites

 Setting up

 Create the project

Get started with the Azure Blob Storage client library v12 for .NET. Azure Blob Storage is Microsoft's object

storage solution for the cloud. Follow steps to install the package and try out example code for basic tasks. Blob

storage is optimized for storing massive amounts of unstructured data.

Use the Azure Blob Storage client library v12 for .NET to:

Create a container

Upload a blob to Azure Storage

List all of the blobs in a container

Download the blob to your local computer

Delete a container

Additional resources:

API reference documentation

Library source code

Package (NuGet)

Samples

The features described in this article are also available to accounts that have a hierarchical namespace. To review

limitations, see the Blob storage features available in Azure Data Lake Storage Gen2 article.

Azure subscription - create one for free

Azure storage account - create a storage account

Current .NET Core SDK for your operating system. Be sure to get the SDK and not the runtime.

This section walks you through preparing a project to work with the Azure Blob Storage client library v12 for

.NET.

Create a .NET Core application named BlobQuickstartV12.

dotnet new console -n BlobQuickstartV12

1. In a console window (such as cmd, PowerShell, or Bash), use the dotnet new command to create a new

console app with the name BlobQuickstartV12. This command creates a simple "Hello World" C# project

with a single source file: Program.cs.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/storage/blobs/storage-quickstart-blobs-dotnet.md
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs
https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/storage/Azure.Storage.Blobs
https://www.nuget.org/packages/Azure.Storage.Blobs
https://docs.microsoft.com/en-us/azure/storage/common/storage-samples-dotnet
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-supported-blob-storage-features
https://azure.microsoft.com/free/
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://dotnet.microsoft.com/download/dotnet-core

 Install the package

dotnet add package Azure.Storage.Blobs

 Set up the app framework

 Copy your credentials from the Azure portal

cd BlobQuickstartV12

mkdir data

2. Switch to the newly created BlobQuickstartV12 directory.

3. In side the BlobQuickstartV12 directory, create another directory called data. This is where the blob data

files will be created and stored.

While still in the application directory, install the Azure Blob Storage client library for .NET package by using the

dotnet add package command.

From the project directory:

using Azure.Storage.Blobs;
using Azure.Storage.Blobs.Models;
using System;
using System.IO;
using System.Threading.Tasks;

namespace BlobQuickstartV12
{
 class Program
 {
 static async Task Main()
 {
 }
 }
}

1. Open the Program.cs file in your editor.

2. Remove the Console.WriteLine("Hello World!"); statement.

3. Add using directives.

4. Update the Main method declaration to support async.

Here's the code:

When the sample application makes a request to Azure Storage, it must be authorized. To authorize a request,

add your storage account credentials to the application as a connection string. View your storage account

credentials by following these steps:

1. Sign in to the Azure portal.

2. Locate your storage account.

3. In the Security + networking section of the storage account overview, select Access keys . Here, you

can view your account access keys and the complete connection string for each key.

4. Find the Connection str ing value under key1 , and select the Copy button to copy the connection

https://portal.azure.com

 Configure your storage connection string

 Windows

setx AZURE_STORAGE_CONNECTION_STRING "<yourconnectionstring>"

 Linux

export AZURE_STORAGE_CONNECTION_STRING="<yourconnectionstring>"

 macOS

export AZURE_STORAGE_CONNECTION_STRING="<yourconnectionstring>"

 Restart programs

 Object model

string. You will add the connection string value to an environment variable in the next step.

After you have copied your connection string, write it to a new environment variable on the local machine

running the application. To set the environment variable, open a console window, and follow the instructions for

your operating system. Replace <yourconnectionstring> with your actual connection string.

After you add the environment variable in Windows, you must start a new instance of the command window.

After you add the environment variable, restart any running programs that will need to read the environment

variable. For example, restart your development environment or editor before continuing.

Azure Blob Storage is optimized for storing massive amounts of unstructured data. Unstructured data is data

that does not adhere to a particular data model or definition, such as text or binary data. Blob storage offers

three types of resources:

The storage account

A container in the storage account

A blob in the container

The following diagram shows the relationship between these resources.

Use the following .NET classes to interact with these resources:

BlobServiceClient: The BlobServiceClient class allows you to manipulate Azure Storage resources and blob

containers.

BlobContainerClient: The BlobContainerClient class allows you to manipulate Azure Storage containers and

their blobs.

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobserviceclient
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobcontainerclient

 Code examples

 Get the connection string

Console.WriteLine("Azure Blob Storage v12 - .NET quickstart sample\n");

// Retrieve the connection string for use with the application. The storage
// connection string is stored in an environment variable on the machine
// running the application called AZURE_STORAGE_CONNECTION_STRING. If the
// environment variable is created after the application is launched in a
// console or with Visual Studio, the shell or application needs to be closed
// and reloaded to take the environment variable into account.
string connectionString = Environment.GetEnvironmentVariable("AZURE_STORAGE_CONNECTION_STRING");

 Create a container

IMPORTANT

// Create a BlobServiceClient object which will be used to create a container client
BlobServiceClient blobServiceClient = new BlobServiceClient(connectionString);

//Create a unique name for the container
string containerName = "quickstartblobs" + Guid.NewGuid().ToString();

// Create the container and return a container client object
BlobContainerClient containerClient = await blobServiceClient.CreateBlobContainerAsync(containerName);

BlobClient: The BlobClient class allows you to manipulate Azure Storage blobs.

BlobDownloadInfo: The BlobDownloadInfo class represents the properties and content returned from

downloading a blob.

These example code snippets show you how to perform the following with the Azure Blob Storage client library

for .NET:

Get the connection string

Create a container

Upload blobs to a container

List the blobs in a container

Download blobs

Delete a container

The code below retrieves the connection string for the storage account from the environment variable created in

the Configure your storage connection string section.

Add this code inside the Main method:

Decide on a name for the new container. The code below appends a GUID value to the container name to ensure

that it is unique.

Container names must be lowercase. For more information about naming containers and blobs, see Naming and

Referencing Containers, Blobs, and Metadata.

Create an instance of the BlobServiceClient class. Then, call the CreateBlobContainerAsync method to create the

container in your storage account.

Add this code to the end of the Main method:

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobclient
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.models.blobdownloadinfo
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-and-referencing-containers--blobs--and-metadata
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobserviceclient
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobserviceclient.createblobcontainerasync

Upload blobs to a container

// Create a local file in the ./data/ directory for uploading and downloading
string localPath = "./data/";
string fileName = "quickstart" + Guid.NewGuid().ToString() + ".txt";
string localFilePath = Path.Combine(localPath, fileName);

// Write text to the file
await File.WriteAllTextAsync(localFilePath, "Hello, World!");

// Get a reference to a blob
BlobClient blobClient = containerClient.GetBlobClient(fileName);

Console.WriteLine("Uploading to Blob storage as blob:\n\t {0}\n", blobClient.Uri);

// Open the file and upload its data
using FileStream uploadFileStream = File.OpenRead(localFilePath);
await blobClient.UploadAsync(uploadFileStream, true);
uploadFileStream.Close();

 List the blobs in a container

Console.WriteLine("Listing blobs...");

// List all blobs in the container
await foreach (BlobItem blobItem in containerClient.GetBlobsAsync())
{
 Console.WriteLine("\t" + blobItem.Name);
}

 Download blobs

The following code snippet:

1. Creates a text file in the local data directory.

2. Gets a reference to a BlobClient object by calling the GetBlobClient method on the container from the Create

a container section.

3. Uploads the local text file to the blob by calling the UploadAsync method. This method creates the blob if it

doesn't already exist, and overwrites it if it does.

Add this code to the end of the Main method:

List the blobs in the container by calling the GetBlobsAsync method. In this case, only one blob has been added

to the container, so the listing operation returns just that one blob.

Add this code to the end of the Main method:

Download the previously created blob by calling the DownloadAsync method. The example code adds a suffix of

"DOWNLOADED" to the file name so that you can see both files in local file system.

Add this code to the end of the Main method:

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobclient
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobcontainerclient.getblobclient
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobclient.uploadasync#azure_storage_blobs_blobclient_uploadasync_system_io_stream_system_boolean_system_threading_cancellationtoken_
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobcontainerclient.getblobsasync
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.specialized.blobbaseclient.downloadtoasync

// Download the blob to a local file
// Append the string "DOWNLOADED" before the .txt extension
// so you can compare the files in the data directory
string downloadFilePath = localFilePath.Replace(".txt", "DOWNLOADED.txt");

Console.WriteLine("\nDownloading blob to\n\t{0}\n", downloadFilePath);

// Download the blob's contents and save it to a file
BlobDownloadInfo download = await blobClient.DownloadAsync();

using (FileStream downloadFileStream = File.OpenWrite(downloadFilePath))
{
 await download.Content.CopyToAsync(downloadFileStream);
 downloadFileStream.Close();
}

 Delete a container

// Clean up
Console.Write("Press any key to begin clean up");
Console.ReadLine();

Console.WriteLine("Deleting blob container...");
await containerClient.DeleteAsync();

Console.WriteLine("Deleting the local source and downloaded files...");
File.Delete(localFilePath);
File.Delete(downloadFilePath);

Console.WriteLine("Done");

 Run the code

dotnet build

dotnet run

The following code cleans up the resources the app created by deleting the entire container by using

DeleteAsync. It also deletes the local files created by the app.

The app pauses for user input by calling Console.ReadLine before it deletes the blob, container, and local files.

This is a good chance to verify that the resources were actually created correctly, before they are deleted.

Add this code to the end of the Main method:

This app creates a test file in your local data folder and uploads it to Blob storage. The example then lists the

blobs in the container and downloads the file with a new name so that you can compare the old and new files.

Navigate to your application directory, then build and run the application.

The output of the app is similar to the following example:

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.blobs.blobcontainerclient.deleteasync

Azure Blob Storage v12 - .NET quickstart sample

Uploading to Blob storage as blob:
 https://mystorageacct.blob.core.windows.net/quickstartblobs60c70d78-8d93-43ae-954d-
8322058cfd64/quickstart2fe6c5b4-7918-46cb-96f4-8c4c5cb2fd31.txt

Listing blobs...
 quickstart2fe6c5b4-7918-46cb-96f4-8c4c5cb2fd31.txt

Downloading blob to
 ./data/quickstart2fe6c5b4-7918-46cb-96f4-8c4c5cb2fd31DOWNLOADED.txt

Press any key to begin clean up
Deleting blob container...
Deleting the local source and downloaded files...
Done

 Next steps

Before you begin the clean up process, check your data folder for the two files. You can open them and observe

that they are identical.

After you've verified the files, press the Enter key to delete the test files and finish the demo.

In this quickstart, you learned how to upload, download, and list blobs using .NET.

To see Blob storage sample apps, continue to:

Azure Blob Storage SDK v12 .NET samples

For tutorials, samples, quick starts and other documentation, visit Azure for .NET and .NET Core developers.

To learn more about .NET Core, see Get started with .NET in 10 minutes.

https://github.com/Azure/azure-sdk-for-net/tree/master/sdk/storage/Azure.Storage.Blobs/samples
https://docs.microsoft.com/en-us/dotnet/azure/
https://dotnet.microsoft.com/learn/dotnet/hello-world-tutorial/intro

Develop for Azure Files with .NET
 6/15/2021 • 22 minutes to read • Edit Online

TIP

 Applies to

F IL E SH A RE T Y P E SM B N F S

Standard file shares (GPv2), LRS/ZRS

Standard file shares (GPv2), GRS/GZRS

Premium file shares (FileStorage),
LRS/ZRS

 Understanding the .NET APIs

A P I W H EN TO USE N OT ES

Learn the basics of developing .NET applications that use Azure Files to store data. This article shows how to

create a simple console application to do the following with .NET and Azure Files:

Get the contents of a file.

Set the maximum size, or quota, for a file share.

Create a shared access signature (SAS) for a file.

Copy a file to another file in the same storage account.

Copy a file to a blob in the same storage account.

Create a snapshot of a file share.

Restore a file from a share snapshot.

Use Azure Storage Metrics for troubleshooting.

To learn more about Azure Files, see What is Azure Files?

Check out the Azure Storage code samples repositor y

For easy-to-use end-to-end Azure Storage code samples that you can download and run, please check out our list of

Azure Storage Samples.

Azure Files provides two broad approaches to client applications: Server Message Block (SMB) and REST. Within

.NET, the System.IO and Azure.Storage.Files.Shares APIs abstract these approaches.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/storage/files/storage-dotnet-how-to-use-files.md
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-samples-dotnet

System.IO Your application: File I/O implemented with Azure Files
over SMB is generally the same as I/O
with any network file share or local
storage device. For an introduction to
a number of features in .NET, including
file I/O, see the Console Application
tutorial.

Azure.Storage.Files.Shares Your application: This article demonstrates the use of
Azure.Storage.Files.Shares for file

I/O using REST instead of SMB and
management of the file share.

A P I W H EN TO USE N OT ES

 Create the console application and obtain the assembly

 Use NuGet to install the required packages

Needs to read/write files by
using SMB

Is running on a device that has
access over port 445 to your
Azure Files account

Doesn't need to manage any of
the administrative settings of
the file share

Can't access Azure Files by
using SMB on port 445
because of firewall or ISP
constraints

Requires administrative
functionality, such as the ability
to set a file share's quota or
create a shared access
signature

You can use the Azure Files client library in any type of .NET app. These apps include Azure cloud, web, desktop,

and mobile apps. In this guide, we create a console application for simplicity.

In Visual Studio, create a new Windows console application. The following steps show you how to create a

console application in Visual Studio 2019. The steps are similar in other versions of Visual Studio.

1. Start Visual Studio and select Create a new project.

2. In Create a new project, choose Console App (.NET Framework) for C#, and then select Next.

3. In Configure your new project, enter a name for the app, and select Create.

Add all the code examples in this article to the Program class in the Program.cs file.

Refer to these packages in your project:

Azure .NET SDK v12

Azure .NET SDK v11

Azure core library for .NET: This package is the implementation of the Azure client pipeline.

Azure Storage Blob client library for .NET: This package provides programmatic access to blob resources in

your storage account.

Azure Storage Files client library for .NET: This package provides programmatic access to file resources in

your storage account.

System Configuration Manager library for .NET: This package provides a class storing and retrieving values

in a configuration file.

You can use NuGet to obtain the packages. Follow these steps:

1. In Solution Explorer , right-click your project and choose Manage NuGet Packages .

https://docs.microsoft.com/en-us/dotnet/api/system.io
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/console-teleprompter
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.files.shares
https://www.nuget.org/packages/Azure.Core/
https://www.nuget.org/packages/Azure.Storage.Blobs/
https://www.nuget.org/packages/Azure.Storage.Files.Shares/
https://www.nuget.org/packages/System.Configuration.ConfigurationManager/

 Save your storage account credentials to the App.config file

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <appSettings>
 <add key="StorageConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=myaccount;AccountKey=mykey;EndpointSuffix=core.windows.net
" />
 <add key="StorageAccountName" value="myaccount" />
 <add key="StorageAccountKey" value="mykey" />
 </appSettings>
</configuration>

NOTE

 Add using directives

using System;
using System.Configuration;
using System.IO;
using System.Threading.Tasks;
using Azure;
using Azure.Storage;
using Azure.Storage.Blobs;
using Azure.Storage.Files.Shares;
using Azure.Storage.Files.Shares.Models;
using Azure.Storage.Sas;

2. In NuGet Package Manager , select Browse. Then search for and choose Azure.Core, and then select

Install .

This step installs the package and its dependencies.

3. Search for and install these packages:

Azure.Storage.Blobs

Azure.Storage.Files.Shares

System.Configuration.ConfigurationManager

Next, save your credentials in your project's App.config file. In Solution Explorer , double-click App.config and

edit the file so that it is similar to the following example.

Azure .NET SDK v12

Azure .NET SDK v11

Replace myaccount with your storage account name and mykey with your storage account key.

The Azurite storage emulator does not currently support Azure Files. Your connection string must target an Azure storage

account in the cloud to work with Azure Files.

In Solution Explorer , open the Program.cs file, and add the following using directives to the top of the file.

Azure .NET SDK v12

Azure .NET SDK v11

Access the file share programmatically

In the Program.cs file, add the following code to access the file share programmatically.

Azure .NET SDK v12

Azure .NET SDK v11

The following method creates a file share if it doesn't already exist. The method starts by creating a ShareClient

object from a connection string. The sample then attempts to download a file we created earlier. Call this method

from Main() .

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.files.shares.shareclient

//---
// Create a file share
//---
public async Task CreateShareAsync(string shareName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a ShareClient which will be used to create and manipulate the file share
 ShareClient share = new ShareClient(connectionString, shareName);

 // Create the share if it doesn't already exist
 await share.CreateIfNotExistsAsync();

 // Ensure that the share exists
 if (await share.ExistsAsync())
 {
 Console.WriteLine($"Share created: {share.Name}");

 // Get a reference to the sample directory
 ShareDirectoryClient directory = share.GetDirectoryClient("CustomLogs");

 // Create the directory if it doesn't already exist
 await directory.CreateIfNotExistsAsync();

 // Ensure that the directory exists
 if (await directory.ExistsAsync())
 {
 // Get a reference to a file object
 ShareFileClient file = directory.GetFileClient("Log1.txt");

 // Ensure that the file exists
 if (await file.ExistsAsync())
 {
 Console.WriteLine($"File exists: {file.Name}");

 // Download the file
 ShareFileDownloadInfo download = await file.DownloadAsync();

 // Save the data to a local file, overwrite if the file already exists
 using (FileStream stream = File.OpenWrite(@"downloadedLog1.txt"))
 {
 await download.Content.CopyToAsync(stream);
 await stream.FlushAsync();
 stream.Close();

 // Display where the file was saved
 Console.WriteLine($"File downloaded: {stream.Name}");
 }
 }
 }
 }
 else
 {
 Console.WriteLine($"CreateShareAsync failed");
 }
}

 Set the maximum size for a file share
Beginning with version 5.x of the Azure Files client library, you can set the quota (maximum size) for a file share.

You can also check to see how much data is currently stored on the share.

Setting the quota for a share limits the total size of the files stored on the share. If the total size of files on the

share exceeds the quota, clients can't increase the size of existing files. Clients also can't create new files, unless

//---
// Set the maximum size of a share
//---
public async Task SetMaxShareSizeAsync(string shareName, int increaseSizeInGiB)
{
 const long ONE_GIBIBYTE = 10737420000; // Number of bytes in 1 gibibyte

 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a ShareClient which will be used to access the file share
 ShareClient share = new ShareClient(connectionString, shareName);

 // Create the share if it doesn't already exist
 await share.CreateIfNotExistsAsync();

 // Ensure that the share exists
 if (await share.ExistsAsync())
 {
 // Get and display current share quota
 ShareProperties properties = await share.GetPropertiesAsync();
 Console.WriteLine($"Current share quota: {properties.QuotaInGB} GiB");

 // Get and display current usage stats for the share
 ShareStatistics stats = await share.GetStatisticsAsync();
 Console.WriteLine($"Current share usage: {stats.ShareUsageInBytes} bytes");

 // Convert current usage from bytes into GiB
 int currentGiB = (int)(stats.ShareUsageInBytes / ONE_GIBIBYTE);

 // This line sets the quota to be the current
 // usage of the share plus the increase amount
 await share.SetQuotaAsync(currentGiB + increaseSizeInGiB);

 // Get the new quota and display it
 properties = await share.GetPropertiesAsync();
 Console.WriteLine($"New share quota: {properties.QuotaInGB} GiB");
 }
}

 Generate a shared access signature for a file or file share

those files are empty.

The example below shows how to check the current usage for a share and how to set the quota for the share.

Azure .NET SDK v12

Azure .NET SDK v11

Beginning with version 5.x of the Azure Files client library, you can generate a shared access signature (SAS) for

a file share or for an individual file.

Azure .NET SDK v12

Azure .NET SDK v11

The following example method returns a SAS on a file in the specified share.

//---
// Create a SAS URI for a file
//---
public Uri GetFileSasUri(string shareName, string filePath, DateTime expiration, ShareFileSasPermissions
permissions)
{
 // Get the account details from app settings
 string accountName = ConfigurationManager.AppSettings["StorageAccountName"];
 string accountKey = ConfigurationManager.AppSettings["StorageAccountKey"];

 ShareSasBuilder fileSAS = new ShareSasBuilder()
 {
 ShareName = shareName,
 FilePath = filePath,

 // Specify an Azure file resource
 Resource = "f",

 // Expires in 24 hours
 ExpiresOn = expiration
 };

 // Set the permissions for the SAS
 fileSAS.SetPermissions(permissions);

 // Create a SharedKeyCredential that we can use to sign the SAS token
 StorageSharedKeyCredential credential = new StorageSharedKeyCredential(accountName, accountKey);

 // Build a SAS URI
 UriBuilder fileSasUri = new
UriBuilder($"https://{accountName}.file.core.windows.net/{fileSAS.ShareName}/{fileSAS.FilePath}");
 fileSasUri.Query = fileSAS.ToSasQueryParameters(credential).ToString();

 // Return the URI
 return fileSasUri.Uri;
}

 Copy files

NOTE

 Copy a file to another file

For more information about creating and using shared access signatures, see How a shared access signature

works.

Beginning with version 5.x of the Azure Files client library, you can copy a file to another file, a file to a blob, or a

blob to a file.

You can also use AzCopy to copy one file to another or to copy a blob to a file or the other way around. See Get

started with AzCopy.

If you are copying a blob to a file, or a file to a blob, you must use a shared access signature (SAS) to authorize access to

the source object, even if you are copying within the same storage account.

The following example copies a file to another file in the same share. You can use Shared Key authentication to

do the copy because this operation copies files within the same storage account.

Azure .NET SDK v12

Azure .NET SDK v11

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
https://docs.microsoft.com/en-us/rest/api/storageservices/authorize-with-shared-key

//---
// Copy file within a directory
//---
public async Task CopyFileAsync(string shareName, string sourceFilePath, string destFilePath)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Get a reference to the file we created previously
 ShareFileClient sourceFile = new ShareFileClient(connectionString, shareName, sourceFilePath);

 // Ensure that the source file exists
 if (await sourceFile.ExistsAsync())
 {
 // Get a reference to the destination file
 ShareFileClient destFile = new ShareFileClient(connectionString, shareName, destFilePath);

 // Start the copy operation
 await destFile.StartCopyAsync(sourceFile.Uri);

 if (await destFile.ExistsAsync())
 {
 Console.WriteLine($"{sourceFile.Uri} copied to {destFile.Uri}");
 }
 }
}

 Copy a file to a blob

The following example creates a file and copies it to a blob within the same storage account. The example

creates a SAS for the source file, which the service uses to authorize access to the source file during the copy

operation.

Azure .NET SDK v12

Azure .NET SDK v11

//---
// Copy a file from a share to a blob
//---
public async Task CopyFileToBlobAsync(string shareName, string sourceFilePath, string containerName, string
blobName)
{
 // Get a file SAS from the method created ealier
 Uri fileSasUri = GetFileSasUri(shareName, sourceFilePath, DateTime.UtcNow.AddHours(24),
ShareFileSasPermissions.Read);

 // Get a reference to the file we created previously
 ShareFileClient sourceFile = new ShareFileClient(fileSasUri);

 // Ensure that the source file exists
 if (await sourceFile.ExistsAsync())
 {
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Get a reference to the destination container
 BlobContainerClient container = new BlobContainerClient(connectionString, containerName);

 // Create the container if it doesn't already exist
 await container.CreateIfNotExistsAsync();

 BlobClient destBlob = container.GetBlobClient(blobName);

 await destBlob.StartCopyFromUriAsync(sourceFile.Uri);

 if (await destBlob.ExistsAsync())
 {
 Console.WriteLine($"File {sourceFile.Name} copied to blob {destBlob.Name}");
 }
 }
}

 Share snapshots

 Create share snapshots

You can copy a blob to a file in the same way. If the source object is a blob, then create a SAS to authorize access

to that blob during the copy operation.

Beginning with version 8.5 of the Azure Files client library, you can create a share snapshot. You can also list or

browse share snapshots and delete share snapshots. Once created, share snapshots are read-only.

The following example creates a file share snapshot.

Azure .NET SDK v12

Azure .NET SDK v11

//---
// Create a share snapshot
//---
public async Task CreateShareSnapshotAsync(string shareName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instatiate a ShareServiceClient
 ShareServiceClient shareServiceClient = new ShareServiceClient(connectionString);

 // Instantiate a ShareClient which will be used to access the file share
 ShareClient share = shareServiceClient.GetShareClient(shareName);

 // Ensure that the share exists
 if (await share.ExistsAsync())
 {
 // Create a snapshot
 ShareSnapshotInfo snapshotInfo = await share.CreateSnapshotAsync();
 Console.WriteLine($"Snapshot created: {snapshotInfo.Snapshot}");
 }
}

 List share snapshots

//---
// List the snapshots on a share
//---
public void ListShareSnapshots()
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instatiate a ShareServiceClient
 ShareServiceClient shareServiceClient = new ShareServiceClient(connectionString);

 // Display each share and the snapshots on each share
 foreach (ShareItem item in shareServiceClient.GetShares(ShareTraits.All, ShareStates.Snapshots))
 {
 if (null != item.Snapshot)
 {
 Console.WriteLine($"Share: {item.Name}\tSnapshot: {item.Snapshot}");
 }
 }
}

 List files and directories within share snapshots

The following example lists the snapshots on a share.

Azure .NET SDK v12

Azure .NET SDK v11

The following example browses files and directories within share snapshots.

Azure .NET SDK v12

Azure .NET SDK v11

//---
// List the snapshots on a share
//---
public void ListSnapshotContents(string shareName, string snapshotTime)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instatiate a ShareServiceClient
 ShareServiceClient shareService = new ShareServiceClient(connectionString);

 // Get a ShareClient
 ShareClient share = shareService.GetShareClient(shareName);

 Console.WriteLine($"Share: {share.Name}");

 // Get as ShareClient that points to a snapshot
 ShareClient snapshot = share.WithSnapshot(snapshotTime);

 // Get the root directory in the snapshot share
 ShareDirectoryClient rootDir = snapshot.GetRootDirectoryClient();

 // Recursively list the directory tree
 ListDirTree(rootDir);
}

//---
// Recursively list a directory tree
//---
public void ListDirTree(ShareDirectoryClient dir)
{
 // List the files and directories in the snapshot
 foreach (ShareFileItem item in dir.GetFilesAndDirectories())
 {
 if (item.IsDirectory)
 {
 Console.WriteLine($"Directory: {item.Name}");
 ShareDirectoryClient subDir = dir.GetSubdirectoryClient(item.Name);
 ListDirTree(subDir);
 }
 else
 {
 Console.WriteLine($"File: {dir.Name}\\{item.Name}");
 }
 }
}

 Restore file shares or files from share snapshots

Taking a snapshot of a file share enables you to recover individual files or the entire file share.

You can restore a file from a file share snapshot by querying the share snapshots of a file share. You can then

retrieve a file that belongs to a particular share snapshot. Use that version to directly read or to restore the file.

Azure .NET SDK v12

Azure .NET SDK v11

//---
// Restore file from snapshot
//---
public async Task RestoreFileFromSnapshot(string shareName, string directoryName, string fileName, string
snapshotTime)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instatiate a ShareServiceClient
 ShareServiceClient shareService = new ShareServiceClient(connectionString);

 // Get a ShareClient
 ShareClient share = shareService.GetShareClient(shareName);

 // Get as ShareClient that points to a snapshot
 ShareClient snapshot = share.WithSnapshot(snapshotTime);

 // Get a ShareDirectoryClient, then a ShareFileClient to the snapshot file
 ShareDirectoryClient snapshotDir = snapshot.GetDirectoryClient(directoryName);
 ShareFileClient snapshotFile = snapshotDir.GetFileClient(fileName);

 // Get a ShareDirectoryClient, then a ShareFileClient to the live file
 ShareDirectoryClient liveDir = share.GetDirectoryClient(directoryName);
 ShareFileClient liveFile = liveDir.GetFileClient(fileName);

 // Restore the file from the snapshot
 ShareFileCopyInfo copyInfo = await liveFile.StartCopyAsync(snapshotFile.Uri);

 // Display the status of the operation
 Console.WriteLine($"Restore status: {copyInfo.CopyStatus}");
}

 Delete share snapshots

The following example deletes a file share snapshot.

Azure .NET SDK v12

Azure .NET SDK v11

//---
// Delete a snapshot
//---
public async Task DeleteSnapshotAsync(string shareName, string snapshotTime)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instatiate a ShareServiceClient
 ShareServiceClient shareService = new ShareServiceClient(connectionString);

 // Get a ShareClient
 ShareClient share = shareService.GetShareClient(shareName);

 // Get a ShareClient that points to a snapshot
 ShareClient snapshotShare = share.WithSnapshot(snapshotTime);

 try
 {
 // Delete the snapshot
 await snapshotShare.DeleteIfExistsAsync();
 }
 catch (RequestFailedException ex)
 {
 Console.WriteLine($"Exception: {ex.Message}");
 Console.WriteLine($"Error code: {ex.Status}\t{ex.ErrorCode}");
 }
}

 Troubleshoot Azure Files by using metrics

Azure Storage Analytics supports metrics for Azure Files. With metrics data, you can trace requests and diagnose

issues.

You can enable metrics for Azure Files from the Azure portal. You can also enable metrics programmatically by

calling the Set File Service Properties operation with the REST API or one of its analogs in the Azure Files client

library.

The following code example shows how to use the .NET client library to enable metrics for Azure Files.

Azure .NET SDK v12

Azure .NET SDK v11

https://portal.azure.com
https://docs.microsoft.com/en-us/rest/api/storageservices/set-file-service-properties

//---
// Use metrics
//---
public async Task UseMetricsAsync()
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instatiate a ShareServiceClient
 ShareServiceClient shareService = new ShareServiceClient(connectionString);

 // Set metrics properties for File service
 await shareService.SetPropertiesAsync(new ShareServiceProperties()
 {
 // Set hour metrics
 HourMetrics = new ShareMetrics()
 {
 Enabled = true,
 IncludeApis = true,
 Version = "1.0",

 RetentionPolicy = new ShareRetentionPolicy()
 {
 Enabled = true,
 Days = 14
 }
 },

 // Set minute metrics
 MinuteMetrics = new ShareMetrics()
 {
 Enabled = true,
 IncludeApis = true,
 Version = "1.0",

 RetentionPolicy = new ShareRetentionPolicy()
 {
 Enabled = true,
 Days = 7
 }
 }
 });

 // Read the metrics properties we just set
 ShareServiceProperties serviceProperties = await shareService.GetPropertiesAsync();

 // Display the properties
 Console.WriteLine();
 Console.WriteLine($"HourMetrics.InludeApis: {serviceProperties.HourMetrics.IncludeApis}");
 Console.WriteLine($"HourMetrics.RetentionPolicy.Days:
{serviceProperties.HourMetrics.RetentionPolicy.Days}");
 Console.WriteLine($"HourMetrics.Version: {serviceProperties.HourMetrics.Version}");
 Console.WriteLine();
 Console.WriteLine($"MinuteMetrics.InludeApis: {serviceProperties.MinuteMetrics.IncludeApis}");
 Console.WriteLine($"MinuteMetrics.RetentionPolicy.Days:
{serviceProperties.MinuteMetrics.RetentionPolicy.Days}");
 Console.WriteLine($"MinuteMetrics.Version: {serviceProperties.MinuteMetrics.Version}");
 Console.WriteLine();
}

 Next steps

If you encounter any problems, you can refer to Troubleshoot Azure Files problems in Windows.

For more information about Azure Files, see the following resources:

https://docs.microsoft.com/en-us/azure/storage/files/storage-troubleshoot-windows-file-connection-problems

 Conceptual articles and videos

 Tooling support for File storage

 Reference

Azure Files: a frictionless cloud SMB file system for Windows and Linux

Use Azure Files with Linux

Get started with AzCopy

Troubleshoot Azure Files problems in Windows

Azure Storage APIs for .NET

File Service REST API

https://azure.microsoft.com/documentation/videos/azurecon-2015-azure-files-storage-a-frictionless-cloud-smb-file-system-for-windows-and-linux/
https://docs.microsoft.com/en-us/azure/storage/files/storage-how-to-use-files-linux
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10
https://docs.microsoft.com/en-us/azure/storage/files/storage-troubleshoot-windows-file-connection-problems
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage
https://docs.microsoft.com/en-us/rest/api/storageservices/file-service-rest-api

Quickstart: Build a Table API app with .NET SDK
and Azure Cosmos DB

 6/16/2021 • 9 minutes to read • Edit Online

 Prerequisites

 Create a database account

APPLIES TO: Table API

This quickstart shows how to use .NET and the Azure Cosmos DB Table API to build an app by cloning an

example from GitHub. This quickstart also shows you how to create an Azure Cosmos DB account and how to

use Data Explorer to create tables and entities in the web-based Azure portal.

If you don’t already have Visual Studio 2019 installed, you can download and use the free Visual Studio 2019

Community Edition. Make sure that you enable Azure development during the Visual Studio setup.

If you don't have an Azure subscription, create a free account before you begin.

1. In a new browser window, sign in to the Azure portal.

2. In the left menu, select Create a resource.

3. On the New page, select Databases > Azure Cosmos DB.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cosmos-db/create-table-dotnet.md
https://docs.microsoft.com/en-us/azure/cosmos-db/table-introduction
https://www.visualstudio.com/downloads/
https://azure.microsoft.com/free/?ref=microsoft.com&utm_source=microsoft.com&utm_medium=docs&utm_campaign=visualstudio
https://portal.azure.com/

SET T IN G VA L UE DESC RIP T IO N

Subscription Your subscription Select the Azure subscription that
you want to use for this Azure
Cosmos DB account.

Resource Group Create new, then Account Name Select Create new. Then enter a
new resource group name for your
account. For simplicity, use the same
name as your Azure Cosmos DB
account name.

Account Name A unique name Enter a unique name to identify
your Azure Cosmos DB account.

The account name can use only
lowercase letters, numbers, and
hyphens (-), and must be between 3
and 31 characters long.

4. On the Create Azure Cosmos DB Account page, enter the settings for the new Azure Cosmos DB

account.

API Table The API determines the type of
account to create. Azure Cosmos DB
provides five APIs: Core (SQL) for
document databases, Gremlin for
graph databases, MongoDB for
document databases, Azure Table,
and Cassandra. You must create a
separate account for each API.

Select Azure Table, because in this
quickstart you are creating a table
that works with the Table API.

Learn more about the Table API.

Location The region closest to your users Select a geographic location to host
your Azure Cosmos DB account.
Use the location that's closest to
your users to give them the fastest
access to the data.

Capacity mode Provisioned throughput or
Serverless

Select Provisioned throughput
to create an account in provisioned
throughput mode. Select
Ser verless to create an account in
serverless mode.

SET T IN G VA L UE DESC RIP T IO N

You can leave the Geo-Redundancy and Multi-region Writes options at Disable to avoid additional

charges, and skip the Network and Tags sections.

5. Select Review+Create. After the validation is complete, select Create to create the account.

https://docs.microsoft.com/en-us/azure/cosmos-db/table-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/set-throughput
https://docs.microsoft.com/en-us/azure/cosmos-db/serverless

 Add a table

6. It takes a few minutes to create the account. You'll see a message that states Your deployment is

under way . Wait for the deployment to finish, and then select Go to resource.

You can now use the Data Explorer tool in the Azure portal to create a database and table.

1. Select Data Explorer > New Table.

The Add Table area is displayed on the far right, you may need to scroll right to see it.

 Add sample data

SET T IN G SUGGEST ED VA L UE DESC RIP T IO N

Table Id sample-table The ID for your new table. Table
names have the same character
requirements as database ids.
Database names must be between 1
and 255 characters, and cannot
contain / \ # ? or a trailing

space.

Throughput 400 RUs Change the throughput to 400
request units per second (RU/s). If
you want to reduce latency, you can
scale up the throughput later.

2. In the Add Table page, enter the settings for the new table.

3. Select OK.

4. Data Explorer displays the new database and table.

You can now add data to your new table using Data Explorer.

 Clone the sample application

1. In Data Explorer, expand sample-table, select Entities , and then select Add Entity .

2. Now add data to the PartitionKey value box and RowKey value box, and select Add Entity .

You can now add more entities to your table, edit your entities, or query your data in Data Explorer. Data

Explorer is also where you can scale your throughput and add stored procedures, user-defined functions,

and triggers to your table.

Now let's clone a Table app from GitHub, set the connection string, and run it. You'll see how easy it is to work

with data programmatically.

md "C:\git-samples"

cd "C:\git-samples"

git clone https://github.com/Azure-Samples/azure-cosmos-table-dotnet-core-getting-started.git

1. Open a command prompt, create a new folder named git-samples, then close the command prompt.

2. Open a git terminal window, such as git bash, and use the cd command to change to the new folder to

install the sample app.

3. Run the following command to clone the sample repository. This command creates a copy of the sample

app on your computer.

TIP

 Open the sample application in Visual Studio

 Review the code

For a more detailed walkthrough of similar code, see the Cosmos DB Table API sample article.

1. In Visual Studio, from the File menu, choose Open, then choose Project/Solution.

2. Navigate to the folder where you cloned the sample application and open the TableStorage.sln file.

This step is optional. If you're interested in learning how the database resources are created in the code, you can

review the following snippets. Otherwise, you can skip ahead to update the connection string section of this doc.

The following code shows how to create a table within the Azure Storage:

https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-table-dotnet

public static async Task<CloudTable> CreateTableAsync(string tableName)
{
 string storageConnectionString = AppSettings.LoadAppSettings().StorageConnectionString;

 // Retrieve storage account information from connection string.
 CloudStorageAccount storageAccount =
CreateStorageAccountFromConnectionString(storageConnectionString);

 // Create a table client for interacting with the table service
 CloudTableClient tableClient = storageAccount.CreateCloudTableClient(new
TableClientConfiguration());

 Console.WriteLine("Create a Table for the demo");

 // Create a table client for interacting with the table service
 CloudTable table = tableClient.GetTableReference(tableName);
 if (await table.CreateIfNotExistsAsync())
 {
 Console.WriteLine("Created Table named: {0}", tableName);
 }
 else
 {
 Console.WriteLine("Table {0} already exists", tableName);
 }

 Console.WriteLine();
 return table;
}

public static async Task<CustomerEntity> InsertOrMergeEntityAsync(CloudTable table, CustomerEntity
entity)
{
 if (entity == null)
 {
 throw new ArgumentNullException("entity");
 }

 try
 {
 // Create the InsertOrReplace table operation
 TableOperation insertOrMergeOperation = TableOperation.InsertOrMerge(entity);

 // Execute the operation.
 TableResult result = await table.ExecuteAsync(insertOrMergeOperation);
 CustomerEntity insertedCustomer = result.Result as CustomerEntity;

 if (result.RequestCharge.HasValue)
 {
 Console.WriteLine("Request Charge of InsertOrMerge Operation: " + result.RequestCharge);
 }

 return insertedCustomer;
 }
 catch (StorageException e)
 {
 Console.WriteLine(e.Message);
 Console.ReadLine();
 throw;
 }
}

The following code shows how to insert data into the table:

The following code shows how to query data from the table:

 Update your connection string

public static async Task<CustomerEntity> RetrieveEntityUsingPointQueryAsync(CloudTable table, string
partitionKey, string rowKey)
{
 try
 {
 TableOperation retrieveOperation = TableOperation.Retrieve<CustomerEntity>(partitionKey,
rowKey);
 TableResult result = await table.ExecuteAsync(retrieveOperation);
 CustomerEntity customer = result.Result as CustomerEntity;
 if (customer != null)
 {
 Console.WriteLine("\t{0}\t{1}\t{2}\t{3}", customer.PartitionKey, customer.RowKey,
customer.Email, customer.PhoneNumber);
 }

 if (result.RequestCharge.HasValue)
 {
 Console.WriteLine("Request Charge of Retrieve Operation: " + result.RequestCharge);
 }

 return customer;
 }
 catch (StorageException e)
 {
 Console.WriteLine(e.Message);
 Console.ReadLine();
 throw;
 }
}

public static async Task DeleteEntityAsync(CloudTable table, CustomerEntity deleteEntity)
{
 try
 {
 if (deleteEntity == null)
 {
 throw new ArgumentNullException("deleteEntity");
 }

 TableOperation deleteOperation = TableOperation.Delete(deleteEntity);
 TableResult result = await table.ExecuteAsync(deleteOperation);

 if (result.RequestCharge.HasValue)
 {
 Console.WriteLine("Request Charge of Delete Operation: " + result.RequestCharge);
 }

 }
 catch (StorageException e)
 {
 Console.WriteLine(e.Message);
 Console.ReadLine();
 throw;
 }
}

The following code shows how to delete data from the table:

Now go back to the Azure portal to get your connection string information and copy it into the app. This enables

your app to communicate with your hosted database.

 Build and deploy the app

{
 "StorageConnectionString": "<Primary connection string from Azure portal>"
}

1. In the Azure portal, click Connection Str ing . Use the copy button on the right side of the window to

copy the PRIMARY CONNECTION STRING.

2. In Visual Studio, open the Settings.json file.

3. Paste the PRIMARY CONNECTION STRING from the portal into the StorageConnectionString value.

Paste the string inside the quotes.

4. Press CTRL+S to save the Settings.json file.

You've now updated your app with all the info it needs to communicate with Azure Cosmos DB.

1. In Visual Studio, right-click on the CosmosTableSamples project in Solution Explorer and then click

Manage NuGet Packages .

https://portal.azure.com/

2. In the NuGet Browse box, type Microsoft.Azure.Cosmos.Table. This will find the Cosmos DB Table API

client library. Note that this library is currently available for .NET Framework and .NET Standard.

3. Click Install to install the Microsoft.Azure.Cosmos.Table library. This installs the Azure Cosmos DB

Table API package and all dependencies.

4. When you run the entire app, sample data is inserted into the table entity and deleted at the end so you

won’t see any data inserted if you run the whole sample. However you can insert some breakpoints to

view the data. Open BasicSamples.cs file and right-click on line 52, select Breakpoint, then select Inser t

Breakpoint. Insert another breakpoint on line 55.

 <ItemGroup>
 <None Update="Settings.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 </ItemGroup>

5. Press F5 to run the application. The console window displays the name of the new table database (in this

case, demoa13b1) in Azure Cosmos DB.

When you hit the first breakpoint, go back to Data Explorer in the Azure portal. Click the Refresh button,

expand the demo* table, and click Entities . The Entities tab on the right shows the new entity that was

added for Walter Harp. Note that the phone number for the new entity is 425-555-0101.

If you receive an error that says Settings.json file can’t be found when running the project, you can

resolve it by adding the following XML entry to the project settings. Right click on CosmosTableSamples,

select Edit CosmosTableSamples.csproj and add the following itemGroup:

 Review SLAs in the Azure portal

 Clean up resources

6. Close the Entities tab in Data Explorer.

7. Press F5 to run the app to the next breakpoint.

When you hit the breakpoint, switch back to the Azure portal, click Entities again to open the Entities

tab, and note that the phone number has been updated to 425-555-0105.

8. Press F5 to run the app.

The app adds entities for use in an advanced sample app that the Table API currently does not support.

The app then deletes the table created by the sample app.

9. In the console window, press Enter to end the execution of the app.

The Azure portal monitors your Cosmos DB account throughput, storage, availability, latency, and consistency.

Charts for metrics associated with an Azure Cosmos DB Service Level Agreement (SLA) show the SLA value

compared to actual performance. This suite of metrics makes monitoring your SLAs transparent.

To review metrics and SLAs:

1. Select Metr ics in your Cosmos DB account's navigation menu.

2. Select a tab such as Latency , and select a timeframe on the right. Compare the Actual and SL A lines on

the charts.

3. Review the metrics on the other tabs.

When you're done with your app and Azure Cosmos DB account, you can delete the Azure resources you created

so you don't incur more charges. To delete the resources:

1. In the Azure portal Search bar, search for and select Resource groups .

2. From the list, select the resource group you created for this quickstart.

https://azure.microsoft.com/support/legal/sla/cosmos-db/

 Next steps

3. On the resource group Over view page, select Delete resource group.

4. In the next window, enter the name of the resource group to delete, and then select Delete.

In this quickstart, you've learned how to create an Azure Cosmos DB account, create a table using the Data

Explorer, and run an app. Now you can query your data using the Table API.

Import table data to the Table API

https://docs.microsoft.com/en-us/azure/cosmos-db/table-import

Quickstart: Build a .NET console app to manage
Azure Cosmos DB SQL API resources

 4/26/2021 • 12 minutes to read • Edit Online

 Prerequisites

 Setting up

 Create an Azure Cosmos account

APPLIES TO: SQL API

Get started with the Azure Cosmos DB SQL API client library for .NET. Follow the steps in this doc to install the

.NET package, build an app, and try out the example code for basic CRUD operations on the data stored in Azure

Cosmos DB.

Azure Cosmos DB is Microsoft's fast NoSQL database with open APIs for any scale. You can use Azure Cosmos

DB to quickly create and query key/value, document, and graph databases. Use the Azure Cosmos DB SQL API

client library for .NET to:

Create an Azure Cosmos database and a container

Add sample data to the container

Query the data

Delete the database

API reference documentation | Library source code | Package (NuGet)

Azure subscription - create one for free or you can Try Azure Cosmos DB for free without an Azure

subscription, free of charge and commitments.

The .NET Core 2.1 SDK or later.

This section walks you through creating an Azure Cosmos account and setting up a project that uses Azure

Cosmos DB SQL API client library for .NET to manage resources. The example code described in this article

creates a FamilyDatabase database and family members (each family member is an item) within that database.

Each family member has properties such as Id, FamilyName, FirstName, LastName, Parents, Children, Address, .

The LastName property is used as the partition key for the container.

If you use the Try Azure Cosmos DB for free option to create an Azure Cosmos account, you must create an

Azure Cosmos DB account of type SQL API. An Azure Cosmos DB test account is already created for you. You

don't have to create the account explicitly, so you can skip this section and move to the next section.

If you have your own Azure subscription or created a subscription for free, you should create an Azure Cosmos

account explicitly. The following code will create an Azure Cosmos account with session consistency. The account

is replicated in South Central US and North Central US .

You can use Azure Cloud Shell to create the Azure Cosmos account. Azure Cloud Shell is an interactive,

authenticated, browser-accessible shell for managing Azure resources. It provides the flexibility of choosing the

shell experience that best suits the way you work, either Bash or PowerShell. For this quickstart, choose Bash

mode. Azure Cloud Shell also requires a storage account, you can create one when prompted.

Select the Tr y It button next to the following code, choose Bash mode select create a storage account and

login to Cloud Shell. Next copy and paste the following code to Azure Cloud Shell and run it. The Azure Cosmos

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cosmos-db/create-sql-api-dotnet.md
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos
https://github.com/Azure/azure-cosmos-dotnet-v3
https://www.nuget.org/packages/Microsoft.Azure.Cosmos
https://azure.microsoft.com/free/
https://azure.microsoft.com/try/cosmosdb/
https://dotnet.microsoft.com/download/dotnet-core/2.1
https://azure.microsoft.com/try/cosmosdb/

Set variables for the new SQL API account, database, and container
resourceGroupName='myResourceGroup'
location='southcentralus'

The Azure Cosmos account name must be globally unique, make sure to update the `mysqlapicosmosdb` value
before you run the command
accountName='mysqlapicosmosdb'

Create a resource group
az group create \
 --name $resourceGroupName \
 --location $location

Create a SQL API Cosmos DB account with session consistency and multi-region writes enabled
az cosmosdb create \
 --resource-group $resourceGroupName \
 --name $accountName \
 --kind GlobalDocumentDB \
 --locations regionName="South Central US" failoverPriority=0 --locations regionName="North Central US"
failoverPriority=1 \
 --default-consistency-level "Session" \
 --enable-multiple-write-locations true

 Create a new .NET app

dotnet new console --langVersion 7.1 -n todo

cd todo
dotnet build

 Restore completed in 100.37 ms for C:\Users\user1\Downloads\CosmosDB_Samples\todo\todo.csproj.
 todo -> C:\Users\user1\Downloads\CosmosDB_Samples\todo\bin\Debug\netcoreapp2.2\todo.dll
 todo -> C:\Users\user1\Downloads\CosmosDB_Samples\todo\bin\Debug\netcoreapp2.2\todo.Views.dll

Build succeeded.
 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:34.17

account name must be globally unique, make sure to update the mysqlapicosmosdb value before you run the

command.

The creation of the Azure Cosmos account takes a while, once the operation is successful, you can see the

confirmation output. After the command completes successfully, sign into the Azure portal and verify that the

Azure Cosmos account with the specified name exists. You can close the Azure Cloud Shell window after the

resource is created.

Create a new .NET application in your preferred editor or IDE. Open the Windows command prompt or a

Terminal window from your local computer. You will run all the commands in the next sections from the

command prompt or terminal. Run the following dotnet new command to create a new app with the name

todo . The --langVersion parameter sets the LangVersion property in the created project file.

Change your directory to the newly created app folder. You can build the application with:

The expected output from the build should look something like this:

https://portal.azure.com/

 Install the Azure Cosmos DB package

dotnet add package Microsoft.Azure.Cosmos

 Copy your Azure Cosmos account credentials from the Azure portal

 Set the environment variables

setx EndpointUrl "<Your_Azure_Cosmos_account_URI>"
setx PrimaryKey "<Your_Azure_Cosmos_account_PRIMARY_KEY>"

export EndpointUrl = "<Your_Azure_Cosmos_account_URI>"
export PrimaryKey = "<Your_Azure_Cosmos_account_PRIMARY_KEY>"

export EndpointUrl = "<Your_Azure_Cosmos_account_URI>"
export PrimaryKey = "<Your_Azure_Cosmos_account_PRIMARY_KEY>"

 Object model

While still in the application directory, install the Azure Cosmos DB client library for .NET Core by using the

dotnet add package command.

The sample application needs to authenticate to your Azure Cosmos account. To authenticate, you should pass

the Azure Cosmos account credentials to the application. Get your Azure Cosmos account credentials by

following these steps:

1. Sign in to the Azure portal.

2. Navigate to your Azure Cosmos account.

3. Open the Keys pane and copy the URI and PRIMARY KEY of your account. You will add the URI and

keys values to an environment variable in the next step.

After you have copied the URI and PRIMARY KEY of your account, save them to a new environment variable

on the local machine running the application. To set the environment variable, open a console window, and run

the following command. Make sure to replace <Your_Azure_Cosmos_account_URI> and

<Your_Azure_Cosmos_account_PRIMARY_KEY> values.

Windows

Linux

macOS

Before you start building the application, let's look into the hierarchy of resources in Azure Cosmos DB and the

object model used to create and access these resources. The Azure Cosmos DB creates resources in the

following order :

Azure Cosmos account

Databases

Containers

Items

To learn in more about the hierarchy of different entities, see the working with databases, containers, and items

in Azure Cosmos DB article. You will use the following .NET classes to interact with these resources:

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/cosmos-db/account-databases-containers-items

 Code examples

CosmosClient - This class provides a client-side logical representation for the Azure Cosmos DB service.

The client object is used to configure and execute requests against the service.

CreateDatabaseIfNotExistsAsync - This method creates (if doesn't exist) or gets (if already exists) a

database resource as an asynchronous operation.

CreateContainerIfNotExistsAsync- - This method creates (if it doesn't exist) or gets (if it already exists) a

container as an asynchronous operation. You can check the status code from the response to determine

whether the container was newly created (201) or an existing container was returned (200).

CreateItemAsync - This method creates an item within the container.

UpsertItemAsync - This method creates an item within the container if it doesn't already exist or replaces

the item if it already exists.

GetItemQueryIterator - This method creates a query for items under a container in an Azure Cosmos

database using a SQL statement with parameterized values.

DeleteAsync - Deletes the specified database from your Azure Cosmos account. DeleteAsync method

only deletes the database. Disposing of the Cosmosclient instance should happen separately (which it

does in the DeleteDatabaseAndCleanupAsync method.

The sample code described in this article creates a family database in Azure Cosmos DB. The family database

contains family details such as name, address, location, the associated parents, children, and pets. Before

populating the data to your Azure Cosmos account, define the properties of a family item. Create a new class

named Family.cs at the root level of your sample application and add the following code to it:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.cosmosclient
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.cosmosclient.createdatabaseifnotexistsasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.database.createcontainerifnotexistsasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.container.createitemasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.container.upsertitemasync
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.container.getitemqueryiterator
https://docs.microsoft.com/en-us/dotnet/api/microsoft.azure.cosmos.database.deleteasync

using Newtonsoft.Json;

namespace todo
{
 public class Family
 {
 [JsonProperty(PropertyName = "id")]
 public string Id { get; set; }
 public string LastName { get; set; }
 public Parent[] Parents { get; set; }
 public Child[] Children { get; set; }
 public Address Address { get; set; }
 public bool IsRegistered { get; set; }
 // The ToString() method is used to format the output, it's used for demo purpose only. It's not
required by Azure Cosmos DB
 public override string ToString()
 {
 return JsonConvert.SerializeObject(this);
 }
 }

 public class Parent
 {
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
 }

 public class Child
 {
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
 public string Gender { get; set; }
 public int Grade { get; set; }
 public Pet[] Pets { get; set; }
 }

 public class Pet
 {
 public string GivenName { get; set; }
 }

 public class Address
 {
 public string State { get; set; }
 public string County { get; set; }
 public string City { get; set; }
 }
}

 Add the using directives & define the client object

using System;
using System.Threading.Tasks;
using System.Configuration;
using System.Collections.Generic;
using System.Net;
using Microsoft.Azure.Cosmos;

From the project directory, open the Program.cs file in your editor and add the following using directives at the

top of your application:

To the Program.cs file, add code to read the environment variables that you have set in the previous step.

Define the CosmosClient , Database , and the Container objects. Next add code to the main method that calls the

namespace todo
{
public class Program
{

 /// The Azure Cosmos DB endpoint for running this GetStarted sample.
 private string EndpointUrl = Environment.GetEnvironmentVariable("EndpointUrl");

 /// The primary key for the Azure DocumentDB account.
 private string PrimaryKey = Environment.GetEnvironmentVariable("PrimaryKey");

 // The Cosmos client instance
 private CosmosClient cosmosClient;

 // The database we will create
 private Database database;

 // The container we will create.
 private Container container;

 // The name of the database and container we will create
 private string databaseId = "FamilyDatabase";
 private string containerId = "FamilyContainer";

 public static async Task Main(string[] args)
 {
 try
 {
 Console.WriteLine("Beginning operations...\n");
 Program p = new Program();
 await p.GetStartedDemoAsync();

 }
 catch (CosmosException de)
 {
 Exception baseException = de.GetBaseException();
 Console.WriteLine("{0} error occurred: {1}", de.StatusCode, de);
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e);
 }
 finally
 {
 Console.WriteLine("End of demo, press any key to exit.");
 Console.ReadKey();
 }
 }
}
}

 Create a database

private async Task CreateDatabaseAsync()
{
 // Create a new database
 this.database = await this.cosmosClient.CreateDatabaseIfNotExistsAsync(databaseId);
 Console.WriteLine("Created Database: {0}\n", this.database.Id);
}

GetStartedDemoAsync method where you manage Azure Cosmos account resources.

Define the CreateDatabaseAsync method within the program.cs class. This method creates the FamilyDatabase if

it doesn't already exist.

 Create a container

/// Create the container if it does not exist.
/// Specifiy "/LastName" as the partition key since we're storing family information, to ensure good
distribution of requests and storage.
private async Task CreateContainerAsync()
{
 // Create a new container
 this.container = await this.database.CreateContainerIfNotExistsAsync(containerId, "/LastName");
 Console.WriteLine("Created Container: {0}\n", this.container.Id);
}

 Create an item

Define the CreateContainerAsync method within the program.cs class. This method creates the FamilyContainer

if it doesn't already exist.

Create a family item by adding the AddItemsToContainerAsync method with the following code. You can use the

CreateItemAsync or UpsertItemAsync methods to create an item:

private async Task AddItemsToContainerAsync()
{
 // Create a family object for the Andersen family
 Family andersenFamily = new Family
 {
 Id = "Andersen.1",
 LastName = "Andersen",
 Parents = new Parent[]
 {
 new Parent { FirstName = "Thomas" },
 new Parent { FirstName = "Mary Kay" }
 },
 Children = new Child[]
 {
 new Child
 {
 FirstName = "Henriette Thaulow",
 Gender = "female",
 Grade = 5,
 Pets = new Pet[]
 {
 new Pet { GivenName = "Fluffy" }
 }
 }
 },
 Address = new Address { State = "WA", County = "King", City = "Seattle" },
 IsRegistered = false
 };

 try
 {
 // Create an item in the container representing the Andersen family. Note we provide the value of
the partition key for this item, which is "Andersen".
 ItemResponse<Family> andersenFamilyResponse = await this.container.CreateItemAsync<Family>
(andersenFamily, new PartitionKey(andersenFamily.LastName));
 // Note that after creating the item, we can access the body of the item with the Resource property
of the ItemResponse. We can also access the RequestCharge property to see the amount of RUs consumed on this
request.
 Console.WriteLine("Created item in database with id: {0} Operation consumed {1} RUs.\n",
andersenFamilyResponse.Resource.Id, andersenFamilyResponse.RequestCharge);
 }
 catch (CosmosException ex) when (ex.StatusCode == HttpStatusCode.Conflict)
 {
 Console.WriteLine("Item in database with id: {0} already exists\n", andersenFamily.Id);
 }
}

 Query the items
After inserting an item, you can run a query to get the details of "Andersen" family. The following code shows

how to execute the query using the SQL query directly. The SQL query to get the "Anderson" family details is:

SELECT * FROM c WHERE c.LastName = 'Andersen' . Define the QueryItemsAsync method within the program.cs

class and add the following code to it:

private async Task QueryItemsAsync()
{
 var sqlQueryText = "SELECT * FROM c WHERE c.LastName = 'Andersen'";

 Console.WriteLine("Running query: {0}\n", sqlQueryText);

 QueryDefinition queryDefinition = new QueryDefinition(sqlQueryText);
 FeedIterator<Family> queryResultSetIterator = this.container.GetItemQueryIterator<Family>
(queryDefinition);

 List<Family> families = new List<Family>();

 while (queryResultSetIterator.HasMoreResults)
 {
 FeedResponse<Family> currentResultSet = await queryResultSetIterator.ReadNextAsync();
 foreach (Family family in currentResultSet)
 {
 families.Add(family);
 Console.WriteLine("\tRead {0}\n", family);
 }
 }
}

 Delete the database

private async Task DeleteDatabaseAndCleanupAsync()
{
 DatabaseResponse databaseResourceResponse = await this.database.DeleteAsync();
 // Also valid: await this.cosmosClient.Databases["FamilyDatabase"].DeleteAsync();

 Console.WriteLine("Deleted Database: {0}\n", this.databaseId);

 //Dispose of CosmosClient
 this.cosmosClient.Dispose();
}

 Execute the CRUD operations

public async Task GetStartedDemoAsync()
{
 // Create a new instance of the Cosmos Client
 this.cosmosClient = new CosmosClient(EndpointUrl, PrimaryKey);
 await this.CreateDatabaseAsync();
 await this.CreateContainerAsync();
 await this.AddItemsToContainerAsync();
 await this.QueryItemsAsync();
}

 Run the code

Finally you can delete the database adding the DeleteDatabaseAndCleanupAsync method with the following code:

After you have defined all the required methods, execute them with in the GetStartedDemoAsync method. The

DeleteDatabaseAndCleanupAsync method commented out in this code because you will not see any resources if

that method is executed. You can uncomment it after validating that your Azure Cosmos DB resources were

created in the Azure portal.

After you add all the required methods, save the Program.cs file.

Next build and run the application to create the Azure Cosmos DB resources. Make sure to open a new

dotnet build

dotnet run

Created Database: FamilyDatabase

Created Container: FamilyContainer

Created item in database with id: Andersen.1 Operation consumed 11.62 RUs.

Running query: SELECT * FROM c WHERE c.LastName = 'Andersen'

 Read {"id":"Andersen.1","LastName":"Andersen","Parents":[{"FamilyName":null,"FirstName":"Thomas"},
{"FamilyName":null,"FirstName":"Mary Kay"}],"Children":[{"FamilyName":null,"FirstName":"Henriette
Thaulow","Gender":"female","Grade":5,"Pets":[{"GivenName":"Fluffy"}]}],"Address":
{"State":"WA","County":"King","City":"Seattle"},"IsRegistered":false}

End of demo, press any key to exit.

 Clean up resources

az group delete -g "myResourceGroup"

 Next steps

command prompt window, don't use the same instance that you have used to set the environment variables.

Because the environment variables are not set in the current open window. You will need to open a new

command prompt to see the updates.

The following output is generated when you run the application. You can also sign into the Azure portal and

validate that the resources are created:

You can validate that the data is created by signing into the Azure portal and see the required items in your

Azure Cosmos account.

When no longer needed, you can use the Azure CLI or Azure PowerShell to remove the Azure Cosmos account

and the corresponding resource group. The following command shows how to delete the resource group by

using the Azure CLI:

In this quickstart, you learned how to create an Azure Cosmos account, create a database and a container using

a .NET Core app. You can now import additional data to your Azure Cosmos account with the instructions in the

following article.

Import data into Azure Cosmos DB

https://docs.microsoft.com/en-us/azure/cosmos-db/import-data

Quickstart: Create an Azure SQL Database single
database

 5/28/2021 • 7 minutes to read • Edit Online

 Prerequisite

 Create a single database

In this quickstart, you create a single database in Azure SQL Database using either the Azure portal, a

PowerShell script, or an Azure CLI script. You then query the database using Quer y editor in the Azure portal.

An active Azure subscription. If you don't have one, create a free account.

This quickstart creates a single database in the serverless compute tier.

Portal

Azure CLI

PowerShell

To create a single database in the Azure portal this quickstart starts at the Azure SQL page.

1. Browse to the Select SQL Deployment option page.

2. Under SQL databases , leave Resource type set to S ingle database, and select Create.

3. On the Basics tab of the Create SQL Database form, under Project details , select the desired Azure

Subscr iption .

4. For Resource group, select Create new , enter myResourceGroup, and select OK.

5. For Database name enter mySampleDatabase.

6. For Ser ver , select Create new , and fill out the New ser ver form with the following values:

Ser ver name : Enter mysqlserver, and add some characters for uniqueness. We can't provide an exact

server name to use because server names must be globally unique for all servers in Azure, not just

unique within a subscription. So enter something like mysqlserver12345, and the portal lets you

know if it is available or not.

Ser ver admin login : Enter azureuser.

Password: Enter a password that meets requirements, and enter it again in the Confirm password

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/azure-sql/database/single-database-create-quickstart.md
https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-overview
https://azure.microsoft.com/free/
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://portal.azure.com/#create/Microsoft.AzureSQL

field.

Location: Select a location from the dropdown list.

Select OK.

7. Leave Want to use SQL elastic pool set to No.

8. Under Compute + storage, select Configure database.

9. This quickstart uses a serverless database, so select Ser ver less , and then select Apply .

10. Select Next: Networking at the bottom of the page.

11. On the Networking tab, for Connectivity method, select Public endpoint.

12. For Firewall rules , set Add current client IP address to Yes . Leave Allow Azure ser vices and

resources to access this ser ver set to No.

13. Select Next: Additional settings at the bottom of the page.

14. On the Additional settings tab, in the Data source section, for Use existing data, select Sample.

This creates an AdventureWorksLT sample database so there's some tables and data to query and

experiment with, as opposed to an empty blank database.

15. Optionally, enable Azure Defender for SQL.

16. Optionally, set the maintenance window so planned maintenance is performed at the best time for your

database.

17. Select Review + create at the bottom of the page:

https://docs.microsoft.com/en-us/azure/azure-sql/database/azure-defender-for-sql
https://docs.microsoft.com/en-us/azure/azure-sql/database/maintenance-window

 Query the database

18. On the Review + create page, after reviewing, select Create.

Once your database is created, you can use the Quer y editor (preview) in the Azure portal to connect to the

database and query data.

1. In the portal, search for and select SQL databases , and then select your database from the list.

2. On the page for your database, select Quer y editor (preview) in the left menu.

3. Enter your server admin login information, and select OK.

 Clean up resources

SELECT TOP 20 pc.Name as CategoryName, p.name as ProductName
FROM SalesLT.ProductCategory pc
JOIN SalesLT.Product p
ON pc.productcategoryid = p.productcategoryid;

4. Enter the following query in the Quer y editor pane.

5. Select Run, and then review the query results in the Results pane.

6. Close the Quer y editor page, and select OK when prompted to discard your unsaved edits.

Keep the resource group, server, and single database to go on to the next steps, and learn how to connect and

 Next steps

query your database with different methods.

When you're finished using these resources, you can delete the resource group you created, which will also

delete the server and single database within it.

Portal

Azure CLI

PowerShell

To delete myResourceGroup and all its resources using the Azure portal:

1. In the portal, search for and select Resource groups , and then select myResourceGroup from the list.

2. On the resource group page, select Delete resource group.

3. Under Type the resource group name, enter myResourceGroup, and then select Delete.

Connect and query your database using different tools and languages:

Connect and query using SQL Server Management Studio

Connect and query using Azure Data Studio

Want to optimize and save on your cloud spending?

Start analyzing costs with Cost Management

https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-content-reference-guide
https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-ssms
https://docs.microsoft.com/en-us/sql/azure-data-studio/quickstart-sql-database?toc=/azure/sql-database/toc.json
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/quick-acm-cost-analysis

Get started with Azure Queue Storage using .NET
 5/25/2021 • 20 minutes to read • Edit Online

 Overview

 About this tutorial

 Prerequisites

 What is Queue storage?

 Queue service concepts

Azure Queue Storage provides cloud messaging between application components. In designing applications for

scale, application components are often decoupled so they can scale independently. Queue Storage delivers

asynchronous messaging between application components, whether they are running in the cloud, on the

desktop, on an on-premises server, or on a mobile device. Queue Storage also supports managing

asynchronous tasks and building process work flows.

This tutorial shows how to write .NET code for some common scenarios using Azure Queue Storage. Scenarios

covered include creating and deleting queues and adding, reading, and deleting queue messages.

Estimated time to complete: 45 minutes

Microsoft Visual Studio

An Azure Storage account

Azure Queue storage is a service for storing large numbers of messages that can be accessed from anywhere in

the world via authenticated calls using HTTP or HTTPS. A single queue message can be up to 64 KB in size, and a

queue can contain millions of messages, up to the total capacity limit of a storage account. Queue storage is

often used to create a backlog of work to process asynchronously.

The Azure Queue service contains the following components:

Storage Account: All access to Azure Storage is done through a storage account. For more information

about storage accounts, see Storage account overview.

Queue: A queue contains a set of messages. All messages must be in a queue. Note that the queue name

must be all lowercase. For information on naming queues, see Naming Queues and Metadata.

Message: A message, in any format, of up to 64 KB. The maximum time that a message can remain in

the queue is 7 days. For version 2017-07-29 or later, the maximum time-to-live can be any positive

number, or -1 indicating that the message doesn't expire. If this parameter is omitted, the default time-to-

live is seven days.

URL format: Queues are addressable using the following URL format: http:// <storage account>

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/storage/queues/storage-dotnet-how-to-use-queues.md
https://www.visualstudio.com/downloads/
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/rest/api/storageservices/naming-queues-and-metadata

 Create an Azure storage account

 Set up your development environment

 Create a Windows console application project

 Use NuGet to install the required packages

.queue.core.windows.net/ <queue>

The following URL addresses a queue in the diagram:

http://myaccount.queue.core.windows.net/incoming-orders

The easiest way to create your first Azure storage account is by using the Azure portal. To learn more, see Create

a storage account.

You can also create an Azure storage account by using Azure PowerShell, Azure CLI, or the Azure Storage

Resource Provider for .NET.

If you prefer not to create a storage account in Azure at this time, you can also use the Azurite storage emulator

to run and test your code in a local environment. For more information, see Use the Azurite emulator for local

Azure Storage development.

Next, set up your development environment in Visual Studio so you're ready to try the code examples in this

guide.

In Visual Studio, create a new Windows console application. The following steps show you how to create a

console application in Visual Studio 2019. The steps are similar in other versions of Visual Studio.

1. Select File > New > Project

2. Select Platform > Windows

3. Select Console App (.NET Framework)

4. Select Next

5. In the Project name field, enter a name for your application

6. Select Create

All code examples in this tutorial can be added to the Main() method of your console application's Program.cs

file.

You can use the Azure Storage client libraries in any type of .NET application, including an Azure cloud service or

web app, and desktop and mobile applications. In this guide, we use a console application for simplicity.

.NET v12 SDK

.NET v11 SDK

You need to reference the following four packages in your project to complete this tutorial:

Azure.Core library for .NET: This package provides shared primitives, abstractions, and helpers for modern

.NET Azure SDK client libraries.

Azure.Storage.Common client library for .NET: This package provides infrastructure shared by the other

Azure Storage client libraries.

Azure.Storage.Queues client library for .NET: This package enables working with Azure Queue Storage for

storing messages that may be accessed by a client.

System.Configuration.ConfigurationManager library for .NET: This package provides access to configuration

files for client applications.

You can use NuGet to obtain these packages. Follow these steps:

https://portal.azure.com
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/powershell/module/az.storage/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://azure.microsoft.com/resources/samples/storage-dotnet-resource-provider-getting-started/
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://www.nuget.org/packages/azure.core/
https://www.nuget.org/packages/azure.storage.common/
https://www.nuget.org/packages/azure.storage.queues/
https://www.nuget.org/packages/system.configuration.configurationmanager/

 Determine your target environment

NOTE

 Get your storage connection string

 Copy your credentials from the Azure portal

1. Right-click your project in Solution Explorer , and choose Manage NuGet Packages .

2. Select Browse

3. Search online for Azure.Storage.Queues , and select Install to install the Azure Storage client library and its

dependencies. This will also install the Azure.Storage.Common and Azure.Core libraries, which are

dependencies of the queue library.

4. Search online for System.Configuration.ConfigurationManager , and select Install to install the Configuration

Manager.

You have two environment options for running the examples in this guide:

You can run your code against an Azure Storage account in the cloud.

You can run your code against the Azurite storage emulator. Azurite is a local environment that emulates an

Azure Storage account in the cloud. Azurite is a free option for testing and debugging your code while your

application is under development. The emulator uses a well-known account and key. For more information,

see Use the Azurite emulator for local Azure Storage development and testing.

You can target the storage emulator to avoid incurring any costs associated with Azure Storage. However, if you do

choose to target an Azure Storage account in the cloud, costs for performing this tutorial will be negligible.

The Azure Storage client libraries for .NET support using a storage connection string to configure endpoints and

credentials for accessing storage services. For more information, see Manage storage account access keys.

The sample code needs to authorize access to your storage account. To authorize, you provide the application

with your storage account credentials in the form of a connection string. To view your storage account

credentials:

1. Navigate to the Azure portal.

2. Locate your storage account.

3. In the Settings section of the storage account overview, select Access keys . Your account access keys

appear, as well as the complete connection string for each key.

4. Find the Connection str ing value under key1 , and click the Copy button to copy the connection string.

You will add the connection string value to an environment variable in the next step.

For more information about connection strings, see Configure a connection string to Azure Storage.

https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azurite
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string

NOTE

<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7.2" />
 </startup>
 <appSettings>
 <add key="StorageConnectionString" value="connection-string" />
 </appSettings>
</configuration>

<add key="StorageConnectionString"
value="DefaultEndpointsProtocol=https;AccountName=storagesample;AccountKey=GMuzNHjlB3S9itqZJHHCnRkrokLkcSyW7
yK9BRbGp0ENePunLPwBgpxV1Z/pVo9zpem/2xSHXkMqTHHLcx8XRA==EndpointSuffix=core.windows.net" />

<add key="StorageConnectionString" value="UseDevelopmentStorage=true" />

 Add using directives

using System; // Namespace for Console output
using System.Configuration; // Namespace for ConfigurationManager
using System.Threading.Tasks; // Namespace for Task
using Azure.Storage.Queues; // Namespace for Queue storage types
using Azure.Storage.Queues.Models; // Namespace for PeekedMessage

 Create the Queue Storage client

Your storage account key is similar to the root password for your storage account. Always be careful to protect your

storage account key. Avoid distributing it to other users, hard-coding it, or saving it in a plain-text file that is accessible to

others. Regenerate your key by using the Azure portal if you believe it may have been compromised.

The best way to maintain your storage connection string is in a configuration file. To configure your connection

string, open the app.config file from Solution Explorer in Visual Studio. Add the contents of the <appSettings>

element shown here. Replace connection-string with the value you copied from your storage account in the

portal:

For example, your configuration setting appears similar to:

To target the Azurite storage emulator, you can use a shortcut that maps to the well-known account name and

key. In that case, your connection string setting is:

Add the following using directives to the top of the Program.cs file:

.NET v12 SDK

.NET v11 SDK

.NET v12 SDK

.NET v11 SDK

The QueueClient class enables you to retrieve queues stored in Queue Storage. Here's one way to create the

service client:

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient

//---
// Create the queue service client
//---
public void CreateQueueClient(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to create and manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);
}

 Create a queue

//---
// Create a message queue
//---
public bool CreateQueue(string queueName)
{
 try
 {
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to create and manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 // Create the queue
 queueClient.CreateIfNotExists();

 if (queueClient.Exists())
 {
 Console.WriteLine($"Queue created: '{queueClient.Name}'");
 return true;
 }
 else
 {
 Console.WriteLine($"Make sure the Azurite storage emulator running and try again.");
 return false;
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Exception: {ex.Message}\n\n");
 Console.WriteLine($"Make sure the Azurite storage emulator running and try again.");
 return false;
 }
}

 Insert a message into a queue

Now you are ready to write code that reads data from and writes data to Queue Storage.

This example shows how to create a queue:

.NET v12 SDK

.NET v11 SDK

.NET v12 SDK

.NET v11 SDK

//---
// Insert a message into a queue
//---
public void InsertMessage(string queueName, string message)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to create and manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 // Create the queue if it doesn't already exist
 queueClient.CreateIfNotExists();

 if (queueClient.Exists())
 {
 // Send a message to the queue
 queueClient.SendMessage(message);
 }

 Console.WriteLine($"Inserted: {message}");
}

 Peek at the next message

//---
// Peek at a message in the queue
//---
public void PeekMessage(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 if (queueClient.Exists())
 {
 // Peek at the next message
 PeekedMessage[] peekedMessage = queueClient.PeekMessages();

 // Display the message
 Console.WriteLine($"Peeked message: '{peekedMessage[0].MessageText}'");
 }
}

 Change the contents of a queued message

To insert a message into an existing queue, call the SendMessage method. A message can be either a string (in

UTF-8 format) or a byte array. The following code creates a queue (if it doesn't exist) and inserts a message:

.NET v12 SDK

.NET v11 SDK

You can peek at the messages in the queue without removing them from the queue by calling the PeekMessages

method. If you don't pass a value for the maxMessages parameter, the default is to peek at one message.

You can change the contents of a message in-place in the queue. If the message represents a work task, you

could use this feature to update the status of the work task. The following code updates the queue message with

new contents, and sets the visibility timeout to extend another 60 seconds. This saves the state of work

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.sendmessage
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.peekmessages

//---
// Update an existing message in the queue
//---
public void UpdateMessage(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 if (queueClient.Exists())
 {
 // Get the message from the queue
 QueueMessage[] message = queueClient.ReceiveMessages();

 // Update the message contents
 queueClient.UpdateMessage(message[0].MessageId,
 message[0].PopReceipt,
 "Updated contents",
 TimeSpan.FromSeconds(60.0) // Make it invisible for another 60 seconds
);
 }
}

 Dequeue the next message

associated with the message, and gives the client another minute to continue working on the message. You

could use this technique to track multistep workflows on queue messages, without having to start over from the

beginning if a processing step fails due to hardware or software failure. Typically, you would keep a retry count

as well, and if the message is retried more than n times, you would delete it. This protects against a message

that triggers an application error each time it is processed.

.NET v12 SDK

.NET v11 SDK

.NET v12 SDK

.NET v11 SDK

Dequeue a message from a queue in two steps. When you call ReceiveMessages , you get the next message in a

queue. A message returned from ReceiveMessages becomes invisible to any other code reading messages from

this queue. By default, this message stays invisible for 30 seconds. To finish removing the message from the

queue, you must also call DeleteMessage . This two-step process of removing a message assures that if your

code fails to process a message due to hardware or software failure, another instance of your code can get the

same message and try again. Your code calls DeleteMessage right after the message has been processed.

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.receivemessages
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.deletemessage

//---
// Process and remove a message from the queue
//---
public void DequeueMessage(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 if (queueClient.Exists())
 {
 // Get the next message
 QueueMessage[] retrievedMessage = queueClient.ReceiveMessages();

 // Process (i.e. print) the message in less than 30 seconds
 Console.WriteLine($"Dequeued message: '{retrievedMessage[0].MessageText}'");

 // Delete the message
 queueClient.DeleteMessage(retrievedMessage[0].MessageId, retrievedMessage[0].PopReceipt);
 }
}

 Use the Async-Await pattern with common Queue Storage APIs

This example shows how to use the Async-Await pattern with common Queue Storage APIs. The sample calls the

asynchronous version of each of the given methods, as indicated by the Async suffix of each method. When an

async method is used, the Async-Await pattern suspends local execution until the call completes. This behavior

allows the current thread to do other work, which helps avoid performance bottlenecks and improves the

overall responsiveness of your application. For more details on using the Async-Await pattern in .NET, see Async

and Await (C# and Visual Basic)

.NET v12 SDK

.NET v11 SDK

https://docs.microsoft.com/en-us/previous-versions/hh191443(v=vs.140)

//---
// Perform queue operations asynchronously
//---
public async Task QueueAsync(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 // Create the queue if it doesn't already exist
 await queueClient.CreateIfNotExistsAsync();

 if (await queueClient.ExistsAsync())
 {
 Console.WriteLine($"Queue '{queueClient.Name}' created");
 }
 else
 {
 Console.WriteLine($"Queue '{queueClient.Name}' exists");
 }

 // Async enqueue the message
 await queueClient.SendMessageAsync("Hello, World");
 Console.WriteLine($"Message added");

 // Async receive the message
 QueueMessage[] retrievedMessage = await queueClient.ReceiveMessagesAsync();
 Console.WriteLine($"Retrieved message with content '{retrievedMessage[0].MessageText}'");

 // Async delete the message
 await queueClient.DeleteMessageAsync(retrievedMessage[0].MessageId, retrievedMessage[0].PopReceipt);
 Console.WriteLine($"Deleted message: '{retrievedMessage[0].MessageText}'");

 // Async delete the queue
 await queueClient.DeleteAsync();
 Console.WriteLine($"Deleted queue: '{queueClient.Name}'");
}

 Use additional options for dequeuing messages

There are two ways you can customize message retrieval from a queue. First, you can get a batch of messages

(up to 32). Second, you can set a longer or shorter invisibility timeout, allowing your code more or less time to

fully process each message.

.NET v12 SDK

.NET v11 SDK

The following code example uses the ReceiveMessages method to get 20 messages in one call. Then it processes

each message using a foreach loop. It also sets the invisibility timeout to five minutes for each message. Note

that the five minutes starts for all messages at the same time, so after five minutes have passed since the call to

ReceiveMessages , any messages which have not been deleted will become visible again.

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.receivemessages

//---
// Process and remove multiple messages from the queue
//---
public void DequeueMessages(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 if (queueClient.Exists())
 {
 // Receive and process 20 messages
 QueueMessage[] receivedMessages = queueClient.ReceiveMessages(20, TimeSpan.FromMinutes(5));

 foreach (QueueMessage message in receivedMessages)
 {
 // Process (i.e. print) the messages in less than 5 minutes
 Console.WriteLine($"De-queued message: '{message.MessageText}'");

 // Delete the message
 queueClient.DeleteMessage(message.MessageId, message.PopReceipt);
 }
 }
}

 Get the queue length

//---
// Get the approximate number of messages in the queue
//---
public void GetQueueLength(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 if (queueClient.Exists())
 {
 QueueProperties properties = queueClient.GetProperties();

 // Retrieve the cached approximate message count.
 int cachedMessagesCount = properties.ApproximateMessagesCount;

 // Display number of messages.
 Console.WriteLine($"Number of messages in queue: {cachedMessagesCount}");
 }
}

.NET v12 SDK

.NET v11 SDK

You can get an estimate of the number of messages in a queue. The GetProperties method returns queue

properties including the message count. The ApproximateMessagesCount property contains the approximate

number of messages in the queue. This number is not lower than the actual number of messages in the queue,

but could be higher.

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.getproperties
https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.models.queueproperties.approximatemessagescount

Delete a queue

//---
// Delete the queue
//---
public void DeleteQueue(string queueName)
{
 // Get the connection string from app settings
 string connectionString = ConfigurationManager.AppSettings["StorageConnectionString"];

 // Instantiate a QueueClient which will be used to manipulate the queue
 QueueClient queueClient = new QueueClient(connectionString, queueName);

 if (queueClient.Exists())
 {
 // Delete the queue
 queueClient.Delete();
 }

 Console.WriteLine($"Queue deleted: '{queueClient.Name}'");
}

 Next steps

.NET v12 SDK

.NET v11 SDK

To delete a queue and all the messages contained in it, call the Delete method on the queue object.

Now that you've learned the basics of Queue Storage, follow these links to learn about more complex storage

tasks.

View the Queue Storage reference documentation for complete details about available APIs:

View more feature guides to learn about additional options for storing data in Azure.

Learn how to simplify the code you write to work with Azure Storage by using the Azure WebJobs SDK.

Azure Storage client library for .NET reference

Azure Storage REST API reference

Get started with Azure Table Storage using .NET to store structured data.

Get started with Azure Blob Storage using .NET to store unstructured data.

Connect to SQL Database by using .NET (C#) to store relational data.

https://docs.microsoft.com/en-us/dotnet/api/azure.storage.queues.queueclient.delete
https://docs.microsoft.com/en-us/dotnet/api/overview/azure/storage
https://docs.microsoft.com/en-us/rest/api/storageservices/
https://docs.microsoft.com/en-us/azure/cosmos-db/tutorial-develop-table-dotnet
https://docs.microsoft.com/en-us/azure/azure-sql/database/connect-query-dotnet-core
https://github.com/Azure/azure-webjobs-sdk/wiki

Scale up an app in Azure App Service
 3/5/2021 • 2 minutes to read • Edit Online

NOTE

 Scale up your pricing tier

NOTE

This article shows you how to scale your app in Azure App Service. There are two workflows for scaling, scale up

and scale out, and this article explains the scale up workflow.

Scale up: Get more CPU, memory, disk space, and extra features like dedicated virtual machines (VMs),

custom domains and certificates, staging slots, autoscaling, and more. You scale up by changing the pricing

tier of the App Service plan that your app belongs to.

Scale out: Increase the number of VM instances that run your app. You can scale out to as many as 30

instances, depending on your pricing tier. App Service Environments in Isolated tier further increases your

scale-out count to 100 instances. For more information about scaling out, see Scale instance count manually

or automatically. There, you find out how to use autoscaling, which is to scale instance count automatically

based on predefined rules and schedules.

The scale settings take only seconds to apply and affect all apps in your App Service plan. They don't require you

to change your code or redeploy your application.

For information about the pricing and features of individual App Service plans, see App Service Pricing Details.

Before you switch an App Service plan from the Free tier, you must first remove the spending limits in place for your

Azure subscription. To view or change options for your Microsoft Azure App Service subscription, see Microsoft Azure

Subscriptions.

To scale up to PremiumV3 tier, see Configure PremiumV3 tier for App Service.

1. In your browser, open the Azure portal.

2. In your App Service app page, from the left menu, select Scale Up (App Ser vice plan) .

3. Choose your tier, and then select Apply . Select the different categories (for example, Production) and

also See additional options to show more tiers.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/manage-scale-up.md
https://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
https://en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling
https://docs.microsoft.com/en-us/azure/app-service/environment/intro
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-get-started
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://azure.microsoft.com/pricing/details/web-sites/
https://azure.microsoft.com/pricing/spending-limits/
https://account.windowsazure.com/subscriptions
https://docs.microsoft.com/en-us/azure/app-service/app-service-configure-premium-tier
https://portal.azure.com/

 Scale related resources

When the operation is complete, you see a notification pop-up with a green success check mark.

If your app depends on other services, such as Azure SQL Database or Azure Storage, you can scale up these

resources separately. These resources aren't managed by the App Service plan.

1. In the Over view page for your app, select the Resource group link.

2. In the Summar y part of the Resource group page, select a resource that you want to scale. The

following screenshot shows a SQL Database resource.

 Compare pricing tiers

 More resources

To scale up the related resource, see the documentation for the specific resource type. For example, to

scale up a single SQL Database, see Scale single database resources in Azure SQL Database. To scale up a

Azure Database for MySQL resource, see Scale MySQL resources.

For detailed information, such as VM sizes for each pricing tier, see App Service Pricing Details.

For a table of service limits, quotas, and constraints, and supported features in each tier, see App Service limits.

Scale instance count manually or automatically

Configure PremiumV3 tier for App Service

https://docs.microsoft.com/en-us/azure/azure-sql/database/single-database-scale
https://docs.microsoft.com/en-us/azure/mysql/concepts-pricing-tiers
https://azure.microsoft.com/pricing/details/app-service
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-get-started
https://docs.microsoft.com/en-us/azure/app-service/app-service-configure-premium-tier

What are virtual machine scale sets?
 6/17/2021 • 4 minutes to read • Edit Online

 Why use virtual machine scale sets?

Azure virtual machine scale sets let you create and manage a group of load balanced VMs. The number of VM

instances can automatically increase or decrease in response to demand or a defined schedule. Scale sets

provide high availability to your applications, and allow you to centrally manage, configure, and update a large

number of VMs. With virtual machine scale sets, you can build large-scale services for areas such as compute,

big data, and container workloads.

To provide redundancy and improved performance, applications are typically distributed across multiple

instances. Customers may access your application through a load balancer that distributes requests to one of

the application instances. If you need to perform maintenance or update an application instance, your customers

must be distributed to another available application instance. To keep up with extra customer demand, you may

need to increase the number of application instances that run your application.

Azure virtual machine scale sets provide the management capabilities for applications that run across many

VMs, automatic scaling of resources, and load balancing of traffic. Scale sets provide the following key benefits:

Easy to create and manage multiple VMs

When you have many VMs that run your application, it's important to maintain a consistent

configuration across your environment. For reliable performance of your application, the VM size, disk

configuration, and application installs should match across all VMs.

With scale sets, all VM instances are created from the same base OS image and configuration. This

approach lets you easily manage hundreds of VMs without extra configuration tasks or network

management.

Scale sets support the use of the Azure load balancer for basic layer-4 traffic distribution, and Azure

Application Gateway for more advanced layer-7 traffic distribution and TLS termination.

Provides high availability and application resiliency

Scale sets are used to run multiple instances of your application. If one of these VM instances has a

problem, customers continue to access your application through one of the other VM instances with

minimal interruption.

For more availability, you can use Availability Zones to automatically distribute VM instances in a scale

set within a single datacenter or across multiple datacenters.

Allows your application to automatically scale as resource demand changes

Customer demand for your application may change throughout the day or week. To match customer

demand, scale sets can automatically increase the number of VM instances as application demand

increases, then reduce the number of VM instances as demand decreases.

Autoscale also minimizes the number of unnecessary VM instances that run your application when

demand is low, while customers continue to receive an acceptable level of performance as demand

grows and additional VM instances are automatically added. This ability helps reduce costs and

efficiently create Azure resources as required.

Works at large-scale

Scale sets support up to 1,000 VM instances for standard marketplace images and custom images

through the Shared Image Gallery. If you create a scale set using a managed image, the limit is 600

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machine-scale-sets/overview.md
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview

 Differences between virtual machines and scale sets

SC EN A RIO M A N UA L GRO UP O F VM S VIRT UA L M A C H IN E SC A L E SET

Add extra VM instances Manual process to create, configure,
and ensure compliance

Automatically create from central
configuration

Traffic balancing and distribution Manual process to create and
configure Azure load balancer or
Application Gateway

Can automatically create and integrate
with Azure load balancer or Application
Gateway

High availability and redundancy Manually create Availability Set or
distribute and track VMs across
Availability Zones

Automatic distribution of VM instances
across Availability Zones or Availability
Sets

Scaling of VMs Manual monitoring and Azure
Automation

Autoscale based on host metrics, in-
guest metrics, Application Insights, or
schedule

 How to monitor your scale sets

 Data residency

 Next steps

VM instances.

For the best performance with production workloads, use Azure Managed Disks.

Scale sets are built from virtual machines. With scale sets, the management and automation layers are provided

to run and scale your applications. You could instead manually create and manage individual VMs, or integrate

existing tools to build a similar level of automation. The following table outlines the benefits of scale sets

compared to manually managing multiple VM instances.

There is no extra cost to scale sets. You only pay for the underlying compute resources such as the VM instances,

load balancer, or Managed Disk storage. The management and automation features, such as autoscale and

redundancy, incur no additional charges over the use of VMs.

Use Azure Monitor for VMs, which has a simple onboarding process and will automate the collection of

important CPU, memory, disk, and network performance counters from the VMs in your scale set. It also

includes extra monitoring capabilities and pre-defined visualizations that help you focus on the availability and

performance of your scale sets.

Enable monitoring for your virtual machine scale set application with Application Insights to collect detailed

information about your application including page views, application requests, and exceptions. Further verify the

availability of your application by configuring an availability test to simulate user traffic.

In Azure, the feature to enable storing customer data in a single region is currently only available in the

Southeast Asia Region (Singapore) of the Asia Pacific Geo and Brazil South (Sao Paulo State) Region of Brazil

Geo. Customer data is stored in Geo for all other regions. See Trust Center for more information.

To get started, create your first virtual machine scale set in the Azure portal.

Create a scale set in the Azure portal

https://docs.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/vm/vminsights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/azure-vm-vmss-apps
https://docs.microsoft.com/en-us/azure/azure-monitor/app/monitor-web-app-availability
https://azure.microsoft.com/global-infrastructure/data-residency/
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/quick-create-portal

Scaling in Service Fabric
 3/5/2021 • 15 minutes to read • Edit Online

 Scaling by creating or removing stateless service instances

StatelessServiceUpdateDescription updateDescription = new StatelessServiceUpdateDescription();
updateDescription.InstanceCount = 50;
await fabricClient.ServiceManager.UpdateServiceAsync(new Uri("fabric:/app/service"), updateDescription);

Update-ServiceFabricService -Stateless -ServiceName $serviceName -InstanceCount 50

 Using Dynamic Instance Count

Azure Service Fabric makes it easy to build scalable applications by managing the services, partitions, and

replicas on the nodes of a cluster. Running many workloads on the same hardware enables maximum resource

utilization, but also provides flexibility in terms of how you choose to scale your workloads. This Channel 9 video

describes how you can build scalable microservices applications:

Scaling in Service Fabric is accomplished several different ways:

1. Scaling by creating or removing stateless service instances

2. Scaling by creating or removing new named services

3. Scaling by creating or removing new named application instances

4. Scaling by using partitioned services

5. Scaling by adding and removing nodes from the cluster

6. Scaling by using Cluster Resource Manager metrics

One of the simplest ways to scale within Service Fabric works with stateless services. When you create a

stateless service, you get a chance to define an InstanceCount . InstanceCount defines how many running

copies of that service's code are created when the service starts up. Let's say, for example, that there are 100

nodes in the cluster. Let's also say that a service is created with an InstanceCount of 10. During runtime, those

10 running copies of the code could all become too busy (or could be not busy enough). One way to scale that

workload is to change the number of instances. For example, some piece of monitoring or management code

can change the existing number of instances to 50, or to 5, depending on whether the workload needs to scale

in or out based on the load.

C#:

Powershell:

Specifically for stateless services, Service Fabric offers an automatic way to change the instance count. This

allows the service to scale dynamically with the number of nodes that are available. The way to opt into this

behavior is to set the instance count = -1. InstanceCount = -1 is an instruction to Service Fabric that says "Run

this stateless service on every node." If the number of nodes changes, Service Fabric automatically changes the

instance count to match, ensuring that the service is running on all valid nodes.

C#:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-concepts-scalability.md
https://channel9.msdn.com/Events/Connect/2017/T116/player?nocookie=true

StatelessServiceDescription serviceDescription = new StatelessServiceDescription();
//Set other service properties necessary for creation....
serviceDescription.InstanceCount = -1;
await fc.ServiceManager.CreateServiceAsync(serviceDescription);

New-ServiceFabricService -ApplicationName $applicationName -ServiceName $serviceName -ServiceTypeName
$serviceTypeName -Stateless -PartitionSchemeSingleton -InstanceCount "-1"

 Scaling by creating or removing new named services

Powershell:

A named service instance is a specific instance of a service type (see Service Fabric application life cycle) within

some named application instance in the cluster.

New named service instances can be created (or removed) as services become more or less busy. This allows

requests to be spread across more service instances, usually allowing load on existing services to decrease.

When creating services, the Service Fabric Cluster Resource Manager places the services in the cluster in a

distributed fashion. The exact decisions are governed by the metrics in the cluster and other placement rules.

Services can be created several different ways, but the most common are either through administrative actions

like someone calling New-ServiceFabricService , or by code calling CreateServiceAsync . CreateServiceAsync can

even be called from within other services running in the cluster.

Creating services dynamically can be used in all sorts of scenarios, and is a common pattern. For example,

consider a stateful service that represents a particular workflow. Calls representing work are going to show up

to this service, and this service is going to execute the steps to that workflow and record progress.

How would you make this particular service scale? The service could be multi-tenant in some form, and accept

calls and kick off steps for many different instances of the same workflow all at once. However, that can make

the code more complex, since now it has to worry about many different instances of the same workflow, all at

different stages and from different customers. Also, handling multiple workflows at the same time doesn't solve

the scale problem. This is because at some point this service will consume too many resources to fit on a

particular machine. Many services not built for this pattern in the first place also experience difficulty due to

some inherent bottleneck or slowdown in their code. These types of issues cause the service not to work as well

when the number of concurrent workflows it is tracking gets larger.

A solution is to create an instance of this service for every different instance of the workflow you want to track.

This is a great pattern and works whether the service is stateless or stateful. For this pattern to work, there's

usually another service that acts as a "Workload Manager Service". The job of this service is to receive requests

and to route those requests to other services. The manager can dynamically create an instance of the workload

service when it receives the message, and then pass on requests to those services. The manager service could

also receive callbacks when a given workflow service completes its job. When the manager receives these

callbacks it could delete that instance of the workflow service, or leave it if more calls are expected.

Advanced versions of this type of manager can even create pools of the services that it manages. The pool helps

ensure that when a new request comes in it doesn't have to wait for the service to spin up. Instead, the manager

can just pick a workflow service that is not currently busy from the pool, or route randomly. Keeping a pool of

services available makes handling new requests faster, since it is less likely that the request has to wait for a new

service to be spun up. Creating new services is quick, but not free or instantaneous. The pool helps minimize the

amount of time the request has to wait before being serviced. You'll often see this manager and pool pattern

when response times matter the most. Queuing the request and creating the service in the background and then

passing it on is also a popular manager pattern, as is creating and deleting services based on some tracking of

the amount of work that service currently has pending.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-lifecycle
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-metrics
https://docs.microsoft.com/en-us/powershell/module/servicefabric/new-servicefabricservice
https://docs.microsoft.com/en-us/dotnet/api/system.fabric.fabricclient.servicemanagementclient.createserviceasync

 Scaling by creating or removing new named application instances
Creating and deleting whole application instances is similar to the pattern of creating and deleting services. For

this pattern, there's some manager service that is making the decision based on the requests that it is seeing and

the information it is receiving from the other services inside the cluster.

When should creating a new named application instance be used instead of creating a new named service

instances in some already existing application? There's a few cases:

The new application instance is for a customer whose code needs to run under some particular identity or

security settings.

The new application instance also serves as a means of configuration

The new application serves as an upgrade boundary

Service Fabric allows defining different code packages to run under particular identities. In order to

launch the same code package under different identities, the activations need to occur in different

application instances. Consider a case where you have an existing customer's workloads deployed.

These may be running under a particular identity so you can monitor and control their access to other

resources, such as remote databases or other systems. In this case, when a new customer signs up,

you probably don't want to activate their code in the same context (process space). While you could,

this makes it harder for your service code to act within the context of a particular identity. You typically

must have more security, isolation, and identity management code. Instead of using different named

service instances within the same application instance and hence the same process space, you can use

different named Service Fabric Application instances. This makes it easier to define different identity

contexts.

By default, all of the named service instances of a particular service type within an application instance

will run in the same process on a given node. What this means is that while you can configure each

service instance differently, doing so is complicated. Services must have some token they use to look

up their config within a configuration package. Usually this is just the service's name. This works fine,

but it couples the configuration to the names of the individual named service instances within that

application instance. This can be confusing and hard to manage since configuration is normally a

design time artifact with application instance specific values. Creating more services always means

more application upgrades to change the information within the config packages or to deploy new

ones so that the new services can look up their specific information. It's often easier to create a whole

new named application instance. Then you can use the application parameters to set whatever

configuration is necessary for the services. This way all of the services that are created within that

named application instance can inherit particular configuration settings. For example, instead of

having a single configuration file with the settings and customizations for every customer, such as

secrets or per customer resource limits, you'd instead have a different application instance for each

customer with these settings overridden.

Within Service Fabric, different named application instances serve as boundaries for upgrade. An

upgrade of one named application instance will not impact the code that another named application

instance is running. The different applications will end up running different versions of the same code

on the same nodes. This can be a factor when you need to make a scaling decision because you can

choose whether the new code should follow the same upgrades as another service or not. For

example, say that a call arrives at the manager service that is responsible for scaling a particular

customer's workloads by creating and deleting services dynamically. In this case however, the call is

for a workload associated with a new customer. Most customers like being isolated from each other

not just for the security and configuration reasons listed previously, but because it provides more

flexibility in terms of running specific versions of the software and choosing when they get upgraded.

You may also create a new application instance and create the service there simply to further partition

the amount of your services that any one upgrade will touch. Separate application instances provide

greater granularity when doing application upgrades, and also enable A/B testing and Blue/Green

 Scaling at the partition level

The existing application instance is full

deployments.

In Service Fabric, application capacity is a concept that you can use to control the amount of resources

available for particular application instances. For example, you may decide that a given service needs

to have another instance created in order to scale. However, this application instance is out of capacity

for a certain metric. If this particular customer or workload should still be granted more resources,

then you could either increase the existing capacity for that application or create a new application.

Service Fabric supports partitioning. Partitioning splits a service into several logical and physical sections, each

of which operates independently. This is useful with stateful services, since no one set of replicas has to handle

all the calls and manipulate all of the state at once. The partitioning overview provides information on the types

of partitioning schemes that are supported. The replicas of each partition are spread across the nodes in a

cluster, distributing that service's load and ensuring that neither the service as a whole or any partition has a

single point of failure.

Consider a service that uses a ranged partitioning scheme with a low key of 0, a high key of 99, and a partition

count of 4. In a three-node cluster, the service might be laid out with four replicas that share the resources on

each node as shown here:

If you increase the number of nodes, Service Fabric will move some of the existing replicas there. For example,

let's say the number of nodes increases to four and the replicas get redistributed. Now the service now has three

replicas running on each node, each belonging to different partitions. This allows better resource utilization

since the new node isn't cold. Typically, it also improves performance as each service has more resources

available to it.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-application-groups
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-partitioning

 Scaling by using the Service Fabric Cluster Resource Manager and
metrics

 Scaling by adding and removing nodes from the cluster

 Choosing a platform

 Putting it all together

Metrics are how services express their resource consumption to Service Fabric. Using metrics gives the Cluster

Resource Manager an opportunity to reorganize and optimize the layout of the cluster. For example, there may

be plenty of resources in the cluster, but they might not be allocated to the services that are currently doing

work. Using metrics allows the Cluster Resource Manager to reorganize the cluster to ensure that services have

access to the available resources.

Another option for scaling with Service Fabric is to change the size of the cluster. Changing the size of the cluster

means adding or removing nodes for one or more of the node types in the cluster. For example, consider a case

where all of the nodes in the cluster are hot. This means that the cluster's resources are almost all consumed. In

this case, adding more nodes to the cluster is the best way to scale. Once the new nodes join the cluster the

Service Fabric Cluster Resource Manager moves services to them, resulting in less total load on the existing

nodes. For stateless services with instance count = -1, more service instances are automatically created. This

allows some calls to move from the existing nodes to the new nodes.

For more information, see cluster scaling.

Due to implementation differences between operating systems, choosing to use Service Fabric with Windows or

Linux can be a vital part of scaling your application. One potential barrier is how staged logging is performed.

Service Fabric on Windows uses a kernel driver for a one-per-machine log, shared between stateful service

replicas. This log weighs in at about 8 GB. Linux, on the other hand, uses a 256 MB staging log for each replica,

making it less ideal for applications that want to maximize the number of lightweight service replicas running

on a given node. These differences in temporary storage requirements could potentially inform the desired

platform for Service Fabric cluster deployment.

Let's take all the ideas that we've discussed here and talk through an example. Consider the following service:

you are trying to build a service that acts as an address book, holding on to names and contact information.

Right up front you have a bunch of questions related to scale: How many users are you going to have? How

many contacts will each user store? Trying to figure this all out when you are standing up your service for the

first time is difficult. Let's say you were going to go with a single static service with a specific partition count. The

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-resource-manager-metrics
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-scaling

 Next steps

consequences of picking the wrong partition count could cause you to have scale issues later. Similarly, even if

you pick the right count you might not have all the information you need. For example, you also have to decide

the size of the cluster up front, both in terms of the number of nodes and their sizes. It's usually hard to predict

how many resources a service is going to consume over its lifetime. It can also be hard to know ahead of time

the traffic pattern that the service actually sees. For example, maybe people add and remove their contacts only

first thing in the morning, or maybe it's distributed evenly over the course of the day. Based on this you might

need to scale out and in dynamically. Maybe you can learn to predict when you're going to need to scale out and

in, but either way you're probably going to need to react to changing resource consumption by your service.

This can involve changing the size of the cluster in order to provide more resources when reorganizing use of

existing resources isn't enough.

But why even try to pick a single partition scheme out for all users? Why limit yourself to one service and one

static cluster? The real situation is usually more dynamic.

When building for scale, consider the following dynamic pattern. You may need to adapt it to your situation:

1. Instead of trying to pick a partitioning scheme for everyone up front, build a "manager service".

2. The job of the manager service is to look at customer information when they sign up for your service. Then

depending on that information the manager service creates an instance of your actual contact-storage

service just for that customer. If they require particular configuration, isolation, or upgrades, you can also

decide to spin up an Application instance for this customer.

This dynamic creation pattern many benefits:

You're not trying to guess the correct partition count for all users up front or build a single service that is

infinitely scalable all on its own.

Different users don't have to have the same partition count, replica count, placement constraints, metrics,

default loads, service names, dns settings, or any of the other properties specified at the service or

application level.

You gain additional data segmentation. Each customer has their own copy of the service

You're not running a bunch of service instances or replicas while you're waiting for customers to show up

If a customer ever leaves, then removing their information from your service is as simple as having the

manager delete that service or application that it created.

Each customer service can be configured differently and granted more or fewer resources, with more

or fewer partitions or replicas as necessary based on their expected scale.

For example, say the customer paid for the "Gold" tier - they could get more replicas or greater

partition count, and potentially resources dedicated to their services via metrics and application

capacities.

Or say they provided information indicating the number of contacts they needed was "Small" -

they would get only a few partitions, or could even be put into a shared service pool with other

customers.

For more information on Service Fabric concepts, see the following articles:

Availability of Service Fabric services

Partitioning Service Fabric services

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-availability-services
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-partitioning

Secure a custom DNS name with a TLS/SSL binding
in Azure App Service

 6/24/2021 • 8 minutes to read • Edit Online

 Prerequisites

NOTE

 Prepare your web app

This article shows you how to secure the custom domain in your App Service app or function app by creating a

certificate binding. When you're finished, you can access your App Service app at the https:// endpoint for

your custom DNS name (for example, https://www.contoso.com).

Securing a custom domain with a certificate involves two steps:

Add a private certificate to App Service that satisfies all the private certificate requirements.

Create a TLS binding to the corresponding custom domain. This second step is covered by this article.

In this tutorial, you learn how to:

Upgrade your app's pricing tier

Secure a custom domain with a certificate

Enforce HTTPS

Enforce TLS 1.1/1.2

Automate TLS management with scripts

To follow this how-to guide:

Create an App Service app

Map a domain name to your app or buy and configure it in Azure

Add a private certificate to your app

The easiest way to add a private certificate is to create a free App Service managed certificate.

To create custom TLS/SSL bindings or enable client certificates for your App Service app, your App Service plan

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/configure-ssl-bindings.md
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/index
https://docs.microsoft.com/en-us/azure/azure-functions/index
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/index
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/manage-custom-dns-buy-domain
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://azure.microsoft.com/pricing/details/app-service/

 Sign in to Azure

 Navigate to your web app

must be in the Basic, Standard, Premium, or Isolated tier. In this step, you make sure that your web app is in

the supported pricing tier.

Open the Azure portal.

Search for and select App Ser vices .

On the App Ser vices page, select the name of your web app.

You have landed on the management page of your web app.

https://portal.azure.com

 Check the pricing tier
In the left-hand navigation of your web app page, scroll to the Settings section and select Scale up (App

Ser vice plan) .

Check to make sure that your web app is not in the F1 or D1 tier. Your web app's current tier is highlighted by a

dark blue box.

 Scale up your App Service plan

Custom SSL is not supported in the F1 or D1 tier. If you need to scale up, follow the steps in the next section.

Otherwise, close the Scale up page and skip the Scale up your App Service plan section.

Select any of the non-free tiers (B1 , B2 , B3 , or any tier in the Production category). For additional options, click

See additional options .

Click Apply .

 Secure a custom domain

When you see the following notification, the scale operation is complete.

Do the following steps:

In the Azure portal, from the left menu, select App Ser vices > <app-name>.

From the left navigation of your app, start the TLS/SSL Binding dialog by:

https://portal.azure.com

 Add a certificate for custom domain

NOTE

 Create binding

SET T IN G DESC RIP T IO N

Custom domain The domain name to add the TLS/SSL binding for.

Private Certificate Thumbprint The certificate to bind.

TLS/SSL Type

Selecting Custom domains > Add binding

Selecting TLS/SSL settings > Add TLS/SSL binding

In Custom Domain, select the custom domain you want to add a binding for.

If your app already has a certificate for the selected custom domain, go to Create binding directly. Otherwise,

keep going.

If your app has no certificate for the selected custom domain, then you have two options:

Upload PFX Cer tificate - Follow the workflow at Upload a private certificate, then select this option here.

Impor t App Ser vice Cer tificate - Follow the workflow at Import an App Service certificate, then select

this option here.

You can also Create a free certificate or Import a Key Vault certificate, but you must do it separately and then return to

the TLS/SSL Binding dialog.

Use the following table to help you configure the TLS binding in the TLS/SSL Binding dialog, then click Add

Binding.

SNI SSL - Multiple SNI SSL bindings may be added.
This option allows multiple TLS/SSL certificates to
secure multiple domains on the same IP address.
Most modern browsers (including Internet Explorer,
Chrome, Firefox, and Opera) support SNI (for more
information, see Server Name Indication).

IP SSL - Only one IP SSL binding may be added. This
option allows only one TLS/SSL certificate to secure a
dedicated public IP address. After you configure the
binding, follow the steps in Remap records for IP SSL.
IP SSL is supported only in Standard tier or above.

https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://en.wikipedia.org/wiki/Server_Name_Indication
https://wikipedia.org/wiki/Server_Name_Indication

NOTE

 Remap records for IP SSL

 Test HTTPS

NOTE

Once the operation is complete, the custom domain's TLS/SSL state is changed to Secure.

A Secure state in the Custom domains means that it is secured with a certificate, but App Service doesn't check if the

certificate is self-signed or expired, for example, which can also cause browsers to show an error or warning.

If you don't use IP SSL in your app, skip to Test HTTPS for your custom domain.

There are two changes you need to make, potentially:

By default, your app uses a shared public IP address. When you bind a certificate with IP SSL, App Service

creates a new, dedicated IP address for your app. If you mapped an A record to your app, update your

domain registry with this new, dedicated IP address.

Your app's Custom domain page is updated with the new, dedicated IP address. Copy this IP address,

then remap the A record to this new IP address.

If you have an SNI SSL binding to <app-name>.azurewebsites.net , remap any CNAME mapping to point to

sni.<app-name>.azurewebsites.net instead (add the sni prefix).

In various browsers, browse to https://<your.custom.domain> to verify that it serves up your app.

Your application code can inspect the protocol via the "x-appservice-proto" header. The header will have a value

of http or https .

If your app gives you certificate validation errors, you're probably using a self-signed certificate.

If that's not the case, you may have left out intermediate certificates when you export your certificate to the PFX file.

https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain
https://docs.microsoft.com/en-us/azure/app-service/app-service-web-tutorial-custom-domain

 Prevent IP changes

 Enforce HTTPS

 Enforce TLS versions

Your inbound IP address can change when you delete a binding, even if that binding is IP SSL. This is especially

important when you renew a certificate that's already in an IP SSL binding. To avoid a change in your app's IP

address, follow these steps in order :

1. Upload the new certificate.

2. Bind the new certificate to the custom domain you want without deleting the old one. This action replaces the

binding instead of removing the old one.

3. Delete the old certificate.

By default, anyone can still access your app using HTTP. You can redirect all HTTP requests to the HTTPS port.

In your app page, in the left navigation, select TLS/SSL settings . Then, in HTTPS Only , select On.

When the operation is complete, navigate to any of the HTTP URLs that point to your app. For example:

http://<app_name>.azurewebsites.net

http://contoso.com

http://www.contoso.com

Your app allows TLS 1.2 by default, which is the recommended TLS level by industry standards, such as PCI DSS.

To enforce different TLS versions, follow these steps:

In your app page, in the left navigation, select TLS/SSL settings . Then, in TLS version, select the minimum

TLS version you want. This setting controls the inbound calls only.

https://wikipedia.org/wiki/Transport_Layer_Security
https://wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

 Handle TLS termination

 Automate with scripts
 Azure CLI

When the operation is complete, your app rejects all connections with lower TLS versions.

In App Service, TLS termination happens at the network load balancers, so all HTTPS requests reach your app as

unencrypted HTTP requests. If your app logic needs to check if the user requests are encrypted or not, inspect

the X-Forwarded-Proto header.

Language specific configuration guides, such as the Linux Node.js configuration guide, shows you how to detect

an HTTPS session in your application code.

https://wikipedia.org/wiki/TLS_termination_proxy
https://docs.microsoft.com/en-us/azure/app-service/configure-language-nodejs

#!/bin/bash

fqdn=<replace-with-www.{yourdomain}>
pfxPath=<replace-with-path-to-your-.PFX-file>
pfxPassword=<replace-with-your=.PFX-password>
resourceGroup=myResourceGroup
webappname=mywebapp$RANDOM

Create a resource group.
az group create --location westeurope --name $resourceGroup

Create an App Service plan in Basic tier (minimum required by custom domains).
az appservice plan create --name $webappname --resource-group $resourceGroup --sku B1

Create a web app.
az webapp create --name $webappname --resource-group $resourceGroup \
--plan $webappname

echo "Configure a CNAME record that maps $fqdn to $webappname.azurewebsites.net"
read -p "Press [Enter] key when ready ..."

Before continuing, go to your DNS configuration UI for your custom domain and follow the
instructions at https://aka.ms/appservicecustomdns to configure a CNAME record for the
hostname "www" and point it your web app's default domain name.

Map your prepared custom domain name to the web app.
az webapp config hostname add --webapp-name $webappname --resource-group $resourceGroup \
--hostname $fqdn

Upload the SSL certificate and get the thumbprint.
thumbprint=$(az webapp config ssl upload --certificate-file $pfxPath \
--certificate-password $pfxPassword --name $webappname --resource-group $resourceGroup \
--query thumbprint --output tsv)

Binds the uploaded SSL certificate to the web app.
az webapp config ssl bind --certificate-thumbprint $thumbprint --ssl-type SNI \
--name $webappname --resource-group $resourceGroup

echo "You can now browse to https://$fqdn"

 PowerShell

$fqdn="<Replace with your custom domain name>"
$pfxPath="<Replace with path to your .PFX file>"
$pfxPassword="<Replace with your .PFX password>"
$webappname="mywebapp$(Get-Random)"
$location="West Europe"

Create a resource group.
New-AzResourceGroup -Name $webappname -Location $location

Create an App Service plan in Free tier.
New-AzAppServicePlan -Name $webappname -Location $location `
-ResourceGroupName $webappname -Tier Free

Create a web app.
New-AzWebApp -Name $webappname -Location $location -AppServicePlan $webappname `
-ResourceGroupName $webappname

Write-Host "Configure a CNAME record that maps $fqdn to $webappname.azurewebsites.net"
Read-Host "Press [Enter] key when ready ..."

Before continuing, go to your DNS configuration UI for your custom domain and follow the
instructions at https://aka.ms/appservicecustomdns to configure a CNAME record for the
hostname "www" and point it your web app's default domain name.

Upgrade App Service plan to Basic tier (minimum required by custom SSL certificates)
Set-AzAppServicePlan -Name $webappname -ResourceGroupName $webappname `
-Tier Basic

Add a custom domain name to the web app.
Set-AzWebApp -Name $webappname -ResourceGroupName $webappname `
-HostNames @($fqdn,"$webappname.azurewebsites.net")

Upload and bind the SSL certificate to the web app.
New-AzWebAppSSLBinding -WebAppName $webappname -ResourceGroupName $webappname -Name $fqdn `
-CertificateFilePath $pfxPath -CertificatePassword $pfxPassword -SslState SniEnabled

 More resources
Use a TLS/SSL certificate in your code in Azure App Service

FAQ : App Service Certificates

https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate-in-code
https://docs.microsoft.com/en-us/azure/app-service/faq-configuration-and-management

Back up your app in Azure
 6/28/2021 • 8 minutes to read • Edit Online

 What gets backed up

NOTE

 Requirements and restrictions

The Backup and Restore feature in Azure App Service lets you easily create app backups manually or on a

schedule. You can configure the backups to be retained up to an indefinite amount of time. You can restore the

app to a snapshot of a previous state by overwriting the existing app or restoring to another app.

For information on restoring an app from backup, see Restore an app in Azure.

App Service can back up the following information to an Azure storage account and container that you have

configured your app to use.

App configuration

File content

Database connected to your app

The following database solutions are supported with backup feature:

SQL Database

Azure Database for MySQL

Azure Database for PostgreSQL

MySQL in-app

Each backup is a complete offline copy of your app, not an incremental update.

The Backup and Restore feature requires the App Service plan to be in the Standard, Premium, or Isolated

tier. For more information about scaling your App Service plan to use a higher tier, see Scale up an app in

Azure. Premium and Isolated tiers allow a greater number of daily back ups than Standard tier.

You need an Azure storage account and container in the same subscription as the app that you want to back

up. For more information on Azure storage accounts, see Azure storage account overview.

Backups can be up to 10 GB of app and database content. If the backup size exceeds this limit, you get an

error.

Backups of TLS enabled Azure Database for MySQL is not supported. If a backup is configured, you will

encounter backup failures.

Backups of TLS enabled Azure Database for PostgreSQL is not supported. If a backup is configured, you will

encounter backup failures.

In-app MySQL databases are automatically backed up without any configuration. If you make manually

settings for in-app MySQL databases, such as adding connection strings, the backups may not work correctly.

Using a firewall enabled storage account as the destination for your backups is not supported. If a backup is

configured, you will encounter backup failures.

Currently, you can't use the Backup and Restore feature with the Azure App Service VNet Integration feature.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/manage-backup.md
https://docs.microsoft.com/en-us/azure/app-service/web-sites-restore
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/mysql
https://azure.microsoft.com/services/postgresql
https://azure.microsoft.com/blog/mysql-in-app-preview-app-service/
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview

 Create a manual backup

Currently, you can't use the Backup and Restore feature with Azure storage accounts that are configured to

use Private Endpoint.

NOTE

1. In the Azure portal, navigate to your app's page, select Backups . The Backups page is displayed.

If you see the following message, click it to upgrade your App Service plan before you can proceed with backups.

For more information, see Scale up an app in Azure.

2. In the Backup page, select Backup is not configured. Click here to configure backup for your

app.

3. In the Backup Configuration page, click Storage not configured to configure a storage account.

https://portal.azure.com

NOTE

4. Choose your backup destination by selecting a Storage Account and Container . The storage account

must belong to the same subscription as the app you want to back up. If you wish, you can create a new

storage account or a new container in the respective pages. When you're done, click Select.

5. In the Backup Configuration page that is still left open, you can configure Backup Database, then

select the databases you want to include in the backups (SQL Database or MySQL), then click OK.

For a database to appear in this list, its connection string must exist in the Connection strings section of the

Application settings page for your app.

In-app MySQL databases are automatically backed up without any configuration. If you make settings for in-app

MySQL databases manually, such as adding connection strings, the backups may not work correctly.

6. In the Backup Configuration page, click Save.

7. In the Backups page, click Backup.

 Configure automated backups

You see a progress message during the backup process.

Once the storage account and container is configured, you can initiate a manual backup at any time. Manual

backups are retained indefinitely.

1. In the Backup Configuration page, set Scheduled backup to On.

2. Configure the backup schedule as desired and select OK.

Configure Partial Backups

NOTE

 Exclude files from your backup

\site\wwwroot\Images\brand.png
\site\wwwroot\Images\2014
\site\wwwroot\Images\2013

Sometimes you don't want to back up everything on your app. Here are a few examples:

You set up weekly backups of your app that contains static content that never changes, such as old blog posts

or images.

Your app has over 10 GB of content (that's the max amount you can back up at a time).

You don't want to back up the log files.

Partial backups allow you choose exactly which files you want to back up.

Individual databases in the backup can be 4GB max but the total max size of the backup is 10GB

Suppose you have an app that contains log files and static images that have been backup once and are not

going to change. In such cases, you can exclude those folders and files from being stored in your future backups.

To exclude files and folders from your backups, create a _backup.filter file in the D:\home\site\wwwroot folder

of your app. Specify the list of files and folders you want to exclude in this file.

You can access your files by navigating to https://<app-name>.scm.azurewebsites.net/DebugConsole . If prompted,

sign in to your Azure account.

Identify the folders that you want to exclude from your backups. For example, you want to filter out the

highlighted folder and files.

Create a file called _backup.filter and put the preceding list in the file, but remove D:\home . List one directory

or file per line. So the content of the file should be:

Upload _backup.filter file to the D:\home\site\wwwroot\ directory of your site using ftp or any other method. If

you wish, you can create the file directly using Kudu DebugConsole and insert the content there.

Run backups the same way you would normally do it, manually or automatically. Now, any files and folders that

are specified in _backup.filter is excluded from the future backups scheduled or manually initiated.

https://docs.microsoft.com/en-us/azure/app-service/deploy-ftp

NOTE

 How backups are stored

WARNING

 Troubleshooting

ERRO R F IX

Storage access failed. Delete backup schedule and reconfigure it. Or, reconfigure
the backup storage.

The website + database size exceeds the {0} GB limit for
backups. Your content size is {1} GB.

Exclude some files from the backup, or remove the database
portion of the backup and use externally offered backups
instead.

Error occurred while connecting to the database {0} on
server {1}: Authentication to host '{1}' for user '<username>'
using method 'mysql_native_password' failed with message:
Unknown database '<db-name>'

Update database connection string.

Cannot resolve {0}. {1} (CannotResolveStorageAccount) Delete the backup schedule and reconfigure it.

Login failed for user '{0}'. Update the database connection string.

Create Database copy of {0} ({1}) threw an exception. Could
not create Database copy.

Use an administrative user in the connection string.

You restore partial backups of your site the same way you would restore a regular backup. The restore process does the

right thing.

When a full backup is restored, all content on the site is replaced with whatever is in the backup. If a file is on the site, but

not in the backup it gets deleted. But when a partial backup is restored, any content that is located in one of the

restricted directories, or any restricted file, is left as is.

After you have made one or more backups for your app, the backups are visible on the Containers page of

your storage account, and your app. In the storage account, each backup consists of a .zip file that contains the

backup data and an .xml file that contains a manifest of the .zip file contents. You can unzip and browse

these files if you want to access your backups without actually performing an app restore.

The database backup for the app is stored in the root of the .zip file. For SQL Database, this is a BACPAC file (no

file extension) and can be imported. To create a database in Azure SQL Database based on the BACPAC export,

see Import a BACPAC file to create a database in Azure SQL Database.

Altering any of the files in your websitebackups container can cause the backup to become invalid and therefore non-

restorable.

The Backups page shows you the status of each backup. If you click on a failed backup, you can get log details

regarding the failure. Use the following table to help you troubleshoot your backup. If the failure isn't

documented in the table, open a support ticket.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-restore
https://docs.microsoft.com/en-us/azure/azure-sql/database/database-import

The server principal "<name>" is not able to access the
database "master" under the current security context.
Cannot open database "master" requested by the login. The
login failed. Login failed for user '<name>'.

Use an administrative user in the connection string.

A network-related or instance-specific error occurred while
establishing a connection to SQL Server. The server was not
found or was not accessible. Verify that the instance name is
correct and that SQL Server is configured to allow remote
connections. (provider: Named Pipes Provider, error: 40 -
Could not open a connection to SQL Server).

Check that the connection string is valid. Allow the app's
outbound IPs in the database server settings.

Cannot open server "<name>" requested by the login. The
login failed.

Check that the connection string is valid.

Missing mandatory parameters for valid Shared Access
Signature.

Delete the backup schedule and reconfigure it.

SSL connection is required. Please specify SSL options and
retry. when trying to connect.

Use the built-in backup feature in Azure MySQL or Azure
Postgressql instead.

ERRO R F IX

 Automate with scripts

 Next Steps

You can automate backup management with scripts, using the Azure CLI or Azure PowerShell.

For samples, see:

Azure CLI samples

Azure PowerShell samples

For information on restoring an app from a backup, see Restore an app in Azure.

https://docs.microsoft.com/en-us/azure/app-service/overview-inbound-outbound-ips
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/azure/app-service/web-sites-restore

An overview of Azure VM backup
 4/19/2021 • 12 minutes to read • Edit Online

 Backup process

This article describes how the Azure Backup service backs up Azure virtual machines (VMs).

Azure Backup provides independent and isolated backups to guard against unintended destruction of the data

on your VMs. Backups are stored in a Recovery Services vault with built-in management of recovery points.

Configuration and scaling are simple, backups are optimized, and you can easily restore as needed.

As part of the backup process, a snapshot is taken, and the data is transferred to the Recovery Services vault

with no impact on production workloads. The snapshot provides different levels of consistency, as described

here.

Azure Backup also has specialized offerings for database workloads like SQL Server and SAP HANA that are

workload-aware, offer 15 minute RPO (recovery point objective), and allow backup and restore of individual

databases.

Here's how Azure Backup completes a backup for Azure VMs:

1. For Azure VMs that are selected for backup, Azure Backup starts a backup job according to the backup

schedule you specify.

2. During the first backup, a backup extension is installed on the VM if the VM is running.

For Windows VMs, the VMSnapshot extension is installed.

For Linux VMs, the VMSnapshotLinux extension is installed.

3. For Windows VMs that are running, Backup coordinates with Windows Volume Shadow Copy Service

(VSS) to take an app-consistent snapshot of the VM.

By default, Backup takes full VSS backups.

If Backup can't take an app-consistent snapshot, then it takes a file-consistent snapshot of the

underlying storage (because no application writes occur while the VM is stopped).

4. For Linux VMs, Backup takes a file-consistent backup. For app-consistent snapshots, you need to

manually customize pre/post scripts.

5. After Backup takes the snapshot, it transfers the data to the vault.

The backup is optimized by backing up each VM disk in parallel.

For each disk that's being backed up, Azure Backup reads the blocks on the disk and identifies and

transfers only the data blocks that changed (the delta) since the previous backup.

Snapshot data might not be immediately copied to the vault. It might take some hours at peak times.

Total backup time for a VM will be less than 24 hours for daily backup policies.

6. Changes made to a Windows VM after Azure Backup is enabled on it are:

Microsoft Visual C++ 2013 Redistributable(x64) - 12.0.40660 is installed in the VM

Startup type of Volume Shadow Copy service (VSS) changed to automatic from manual

IaaSVmProvider Windows service is added

7. When the data transfer is complete, the snapshot is removed, and a recovery point is created.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/backup/backup-azure-vms-introduction.md
https://docs.microsoft.com/en-us/azure/backup/backup-overview
https://docs.microsoft.com/en-us/azure/backup/backup-azure-sql-database
https://docs.microsoft.com/en-us/azure/backup/sap-hana-db-about
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/vmsnapshot-windows
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/vmsnapshot-linux

 Encryption of Azure VM backups

EN C RY P T IO N DETA IL S SUP P O RT

SSE With SSE, Azure Storage provides
encryption at rest by automatically
encrypting data before storing it.
Azure Storage also decrypts data
before retrieving it. Azure Backup
supports backups of VMs with two
types of Storage Service Encryption:

SSE with platform-managed
keys : This encryption is by default for
all disks in your VMs. See more here.

SSE with customer-managed
keys . With CMK, you manage the keys
used to encrypt the disks. See more
here.

Azure Backup uses SSE for at-rest
encryption of Azure VMs.

Azure Disk Encr yption Azure Disk Encryption encrypts both
OS and data disks for Azure VMs.

Azure Disk Encryption integrates with
BitLocker encryption keys (BEKs),
which are safeguarded in a key vault as
secrets. Azure Disk Encryption also
integrates with Azure Key Vault key
encryption keys (KEKs).

Azure Backup supports backup of
managed and unmanaged Azure VMs
encrypted with BEKs only, or with BEKs
together with KEKs.

Both BEKs and KEKs are backed up and
encrypted.

Because KEKs and BEKs are backed up,
users with the necessary permissions
can restore keys and secrets back to
the key vault if needed. These users
can also recover the encrypted VM.

Encrypted keys and secrets can't be
read by unauthorized users or by
Azure.

When you back up Azure VMs with Azure Backup, VMs are encrypted at rest with Storage Service Encryption

(SSE). Azure Backup can also back up Azure VMs that are encrypted by using Azure Disk Encryption.

For managed and unmanaged Azure VMs, Backup supports both VMs encrypted with BEKs only or VMs

encrypted with BEKs together with KEKs.

The backed-up BEKs (secrets) and KEKs (keys) are encrypted. They can be read and used only when they're

https://docs.microsoft.com/en-us/azure/virtual-machines/disk-encryption
https://docs.microsoft.com/en-us/azure/virtual-machines/disk-encryption

 Snapshot creation

 Snapshot consistency

SN A P SH OT DETA IL S REC O VERY C O N SIDERAT IO N

Application-consistent App-consistent backups
capture memory content
and pending I/O
operations. App-consistent
snapshots use a VSS writer
(or pre/post scripts for
Linux) to ensure the
consistency of the app data
before a backup occurs.

When you're recovering a
VM with an app-consistent
snapshot, the VM boots up.
There's no data corruption
or loss. The apps start in a
consistent state.

Windows: All VSS writers
succeeded

Linux: Pre/post scripts are
configured and succeeded

File-system consistent File-system consistent
backups provide
consistency by taking a
snapshot of all files at the
same time.

When you're recovering a
VM with a file-system
consistent snapshot, the
VM boots up. There's no
data corruption or loss.
Apps need to implement
their own "fix-up"
mechanism to make sure
that restored data is
consistent.

Windows: Some VSS writers
failed

Linux: Default (if pre/post
scripts aren't configured or
failed)

restored back to the key vault by authorized users. Neither unauthorized users, or Azure, can read or use

backed-up keys or secrets.

BEKs are also backed up. So, if the BEKs are lost, authorized users can restore the BEKs to the key vault and

recover the encrypted VMs. Only users with the necessary level of permissions can back up and restore

encrypted VMs or keys and secrets.

Azure Backup takes snapshots according to the backup schedule.

Windows VMs: For Windows VMs, the Backup service coordinates with VSS to take an app-consistent

snapshot of the VM disks. By default, Azure Backup takes a full VSS backup (it truncates the logs of

application such as SQL Server at the time of backup to get application level consistent backup). If you're

using a SQL Server database on Azure VM backup, then you can modify the setting to take a VSS Copy

backup (to preserve logs). For more information, see this article.

L inux VMs: To take app-consistent snapshots of Linux VMs, use the Linux pre-script and post-script

framework to write your own custom scripts to ensure consistency.

Azure Backup invokes only the pre/post scripts written by you.

If the pre-scripts and post-scripts execute successfully, Azure Backup marks the recovery point as

application-consistent. However, when you're using custom scripts, you're ultimately responsible for

the application consistency.

Learn more about how to configure scripts.

The following table explains the different types of snapshot consistency:

https://docs.microsoft.com/en-us/azure/backup/backup-azure-vms-troubleshoot
https://docs.microsoft.com/en-us/azure/backup/backup-azure-linux-app-consistent

Crash-consistent Crash-consistent snapshots
typically occur if an Azure
VM shuts down at the time
of backup. Only the data
that already exists on the
disk at the time of backup is
captured and backed up.

Starts with the VM boot
process followed by a disk
check to fix corruption
errors. Any in-memory data
or write operations that
weren't transferred to disk
before the crash are lost.
Apps implement their own
data verification. For
example, a database app
can use its transaction log
for verification. If the
transaction log has entries
that aren't in the database,
the database software rolls
transactions back until the
data is consistent.

VM is in shutdown
(stopped/ deallocated)
state.

SN A P SH OT DETA IL S REC O VERY C O N SIDERAT IO N

NOTE

 Backup and restore considerations

C O N SIDERAT IO N DETA IL S

Disk Backup of VM disks is parallel. For example, if a VM has four
disks, the Backup service attempts to back up all four disks
in parallel. Backup is incremental (only changed data).

Scheduling To reduce backup traffic, back up different VMs at different
times of the day and make sure the times don't overlap.
Backing up VMs at the same time causes traffic jams.

Preparing backups Keep in mind the time needed to prepare the backup. The
preparation time includes installing or updating the backup
extension and triggering a snapshot according to the backup
schedule.

If the provisioning state is succeeded, Azure Backup takes file-system consistent backups. If the provisioning state is

unavailable or failed, crash-consistent backups are taken. If the provisioning state is creating or deleting, that means

Azure Backup is retrying the operations.

Data transfer Consider the time needed for Azure Backup to identify the
incremental changes from the previous backup.

In an incremental backup, Azure Backup determines the
changes by calculating the checksum of the block. If a block
is changed, it's marked for transfer to the vault. The service
analyzes the identified blocks to attempt to further minimize
the amount of data to transfer. After evaluating all the
changed blocks, Azure Backup transfers the changes to the
vault.

There might be a lag between taking the snapshot and
copying it to vault. At peak times, it can take up to eight
hours for the snapshots to be transferred to the vault. The
backup time for a VM will be less than 24 hours for the daily
backup.

Initial backup Although the total backup time for incremental backups is
less than 24 hours, that might not be the case for the first
backup. The time needed for the initial backup will depend
on the size of the data and when the backup is processed.

Restore queue Azure Backup processes restore jobs from multiple storage
accounts at the same time, and it puts restore requests in a
queue.

Restore copy During the restore process, data is copied from the vault to
the storage account.

The total restore time depends on the I/O operations per
second (IOPS) and the throughput of the storage account.

To reduce the copy time, select a storage account that isn't
loaded with other application writes and reads.

C O N SIDERAT IO N DETA IL S

 Backup performance

 Restore performance

These common scenarios can affect the total backup time:

Adding a new disk to a protected Azure VM: If a VM is undergoing incremental backup and a new disk

is added, the backup time will increase. The total backup time might last more than 24 hours because of

initial replication of the new disk, along with delta replication of existing disks.

Fragmented disks: Backup operations are faster when disk changes are contiguous. If changes are spread

out and fragmented across a disk, backup will be slower.

Disk churn: If protected disks that are undergoing incremental backup have a daily churn of more than 200

GB, backup can take a long time (more than eight hours) to complete.

Backup versions: The latest version of Backup (known as the Instant Restore version) uses a more

optimized process than checksum comparison for identifying changes. But if you're using Instant Restore and

have deleted a backup snapshot, the backup switches to checksum comparison. In this case, the backup

operation will exceed 24 hours (or fail).

These common scenarios can affect the total restore time:

The total restore time depends on the Input/output operations per second (IOPS) and the throughput of the

storage account.

The total restore time can be affected if the target storage account is loaded with other application read and

 Best practices

 Backup costs

DISK M A X SIZ E A C T UA L DATA P RESEN T

OS disk 32 TB 17 GB

Local/temporary disk 135 GB 5 GB (not included for backup)

Data disk 1 32 TB 30 GB

Data disk 2 32 TB 0 GB

write operations. To improve restore operation, select a storage account that isn't loaded with other

application data.

When you're configuring VM backups, we suggest following these practices:

Modify the default schedule times that are set in a policy. For example, if the default time in the policy is

12:00 AM, increment the timing by several minutes so that resources are optimally used.

If you're restoring VMs from a single vault, we highly recommend that you use different general-purpose v2

storage accounts to ensure that the target storage account doesn't get throttled. For example, each VM must

have a different storage account. For example, if 10 VMs are restored, use 10 different storage accounts.

For backup of VMs that are using premium storage with Instant Restore, we recommend allocating 50% free

space of the total allocated storage space, which is required only for the first backup. The 50% free space

isn't a requirement for backups after the first backup is complete

The limit on the number of disks per storage account is relative to how heavily the disks are being accessed

by applications that are running on an infrastructure as a service (IaaS) VM. As a general practice, if 5 to 10

disks or more are present on a single storage account, balance the load by moving some disks to separate

storage accounts.

To restore VMs with managed disks using PowerShell, provide the additional parameter

TargetResourceGroupName to specify the resource group to which managed disks will be restored, Learn

more here.

Azure VMs backed up with Azure Backup are subject to Azure Backup pricing.

Billing doesn't start until the first successful backup finishes. At this point, the billing for both storage and

protected VMs begins. Billing continues as long as any backup data for the VM is stored in a vault. If you stop

protection for a VM, but backup data for the VM exists in a vault, billing continues.

Billing for a specified VM stops only if the protection is stopped and all backup data is deleted. When protection

stops and there are no active backup jobs, the size of the last successful VM backup becomes the protected

instance size used for the monthly bill.

The protected-instance size calculation is based on the actual size of the VM. The VM's size is the sum of all the

data in the VM, excluding the temporary storage. Pricing is based on the actual data that's stored on the data

disks, not on the maximum supported size for each data disk that's attached to the VM.

Similarly, the backup storage bill is based on the amount of data that's stored in Azure Backup, which is the sum

of the actual data in each recovery point.

For example, take an A2-Standard-sized VM that has two additional data disks with a maximum size of 32 TB

each. The following table shows the actual data stored on each of these disks:

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-upgrade
https://docs.microsoft.com/en-us/azure/backup/backup-azure-vms-automation
https://azure.microsoft.com/pricing/details/backup/

 Next steps

The actual size of the VM in this case is 17 GB + 30 GB + 0 GB = 47 GB. This protected-instance size (47 GB)

becomes the basis for the monthly bill. As the amount of data in the VM grows, the protected-instance size used

for billing changes to match.

Prepare for Azure VM backup.

https://docs.microsoft.com/en-us/azure/backup/backup-azure-arm-vms-prepare

Enable diagnostics logging for apps in Azure App
Service

 4/27/2021 • 9 minutes to read • Edit Online

 Overview

NOTE

T Y P E P L AT F O RM LO C AT IO N DESC RIP T IO N

Application logging Windows, Linux App Service file system
and/or Azure Storage blobs

Logs messages generated
by your application code.
The messages can be
generated by the web
framework you choose, or
from your application code
directly using the standard
logging pattern of your
language. Each message is
assigned one of the
following categories:
Critical, Error , Warning,
Info, Debug, and Trace.
You can select how verbose
you want the logging to be
by setting the severity level
when you enable
application logging.

Web server logging Windows App Service file system or
Azure Storage blobs

Raw HTTP request data in
the W3C extended log file
format. Each log message
includes data such as the
HTTP method, resource URI,
client IP, client port, user
agent, response code, and
so on.

Azure provides built-in diagnostics to assist with debugging an App Service app. In this article, you learn how to

enable diagnostic logging and add instrumentation to your application, as well as how to access the information

logged by Azure.

This article uses the Azure portal and Azure CLI to work with diagnostic logs. For information on working with

diagnostic logs using Visual Studio, see Troubleshooting Azure in Visual Studio.

In addition to the logging instructions in this article, there's new, integrated logging capability with Azure Monitoring.

You'll find more on this capability in the Send logs to Azure Monitor (preview) section.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/app-service/troubleshoot-diagnostic-logs.md
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-dotnet-visual-studio
https://docs.microsoft.com/en-us/windows/desktop/http/w3c-logging

Detailed Error Messages Windows App Service file system Copies of the .htm error
pages that would have
been sent to the client
browser. For security
reasons, detailed error
pages shouldn't be sent to
clients in production, but
App Service can save the
error page each time an
application error occurs that
has HTTP code 400 or
greater. The page may
contain information that
can help determine why the
server returns the error
code.

Failed request tracing Windows App Service file system Detailed tracing information
on failed requests, including
a trace of the IIS
components used to
process the request and the
time taken in each
component. It's useful if you
want to improve site
performance or isolate a
specific HTTP error. One
folder is generated for each
failed request, which
contains the XML log file,
and the XSL stylesheet to
view the log file with.

Deployment logging Windows, Linux App Service file system Logs for when you publish
content to an app.
Deployment logging
happens automatically and
there are no configurable
settings for deployment
logging. It helps you
determine why a
deployment failed. For
example, if you use a
custom deployment script,
you might use deployment
logging to determine why
the script is failing.

T Y P E P L AT F O RM LO C AT IO N DESC RIP T IO N

NOTE

 Enable application logging (Windows)

App Service provides a dedicated, interactive diagnostics tool to help you troubleshoot your application. For more

information, see Azure App Service diagnostics overview.

In addition, you can use other Azure services to improve the logging and monitoring capabilities of your app, such as

Azure Monitor.

https://github.com/projectkudu/kudu/wiki/Custom-Deployment-Script
https://docs.microsoft.com/en-us/azure/app-service/overview-diagnostics
https://docs.microsoft.com/en-us/azure/azure-monitor/app/azure-web-apps

NOTE

NOTE

L EVEL IN C L UDED C AT EGO RIES

Disabled None

Error Error, Critical

Warning Warning, Error, Critical

Information Info, Warning, Error, Critical

Verbose Trace, Debug, Info, Warning, Error, Critical (all categories)

 Enable application logging (Linux/Container)

 Enable web server logging

Application logging for blob storage can only use storage accounts in the same region as the App Service

To enable application logging for Windows apps in the Azure portal, navigate to your app and select App

Ser vice logs .

Select On for either Application Logging (Filesystem) or Application Logging (Blob) , or both.

The Filesystem option is for temporary debugging purposes, and turns itself off in 12 hours. The Blob option

is for long-term logging, and needs a blob storage container to write logs to. The Blob option also includes

additional information in the log messages, such as the ID of the origin VM instance of the log message (

InstanceId), thread ID (Tid), and a more granular timestamp (EventTickCount).

Currently only .NET application logs can be written to the blob storage. Java, PHP, Node.js, Python application logs can

only be stored on the App Service file system (without code modifications to write logs to external storage).

Also, if you regenerate your storage account's access keys, you must reset the respective logging configuration to use the

updated access keys. To do this:

1. In the Configure tab, set the respective logging feature to Off. Save your setting.

2. Enable logging to the storage account blob again. Save your setting.

Select the Level , or the level of details to log. The following table shows the log categories included in each

level:

When finished, select Save.

To enable application logging for Linux apps or custom container apps in the Azure portal, navigate to your app

and select App Ser vice logs .

In Application logging, select File System.

In Quota (MB) , specify the disk quota for the application logs. In Retention Period (Days) , set the number of

days the logs should be retained.

When finished, select Save.

https://portal.azure.com
https://docs.microsoft.com/en-us/dotnet/api/system.datetime.ticks
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://portal.azure.com

NOTE

 Log detailed errors

 Add log messages in code

 Stream logs

NOTE

 In Azure portal

To enable web server logging for Windows apps in the Azure portal, navigate to your app and select App

Ser vice logs .

For Web ser ver logging , select Storage to store logs on blob storage, or File System to store logs on the

App Service file system.

In Retention Period (Days) , set the number of days the logs should be retained.

If you regenerate your storage account's access keys, you must reset the respective logging configuration to use the

updated keys. To do this:

1. In the Configure tab, set the respective logging feature to Off. Save your setting.

2. Enable logging to the storage account blob again. Save your setting.

When finished, select Save.

To save the error page or failed request tracing for Windows apps in the Azure portal, navigate to your app and

select App Ser vice logs .

Under Detailed Error Logging or Failed Request Tracing, select On, then select Save.

Both types of logs are stored in the App Service file system. Up to 50 errors (files/folders) are retained. When

the number of HTML files exceed 50, the oldest 26 errors are automatically deleted.

In your application code, you use the usual logging facilities to send log messages to the application logs. For

example:

System.Diagnostics.Trace.TraceError("If you're seeing this, something bad happened");

ASP.NET applications can use the System.Diagnostics.Trace class to log information to the application

diagnostics log. For example:

By default, ASP.NET Core uses the Microsoft.Extensions.Logging.AzureAppServices logging provider. For

more information, see ASP.NET Core logging in Azure. For information about WebJobs SDK logging, see

Get started with the Azure WebJobs SDK

Before you stream logs in real time, enable the log type that you want. Any information written to files ending in

.txt, .log, or .htm that are stored in the /LogFiles directory (d:/home/logfiles) is streamed by App Service.

Some types of logging buffer write to the log file, which can result in out of order events in the stream. For example, an

application log entry that occurs when a user visits a page may be displayed in the stream before the corresponding HTTP

log entry for the page request.

To stream logs in the Azure portal, navigate to your app and select Log stream.

https://portal.azure.com
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://portal.azure.com
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.trace
https://www.nuget.org/packages/Microsoft.Extensions.Logging.AzureAppServices
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/en-us/azure/app-service/webjobs-sdk-get-started
https://portal.azure.com

 In Cloud Shell

IMPORTANT

az webapp log tail --name appname --resource-group myResourceGroup

az webapp log tail --name appname --resource-group myResourceGroup --provider http

 In local terminal

 Access log files

LO G T Y P E DIREC TO RY DESC RIP T IO N

Application logs /LogFiles/Application/ Contains one or more text files. The
format of the log messages depends
on the logging provider you use.

Failed Request Traces /LogFiles/W3SVC#########/ Contains XML files, and an XSL file. You
can view the formatted XML files in the
browser.

Detailed Error Logs /LogFiles/DetailedErrors/ Contains HTM error files. You can view
the HTM files in the browser.
Another way to view the failed request
traces is to navigate to your app page
in the portal. From the left menu,
select Diagnose and solve
problems, then search for Failed
Request Tracing Logs , then click the
icon to browse and view the trace you
want.

To stream logs live in Cloud Shell, use the following command:

This command may not work with web apps hosted in a Linux app service plan.

To filter specific log types, such as HTTP, use the --Provider parameter. For example:

To stream logs in the local console, install Azure CLI and sign in to your account. Once signed in, followed the

instructions for Cloud Shell

If you configure the Azure Storage blobs option for a log type, you need a client tool that works with Azure

Storage. For more information, see Azure Storage Client Tools.

For logs stored in the App Service file system, the easiest way is to download the ZIP file in the browser at:

Linux/container apps: https://<app-name>.scm.azurewebsites.net/api/logs/docker/zip

Windows apps: https://<app-name>.scm.azurewebsites.net/api/dump

For Linux/container apps, the ZIP file contains console output logs for both the docker host and the docker

container. For a scaled-out app, the ZIP file contains one set of logs for each instance. In the App Service file

system, these log files are the contents of the /home/LogFiles directory.

For Windows apps, the ZIP file contains the contents of the D:\Home\LogFiles directory in the App Service file

system. It has the following structure:

https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli
https://docs.microsoft.com/en-us/azure/storage/common/storage-explorers

Web Ser ver Logs /LogFiles/http/RawLogs/ Contains text files formatted using the
W3C extended log file format. This
information can be read using a text
editor or a utility like Log Parser.
App Service doesn't support the
s-computername , s-ip , or

cs-version fields.

Deployment logs /LogFiles/Git/ and /deployments/ Contain logs generated by the internal
deployment processes, as well as logs
for Git deployments.

LO G T Y P E DIREC TO RY DESC RIP T IO N

 Send logs to Azure Monitor (preview)

 Supported log types

LO G T Y P E W IN DO W S
W IN DO W S
C O N TA IN ER L IN UX

L IN UX
C O N TA IN ER DESC RIP T IO N

AppServiceCons
oleLogs

Java SE &
Tomcat

Yes Yes Yes Standard output
and standard
error

AppServiceHTTP
Logs

Yes Yes Yes Yes Web server logs

With the new Azure Monitor integration, you can create Diagnostic Settings (preview) to send logs to Storage

Accounts, Event Hubs and Log Analytics.

The following table shows the supported log types and descriptions:

https://docs.microsoft.com/en-us/windows/desktop/http/w3c-logging
https://www.iis.net/downloads/community/2010/04/log-parser-22
https://aka.ms/appsvcblog-azmon
https://azure.github.io/AppService/2019/11/01/App-Service-Integration-with-Azure-Monitor.html#create-a-diagnostic-setting

AppServiceEnviro
nmentPlatformL
ogs

Yes N/A Yes Yes App Service
Environment:
scaling,
configuration
changes, and
status logs

AppServiceAudit
Logs

Yes Yes Yes Yes Login activity via
FTP and Kudu

AppServiceFileAu
ditLogs

Yes Yes TBA TBA File changes
made to the site
content; only
available for
Premium tier
and above

AppServiceAppL
ogs

ASP .NET &
Tomcat

ASP .NET &
Tomcat

Java SE &
Tomcat Blessed
Images

Java SE & Tomcat
Blessed Images

Application logs

AppServiceIPSec
AuditLogs

Yes Yes Yes Yes Requests from IP
Rules

AppServicePlatfo
rmLogs

TBA Yes Yes Yes Container
operation logs

AppServiceAntivi
rusScanAuditLog
s

Yes Yes Yes Yes Anti-virus scan
logs using
Microsoft
Defender; only
available for
Premium tier

LO G T Y P E W IN DO W S
W IN DO W S
C O N TA IN ER L IN UX

L IN UX
C O N TA IN ER DESC RIP T IO N

 Next steps

1 1

2

2

 For Tomcat apps, add "TOMCAT_USE_STARTUP_BAT" to the app settings and set it to false or 0. Need to be on

the latest Tomcat version and use java.util.logging.

1

 For Java SE apps, add "$WEBSITE_AZMON_PREVIEW_ENABLED" to the app settings and set it to true or to 1.2

Query logs with Azure Monitor

How to Monitor Azure App Service

Troubleshooting Azure App Service in Visual Studio

Analyze app Logs in HDInsight

https://azure.github.io/AppService/2020/12/09/AzMon-AppServiceAntivirusScanAuditLogs.html
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/log-query-overview
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-dotnet-visual-studio
https://gallery.technet.microsoft.com/scriptcenter/Analyses-Windows-Azure-web-0b27d413

Tutorial: Monitor a Windows virtual machine in
Azure

 5/28/2021 • 4 minutes to read • Edit Online

 Launch Azure Cloud Shell

 Create virtual machine

$cred = Get-Credential

New-AzVm `
 -ResourceGroupName "myResourceGroupMonitor" `
 -Name "myVM" `
 -Location "East US" `
 -Credential $cred

 View boot diagnostics

Azure monitoring uses agents to collect boot and performance data from Azure VMs, store this data in Azure

storage, and make it accessible through portal, the Azure PowerShell module, and Azure CLI. Advanced

monitoring is delivered with Azure Monitor for VMs by collecting performance metrics, discover application

components installed on the VM, and includes performance charts and dependency map.

In this tutorial, you learn how to:

Enable boot diagnostics on a VM

View boot diagnostics

View VM host metrics

Enable Azure Monitor for VMs

View VM performance metrics

Create an alert

The Azure Cloud Shell is a free interactive shell that you can use to run the steps in this article. It has common

Azure tools preinstalled and configured to use with your account.

To open the Cloud Shell, just select Tr y it from the upper right corner of a code block. You can also launch Cloud

Shell in a separate browser tab by going to https://shell.azure.com/powershell. Select Copy to copy the blocks

of code, paste it into the Cloud Shell, and press enter to run it.

To configure Azure monitoring and update management in this tutorial, you need a Windows VM in Azure. First,

set an administrator username and password for the VM with Get-Credential:

Now create the VM with New-AzVM. The following example creates a VM named myVM in the EastUS location.

If they do not already exist, the resource group myResourceGroupMonitorMonitor and supporting network

resources are created:

It takes a few minutes for the resources and VM to be created.

As Windows virtual machines boot up, the boot diagnostic agent captures screen output that can be used for

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/tutorial-monitor.md
https://shell.azure.com/powershell
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/get-credential
https://docs.microsoft.com/en-us/powershell/module/az.compute/new-azvm

Get-AzVMBootDiagnosticsData -ResourceGroupName "myResourceGroupMonitor" -Name "myVM" -Windows -LocalPath
"c:\"

 View host metrics

 Enable advanced monitoring

troubleshooting purpose. This capability is enabled by default. The captured screenshots are stored in an Azure

storage account, which is also created by default.

You can get the boot diagnostic data with the Get-AzureRmVMBootDiagnosticsData command. In the following

example, boot diagnostics are downloaded to the root of the *c:* drive.

A Windows VM has a dedicated Host VM in Azure that it interacts with. Metrics are automatically collected for

the Host and can be viewed in the Azure portal.

1. In the Azure portal, click Resource Groups , select myResourceGroupMonitor , and then select myVM

in the resource list.

2. Click Metr ics on the VM blade, and then select any of the Host metrics under Available metr ics to see

how the Host VM is performing.

To enable monitoring of your Azure VM with Azure Monitor for VMs:

1. In the Azure portal, click Resource Groups , select myResourceGroupMonitor , and then select myVM

in the resource list.

2. On the VM page, in the Monitor ing section, select Insights (preview) .

3. On the Insights (preview) page, select Tr y now .

https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmbootdiagnosticsdata

 View VM performance metrics

NOTE

4. On the Azure Monitor Insights Onboarding page, if you have an existing Log Analytics workspace in

the same subscription, select it in the drop-down list.

The list preselects the default workspace and location where the VM is deployed in the subscription.

To create a new Log Analytics workspace to store the monitoring data from the VM, see Create a Log Analytics

workspace. The workspace must belong to one of the supported regions.

After you've enabled monitoring, you might need to wait several minutes before you can view the performance

metrics for the VM.

Azure Monitor for VMs includes a set of performance charts that target several key performance indicators

(KPIs) to help you determine how well a virtual machine is performing. To access from your VM, perform the

following steps.

1. In the Azure portal, click Resource Groups , select myResourceGroupMonitor , and then select myVM

in the resource list.

2. On the VM page, in the Monitor ing section, select Insights (preview) .

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/quick-create-workspace
https://docs.microsoft.com/en-us/azure/azure-monitor/vm/vminsights-configure-workspace

 Create alerts

 Next steps

3. Select the Performance tab.

This page not only includes performance utilization charts, but also a table showing for each logical disk

discovered, its capacity, utilization, and total average by each measure.

You can create alerts based on specific performance metrics. Alerts can be used to notify you when average CPU

usage exceeds a certain threshold or available free disk space drops below a certain amount, for example. Alerts

are displayed in the Azure portal or can be sent via email. You can also trigger Azure Automation runbooks or

Azure Logic Apps in response to alerts being generated.

The following example creates an alert for average CPU usage.

1. In the Azure portal, click Resource Groups , select myResourceGroupMonitor , and then select myVM

in the resource list.

2. Click Aler t rules on the VM blade, then click Add metr ic aler t across the top of the alerts blade.

3. Provide a Name for your alert, such as myAlertRule

4. To trigger an alert when CPU percentage exceeds 1.0 for five minutes, leave all the other defaults selected.

5. Optionally, check the box for Email owners, contributors, and readers to send email notification. The

default action is to present a notification in the portal.

6. Click the OK button.

In this tutorial, you configured and viewed performance of your VM. You learned how to:

Create a resource group and VM

Enable boot diagnostics on the VM

View boot diagnostics

View host metrics

Enable Azure Monitor for VMs

View VM metrics

Create an alert

Advance to the next tutorial to learn about Azure Security Center.

Manage VM security

https://docs.microsoft.com/en-us/azure/security/fundamentals/overview

Monitoring and diagnostics for Azure Service Fabric
 6/22/2021 • 9 minutes to read • Edit Online

NOTE

 Application monitoring

 Platform (Cluster) monitoring

This article provides an overview of monitoring and diagnostics for Azure Service Fabric. Monitoring and

diagnostics are critical to developing, testing, and deploying workloads in any cloud environment. For example,

you can track how your applications are used, the actions taken by the Service Fabric platform, your resource

utilization with performance counters, and the overall health of your cluster. You can use this information to

diagnose and correct issues, and prevent them from occurring in the future. The next few sections will briefly

explain each area of Service Fabric monitoring to consider for production workloads.

This article was recently updated to use the term Azure Monitor logs instead of Log Analytics. Log data is still stored in a

Log Analytics workspace and is still collected and analyzed by the same Log Analytics service. We are updating the

terminology to better reflect the role of logs in Azure Monitor. See Azure Monitor terminology changes for details.

Application monitoring tracks how features and components of your application are being used. You want to

monitor your applications to make sure issues that impact users are caught. The responsibility of application

monitoring is on the users developing an application and its services since it is unique to the business logic of

your application. Monitoring your applications can be useful in the following scenarios:

How much traffic is my application experiencing? - Do you need to scale your services to meet user demands

or address a potential bottleneck in your application?

Are my service to service calls successful and tracked?

What actions are taken by the users of my application? - Collecting telemetry can guide future feature

development and better diagnostics for application errors

Is my application throwing unhandled exceptions?

What is happening within the services running inside my containers?

The great thing about application monitoring is that developers can use whatever tools and framework they'd

like since it lives within the context of your application! You can learn more about the Azure solution for

application monitoring with Azure Monitor - Application Insights in Event analysis with Application Insights. We

also have a tutorial with how to set this up for .NET Applications. This tutorial goes over how to install the right

tools, an example to write custom telemetry in your application, and viewing the application diagnostics and

telemetry in the Azure portal.

A user is in control over what telemetry comes from their application since a user writes the code itself, but what

about the diagnostics from the Service Fabric platform? One of Service Fabric's goals is to keep applications

resilient to hardware failures. This goal is achieved through the platform's system services' ability to detect

infrastructure issues and rapidly failover workloads to other nodes in the cluster. But in this particular case, what

if the system services themselves have issues? Or if in attempting to deploy or move a workload, rules for the

placement of services are violated? Service Fabric provides diagnostics for these and more to make sure you are

informed about activity taking place in your cluster. Some sample scenarios for cluster monitoring include:

Service Fabric provides a comprehensive set of events out of the box. These Service Fabric events can be

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/service-fabric/service-fabric-diagnostics-overview.md
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/data-platform-logs
https://docs.microsoft.com/en-us/azure/azure-monitor/terminology
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-analysis-appinsights
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-monitoring-aspnet
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-events

 Health monitoring

accessed through the EventStore or the operational channel (event channel exposed by the platform).

Service Fabric event channels - On Windows, Service Fabric events are available from a single ETW

provider with a set of relevant logLevelKeywordFilters used to pick between Operational and Data &

Messaging channels - this is the way in which we separate out outgoing Service Fabric events to be

filtered on as needed. On Linux, Service Fabric events come through LTTng and are put into one Storage

table, from where they can be filtered as needed. These channels contain curated, structured events that

can be used to better understand the state of your cluster. Diagnostics are enabled by default at the

cluster creation time, which create an Azure Storage table where the events from these channels are sent

for you to query in the future.

EventStore - The EventStore is a feature offered by the platform that provides Service Fabric platform

events available in the Service Fabric Explorer and through REST API. You can see a snapshot view of

what's going on in your cluster for each entity e.g. node, service, application and query based on the time

of the event. You can also Read more about the EventStore at the EventStore Overview.

The diagnostics provided are in the form of a comprehensive set of events out of the box. These Service Fabric

events illustrate actions done by the platform on different entities such as Nodes, Applications, Services,

Partitions etc. In the last scenario above, if a node were to go down, the platform would emit a NodeDown event

and you could be notified immediately by your monitoring tool of choice. Other common examples include

ApplicationUpgradeRollbackStarted or PartitionReconfigured during a failover. The same events are

available on both Windows and L inux clusters.

The events are sent through standard channels on both Windows and Linux and can be read by any monitoring

tool that supports these. The Azure Monitor solution is Azure Monitor logs. Feel free to read more about our

Azure Monitor logs integration which includes a custom operational dashboard for your cluster and some

sample queries from which you can create alerts. More cluster monitoring concepts are available at Platform

level event and log generation.

The Service Fabric platform includes a health model, which provides extensible health reporting for the status of

entities in a cluster. Each node, application, service, partition, replica, or instance, has a continuously updatable

health status. The health status can either be "OK", "Warning", or "Error". Think of Service Fabric events as verbs

done by the cluster to various entities and health as an adjective for each entity. Each time the health of a

particular entity transitions, an event will also be emitted. This way you can set up queries and alerts for health

events in your monitoring tool of choice, just like any other event.

Additionally, we even let users override health for entities. If your application is going through an upgrade and

you have validation tests failing, you can write to Service Fabric Health using the Health API to indicate your

application is no longer healthy, and Service Fabric will automatically rollback the upgrade! For more on the

health model, check out the introduction to Service Fabric health monitoring

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-eventstore
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-events
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-analysis-oms
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-generation-infra
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-health-introduction

 Watchdogs

 Infrastructure (performance) monitoring

 Recommended Setup

Generally, a watchdog is a separate service that watches health and load across services, pings endpoints, and

reports unexpected health events in the cluster. This can help prevent errors that may not be detected based

only on the performance of a single service. Watchdogs are also a good place to host code that performs

remedial actions that don't require user interaction, such as cleaning up log files in storage at certain time

intervals. If you want a fully implemented, open source SF watchdog service that includes an easy-to-use

watchdog extensibility model and that runs in both Windows and Linux clusters, see the FabricObserver project.

FabricObserver is production-ready software. We encourage you to deploy FabricObserver to your test and

production clusters and extend it to meet your needs either through its plug-in model or by forking it and

writing your own built-in observers. The former (plug-ins) is the recommended approach.

Now that we've covered the diagnostics in your application and the platform, how do we know the hardware is

functioning as expected? Monitoring your underlying infrastructure is a key part of understanding the state of

your cluster and your resource utilization. Measuring system performance depends on many factors that can be

subjective depending on your workloads. These factors are typically measured through performance counters.

These performance counters can come from a variety of sources including the operating system, the .NET

framework, or the Service Fabric platform itself. Some scenarios in which they would be useful are

Am I utilizing my hardware efficiently? Do you want to use your hardware at 90% CPU or 10% CPU. This

comes in handy when scaling your cluster, or optimizing your application's processes.

Can I predict infrastructure issues proactively? - many issues are preceded by sudden changes (drops) in

performance, so you can use performance counters such as network I/O and CPU utilization to predict and

diagnose the issues proactively.

A list of performance counters that should be collected at the infrastructure level can be found at Performance

metrics.

Service Fabric also provides a set of performance counters for the Reliable Services and Actors programming

models. If you are using either of these models, these performance counters can information to ensure that your

actors are spinning up and down correctly, or that your reliable service requests are being handled fast enough.

For more information, see Monitoring for Reliable Service Remoting and Performance monitoring for Reliable

Actors.

The Azure Monitor solution to collect these is Azure Monitor logs just like platform level monitoring. You should

use the Log Analytics agent to collect the appropriate performance counters, and view them in Azure Monitor

logs.

Now that we've gone over each area of monitoring and example scenarios, here is a summary of the Azure

https://github.com/Azure-Samples/service-fabric-watchdog-service
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-generation-perf
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-serviceremoting-diagnostics
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-diagnostics
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-oms-agent

 Other logging solutions

 Next steps

monitoring tools and set up needed to monitor all areas above.

Application monitoring with Application Insights

Cluster monitoring with Diagnostics Agent and Azure Monitor logs

Infrastructure monitoring with Azure Monitor logs

You can also use and modify the sample ARM template located here to automate deployment of all necessary

resources and agents.

Although the two solutions we recommended, Azure Monitor logs and Application Insights have built in

integration with Service Fabric, many events are written out through ETW providers and are extensible with

other logging solutions. You should also look into the Elastic Stack (especially if you are considering running a

cluster in an offline environment), Dynatrace, or any other platform of your preference. We have a list of

integrated partners available here.

The key points for any platform you choose should include how comfortable you are with the user interface, the

querying capabilities, the custom visualizations and dashboards available, and the additional tools they provide

to enhance your monitoring experience.

For getting started with instrumenting your applications, see Application level event and log generation.

Go through the steps to set up Application Insights for your application with Monitor and diagnose an

ASP.NET Core application on Service Fabric.

Learn more about monitoring the platform and the events Service Fabric provides for you at Platform level

event and log generation.

Configure the Azure Monitor logs integration with Service Fabric at Set up Azure Monitor logs for a cluster

Learn how to set up Azure Monitor logs for monitoring containers - Monitoring and Diagnostics for

Windows Containers in Azure Service Fabric.

See example diagnostics problems and solutions with Service Fabric in diagnosing common scenarios

Check out other diagnostics products that integrate with Service Fabric in Service Fabric diagnostic partners

Learn about general monitoring recommendations for Azure resources - Best Practices - Monitoring and

diagnostics.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-monitoring-aspnet
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-aggregation-wad
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-oms-setup
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-oms-agent
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-oms-setup
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-analysis-oms
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-analysis-appinsights
https://www.elastic.co/products
https://www.dynatrace.com/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-partners
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-generation-app
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-monitoring-aspnet
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-event-generation-infra
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-oms-setup
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-tutorial-monitoring-wincontainers
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-common-scenarios
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-partners
https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring

Use cost alerts to monitor usage and spending
 3/5/2021 • 3 minutes to read • Edit Online

 Budget alerts

 Credit alerts

 Department spending quota alerts

 Supported alert features by offer categories

A L ERT T Y P E EN T ERP RISE A GREEM EN T
M IC RO SO F T C USTO M ER
A GREEM EN T

W EB DIREC T / PAY - A S- Y O U-
GO

Budget ✔ ✔ ✔

Credit ✔ ✘ ✘

This article helps you understand and use Cost Management alerts to monitor your Azure usage and spending.

Cost alerts are automatically generated based when Azure resources are consumed. Alerts show all active cost

management and billing alerts together in one place. When your consumption reaches a given threshold, alerts

are generated by Cost Management. There are three types of cost alerts: budget alerts, credit alerts, and

department spending quota alerts.

Budget alerts notify you when spending, based on usage or cost, reaches or exceeds the amount defined in the

alert condition of the budget. Cost Management budgets are created using the Azure portal or the Azure

Consumption API.

In the Azure portal, budgets are defined by cost. Using the Azure Consumption API, budgets are defined by cost

or by consumption usage. Budget alerts support both cost-based and usage-based budgets. Budget alerts are

generated automatically whenever the budget alert conditions are met. You can view all cost alerts in the Azure

portal. Whenever an alert is generated, it's shown in cost alerts. An alert email is also sent to the people in the

alert recipients list of the budget.

You can use the Budget API to send email alerts in a different language. For more information, see Supported

locales for budget alert emails.

Credit alerts notify you when your Azure Prepayment (previously called monetary commitment) is consumed.

Azure Prepayment is for organizations with Enterprise Agreements. Credit alerts are generated automatically at

90% and at 100% of your Azure Prepayment credit balance. Whenever an alert is generated, it's reflected in cost

alerts and in the email sent to the account owners.

Department spending quota alerts notify you when department spending reaches a fixed threshold of the

quota. Spending quotas are configured in the EA portal. Whenever a threshold is met it generates an email to

department owners and is shown in cost alerts. For example, 50% or 75% of the quota.

Support for alert types depends on the type of Azure account that you have (Microsoft offer). The following

table shows the alert features that are supported by various Microsoft offers. You can view the full list of

Microsoft offers at Understand Cost Management data.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cost-management-billing/costs/cost-mgt-alerts-monitor-usage-spending.md
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets
https://docs.microsoft.com/en-us/rest/api/consumption
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/manage-automation
https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/understand-cost-mgt-data

Department spending
quota

✔ ✘ ✘

A L ERT T Y P E EN T ERP RISE A GREEM EN T
M IC RO SO F T C USTO M ER
A GREEM EN T

W EB DIREC T / PAY - A S- Y O U-
GO

 View cost alerts
To view cost alerts, open the desired scope in the Azure portal and select Budgets in the menu. Use the Scope

pill to switch to a different scope. Select Cost aler ts in the menu. For more information about scopes, see

Understand and work with scopes.

The total number of active and dismissed alerts appears on the cost alerts page.

All alerts show the alert type. A budget alert shows the reason why it was generated and the name of the

budget it applies to. Each alert shows the date it was generated, its status, and the scope (subscription or

management group) that the alert applies to.

Possible status includes active and dismissed. Active status indicates that the alert is still relevant. Dismissed

status indicates that someone has marked the alert to set it as no longer relevant.

Select an alert from the list to view its details. Alert details show more information about the alert. Budget alerts

include a link to the budget. If a recommendation is available for a budget alert, then a link to the

recommendation is also shown. Budget, credit, and department spending quota alerts have a link to analyze in

cost analysis where you can explore costs for the alert's scope. The following example shows spending for a

department with alert details.

https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/understand-work-scopes

 See also

When you view the details of a dismissed alert, you can reactivate it if manual action is needed. The following

image shows an example.

If you haven't already created a budget or set alert conditions for a budget, complete the Create and manage

budgets tutorial.

https://docs.microsoft.com/en-us/azure/cost-management-billing/costs/tutorial-acm-create-budgets

Tutorial: Create a virtual machine scale set and
deploy a highly available app on Linux with the
Azure CLI

 5/4/2021 • 7 minutes to read • Edit Online

 Scale Set overview

 Create an app to scale

A virtual machine scale set allows you to deploy and manage a set of identical, auto-scaling virtual machines.

You can scale the number of VMs in the scale set manually, or define rules to autoscale based on resource usage

such as CPU, memory demand, or network traffic. In this tutorial, you deploy a virtual machine scale set in

Azure. You learn how to:

Use cloud-init to create an app to scale

Create a virtual machine scale set

Increase or decrease the number of instances in a scale set

Create autoscale rules

View connection info for scale set instances

Use data disks in a scale set

This tutorial uses the CLI within the Azure Cloud Shell, which is constantly updated to the latest version. To open

the Cloud Shell, select Tr y it from the top of any code block.

If you choose to install and use the CLI locally, this tutorial requires that you are running the Azure CLI version

2.0.30 or later. Run az --version to find the version. If you need to install or upgrade, see Install Azure CLI.

A virtual machine scale set allows you to deploy and manage a set of identical, auto-scaling virtual machines.

VMs in a scale set are distributed across logic fault and update domains in one or more placement groups.

These are groups of similarly configured VMs, similar to availability sets.

VMs are created as needed in a scale set. You define autoscale rules to control how and when VMs are added or

removed from the scale set. These rules can be triggered based on metrics such as CPU load, memory usage, or

network traffic.

Scale sets support up to 1,000 VMs when you use an Azure platform image. For workloads with significant

installation or VM customization requirements, you may wish to Create a custom VM image. You can create up

to 300 VMs in a scale set when using a custom image.

For production use, you may wish to Create a custom VM image that includes your application installed and

configured. For this tutorial, lets customize the VMs on first boot to quickly see a scale set in action.

In a previous tutorial, you learned How to customize a Linux virtual machine on first boot with cloud-init. You

can use the same cloud-init configuration file to install NGINX and run a simple 'Hello World' Node.js app.

In your current shell, create a file named cloud-init.txt and paste the following configuration. For example, create

the file in the Cloud Shell not on your local machine. Enter sensible-editor cloud-init.txt to create the file and

see a list of available editors. Make sure that the whole cloud-init file is copied correctly, especially the first line:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/linux/tutorial-create-vmss.md
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-availability-sets
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-custom-images
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-custom-images
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-automate-vm-deployment

#cloud-config
package_upgrade: true
packages:
 - nginx
 - nodejs
 - npm
write_files:
 - owner: www-data:www-data
 - path: /etc/nginx/sites-available/default
 content: |
 server {
 listen 80;
 location / {
 proxy_pass http://localhost:3000;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection keep-alive;
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }
 }
 - owner: azureuser:azureuser
 - path: /home/azureuser/myapp/index.js
 content: |
 var express = require('express')
 var app = express()
 var os = require('os');
 app.get('/', function (req, res) {
 res.send('Hello World from host ' + os.hostname() + '!')
 })
 app.listen(3000, function () {
 console.log('Hello world app listening on port 3000!')
 })
runcmd:
 - service nginx restart
 - cd "/home/azureuser/myapp"
 - npm init
 - npm install express -y
 - nodejs index.js

 Create a scale set

az group create --name myResourceGroupScaleSet --location eastus

az vmss create \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet \
 --image UbuntuLTS \
 --upgrade-policy-mode automatic \
 --custom-data cloud-init.txt \
 --admin-username azureuser \
 --generate-ssh-keys

Before you can create a scale set, create a resource group with az group create. The following example creates a

resource group named myResourceGroupScaleSet in the eastus location:

Now create a virtual machine scale set with az vmss create. The following example creates a scale set named

myScaleSet, uses the cloud-init file to customize the VM, and generates SSH keys if they do not exist:

It takes a few minutes to create and configure all the scale set resources and VMs. There are background tasks

that continue to run after the Azure CLI returns you to the prompt. It may be another couple of minutes before

https://docs.microsoft.com/en-us/cli/azure/group#az_group_create
https://docs.microsoft.com/en-us/cli/azure/vmss#az_vmss_create

 Allow web traffic

az network lb rule create \
 --resource-group myResourceGroupScaleSet \
 --name myLoadBalancerRuleWeb \
 --lb-name myScaleSetLB \
 --backend-pool-name myScaleSetLBBEPool \
 --backend-port 80 \
 --frontend-ip-name loadBalancerFrontEnd \
 --frontend-port 80 \
 --protocol tcp

 Test your app

az network public-ip show \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSetLBPublicIP \
 --query [ipAddress] \
 --output tsv

 Management tasks

 View VMs in a scale set

you can access the app.

A load balancer was created automatically as part of the virtual machine scale set. The load balancer distributes

traffic across a set of defined VMs using load balancer rules. You can learn more about load balancer concepts

and configuration in the next tutorial, How to load balance virtual machines in Azure.

To allow traffic to reach the web app, create a rule with az network lb rule create. The following example creates

a rule named myLoadBalancerRuleWeb:

To see your Node.js app on the web, obtain the public IP address of your load balancer with az network public-ip

show. The following example obtains the IP address for myScaleSetLBPublicIP created as part of the scale set:

Enter the public IP address in to a web browser. The app is displayed, including the hostname of the VM that the

load balancer distributed traffic to:

To see the scale set in action, you can force-refresh your web browser to see the load balancer distribute traffic

across all the VMs running your app.

Throughout the lifecycle of the scale set, you may need to run one or more management tasks. Additionally, you

may want to create scripts that automate various lifecycle-tasks. The Azure CLI provides a quick way to do those

tasks. Here are a few common tasks.

To view a list of VMs running in your scale set, use az vmss list-instances as follows:

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-load-balancer
https://docs.microsoft.com/en-us/cli/azure/network/lb/rule#az_network_lb_rule_create
https://docs.microsoft.com/en-us/cli/azure/network/public-ip#az_network_public_ip_show
https://docs.microsoft.com/en-us/cli/azure/vmss#az_vmss_list_instances

az vmss list-instances \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet \
 --output table

 InstanceId LatestModelApplied Location Name ProvisioningState ResourceGroup
VmId
------------ -------------------- ---------- ------------ ------------------- -----------------------

 1 True eastus myScaleSet_1 Succeeded MYRESOURCEGROUPSCALESET
c72ddc34-6c41-4a53-b89e-dd24f27b30ab
 3 True eastus myScaleSet_3 Succeeded MYRESOURCEGROUPSCALESET
44266022-65c3-49c5-92dd-88ffa64f95da

 Manually increase or decrease VM instances

az vmss show \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet \
 --query [sku.capacity] \
 --output table

az vmss scale \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet \
 --new-capacity 3

 Get connection info

az vmss list-instance-connection-info \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet

 Use data disks with scale sets

 Create scale set with data disks

The output is similar to the following example:

To see the number of instances you currently have in a scale set, use az vmss show and query on sku.capacity:

You can then manually increase or decrease the number of virtual machines in the scale set with az vmss scale.

The following example sets the number of VMs in your scale set to 3:

To obtain connection information about the VMs in your scale sets, use az vmss list-instance-connection-info.

This command outputs the public IP address and port for each VM that allows you to connect with SSH:

You can create and use data disks with scale sets. In a previous tutorial, you learned how to Manage Azure disks

that outlines the best practices and performance improvements for building apps on data disks rather than the

OS disk.

To create a scale set and attach data disks, add the --data-disk-sizes-gb parameter to the az vmss create

command. The following example creates a scale set with 50Gb data disks attached to each instance:

https://docs.microsoft.com/en-us/cli/azure/vmss#az_vmss_show
https://docs.microsoft.com/en-us/cli/azure/vmss#az_vmss_scale
https://docs.microsoft.com/en-us/cli/azure/vmss#az_vmss_list_instance_connection_info
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-manage-disks
https://docs.microsoft.com/en-us/cli/azure/vmss#az_vmss_create

az vmss create \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSetDisks \
 --image UbuntuLTS \
 --upgrade-policy-mode automatic \
 --custom-data cloud-init.txt \
 --admin-username azureuser \
 --generate-ssh-keys \
 --data-disk-sizes-gb 50

 Add data disks

az vmss disk attach \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet \
 --size-gb 50 \
 --lun 2

 Detach data disks

az vmss disk detach \
 --resource-group myResourceGroupScaleSet \
 --name myScaleSet \
 --lun 2

 Next steps

When instances are removed from a scale set, any attached data disks are also removed.

To add a data disk to instances in your scale set, use az vmss disk attach. The following example adds a 50Gb

disk to each instance:

To remove a data disk to instances in your scale set, use az vmss disk detach. The following example removes

the data disk at LUN 2 from each instance:

In this tutorial, you created a virtual machine scale set. You learned how to:

Use cloud-init to create an app to scale

Create a virtual machine scale set

Increase or decrease the number of instances in a scale set

Create autoscale rules

View connection info for scale set instances

Use data disks in a scale set

Advance to the next tutorial to learn more about load balancing concepts for virtual machines.

Load balance virtual machines

https://docs.microsoft.com/en-us/cli/azure/vmss/disk#az_vmss_disk_attach
https://docs.microsoft.com/en-us/cli/azure/vmss/disk#az_vmss_disk_detach
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-load-balancer

Tutorial: Create a virtual machine scale set and
deploy a highly available app on Windows with
Azure PowerShell

 11/2/2020 • 7 minutes to read • Edit Online

 Launch Azure Cloud Shell

 Scale Set overview

 Create a scale set

A virtual machine scale set allows you to deploy and manage a set of identical, autoscaling virtual machines. You

can scale the number of VMs in the scale set manually. You can also define rules to autoscale based on resource

usage such as CPU, memory demand, or network traffic. In this tutorial, you deploy a virtual machine scale set in

Azure and learn how to:

Use the Custom Script Extension to define an IIS site to scale

Create a load balancer for your scale set

Create a virtual machine scale set

Increase or decrease the number of instances in a scale set

Create autoscale rules

The Azure Cloud Shell is a free interactive shell that you can use to run the steps in this article. It has common

Azure tools preinstalled and configured to use with your account.

To open the Cloud Shell, just select Tr y it from the upper right corner of a code block. You can also launch Cloud

Shell in a separate browser tab by going to https://shell.azure.com/powershell. Select Copy to copy the blocks

of code, paste it into the Cloud Shell, and press enter to run it.

A virtual machine scale set allows you to deploy and manage a set of identical, autoscaling virtual machines.

VMs in a scale set are distributed across logic fault and update domains in one or more placement groups.

Placement groups are groups of similarly configured VMs, similar to availability sets.

VMs are created as needed in a scale set. You define autoscale rules to control how and when VMs are added or

removed from the scale set. These rules can trigger based on metrics such as CPU load, memory usage, or

network traffic.

Scale sets support up to 1,000 VMs when you use an Azure platform image. For workloads with significant

installation or VM customization requirements, you may wish to Create a custom VM image. You can create up

to 600 VMs in a scale set when using a custom image.

Create a virtual machine scale set with New-AzVmss. The following example creates a scale set named

myScaleSet that uses the Windows Server 2016 Datacenter platform image. The Azure network resources for

virtual network, public IP address, and load balancer are automatically created. When prompted, you can set

your own administrative credentials for the VM instances in the scale set:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/virtual-machines/windows/tutorial-create-vmss.md
https://shell.azure.com/powershell
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-availability-sets
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-custom-images
https://docs.microsoft.com/en-us/powershell/module/az.compute/new-azvmss

New-AzVmss `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -Location "EastUS" `
 -VMScaleSetName "myScaleSet" `
 -VirtualNetworkName "myVnet" `
 -SubnetName "mySubnet" `
 -PublicIpAddressName "myPublicIPAddress" `
 -LoadBalancerName "myLoadBalancer" `
 -UpgradePolicyMode "Automatic"

 Deploy sample application

Define the script for your Custom Script Extension to run
$publicSettings = @{
 "fileUris" = (,"https://raw.githubusercontent.com/Azure-Samples/compute-automation-
configurations/master/automate-iis.ps1");
 "commandToExecute" = "powershell -ExecutionPolicy Unrestricted -File automate-iis.ps1"
}

Get information about the scale set
$vmss = Get-AzVmss `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -VMScaleSetName "myScaleSet"

Use Custom Script Extension to install IIS and configure basic website
Add-AzVmssExtension -VirtualMachineScaleSet $vmss `
 -Name "customScript" `
 -Publisher "Microsoft.Compute" `
 -Type "CustomScriptExtension" `
 -TypeHandlerVersion 1.8 `
 -Setting $publicSettings

Update the scale set and apply the Custom Script Extension to the VM instances
Update-AzVmss `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -Name "myScaleSet" `
 -VirtualMachineScaleSet $vmss

 Allow traffic to application

It takes a few minutes to create and configure all the scale set resources and VMs.

To test your scale set, install a basic web application. The Azure Custom Script Extension is used to download and

run a script that installs IIS on the VM instances. This extension is useful for post deployment configuration,

software installation, or any other configuration / management task. For more information, see the Custom

Script Extension overview.

Use the Custom Script Extension to install a basic IIS web server. Apply the Custom Script Extension that installs

IIS as follows:

To allow access to the basic web application, create a network security group with New-

AzNetworkSecurityRuleConfig and New-AzNetworkSecurityGroup. For more information, see Networking for

Azure virtual machine scale sets.

https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/custom-script-windows
https://docs.microsoft.com/en-us/powershell/module/az.network/new-aznetworksecurityruleconfig
https://docs.microsoft.com/en-us/powershell/module/az.network/new-aznetworksecuritygroup
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-networking

Get information about the scale set
$vmss = Get-AzVmss `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -VMScaleSetName "myScaleSet"

#Create a rule to allow traffic over port 80
$nsgFrontendRule = New-AzNetworkSecurityRuleConfig `
 -Name myFrontendNSGRule `
 -Protocol Tcp `
 -Direction Inbound `
 -Priority 200 `
 -SourceAddressPrefix * `
 -SourcePortRange * `
 -DestinationAddressPrefix * `
 -DestinationPortRange 80 `
 -Access Allow

#Create a network security group and associate it with the rule
$nsgFrontend = New-AzNetworkSecurityGroup `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -Location EastUS `
 -Name myFrontendNSG `
 -SecurityRules $nsgFrontendRule

$vnet = Get-AzVirtualNetwork `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -Name myVnet

$frontendSubnet = $vnet.Subnets[0]

$frontendSubnetConfig = Set-AzVirtualNetworkSubnetConfig `
 -VirtualNetwork $vnet `
 -Name mySubnet `
 -AddressPrefix $frontendSubnet.AddressPrefix `
 -NetworkSecurityGroup $nsgFrontend

Set-AzVirtualNetwork -VirtualNetwork $vnet

Update the scale set and apply the Custom Script Extension to the VM instances
Update-AzVmss `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -Name "myScaleSet" `
 -VirtualMachineScaleSet $vmss

 Test your scale set

Get-AzPublicIPAddress `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -Name "myPublicIPAddress" | select IpAddress

To see your scale set in action, get the public IP address of your load balancer with Get-AzPublicIPAddress. The

following example displays the IP address for myPublicIP created as part of the scale set:

Enter the public IP address in to a web browser. The web app is displayed, including the hostname of the VM that

the load balancer distributed traffic to:

https://docs.microsoft.com/en-us/powershell/module/az.network/get-azpublicipaddress

 Management tasks

 View VMs in a scale set

Get-AzVmssVM `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -VMScaleSetName "myScaleSet"

ResourceGroupName Name Location Sku InstanceID ProvisioningState
----------------- ---- -------- --- ---------- -----------------
MYRESOURCEGROUPSCALESET myScaleSet_0 eastus Standard_DS1_v2 0 Succeeded
MYRESOURCEGROUPSCALESET myScaleSet_1 eastus Standard_DS1_v2 1 Succeeded

Get-AzVmssVM `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -VMScaleSetName "myScaleSet" `
 -InstanceId "1"

 Increase or decrease VM instances

Get-AzVmss -ResourceGroupName "myResourceGroupScaleSet" `
 -VMScaleSetName "myScaleSet" | `
 Select -ExpandProperty Sku

To see the scale set in action, you can force-refresh your web browser to see the load balancer distribute traffic

across all the VMs running your app.

Throughout the lifecycle of the scale set, you may need to run one or more management tasks. Additionally, you

may want to create scripts that automate various lifecycle-tasks. Azure PowerShell provides a quick way to do

those tasks. Here are a few common tasks.

To view a list of VM instances in a scale set, use Get-AzVmssVM as follows:

The following example output shows two VM instances in the scale set:

To view additional information about a specific VM instance, add the -InstanceId parameter to Get-AzVmssVM.

The following example views information about VM instance 1:

To see the number of instances you currently have in a scale set, use Get-AzVmss and query on sku.capacity:

You can then manually increase or decrease the number of virtual machines in the scale set with Update-

AzVmss. The following example sets the number of VMs in your scale set to 3:

https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmssvm
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmssvm
https://docs.microsoft.com/en-us/powershell/module/az.compute/get-azvmss
https://docs.microsoft.com/en-us/powershell/module/az.compute/update-azvmss

Get current scale set
$scaleset = Get-AzVmss `
 -ResourceGroupName "myResourceGroupScaleSet" `
 -VMScaleSetName "myScaleSet"

Set and update the capacity of your scale set
$scaleset.sku.capacity = 3
Update-AzVmss -ResourceGroupName "myResourceGroupScaleSet" `
 -Name "myScaleSet" `
 -VirtualMachineScaleSet $scaleset

 Configure autoscale rules

If takes a few minutes to update the specified number of instances in your scale set.

Rather than manually scaling the number of instances in your scale set, you define autoscale rules. These rules

monitor the instances in your scale set and respond accordingly based on metrics and thresholds you define.

The following example scales out the number of instances by one when the average CPU load is greater than

60% over a 5-minute period. If the average CPU load then drops below 30% over a 5-minute period, the

instances are scaled in by one instance:

Define your scale set information
$mySubscriptionId = (Get-AzSubscription)[0].Id
$myResourceGroup = "myResourceGroupScaleSet"
$myScaleSet = "myScaleSet"
$myLocation = "East US"
$myScaleSetId = (Get-AzVmss -ResourceGroupName $myResourceGroup -VMScaleSetName $myScaleSet).Id

Create a scale up rule to increase the number instances after 60% average CPU usage exceeded for a 5-
minute period
$myRuleScaleUp = New-AzAutoscaleRule `
 -MetricName "Percentage CPU" `
 -MetricResourceId $myScaleSetId `
 -Operator GreaterThan `
 -MetricStatistic Average `
 -Threshold 60 `
 -TimeGrain 00:01:00 `
 -TimeWindow 00:05:00 `
 -ScaleActionCooldown 00:05:00 `
 -ScaleActionDirection Increase `
 -ScaleActionValue 1

Create a scale down rule to decrease the number of instances after 30% average CPU usage over a 5-minute
period
$myRuleScaleDown = New-AzAutoscaleRule `
 -MetricName "Percentage CPU" `
 -MetricResourceId $myScaleSetId `
 -Operator LessThan `
 -MetricStatistic Average `
 -Threshold 30 `
 -TimeGrain 00:01:00 `
 -TimeWindow 00:05:00 `
 -ScaleActionCooldown 00:05:00 `
 -ScaleActionDirection Decrease `
 -ScaleActionValue 1

Create a scale profile with your scale up and scale down rules
$myScaleProfile = New-AzAutoscaleProfile `
 -DefaultCapacity 2 `
 -MaximumCapacity 10 `
 -MinimumCapacity 2 `
 -Rule $myRuleScaleUp,$myRuleScaleDown `
 -Name "autoprofile"

Apply the autoscale rules
Add-AzAutoscaleSetting `
 -Location $myLocation `
 -Name "autosetting" `
 -ResourceGroup $myResourceGroup `
 -TargetResourceId $myScaleSetId `
 -AutoscaleProfile $myScaleProfile

 Next steps

For more design information on the use of autoscale, see autoscale best practices.

In this tutorial, you created a virtual machine scale set. You learned how to:

Use the Custom Script Extension to define an IIS site to scale

Create a load balancer for your scale set

Create a virtual machine scale set

Increase or decrease the number of instances in a scale set

Create autoscale rules

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

Advance to the next tutorial to learn more about load balancing concepts for virtual machines.

Load balance virtual machines

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/tutorial-load-balancer

Azure consumption API overview
 3/5/2021 • 8 minutes to read • Edit Online

 Usage Details API

 Marketplace Charges API

The Azure Consumption APIs give you programmatic access to cost and usage data for your Azure resources.

These APIs currently only support Enterprise Enrollments and Web Direct Subscriptions (with a few exceptions).

The APIs are continually updated to support other types of Azure subscriptions.

Azure Consumption APIs provide access to:

Enterprise and Web Direct Customers

Enterprise Customers Only

Usage Details

Marketplace Charges

Reservation Recommendations

Reservation Details

Reservation Summaries

Price sheet

Budgets

Balances

Use the Usage Details API to get charge and usage data for all Azure 1st party resources. Information is in the

form of usage detail records which are currently emitted once per meter per resource per day. Information can

be used to add up the costs across all resources or investigate costs / usage on specific resource(s).

The API includes:

Meter Level Consumption Data - See data including usage cost, the meter emitting the charge, and what

Azure resource the charge pertains to. All usage detail records map to a daily bucket.

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Filter ing - Trim your API result set down to a smaller set of usage detail records using the following filters: -

Usage end / usage start - Resource Group - Resource Name

Data Aggregation - Use OData to apply expressions to aggregate usage details by tags or filter properties

Usage for different offer types - Usage detail information is currently available for Enterprise and Web

Direct customers.

For more information, see the technical specification for the Usage Details API.

Use the Marketplace Charges API to get charge and usage data on all Marketplace resources (Azure 3rd party

offerings). This data can be used to add up costs across all Marketplace resources or investigate costs / usage on

specific resource(s).

The API includes:

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/cost-management-billing/manage/consumption-api-overview.md
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/rest/api/consumption/usagedetails

 Balances API

 Budgets API

Meter Level Consumption Data - See data including marketplace usage cost, the meter emitting the

charge, and what resource the charge pertains to. All usage detail records map to a daily bucket.

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Filter ing - Trim your API result set down to a smaller set of marketplace records using the following filters: -

Usage start / usage end - Resource Group - Resource Name

Usage for different offer types - Marketplace information is currently available for Enterprise and Web

Direct customers.

For more information, see the technical specification for the Marketplace Charges API.

Enterprise customers can use the Balances API to get a monthly summary of information on balances, new

purchases, Azure Marketplace service charges, adjustments, and overage charges. You can get this information

for the current billing period or any period in the past. Enterprises can use this data to perform a comparison

with manually calculated summary charges. This API does not provide resource-specific information and an

aggregate view of costs.

The API includes:

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Enterprise Customers Only This API is only available EA customers. - Customers must have Enterprise

Admin permissions to call this API

For more information, see the technical specification for the Balances API.

Enterprise customers can use this API to create either cost or usage budgets for resources, resource groups, or

billing meters. Once this information has been determined, alerting can be configured to notify when user-

defined budget thresholds are exceeded.

The API includes:

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Enterprise Customers Only - This API is only available EA customers.

Configurable Notifications - Specify user(s) to be notified when the budget is tripped.

Usage or Cost Based Budgets - Create your budget based on either consumption or cost as needed by

your scenario.

Filter ing - Filter your budget to a smaller subset of resources using the following configurable filters -

Resource Group - Resource Name - Meter

Configurable budget time periods - Specify how often the budget should reset and how long the budget

https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/rest/api/consumption/marketplaces
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/rest/api/consumption/balances
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/

 Reservation Recommendations API

 Reservation Details API

 Reservation Summaries API

is valid for.

For more information, see the technical specification for the Budgets API.

Use this API to get recommendations for purchasing Reserved VM Instances. Recommendations are designed to

allows customers to analyze expected cost savings and purchase amounts.

The API includes:

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Filter ing - Tailor your recommendation results using the following filters: - Scope - Lookback period

Reser vation info for different offer types - Reservation information is currently available for Enterprise

and Web Direct customers.

For more information, see the technical specification for the Reservation Recommendations API.

Use the Reservation Details API to see info on previously purchased VM reservations such as how much

consumption has been reserved versus how much is actually being used. You can see data at a per VM level

detail.

The API includes:

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Filter ing - Trim your API result set down to a smaller set of reservations using the following filter : - Date

range

Reser vation info for different offer types - Reservation information is currently available for Enterprise

and Web Direct customers.

For more information, see the technical specification for the Reservation Details API.

Use this API to see aggregate information on previously purchased VM reservations such as how much

consumption has been reserved versus how much is actually being used in the aggregate.

The API includes:

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Filter ing - Tailor your results when using the daily grain with the following filter : - Usage Date

Reser vation info for different offer types - Reservation information is currently available for Enterprise

https://docs.microsoft.com/en-us/rest/api/consumption/budgets
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/rest/api/consumption/reservationrecommendations
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/rest/api/consumption/reservationsdetails
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/

 Price Sheet API

 Scenarios

 Next Steps

and Web Direct customers.

Daily or monthly aggregations – Callers can specify whether they want their reservation summary data

in the daily or monthly grain.

For more information, see the technical specification for the Reservation Summaries API.

Enterprise customer can use this API to retrieve their custom pricing for all meters. Enterprises can use this in

combination with usage details and marketplaces usage info to perform cost calculations using usage and

marketplace data.

The API includes:

Azure role-based access control (Azure RBAC) - Configure access policies on the Azure portal, the

Azure CLI or Azure PowerShell cmdlets to specify which users or applications can get access to the

subscription's usage data. Callers must use standard Azure Active Directory tokens for authentication. Add

the caller to either the Billing Reader, Reader, Owner, or Contributor role to get access to the usage data for a

specific Azure subscription.

Enterprise Customers Only - This API is only available EA customers. Web Direct customers should use

the RateCard API to get pricing.

For more information, see the technical specification for the Price Sheet API.

Here are some of the scenarios that are made possible via the consumption APIs:

Invoice Reconciliation - Did Microsoft charge me the right amount? What is my bill and can I calculate it

myself?

Cross Charges - Now that I know how much I'm being charged, who in my org needs to pay?

Cost Optimization - I know how much I've been charged… how can I get more out of the money I am

spending on Azure?

Cost Tracking - I want to see how much I am spending and using Azure over time. What are the trends?

How could I be doing better?

Azure spend during the month - How much is my current month's spend to date? Do I need to make any

adjustments in my spending and/or usage of Azure? When during the month am I consuming Azure the

most?

Set up aler ts - I would like to set up resource-based consumption or monetary-based alerting based on a

budget.

For information about using REST APIs retrieve prices for all Azure services, see Azure Retail Prices overview.

https://docs.microsoft.com/en-us/rest/api/consumption/reservationssummaries
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/en-us/powershell/azure/
https://docs.microsoft.com/en-us/rest/api/consumption/pricesheet
https://docs.microsoft.com/en-us/rest/api/cost-management/retail-prices/azure-retail-prices

Azure subscription and service limits, quotas, and
constraints

 6/24/2021 • 112 minutes to read • Edit Online

 Managing limits

NOTE

 General limits

 Management group limits

This document lists some of the most common Microsoft Azure limits, which are also sometimes called quotas.

To learn more about Azure pricing, see Azure pricing overview. There, you can estimate your costs by using the

pricing calculator. You also can go to the pricing details page for a particular service, for example, Windows VMs.

For tips to help manage your costs, see Prevent unexpected costs with Azure billing and cost management.

Some services have adjustable limits.

When a service doesn't have adjustable limits, the following tables use the header Limit . In those cases, the default and

the maximum limits are the same.

When the limit can be adjusted, the tables include Default limit and Maximum limit headers. The limit can be raised

above the default limit but not above the maximum limit.

If you want to raise the limit or quota above the default limit, open an online customer support request at no charge.

The terms soft limit and hard limit often are used informally to describe the current, adjustable limit (soft limit) and the

maximum limit (hard limit). If a limit isn't adjustable, there won't be a soft limit, only a hard limit.

Free Trial subscriptions aren't eligible for limit or quota increases. If you have a Free Trial subscription, you can

upgrade to a Pay-As-You-Go subscription. For more information, see Upgrade your Azure Free Trial subscription

to a Pay-As-You-Go subscription and the Free Trial subscription FAQ.

Some limits are managed at a regional level.

Let's use vCPU quotas as an example. To request a quota increase with support for vCPUs, you must decide how

many vCPUs you want to use in which regions. You then request an increase in vCPU quotas for the amounts

and regions that you want. If you need to use 30 vCPUs in West Europe to run your application there, you

specifically request 30 vCPUs in West Europe. Your vCPU quota isn't increased in any other region--only West

Europe has the 30-vCPU quota.

As a result, decide what your quotas must be for your workload in any one region. Then request that amount in

each region into which you want to deploy. For help in how to determine your current quotas for specific

regions, see Resolve errors for resource quotas.

For limits on resource names, see Naming rules and restrictions for Azure resources.

For information about Resource Manager API read and write limits, see Throttling Resource Manager requests.

The following limits apply to management groups.

https://github.com/MicrosoftDocs/azure-docs/blob/master/articles/azure-resource-manager/management/azure-subscription-service-limits.md
https://azure.microsoft.com/pricing/
https://azure.microsoft.com/pricing/calculator/
https://azure.microsoft.com/pricing/details/virtual-machines/#Windows
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-resource-quota
https://azure.microsoft.com/offers/ms-azr-0044p
https://azure.microsoft.com/offers/ms-azr-0044p
https://azure.microsoft.com/offers/ms-azr-0003p/
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/upgrade-azure-subscription
https://azure.microsoft.com/free/free-account-faq
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-resource-quota
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/request-limits-and-throttling
https://docs.microsoft.com/en-us/azure/governance/management-groups/overview

RESO URC E L IM IT

Management groups per Azure AD tenant 10,000

Subscriptions per management group Unlimited.

Levels of management group hierarchy Root level plus 6 levels

Direct parent management group per management group One

Management group level deployments per location 800

Locations of Management group level deployments 10

 Subscription limits

RESO URC E L IM IT

Subscriptions associated with an Azure Active Directory
tenant

Unlimited

Coadministrators per subscription Unlimited

Resource groups per subscription 980

Azure Resource Manager API request size 4,194,304 bytes

Tags per subscription 50

Unique tag calculations per subscription 80,000

Subscription-level deployments per location 800

Locations of Subscription-level deployments 10

 Resource group limits

1

2

The 6 levels don't include the subscription level.1

If you reach the limit of 800 deployments, delete deployments from the history that are no longer needed. To

delete management group level deployments, use Remove-AzManagementGroupDeployment or az deployment

mg delete.

2

The following limits apply when you use Azure Resource Manager and Azure resource groups.

1

1

2

You can apply up to 50 tags directly to a subscription. However, the subscription can contain an unlimited

number of tags that are applied to resource groups and resources within the subscription. The number of tags

per resource or resource group is limited to 50. Resource Manager returns a list of unique tag name and values

in the subscription only when the number of tags is 80,000 or less. You still can find a resource by tag when the

number exceeds 80,000.

1

Deployments are automatically deleted from the history as you near the limit. For more information, see

Automatic deletions from deployment history.

2

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-to-management-group
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-to-management-group
https://docs.microsoft.com/en-us/powershell/module/az.resources/remove-azmanagementgroupdeployment
https://docs.microsoft.com/en-us/cli/azure/deployment/mg#az_deployment_mg_delete
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-how-subscriptions-associated-directory
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/add-change-subscription-administrator
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-to-subscription
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-to-subscription
https://docs.microsoft.com/en-us/rest/api/resources/tags
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history-deletions

RESO URC E L IM IT

Resources per resource group Resources aren't limited by resource group. Instead, they're
limited by resource type in a resource group. See next row.

Resources per resource group, per resource type 800 - Some resource types can exceed the 800 limit. See
Resources not limited to 800 instances per resource group.

Deployments per resource group in the deployment history 800

Resources per deployment 800

Management locks per unique scope 20

Number of tags per resource or resource group 50

Tag key length 512

Tag value length 256

 Template limits

VA L UE L IM IT

Parameters 256

Variables 256

Resources (including copy count) 800

Outputs 64

Template expression 24,576 chars

Resources in exported templates 200

Template size 4 MB

Parameter file size 4 MB

 Active Directory limits

1

Deployments are automatically deleted from the history as you near the limit. Deleting an entry from the

deployment history doesn't affect the deployed resources. For more information, see Automatic deletions from

deployment history.

1

You can exceed some template limits by using a nested template. For more information, see Use linked

templates when you deploy Azure resources. To reduce the number of parameters, variables, or outputs, you can

combine several values into an object. For more information, see Objects as parameters.

You may get an error with a template or parameter file of less than 4 MB, if the total size of the request is too

large. For more information about how to simplify your template to avoid a large request, see Resolve errors for

job size exceeded.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resources-without-resource-group-limit
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history-deletions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/linked-templates
https://docs.microsoft.com/en-us/azure/architecture/guide/azure-resource-manager/advanced-templates/objects-as-parameters
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-job-size-exceeded

C AT EGO RY L IM IT

Tenants A single user can belong to a maximum of 500 Azure AD
tenants as a member or a guest.
A single user can create a maximum of 200 directories.

Domains You can add no more than 5000 managed domain names. If
you set up all of your domains for federation with on-
premises Active Directory, you can add no more than 2500
domain names in each tenant.

Resources

Schema extensions

Here are the usage constraints and other service limits for the Azure Active Directory (Azure AD) service.

A maximum of 50,000 Azure AD resources can be
created in a single tenant by users of the Free edition
of Azure Active Directory by default. If you have at
least one verified domain, the default Azure AD
service quota for your organization is extended to
300,000 Azure AD resources. Azure AD service quota
for organizations created by self-service sign-up
remains 50,000 Azure AD resources even after you
performed an internal admin takeover and the
organization is converted to a managed tenant with
at least one verified domain. This service limit is
unrelated to the pricing tier limit of 500,000
resources on the Azure AD pricing page. To go
beyond the default quota, you must contact
Microsoft Support.

A non-admin user can create no more than 250
Azure AD resources. Both active resources and
deleted resources that are available to restore count
toward this quota. Only deleted Azure AD resources
that were deleted fewer than 30 days ago are
available to restore. Deleted Azure AD resources that
are no longer available to restore count toward this
quota at a value of one-quarter for 30 days. If you
have developers who are likely to repeatedly exceed
this quota in the course of their regular duties, you
can create and assign a custom role with permission
to create a limitless number of app registrations.

String-type extensions can have a maximum of 256
characters.

Binary-type extensions are limited to 256 bytes.

Only 100 extension values, across all types and all
applications, can be written to any single Azure AD
resource.

Only User, Group, TenantDetail, Device, Application,
and ServicePrincipal entities can be extended with
string-type or binary-type single-valued attributes.

https://docs.microsoft.com/en-us/azure/active-directory/roles/quickstart-app-registration-limits

Applications

Application Manifest A maximum of 1200 entries can be added in the Application
Manifest.

C AT EGO RY L IM IT

A maximum of 100 users can be owners of a single
application.

A user, group, or service principal can have a
maximum of 1,500 app role assignments.

Password-based single sign-on (SSO) app has a limit
of 48 users, which means that there is a limit of 48
keys for username/password pairs per app. If you
want to add additional users, see the troubleshooting
instructions in Troubleshoot password-based single
sign-on in Azure AD.

A user can only have a maximum of 48 apps where
they have username and password credentials
configured.

https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/troubleshoot-password-based-sso

Groups

At this time the following are the supported scenarios with
nested groups.

The following scenarios DO NOT supported nested groups:

C AT EGO RY L IM IT

A non-admin user can create a maximum of 250
groups in an Azure AD organization. Any Azure AD
admin who can manage groups in the organization
can also create unlimited number of groups (up to
the Azure AD object limit). If you assign a role to
remove the limit for a user, assign them to a less
privileged built-in role such as User Administrator or
Groups Administrator.

An Azure AD organization can have a maximum of
5000 dynamic groups.

A maximum of 300 role-assignable groups can be
created in a single Azure AD organization (tenant).

A maximum of 100 users can be owners of a single
group.

Any number of Azure AD resources can be members
of a single group.

A user can be a member of any number of groups.

By default, the number of members in a group that
you can synchronize from your on-premises Active
Directory to Azure Active Directory by using Azure
AD Connect is limited to 50,000 members. If you
need to synch a group membership that's over this
limit, you must onboard the Azure AD Connect Sync
V2 endpoint API.

Nested Groups in Azure AD are not supported within
all scenarios

Group expiration policy can be assigned to a
maximum of 500 Microsoft 365 groups, when
selecting a list of groups. There is no limit when the
policy is applied to all Microsoft 365 groups.

One group can be added as a member of another
group and you can achieve group nesting.

Group membership claims (when an app is
configured to receive group membership claims in
the token, nested groups in which the signed-in user
is a member are included)

Conditional access (when a conditional access policy
has a group scope)

Restricting access to self-serve password reset

Restricting which users can do Azure AD Join and
device registration

App role assignment (assigning groups to an app is
supported, but groups nested within the directly
assigned group will not have access), both for access
and for provisioning

Group-based licensing (assigning a license
automatically to all members of a group)

Microsoft 365 Groups.

https://docs.microsoft.com/en-us/azure/active-directory/hybrid/how-to-connect-sync-endpoint-api-v2

Application Proxy

A transaction is defined as a single http request and
response for a unique resource. When throttled, clients will
receive a 429 response (too many requests).

Access Panel There's no limit to the number of applications that can be
seen in the Access Panel per user regardless of assigned
licenses.

Reports A maximum of 1,000 rows can be viewed or downloaded in
any report. Any additional data is truncated.

Administrative units An Azure AD resource can be a member of no more than 30
administrative units.

Azure AD roles and permissions

C AT EGO RY L IM IT

 API Management limits

RESO URC E L IM IT

Maximum number of scale units 12 per region

Cache size 5 GiB per unit

Concurrent back-end connections per HTTP authority 2,048 per unit

Maximum cached response size 2 MiB

Maximum policy document size 256 KiB

Maximum custom gateway domains per service instance 20

Maximum number of CA certificates per service instance 10

Maximum number of service instances per subscription 20

A maximum of 500 transactions per second per App
Proxy application

A maximum of 750 transactions per second for the
Azure AD organization

A maximum of 30 Azure AD custom roles can be
created in an Azure AD organization.

A group can't be added as a group owner.

A user's ability to read other users' tenant
information can be restricted only by the Azure AD
organization-wide switch to disable all non-admin
users' access to all tenant information (not
recommended). For more information, see To restrict
the default permissions for member users.

It may take up to 15 minutes or signing out/signing
in before admin role membership additions and
revocations take effect.

1

2

3 4

5

6

7

8

https://docs.microsoft.com/en-us/azure/active-directory//users-groups-roles/roles-custom-overview?context=azure%252factive-directory%252fusers-groups-roles%252fcontext%252fugr-context
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/users-default-permissions
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/users-default-permissions

Maximum number of subscriptions per service instance 500

Maximum number of client certificates per service instance 50

Maximum number of APIs per service instance 50

Maximum number of API management operations per
service instance

1,000

Maximum total request duration 30 seconds

Maximum buffered payload size 2 MiB

Maximum request URL size 4096 bytes

Maximum length of URL path segment 260 characters

Maximum size of API schema used by validation policy 4 MB

Maximum size of request or response body in validate-
content policy

100 KB

Maximum number of self-hosted gateways 25

RESO URC E L IM IT

 App Service limits

8

8

8

8

8

8

9

10

10

11

Scaling limits depend on the pricing tier. For details on the pricing tiers and their scaling limits, see API

Management pricing.

Per unit cache size depends on the pricing tier. To see the pricing tiers and their scaling limits, see API

Management pricing.

Connections are pooled and reused unless explicitly closed by the back end.

This limit is per unit of the Basic, Standard, and Premium tiers. The Developer tier is limited to 1,024. This limit

doesn't apply to the Consumption tier.

This limit applies to the Basic, Standard, and Premium tiers. In the Consumption tier, policy document size is

limited to 16 KiB.

Multiple custom domains are supported in the Developer and Premium tiers only.

CA certificates are not supported in the Consumption tier.

This limit applies to the Consumption tier only. There are no limits in these categories for other tiers.

Applies to the Consumption tier only. Includes an up to 2048 bytes long query string.

 To increase this limit, please contact support.

Self-hosted gateways are supported in the Developer and Premium tiers only. The limit applies to the number

of self-hosted gateway resources. To raise this limit please contact support. Note, that the number of nodes (or

replicas) associated with a self-hosted gateway resource is unlimited in the Premium tier and capped at a single

node in the Developer tier.

1

2

3

4

5

6

7

8

9

10

11

https://docs.microsoft.com/en-us/azure/api-management/validation-policies
https://docs.microsoft.com/en-us/azure/api-management/validation-policies
https://azure.microsoft.com/pricing/details/api-management/
https://azure.microsoft.com/pricing/details/api-management/
https://azure.microsoft.com/support/options/
https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-01/gateway
https://azure.microsoft.com/support/options/

RESO URC E F REE SH A RED B A SIC STA N DA RD
P REM IUM
(V1- V3) ISO L AT ED

Web, mobile,
or API apps
per Azure
App Service
plan

10 100 Unlimited Unlimited Unlimited Unlimited

App Service
plan

10 per region 10 per
resource
group

100 per
resource
group

100 per
resource
group

100 per
resource
group

100 per
resource
group

Compute
instance type

Shared Shared Dedicated Dedicated Dedicated Dedicated

Scale out
(maximum
instances)

1 shared 1 shared 3 dedicated 10 dedicated 20 dedicated
for v1; 30
dedicated for
v2 and v3.

100
dedicated

Storage 1 GB 1 GB 10 GB 50 GB 250 GB 1 TB

The available
storage quota
is 999 GB.

CPU time (5
minutes)

3 minutes 3 minutes Unlimited,
pay at
standard
rates

Unlimited,
pay at
standard
rates

Unlimited,
pay at
standard
rates

Unlimited,
pay at
standard
rates

CPU time
(day)

60 minutes 240 minutes Unlimited,
pay at
standard
rates

Unlimited,
pay at
standard
rates

Unlimited,
pay at
standard
rates

Unlimited,
pay at
standard
rates

Memory (1
hour)

1,024 MB per
App Service
plan

1,024 MB per
app

N/A N/A N/A N/A

Bandwidth 165 MB Unlimited,
data transfer
rates apply

Unlimited,
data transfer
rates apply

Unlimited,
data transfer
rates apply

Unlimited,
data transfer
rates apply

Unlimited,
data transfer
rates apply

Application
architecture

32-bit 32-bit 32-bit/64-bit 32-bit/64-bit 32-bit/64-bit 32-bit/64-bit

Web sockets
per instance

5 35 350 Unlimited Unlimited Unlimited

Outbound IP
connections
per instance

600 600 Depends on
instance size

Depends on
instance size

Depends on
instance size

16,000

1

2 2 2 2

3 3 3 3

3 3

3

4

5 5 5 5 5 5 5

6

6

7

8 8 8

https://azure.microsoft.com/services/app-service/
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/data-transfers/
https://azure.microsoft.com/pricing/details/data-transfers/
https://azure.microsoft.com/pricing/details/data-transfers/
https://azure.microsoft.com/pricing/details/data-transfers/
https://azure.microsoft.com/pricing/details/data-transfers/

Concurrent
debugger
connections
per
application

1 1 1 5 5 5

App Service
Certificates
per
subscription

Not
supported

Not
supported

10 10 10 10

Custom
domains per
app

0
(azurewebsite
s.net
subdomain
only)

500 500 500 500 500

Custom
domain SSL
support

Not
supported,
wildcard
certificate for
*.azurewebsit
es.net
available by
default

Not
supported,
wildcard
certificate for
*.azurewebsit
es.net
available by
default

Unlimited SNI
SSL
connections

Unlimited SNI
SSL and 1 IP
SSL
connections
included

Unlimited SNI
SSL and 1 IP
SSL
connections
included

Unlimited SNI
SSL and 1 IP
SSL
connections
included

Hybrid
connections

5 per plan 25 per plan 220 per app 220 per app

Virtual
Network
Integration

X X X

Private
Endpoints

100 per app

Integrated
load balancer

X X X X X

Access
restrictions

512 rules per
app

512 rules per
app

512 rules per
app

512 rules per
app

512 rules per
app

512 rules per
app

Always On X X X X

Scheduled
backups

Scheduled
backups
every 2
hours, a
maximum of
12 backups
per day
(manual +
scheduled)

Scheduled
backups
every hour, a
maximum of
50 backups
per day
(manual +
scheduled)

Scheduled
backups
every hour, a
maximum of
50 backups
per day
(manual +
scheduled)

Autoscale X X X

RESO URC E F REE SH A RED B A SIC STA N DA RD
P REM IUM
(V1- V3) ISO L AT ED

9

10

https://docs.microsoft.com/en-us/azure/app-service/troubleshoot-dotnet-visual-studio
https://docs.microsoft.com/en-us/azure/app-service/configure-ssl-certificate
https://docs.microsoft.com/en-us/azure/app-service/app-service-hybrid-connections
https://docs.microsoft.com/en-us/azure/app-service/web-sites-integrate-with-vnet
https://docs.microsoft.com/en-us/azure/app-service/networking/private-endpoint
https://docs.microsoft.com/en-us/azure/app-service/networking-features
https://docs.microsoft.com/en-us/azure/app-service/configure-common

WebJobs X X X X X X

Endpoint
monitoring

X X X X

Staging slots
per app

5 20 20

Testing in
Production

X X X

Diagnostic
Logs

X X X X X X

Kudu X X X X X X

Authenticatio
n and
Authorization

X X X X X X

App Service
Managed
Certificates
(Public
Preview)

X X X X

SLA 99.95% 99.95% 99.95% 99.95%

RESO URC E F REE SH A RED B A SIC STA N DA RD
P REM IUM
(V1- V3) ISO L AT ED

11

12

 Apps and storage quotas are per App Service plan unless noted otherwise.1

 The actual number of apps that you can host on these machines depends on the activity of the apps, the size of

the machine instances, and the corresponding resource utilization.

2

 Dedicated instances can be of different sizes. For more information, see App Service pricing.3

 More are allowed upon request.4

 The storage limit is the total content size across all apps in the same App service plan. The total content size of

all apps across all App service plans in a single resource group and region cannot exceed 500 GB. The file

system quota for App Service hosted apps is determined by the aggregate of App Service plans created in a

region and resource group.

5

 These resources are constrained by physical resources on the dedicated instances (the instance size and the

number of instances).

6

 If you scale an app in the Basic tier to two instances, you have 350 concurrent connections for each of the two

instances. For Standard tier and above, there are no theoretical limits to web sockets, but other factors can limit

the number of web sockets. For example, maximum concurrent requests allowed (defined by

maxConcurrentRequestsPerCpu) are: 7,500 per small VM, 15,000 per medium VM (7,500 x 2 cores), and 75,000

per large VM (18,750 x 4 cores).

7

 The maximum IP connections are per instance and depend on the instance size: 1,920 per B1/S1/P1V3

instance, 3,968 per B2/S2/P2V3 instance, 8,064 per B3/S3/P3V3 instance.

8

 The App Service Certificate quota limit per subscription can be increased via a support request to a maximum9

https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
https://docs.microsoft.com/en-us/azure/app-service/web-sites-monitor
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/deploy-staging-slots
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://azure.microsoft.com/updates/secure-your-custom-domains-at-no-cost-with-app-service-managed-certificates-preview/
https://azure.microsoft.com/pricing/details/app-service/

 Automation limits
 Process automation

RESO URC E L IM IT N OT ES

Maximum number of new jobs that
can be submitted every 30 seconds
per Azure Automation account
(nonscheduled jobs)

100 When this limit is reached, the
subsequent requests to create a job
fail. The client receives an error
response.

Maximum number of concurrent
running jobs at the same instance of
time per Automation account
(nonscheduled jobs)

200 When this limit is reached, the
subsequent requests to create a job
fail. The client receives an error
response.

Maximum storage size of job metadata
for a 30-day rolling period

10 GB (approximately 4 million jobs) When this limit is reached, the
subsequent requests to create a job
fail.

Maximum job stream limit 1 MiB A single stream cannot be larger than
1 MiB.

Maximum number of modules that
can be imported every 30 seconds per
Automation account

5

Maximum size of a module 100 MB

Maximum size of a node configuration
file

1 MB Applies to state configuration

Job run time, Free tier 500 minutes per subscription per
calendar month

Maximum amount of disk space
allowed per sandbox

1 GB Applies to Azure sandboxes only.

Maximum amount of memory given
to a sandbox

400 MB Applies to Azure sandboxes only.

Maximum number of network sockets
allowed per sandbox

1,000 Applies to Azure sandboxes only.

limit of 200.

 App Service Isolated SKUs can be internally load balanced (ILB) with Azure Load Balancer, so there's no public

connectivity from the internet. As a result, some features of an ILB Isolated App Service must be used from

machines that have direct access to the ILB network endpoint.

10

 Run custom executables and/or scripts on demand, on a schedule, or continuously as a background task

within your App Service instance. Always On is required for continuous WebJobs execution. There's no

predefined limit on the number of WebJobs that can run in an App Service instance. There are practical limits

that depend on what the application code is trying to do.

11

 Naked domains aren't supported. Only issuing standard certificates (wildcard certificates aren't available).

Limited to only one free certificate per custom domain.

12

1

1

1

Maximum runtime allowed per
runbook

3 hours Applies to Azure sandboxes only.

Maximum number of Automation
accounts in a subscription

No limit

Maximum number of Hybrid Worker
Groups per Automation Account

4,000

Maximum number of concurrent jobs
that can be run on a single Hybrid
Runbook Worker

50

Maximum runbook job parameter size 512 kilobytes

Maximum runbook parameters 50 If you reach the 50-parameter limit,
you can pass a JSON or XML string to
a parameter and parse it with the
runbook.

Maximum webhook payload size 512 kilobytes

Maximum days that job data is
retained

30 days

Maximum PowerShell workflow state
size

5 MB Applies to PowerShell workflow
runbooks when checkpointing
workflow.

RESO URC E L IM IT N OT ES

 Change Tracking and Inventory

RESO URC E L IM IT N OT ES

File 500

File size 5 MB

Registry 250

Windows software 250 Doesn't include software updates.

Linux packages 1,250

Services 250

Daemon 250

 Update Management

1

A sandbox is a shared environment that can be used by multiple jobs. Jobs that use the same sandbox are

bound by the resource limitations of the sandbox.

1

The following table shows the tracked item limits per machine for change tracking.

The following table shows the limits for Update Management.

RESO URC E L IM IT N OT ES

Number of machines per update
deployment

1000

Number of dynamic groups per
update deployment

500

 Azure App Configuration

RESO URC E L IM IT

Configuration stores - Free tier 1 per subscription

Configuration stores - Standard tier unlimited per subscription

Configuration store requests - Free tier 1,000 requests per day

Configuration store requests - Standard tier Throttling starts at 20,000 requests per hour

Storage - Free tier 10 MB

Storage - Standard tier 1 GB

keys and values 10 KB for a single key-value item

 Azure API for FHIR service limits

Q UOTA N A M E DEFA ULT L IM IT M A XIM UM L IM IT N OT ES

Request Units (RUs) 10,000 RUs Contact support Maximum
available is 1,000,000.

You need a minimum of
400 RUs or 40 RUs/GB,
whichever is larger.

Concurrent connections 15 concurrent connections
on two instances (for a total
of 30 concurrent requests)

Contact support

Azure API for FHIR Service
Instances per Subscription

10 Contact support

 Azure Cache for Redis limits

RESO URC E L IM IT

Cache size 1.2 TB

Databases 64

Azure API for FHIR is a managed, standards-based, compliant API for clinical health data that enables solutions

for actionable analytics and machine learning.

https://azure.microsoft.com/support/options/
https://azure.microsoft.com/support/options/
https://azure.microsoft.com/support/options/

Maximum connected clients 40,000

Azure Cache for Redis replicas, for high availability 1

Shards in a premium cache with clustering 10

RESO URC E L IM IT

 Azure Cloud Services limits

RESO URC E L IM IT

Web or worker roles per deployment 25

Instance input endpoints per deployment 25

Input endpoints per deployment 25

Internal endpoints per deployment 25

Hosted service certificates per deployment 199

 Azure Cognitive Search limits

Azure Cache for Redis limits and sizes are different for each pricing tier. To see the pricing tiers and their

associated sizes, see Azure Cache for Redis pricing.

For more information on Azure Cache for Redis configuration limits, see Default Redis server configuration.

Because configuration and management of Azure Cache for Redis instances is done by Microsoft, not all Redis

commands are supported in Azure Cache for Redis. For more information, see Redis commands not supported

in Azure Cache for Redis.

1

Each Azure Cloud Service with web or worker roles can have two deployments, one for production and one for

staging. This limit refers to the number of distinct roles, that is, configuration. This limit doesn't refer to the

number of instances per role, that is, scaling.

1

Pricing tiers determine the capacity and limits of your search service. Tiers include:

Free multi-tenant service, shared with other Azure subscribers, is intended for evaluation and small

development projects.

Basic provides dedicated computing resources for production workloads at a smaller scale, with up to three

replicas for highly available query workloads.

Standard, which includes S1, S2, S3, and S3 High Density, is for larger production workloads. Multiple levels

exist within the Standard tier so that you can choose a resource configuration that best matches your

workload profile.

L imits per subscr iption

You can create multiple services within a subscription. Each one can be provisioned at a specific tier. You're

limited only by the number of services allowed at each tier. For example, you could create up to 12 services at

the Basic tier and another 12 services at the S1 tier within the same subscription. For more information about

tiers, see Choose an SKU or tier for Azure Cognitive Search.

https://azure.microsoft.com/pricing/details/cache/
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-configure
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-configure
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-choose-me
https://docs.microsoft.com/en-us/previous-versions/azure/reference/gg557552(v=azure.100)#instanceinputendpoint
https://docs.microsoft.com/en-us/previous-versions/azure/reference/gg557552(v=azure.100)#inputendpoint
https://docs.microsoft.com/en-us/previous-versions/azure/reference/gg557552(v=azure.100)#internalendpoint
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-certs-create
https://docs.microsoft.com/en-us/azure/search/search-sku-tier

RESO URC
E F REE B A SIC S1 S2 S3 S3 H D L 1 L 2

Maximu
m
services

1 16 16 8 6 6 6 6

Maximu
m scale in
search
units
(SU)

N/A 3 SU 36 SU 36 SU 36 SU 36 SU 36 SU 36 SU

RESO URC
E F REE B A SIC S1 S2 S3 S3 H D L 1 L 2

Service
level
agreeme
nt (SLA)

No Yes Yes Yes Yes Yes Yes Yes

Storage
per
partition

50 MB 2 GB 25 GB 100 GB 200 GB 200 GB 1 TB 2 TB

Partitions
per
service

N/A 1 12 12 12 3 12 12

Partition
size

N/A 2 GB 25 GB 100 GB 200 GB 200 GB 1 TB 2 TB

Replicas N/A 3 12 12 12 12 12 12

Maximum service limits can be raised upon request. If you need more services within the same subscription,

contact Azure Support.

1

2

 Free is based on shared, not dedicated, resources. Scale-up is not supported on shared resources.1

 Search units are billing units, allocated as either a replica or a partition. You need both resources for storage,

indexing, and query operations. To learn more about SU computations, see Scale resource levels for query and

index workloads.

2

Limits per search ser vice

A search service is constrained by disk space or by a hard limit on the maximum number of indexes or indexers,

whichever comes first. The following table documents storage limits. For maximum object limits, see Limits by

resource.

1

2

 Basic has one fixed partition. Additional search units can be used to add replicas for larger query volumes.1

 Service level agreements are in effect for billable services on dedicated resources. Free services and preview

features have no SLA. For billable services, SLAs take effect when you provision sufficient redundancy for your

service. Two or more replicas are required for query (read) SLAs. Three or more replicas are required for query

and indexing (read-write) SLAs. The number of partitions isn't an SLA consideration.

2

To learn more about limits on a more granular level, such as document size, queries per second, keys, requests,

and responses, see Service limits in Azure Cognitive Search.

https://docs.microsoft.com/en-us/azure/search/search-capacity-planning
https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity
https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity

 Azure Cognitive Services limits

T Y P E L IM IT EXA M P L E

A mixture of Cognitive Services
resources

Maximum of 200 total Cognitive
Services resources.

100 Computer Vision resources in
West US 2, 50 Speech Service
resources in West US, and 50 Text
Analytics resources in East US.

A single type of Cognitive Services
resources.

Maximum of 100 resources per region,
with a maximum of 200 total Cognitive
Services resources.

100 Computer Vision resources in
West US 2, and 100 Computer Vision
resources in East US.

 Azure Cosmos DB limits

 Azure Data Explorer limits

RESO URC E L IM IT

Clusters per region per subscription 20

Instances per cluster 1000

Number of databases in a cluster 10,000

Number of attached database configurations in a cluster 70

SC O P E O P ERAT IO N L IM IT

Cluster read (for example, get a cluster) 500 per 5 minutes

Cluster write (for example, create a database) 1000 per hour

 Azure Database for MySQL

 Azure Database for PostgreSQL

 Azure Functions limits

The following limits are for the number of Cognitive Services resources per Azure subscription. Each of the

Cognitive Services may have additional limitations, for more information see Azure Cognitive Services.

For Azure Cosmos DB limits, see Limits in Azure Cosmos DB.

The following table describes the maximum limits for Azure Data Explorer clusters.

The following table describes the limits on management operations performed on Azure Data Explorer clusters.

For Azure Database for MySQL limits, see Limitations in Azure Database for MySQL.

For Azure Database for PostgreSQL limits, see Limitations in Azure Database for PostgreSQL.

https://docs.microsoft.com/en-us/azure/cognitive-services/index
https://docs.microsoft.com/en-us/azure/cosmos-db/concepts-limits
https://docs.microsoft.com/en-us/azure/mysql/concepts-limits
https://docs.microsoft.com/en-us/azure/postgresql/concepts-limits

RESO URC E
C O N SUM P T IO N
P L A N P REM IUM P L A N

DEDIC AT ED
P L A N A SE KUB ERN ET ES

Default timeout
duration (min)

5 30 30 30 30

Max timeout
duration (min)

10 unbounded unbounded unbounded unbounded

Max outbound
connections (per
instance)

600 active (1200
total)

unbounded unbounded unbounded unbounded

Max request size
(MB)

100 100 100 100 Depends on
cluster

Max query string
length

4096 4096 4096 4096 Depends on
cluster

Max request URL
length

8192 8192 8192 8192 Depends on
cluster

ACU per
instance

100 210-840 100-840 210-250 AKS pricing

Max memory
(GB per instance)

1.5 3.5-14 1.75-14 3.5 - 14 Any node is
supported

Max instance
count

200 100 varies by SKU 100 Depends on
cluster

Function apps
per plan

100 100 unbounded unbounded unbounded

App Service
plans

100 per region 100 per resource
group

100 per resource
group

- -

Storage 5 TB 250 GB 50-1000 GB 1 TB n/a

Custom domains
per app

500 500 500 500 n/a

Custom domain
SSL support

unbounded SNI
SSL connection
included

unbounded SNI
SSL and 1 IP SSL
connections
included

unbounded SNI
SSL and 1 IP SSL
connections
included

unbounded SNI
SSL and 1 IP SSL
connections
included

n/a

1

7 2

3

3

3

8

9 10 10

4

5

6

 By default, the timeout for the Functions 1.x runtime in an App Service plan is unbounded.

 Requires the App Service plan be set to Always On. Pay at standard rates.

 These limits are set in the host.

 The actual number of function apps that you can host depends on the activity of the apps, the size of the

machine instances, and the corresponding resource utilization.

 The storage limit is the total content size in temporary storage across all apps in the same App Service plan.

Consumption plan uses Azure Files for temporary storage.

 When your function app is hosted in a Consumption plan, only the CNAME option is supported. For function

apps in a Premium plan or an App Service plan, you can map a custom domain using either a CNAME or an A

1

2

3

4

5

6

https://docs.microsoft.com/en-us/azure/azure-functions/consumption-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/dedicated-plan
https://docs.microsoft.com/en-us/azure/app-service/environment/intro
https://docs.microsoft.com/en-us/azure/aks/quotas-skus-regions
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://azure.microsoft.com/pricing/details/container-service/
https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-plans
https://azure.microsoft.com/global-infrastructure/regions/
https://docs.microsoft.com/en-us/azure/azure-functions/dedicated-plan
https://azure.microsoft.com/pricing/details/app-service/
https://github.com/Azure/azure-functions-host/blob/dev/src/WebJobs.Script.WebHost/web.config
https://docs.microsoft.com/en-us/azure/azure-functions/consumption-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/dedicated-plan

 Azure Kubernetes Service limits

RESO URC E L IM IT

Maximum clusters per subscription 5000

Maximum nodes per cluster with Virtual Machine Availability
Sets and Basic Load Balancer SKU

100

Maximum nodes per cluster with Virtual Machine Scale Sets
and Standard Load Balancer SKU

1000 (across all node pools)

Maximum node pools per cluster 100

Maximum pods per node: Basic networking with Kubenet Maximum: 250
Azure CLI default: 110
Azure Resource Manager template default: 110
Azure portal deployment default: 30

Maximum pods per node: Advanced networking with Azure
Container Networking Interface

Maximum: 250
Default: 30

Open Service Mesh (OSM) AKS addon preview Kubernetes Cluster Version: 1.19+
OSM controllers per cluster: 1
Pods per OSM controller: 500
Kubernetes service accounts managed by OSM: 50

 Azure Machine Learning limits

 Azure Maps limits

RESO URC E S0 P RIC IN G T IER L IM IT

Maximum request rate per subscription 50 requests per second

record.

 Guaranteed for up to 60 minutes.

 Workers are roles that host customer apps. Workers are available in three fixed sizes: One vCPU/3.5 GB RAM;

Two vCPU/7 GB RAM; Four vCPU/14 GB RAM.

 When running on Linux in a Premium plan, you're currently limited to 20 instances.

 See App Service limits for details.

7

8

9

10

For more information, see Functions Hosting plans comparison.

1

1

1

1

The OSM add-on for AKS is in a preview state and will undergo additional enhancements before general

availability (GA). During the preview phase, it's recommended to not surpass the limits shown.

1

The latest values for Azure Machine Learning Compute quotas can be found in the Azure Machine Learning

quota page

The following table shows the usage limit for the Azure Maps S0 pricing tier. Usage limit depends on the pricing

tier.

The following table shows the cumulative data size limit for Azure Maps accounts in an Azure subscription. The

Azure Maps Data service is available only at the S1 pricing tier.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/en-us/azure/aks/use-multiple-node-pools
https://docs.microsoft.com/en-us/azure/aks/concepts-network
https://docs.microsoft.com/en-us/azure/aks/concepts-network
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-quotas

RESO URC E L IM IT

Maximum storage per Azure subscription 1 GB

Maximum size per file upload 100 MB

 Azure Monitor limits
 Alerts

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Metric alerts (classic) 100 active alert rules per subscription. Call support

Metric alerts 5,000 active alert rules per
subscription in Azure public, Azure
China 21Vianet and Azure
Government clouds. If you are hitting
this limit, explore if you can use same
type multi-resource alerts.
5,000 metric time-series per alert rule.

Call support.

Activity log alerts 100 active alert rules per subscription
(cannot be increased).

Same as default

Log alerts 1000 active alert rules per
subscription. 1000 active alert rules
per resource.

Call support

Alert rules and Action rules description
length

Log search alerts 4096 characters
All other 2048 characters

Same as default

 Alerts API

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

GET alertsSummary 50 calls per minute per subscription Same as default

GET alerts (without specifying an alert
ID)

100 calls per minute per subscription Same as default

All other calls 1000 calls per minute per subscription Same as default

 Action groups

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

For more information on the Azure Maps pricing tiers, see Azure Maps pricing.

Azure Monitor Alerts have several throttling limits to protect against users making an excessive number of calls.

Such behavior can potentially overload the system backend resources and jeopardize service responsiveness.

The following limits are designed to protect customers from interruptions and ensure consistent service level.

The user throttling and limits are designed to impact only extreme usage scenario and should not be relevant

for typical usage.

https://azure.microsoft.com/pricing/details/azure-maps/
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-metric-overview

Azure app push 10 Azure app actions per action group. Same as Default

Email 1,000 email actions in an action group.
No more than 100 emails in an hour.
Also see the rate limiting information.

Same as Default

ITSM 10 ITSM actions in an action group. Same as Default

Logic app 10 logic app actions in an action
group.

Same as Default

Runbook 10 runbook actions in an action group. Same as Default

SMS 10 SMS actions in an action group.
No more than 1 SMS message every 5
minutes.
Also see the rate limiting information.

Same as Default

Voice 10 voice actions in an action group.
No more than 1 voice call every 5
minutes.
Also see the rate limiting information.

Same as Default

Webhook 10 webhook actions in an action
group. Maximum number of webhook
calls is 1500 per minute per
subscription. Other limits are available
at action-specific information.

Same as Default

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

 Autoscale

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Autoscale settings 100 per region per subscription. Same as default

Autoscale profiles 20 profiles per autoscale setting. Same as default

 Log queries and language
 General query limits

L IM IT DESC RIP T IO N

Query language Azure Monitor uses the same Kusto query language as
Azure Data Explorer. See Azure Monitor log query language
differences for KQL language elements not supported in
Azure Monitor.

Azure regions Log queries can experience excessive overhead when data
spans Log Analytics workspaces in multiple Azure regions.
See Query limits for details.

https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-rate-limiting
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-rate-limiting
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-rate-limiting
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/action-groups
https://docs.microsoft.com/en-us/azure/kusto/query/
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/scope

Cross resource queries Maximum number of Application Insights resources and Log
Analytics workspaces in a single query limited to 100.
Cross-resource query is not supported in View Designer.
Cross-resource query in log alerts is supported in the new
scheduledQueryRules API.
See Cross-resource query limits for details.

L IM IT DESC RIP T IO N

 User query throttling

M EA SURE L IM IT P ER USER DESC RIP T IO N

Concurrent queries 5 If there are already 5 queries running
for the user, any new queries are
placed in a per-user concurrency
queue. When one of the running
queries ends, the next query will be
pulled from the queue and started.
This does not include queries from
alert rules.

Time in concurrency queue 3 minutes If a query sits in the queue for more
than 3 minutes without being started,
it will be terminated with an HTTP
error response with code 429.

Total queries in concurrency queue 200 Once the number of queries in the
queue reaches 200, any additional
queries will by rejected with an HTTP
error code 429. This number is in
addition to the 5 queries that can be
running simultaneously.

Query rate 200 queries per 30 seconds This is the overall rate that queries can
be submitted by a single user to all
workspaces. This limit applies to
programmatic queries or queries
initiated by visualization parts such as
Azure dashboards and the Log
Analytics workspace summary page.

 Log Analytics workspaces

Azure Monitor has several throttling limits to protect against users sending an excessive number of queries.

Such behavior can potentially overload the system backend resources and jeopardize service responsiveness.

The following limits are designed to protect customers from interruptions and ensure consistent service level.

The user throttling and limits are designed to impact only extreme usage scenario and should not be relevant

for typical usage.

Optimize your queries as described in Optimize log queries in Azure Monitor.

Dashboards and workbooks can contain multiple queries in a single view that generate a burst of queries

every time they load or refresh. Consider breaking them up into multiple views that load on demand.

In Power BI, consider extracting only aggregated results rather than raw logs.

Data collection volume and retention

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/cross-workspace-query
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/query-optimization

T IER L IM IT P ER DAY DATA RET EN T IO N C O M M EN T

Current Per GB pricing tier
(introduced April 2018)

No limit 30 - 730 days Data retention beyond 31
days is available for
additional charges. Learn
more about Azure Monitor
pricing.

Legacy Free tiers
(introduced April 2016)

500 MB 7 days When your workspace
reaches the 500 MB per
day limit, data ingestion
stops and resumes at the
start of the next day. A day
is based on UTC. Note that
data collected by Azure
Security Center is not
included in this 500 MB per
day limit and will continue
to be collected above this
limit.

Legacy Standalone Per GB
tier
(introduced April 2016)

No limit 30 to 730 days Data retention beyond 31
days is available for
additional charges. Learn
more about Azure Monitor
pricing.

Legacy Per Node (OMS)
(introduced April 2016)

No limit 30 to 730 days Data retention beyond 31
days is available for
additional charges. Learn
more about Azure Monitor
pricing.

Legacy Standard tier No limit 30 days Retention can't be adjusted

Legacy Premium tier No limit 365 days Retention can't be adjusted

P RIC IN G T IER W O RKSPA C E L IM IT C O M M EN T S

Free tier 10 This limit can't be increased.

All other tiers No limit You're limited by the number of
resources within a resource group and
the number of resource groups per
subscription.

C AT EGO RY L IM IT C O M M EN T S

Maximum records returned by a log
query

30,000 Reduce results using query scope, time
range, and filters in the query.

Number of workspaces per subscr iption.

Azure por tal

Data Collector API

C AT EGO RY L IM IT C O M M EN T S

Maximum size for a single post 30 MB Split larger volumes into multiple
posts.

Maximum size for field values 32 KB Fields longer than 32 KB are truncated.

C AT EGO RY L IM IT C O M M EN T S

Maximum records returned in a single
query

500,000

Maximum size of data returned ~104 MB (~100 MiB)

Maximum query running time 10 minutes See Timeouts for details.

Maximum request rate 200 requests per 30 seconds per
Azure AD user or client IP address

See Rate limits for details.

C AT EGO RY L IM IT C O M M EN T S

Max number of records 500,000

Maximum size of data returned ~104 MB (~100 MiB)

Max query timeout 110 second

Charts Visualization in Logs page and the
connector are using different charting
libraries and some functionality isn't
available in the connector currently.

C AT EGO RY L IM IT C O M M EN T S

Maximum columns in a table 500

Maximum characters for column name 500

Search API

Azure Monitor Logs connector

General workspace limits

 Data ingestion volume rate

Azure Monitor is a high scale data service that serves thousands of customers sending terabytes of data each

month at a growing pace. The volume rate limit intends to isolate Azure Monitor customers from sudden

ingestion spikes in multitenancy environment. A default ingestion volume rate threshold of 500 MB

(compressed) is defined in workspaces, this is translated to approximately 6 GB/min uncompressed -- the

actual size can vary between data types depending on the log length and its compression ratio. The volume rate

limit applies to data ingested from Azure resources via Diagnostic settings. When volume rate limit is reached, a

retry mechanism attempts to ingest the data 4 times in a period of 30 minutes and drop it if operation fails. It

doesn't apply to data ingested from agents or Data Collector API.

https://dev.loganalytics.io/documentation/Using-the-API/Timeouts
https://dev.loganalytics.io/documentation/Using-the-API/Limits
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/diagnostic-settings
https://docs.microsoft.com/en-us/azure/azure-monitor/agents/agents-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/data-collector-api

NOTE

 Application Insights

RESO URC E DEFA ULT L IM IT N OT E

Total data per day 100 GB You can reduce data by setting a cap. If
you need more data, you can increase
the limit in the portal, up to 1,000 GB.
For capacities greater than 1,000 GB,
send email to
AIDataCap@microsoft.com.

Throttling 32,000 events/second The limit is measured over a minute.

Data retention Logs 30 - 730 days This resource is for Logs.

Data retention Metrics 90 days This resource is for Metrics Explorer.

Availability multi-step test detailed
results retention

90 days This resource provides detailed results
of each step.

Maximum telemetry item size 64 kB

Maximum telemetry items per batch 64 K

Property and metric name length 150 See type schemas.

Property value string length 8,192 See type schemas.

Trace and exception message length 32,768 See type schemas.

Availability tests count per app 100

Profiler data retention 5 days

Profiler data sent per day 10 GB

When data sent to your workspace is at a volume rate higher than 80% of the threshold configured in your

workspace, an event is sent to the Operation table in your workspace every 6 hours while the threshold

continues to be exceeded. When ingested volume rate is higher than threshold, some data is dropped and an

event is sent to the Operation table in your workspace every 6 hours while the threshold continues to be

exceeded. If your ingestion volume rate continues to exceed the threshold or you are expecting to reach it

sometime soon, you can request to increase it in by opening a support request.

See Monitor health of Log Analytics workspace in Azure Monitor to create alert rules to be proactively notified

when you reach any ingestion limits.

Depending on how long you've been using Log Analytics, you might have access to legacy pricing tiers. Learn more about

Log Analytics legacy pricing tiers.

There are some limits on the number of metrics and events per application, that is, per instrumentation key.

Limits depend on the pricing plan that you choose.

For more information, see About pricing and quotas in Application Insights.

https://docs.microsoft.com/en-us/azure/azure-monitor/logs/monitor-workspace
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/manage-cost-storage
https://azure.microsoft.com/pricing/details/application-insights/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/pricing
https://docs.microsoft.com/en-us/azure/azure-monitor/logs/log-query-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-charts
https://docs.microsoft.com/en-us/azure/azure-monitor/app/availability-multistep
https://github.com/MohanGsk/ApplicationInsights-Home/tree/master/EndpointSpecs/Schemas/Bond
https://github.com/MohanGsk/ApplicationInsights-Home/tree/master/EndpointSpecs/Schemas/Bond
https://github.com/MohanGsk/ApplicationInsights-Home/tree/master/EndpointSpecs/Schemas/Bond
https://docs.microsoft.com/en-us/azure/azure-monitor/app/monitor-web-app-availability
https://docs.microsoft.com/en-us/azure/azure-monitor/app/profiler
https://docs.microsoft.com/en-us/azure/azure-monitor/app/profiler
https://docs.microsoft.com/en-us/azure/azure-monitor/app/pricing

 Azure Policy limits

W H ERE W H AT M A XIM UM C O UN T

Scope Policy definitions 500

Scope Initiative definitions 200

Tenant Initiative definitions 2,500

Scope Policy or initiative assignments 200

Scope Exemptions 1000

Policy definition Parameters 20

Initiative definition Policies 1000

Initiative definition Parameters 100

Policy or initiative assignments Exclusions (notScopes) 400

Policy rule Nested conditionals 512

Remediation task Resources 500

 Azure Quantum limits
 Provider Limits & Quota

 Learn & Develop SKU

RESO URC E L IM IT

CPU-based concurrent jobs up to 5 concurrent jobs

FPGA-based concurrent jobs up to 2 concurrent jobs

CPU-based solver hours 20 hours per month

FPGA-based solver hours 1 hour per month

There's a maximum count for each object type for Azure Policy. For definitions, an entry of Scope means the

management group or subscription. For assignments and exemptions, an entry of Scope means the

management group, subscription, resource group, or individual resource.

The Azure Quantum Service supports both first and third-party service providers. Third-party providers own

their limits and quotas. Users can view offers and limits in the Azure portal when configuring third-party

providers in the provider blade.

You can find the published quota limits for Microsoft's first party Optimization Solutions provider below.

If you are using the Learn & Develop SKU, you cannot request an increase on your quota limits. Instead you

should switch to the Performance at Scale SKU.

https://docs.microsoft.com/en-us/azure/governance/management-groups/overview
https://docs.microsoft.com/en-us/azure/governance/management-groups/overview

Performance at Scale SKU

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

CPU-based concurrent jobs up to 100 concurrent jobs same as default limit

FPGA-based concurrent jobs up to 10 concurrent jobs same as default limit

Solver hours 1,000 hours per month up to 50,000 hours per month

 Azure RBAC limits

RESO URC E L IM IT

Azure role assignments per Azure subscription 2,000

Azure role assignments per management group 500

Size of description for Azure role assignments 2 KB

Size of condition for Azure role assignments 8 KB

Azure custom roles per tenant 5,000

Azure custom roles per tenant
(for Azure Germany and Azure China 21Vianet)

2,000

 Azure SignalR Service limits

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Azure SignalR Service units per
instance for Free tier

1 1

Azure SignalR Service units per
instance for Standard tier

100 100

Azure SignalR Service units per
subscription per region for Free tier

5 5

Total Azure SignalR Service unit counts
per subscription per region

150 Unlimited

Connections per unit per day for Free
tier

20 20

If you need to request a limit increase, please reach out to Azure Support.

For more information, please review the Azure Quantum pricing page. For information on third-party offerings,

please review the relevant provider page in the Azure portal.

The following limits apply to Azure role-based access control (Azure RBAC).

https://aka.ms/AQ/Pricing
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/conditions-faq
https://docs.microsoft.com/en-us/azure/role-based-access-control/conditions-overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/custom-roles

Connections per unit per day for
Standard tier

1,000 1,000

Included messages per unit per day for
Free tier

20,000 20,000

Additional messages per unit per day
for Free tier

0 0

Included messages per unit per day for
Standard tier

1,000,000 1,000,000

Additional messages per unit per day
for Standard tier

Unlimited Unlimited

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

 Azure VMware Solution limits

RESO URC E L IM IT

Clusters per private cloud 12

Minimum number of hosts per cluster 3

Maximum number of hosts per cluster 16

hosts per private cloud 96

vCenter per private cloud 1

HCX site pairings 3 with Advanced edition, 10 with Enterprise edition

AVS ExpressRoute max linked private clouds 4
The virtual network gateway used determines the actual max
linked private clouds. For more details, see About
ExpressRoute virtual network gateways

AVS ExpressRoute portspeed 10 Gbps
The virtual network gateway used determines the actual
bandwidth. For more details, see About ExpressRoute virtual
network gateways

Public IPs exposed via vWAN 100

vSAN capacity limits 75% of total usable (keep 25% available for SLA)

 Backup limits

To request an update to your subscription's default limits, open a support ticket.

The following table describes the maximum limits for Azure VMware Solution.

For other VMware specific limits please use the VMware configuration maximum tool!.

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-about-virtual-network-gateways
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-about-virtual-network-gateways
https://configmax.vmware.com/

 Batch limits

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Azure Batch accounts per region per
subscription

1-3 50

Dedicated cores per Batch account 90-900 Contact support

Low-priority cores per Batch account 10-100 Contact support

Active jobs and job schedules per
Batch account (completed jobs have
no limit)

100-300 1,000

Pools per Batch account 20-100 500

NOTE

IMPORTANT

 Classic deployment model limits

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

vCPUs per subscription 20 10,000

Coadministrators per subscription 200 200

Storage accounts per subscription 100 100

Cloud services per subscription 20 200

Local networks per subscription 10 500

DNS servers per subscription 9 100

For a summary of Azure Backup support settings and limitations, see Azure Backup Support Matrices.

1

1

To request an increase beyond this limit, contact Azure Support.1

Default limits vary depending on the type of subscription you use to create a Batch account. Cores quotas shown are for

Batch accounts in Batch service mode. View the quotas in your Batch account.

To help us better manage capacity during the global health pandemic, the default core quotas for new Batch accounts in

some regions and for some types of subscription have been reduced from the above range of values, in some cases to

zero cores. When you create a new Batch account, check your core quota and request a core quota increase, if required.

Alternatively, consider reusing Batch accounts that already have sufficient quota.

If you use classic deployment model instead of the Azure Resource Manager deployment model, the following

limits apply.

1

2

https://docs.microsoft.com/en-us/azure/backup/backup-support-matrix
https://docs.microsoft.com/en-us/rest/api/batchservice/job/get#jobstate
https://docs.microsoft.com/en-us/azure/batch/batch-quota-limit
https://docs.microsoft.com/en-us/azure/batch/batch-quota-limit
https://docs.microsoft.com/en-us/azure/batch/batch-quota-limit
https://azure.microsoft.com/pricing/
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/add-change-subscription-administrator
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-choose-me
https://docs.microsoft.com/en-us/previous-versions/azure/reference/jj157100(v=azure.100)

Reserved IPs per subscription 20 100

Affinity groups per subscription 256 256

Subscription name length (characters) 64 64

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

 Container Instances limits

RESO URC E L IM IT

Standard sku container groups per region per subscription 100

Dedicated sku container groups per region per subscription 0

Number of containers per container group 60

Number of volumes per container group 20

Standard sku cores (CPUs) per region per subscription 10

Standard sku cores (CPUs) for K80 GPU per region per
subscription

18

Standard sku cores (CPUs) for P100 or V100 GPU per region
per subscription

0

Ports per IP 5

Container instance log size - running instance 4 MB

Container instance log size - stopped instance 16 KB or 1,000 lines

Container group creates per hour 300

Container group creates per 5 minutes 100

Container group deletes per hour 300

Container group deletes per 5 minutes 100

 Container Registry limits

Extra small instances count as one vCPU toward the vCPU limit despite using a partial CPU core.1

The storage account limit includes both Standard and Premium storage accounts.2

1

1

1,2

1,2

1,2

1

1

1

1

To request a limit increase, create an Azure Support request. Free subscriptions including Azure Free Account

and Azure for Students aren't eligible for limit or quota increases. If you have a free subscription, you can

upgrade to a Pay-As-You-Go subscription.

Default limit for Pay-As-You-Go subscription. Limit may differ for other category types.

1

2

https://docs.microsoft.com/en-us/previous-versions/azure/virtual-network/virtual-networks-migrate-to-regional-vnet
https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest
https://azure.microsoft.com/offers/ms-azr-0044p/
https://azure.microsoft.com/offers/ms-azr-0170p/
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/upgrade-azure-subscription
https://azure.microsoft.com/offers/ms-azr-0003p/

RESO URC E B A SIC STA N DA RD P REM IUM

Included storage (GiB) 10 100 500

Storage limit (TiB) 20 20 20

Maximum image layer size
(GiB)

200 200 200

ReadOps per minute 1,000 3,000 10,000

WriteOps per minute 100 500 2,000

Download bandwidth
(Mbps)

30 60 100

Upload bandwidth (Mbps) 10 20 50

Webhooks 2 10 500

Geo-replication N/A N/A Supported

Availability zones N/A N/A Preview

Content trust N/A N/A Supported

Private link with private
endpoints

N/A N/A Supported

• Private endpoints N/A N/A 10

Public IP network rules N/A N/A 100

Service endpoint VNet
access

N/A N/A Preview

Customer-managed keys N/A N/A Supported

Repository-scoped
permissions

N/A N/A Preview

• Tokens N/A N/A 20,000

• Scope maps N/A N/A 20,000

• Repositories per scope
map

N/A N/A 500

The following table details the features and limits of the Basic, Standard, and Premium service tiers.

1

2, 3

2, 4

2

2

 Storage included in the daily rate for each tier. Additional storage may be used, up to the registry storage limit,

at an additional daily rate per GiB. For rate information, see Azure Container Registry pricing. If you need

storage beyond the registry storage limit, please contact Azure Support.

1

ReadOps, WriteOps, and Bandwidth are minimum estimates. Azure Container Registry strives to improve2

https://docs.microsoft.com/en-us/azure/container-registry/container-registry-skus
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-geo-replication
https://docs.microsoft.com/en-us/azure/container-registry/zone-redundancy
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-content-trust
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-private-link
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-vnet
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-customer-managed-keys
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-repository-scoped-permissions
https://azure.microsoft.com/pricing/details/container-registry/

 Content Delivery Network limits

RESO URC E L IM IT

Azure Content Delivery Network profiles 25

Content Delivery Network endpoints per profile 25

Custom domains per endpoint 25

 Data Factory limits

 Version 2

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Total number of entities, such as
pipelines, data sets, triggers, linked
services, Private Endpoints, and
integration runtimes, within a data
factory

5,000 Contact support.

Total CPU cores for Azure-SSIS
Integration Runtimes under one
subscription

256 Contact support.

Concurrent pipeline runs per data
factory that's shared among all
pipelines in the factory

10,000 10,000

Concurrent External activity runs per
subscription per Azure Integration
Runtime region
External activities are managed on

integration runtime but execute on linked

services, including Databricks, stored

procedure, Web, and others. This lim it does

not apply to Self-hosted IR.

3,000 3,000

performance as usage requires.

A docker pull translates to multiple read operations based on the number of layers in the image, plus the

manifest retrieval.

3

A docker push translates to multiple write operations, based on the number of layers that must be pushed. A

docker push includes ReadOps to retrieve a manifest for an existing image.

4

A Content Delivery Network subscription can contain one or more Content Delivery Network profiles. A Content

Delivery Network profile can contain one or more Content Delivery Network endpoints. You might want to use

multiple profiles to organize your Content Delivery Network endpoints by internet domain, web application, or

some other criteria.

Azure Data Factory is a multitenant service that has the following default limits in place to make sure customer

subscriptions are protected from each other's workloads. To raise the limits up to the maximum for your

subscription, contact support.

https://docs.docker.com/registry/spec/api/#pulling-an-image
https://docs.docker.com/registry/spec/api/#pushing-an-image
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime

Concurrent Pipeline activity runs per
subscription per Azure Integration
Runtime region
Pipeline activities execute on integration

runtime, including Lookup, GetMetadata,

and Delete. This lim it does not apply to Self-

hosted IR.

1,000 1,000

Concurrent authoring operations per
subscription per Azure Integration
Runtime region
Including test connection, browse folder list

and table list, preview data. This lim it does

not apply to Self-hosted IR.

200 200

Concurrent Data Integration Units
consumption per subscription per
Azure Integration Runtime region

Region group 1 : 6,000
Region group 2 : 3,000
Region group 3 : 1,500

Region group 1 : 6,000
Region group 2 : 3,000
Region group 3 : 1,500

Maximum activities per pipeline, which
includes inner activities for containers

40 40

Maximum number of linked
integration runtimes that can be
created against a single self-hosted
integration runtime

100 Contact support.

Maximum parameters per pipeline 50 50

ForEach items 100,000 100,000

ForEach parallelism 20 50

Maximum queued runs per pipeline 100 100

Characters per expression 8,192 8,192

Minimum tumbling window trigger
interval

15 min 15 min

Maximum timeout for pipeline activity
runs

7 days 7 days

Bytes per object for pipeline objects 200 KB 200 KB

Bytes per object for dataset and linked
service objects

100 KB 2,000 KB

Bytes per payload for each activity
run

896 KB 896 KB

Data Integration Units per copy
activity run

256 256

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

1 2

2

2

2

2

2

3

3

4

1

https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/

Write API calls 1,200/h 1,200/h

This limit is imposed by Azure Resource
Manager, not Azure Data Factory.

Read API calls 12,500/h 12,500/h

This limit is imposed by Azure Resource
Manager, not Azure Data Factory.

Monitoring queries per minute 1,000 1,000

Maximum time of data flow debug
session

8 hrs 8 hrs

Concurrent number of data flows per
integration runtime

50 Contact support.

Concurrent number of data flow
debug sessions per user per factory

3 3

Data Flow Azure IR TTL limit 4 hrs 4 hrs

Meta Data Entity Size limit in a factory 2 GB Contact support.

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

REGIO N GRO UP REGIO N S

Region group 1 Central US, East US, East US 2, North Europe, West Europe,
West US, West US 2

Region group 2 Australia East, Australia Southeast, Brazil South, Central
India, Japan East, North Central US, South Central US,
Southeast Asia, West Central US

Region group 3 Other regions

 Version 1

 The data integration unit (DIU) is used in a cloud-to-cloud copy operation, learn more from Data integration

units (version 2). For information on billing, see Azure Data Factory pricing.

1

 Azure Integration Runtime is globally available to ensure data compliance, efficiency, and reduced network

egress costs.

2

 Pipeline, data set, and linked service objects represent a logical grouping of your workload. Limits for these

objects don't relate to the amount of data you can move and process with Azure Data Factory. Data Factory is

designed to scale to handle petabytes of data.

3

 The payload for each activity run includes the activity configuration, the associated dataset(s) and linked

service(s) configurations if any, and a small portion of system properties generated per activity type. Limit for

this payload size doesn't relate to the amount of data you can move and process with Azure Data Factory. Learn

about the symptoms and recommendation if you hit this limit.

4

https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance
https://azure.microsoft.com/pricing/details/data-factory/
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://azure.microsoft.com/global-infrastructure/services/
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-troubleshoot-guide

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Pipelines within a data factory 2,500 Contact support.

Data sets within a data factory 5,000 Contact support.

Concurrent slices per data set 10 10

Bytes per object for pipeline objects 200 KB 200 KB

Bytes per object for data set and
linked service objects

100 KB 2,000 KB

Azure HDInsight on-demand cluster
cores within a subscription

60 Contact support.

Cloud data movement units per copy
activity run

32 32

Retry count for pipeline activity runs 1,000 MaxInt (32 bit)

RESO URC E DEFA ULT LO W ER L IM IT M IN IM UM L IM IT

Scheduling interval 15 minutes 15 minutes

Interval between retry attempts 1 second 1 second

Retry timeout value 1 second 1 second

 Web service call limits

 Data Lake Analytics limits

1

1

2

3

 Pipeline, data set, and linked service objects represent a logical grouping of your workload. Limits for these

objects don't relate to the amount of data you can move and process with Azure Data Factory. Data Factory is

designed to scale to handle petabytes of data.

1

 On-demand HDInsight cores are allocated out of the subscription that contains the data factory. As a result, the

previous limit is the Data Factory-enforced core limit for on-demand HDInsight cores. It's different from the core

limit that's associated with your Azure subscription.

2

 The cloud data movement unit (DMU) for version 1 is used in a cloud-to-cloud copy operation, learn more

from Cloud data movement units (version 1). For information on billing, see Azure Data Factory pricing.

3

Azure Resource Manager has limits for API calls. You can make API calls at a rate within the Azure Resource

Manager API limits.

Azure Data Lake Analytics makes the complex task of managing distributed infrastructure and complex code

easy. It dynamically provisions resources, and you can use it to do analytics on exabytes of data. When the job

completes, it winds down resources automatically. You pay only for the processing power that was used. As you

increase or decrease the size of data stored or the amount of compute used, you don't have to rewrite code. To

raise the default limits for your subscription, contact support.

https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://docs.microsoft.com/en-us/azure/data-factory/v1/data-factory-copy-activity-performance
https://azure.microsoft.com/pricing/details/data-factory/

RESO URC E L IM IT C O M M EN T S

Maximum number of concurrent jobs 20

Maximum number of analytics units
(AUs) per account

250 Use any combination of up to a
maximum of 250 AUs across 20 jobs.
To increase this limit, contact Microsoft
Support.

Maximum script size for job
submission

3 MB

Maximum number of Data Lake
Analytics accounts per region per
subscription

5 To increase this limit, contact Microsoft
Support.

 Data Lake Storage limits

RESO URC E L IM IT C O M M EN T S

Maximum number of Data Lake
Storage Gen1 accounts, per
subscription, per region

10 To request an increase for this limit,
contact support.

Maximum number of access ACLs, per
file or folder

32 This is a hard limit. Use groups to
manage access with fewer entries.

Maximum number of default ACLs, per
file or folder

32 This is a hard limit. Use groups to
manage access with fewer entries.

 Data Share limits

RESO URC E L IM IT

Maximum number of Data Share resources per Azure
subscription

100

Maximum number of sent shares per Data Share resource 200

Azure Data Lake Storage Gen2 is not a dedicated service or storage account type. It is the latest release of

capabilities that are dedicated to big data analytics. These capabilities are available in a general-purpose v2 or

BlockBlobStorage storage account, and you can obtain them by enabling the Hierarchical namespace feature

of the account. For scale targets, see these articles.

Scale targets for Blob storage.

Scale targets for standard storage accounts.

Azure Data Lake Storage Gen1 is a dedicated service. It's an enterprise-wide hyper-scale repository for big

data analytic workloads. You can use Data Lake Storage Gen1 to capture data of any size, type, and ingestion

speed in one single place for operational and exploratory analytics. There's no limit to the amount of data you

can store in a Data Lake Storage Gen1 account.

Azure Data Share enables organizations to simply and securely share data with their customers and partners.

https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/scalability-targets-standard-account

Maximum number of received shares per Data Share
resource

100

Maximum number of invitations per sent share 200

Maximum number of share subscriptions per sent share 200

Maximum number of datasets per share 200

Maximum number of snapshot schedules per share 1

RESO URC E L IM IT

 Database Migration Service Limits

RESO URC E L IM IT C O M M EN T S

Maximum number of services per
subscription, per region

10 To request an increase for this limit,
contact support.

 Digital Twins limits

NOTE

 Functional limits

TIP

A REA C A PA B IL IT Y DEFA ULT L IM IT A DJUSTA B L E?

Azure resource Number of Azure Digital
Twins instances in a region,
per subscription

10 Yes

Digital twins Number of twins in an
Azure Digital Twins instance

200,000 Yes

Digital twins Number of incoming
relationships to a single
twin

5,000 No

Azure Database Migration Service is a fully managed service designed to enable seamless migrations from

multiple database sources to Azure data platforms with minimal downtime.

Some areas of this service have adjustable limits, and others do not. This is represented in the tables below with the

Adjustable? column. When the limit can be adjusted, the Adjustable? value is Yes.

The following table lists the functional limits of Azure Digital Twins.

For modeling recommendations to operate within these functional limits, see Modeling best practices.

https://docs.microsoft.com/en-us/azure/digital-twins/concepts-models

Digital twins Number of outgoing
relationships from a single
twin

5,000 No

Digital twins Maximum size (of JSON
body in a PUT or PATCH
request) of a single twin

32 KB No

Digital twins Maximum request payload
size

32 KB No

Routing Number of endpoints for a
single Azure Digital Twins
instance

6 No

Routing Number of routes for a
single Azure Digital Twins
instance

6 Yes

Models Number of models within a
single Azure Digital Twins
instance

10,000 Yes

Models Number of models that can
be uploaded in a single API
call

250 No

Models Maximum size (of JSON
body in a PUT or PATCH
request) of a single model

1 MB No

Models Number of items returned
in a single page

100 No

Query Number of items returned
in a single page

100 Yes

Query Number of AND / OR

expressions in a query

50 Yes

Query Number of array items in an
IN / NOT IN clause

50 Yes

Query Number of characters in a
query

8,000 Yes

Query Number of JOINS in a

query

5 Yes

A REA C A PA B IL IT Y DEFA ULT L IM IT A DJUSTA B L E?

 Rate limits
The following table reflects the rate limits of different APIs.

A P I C A PA B IL IT Y DEFA ULT L IM IT A DJUSTA B L E?

Models API Number of requests per
second

100 Yes

Digital Twins API Number of read requests
per second

1,000 Yes

Digital Twins API Number of patch requests
per second

1,000 Yes

Digital Twins API Number of create/delete
operations per second
across all twins and
relationships

50 Yes

Digital Twins API Number of
create/update/delete
operations per second on a
single twin or its
relationships

10 No

Query API Number of requests per
second

500 Yes

Query API Query Units per second 4,000 Yes

Event Routes API Number of requests per
second

100 Yes

 Other limits

 Event Grid limits

RESO URC E L IM IT

Custom topics per Azure subscription 100

Event subscriptions per topic 500

Publish rate for a custom or a partner topic (ingress) 5,000 events/sec or 5 MB/sec (whichever is met first)

Event size 1 MB

Private endpoint connections per topic 64

IP Firewall rules per topic 16

Limits on data types and fields within DTDL documents for Azure Digital Twins models can be found within its

spec documentation in GitHub: Digital Twins Definition Language (DTDL) - version 2.

Query latency details are described in Concepts: Query language. Limitations of particular query language

features can be found in the query reference documentation.

The following limits apply to Azure Event Grid topics (system, custom, and partner topics).

https://docs.microsoft.com/en-us/azure/digital-twins/concepts-query-units
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://docs.microsoft.com/en-us/azure/digital-twins/concepts-query-language
https://docs.microsoft.com/en-us/azure/digital-twins/concepts-query-language

RESO URC E L IM IT

Topics per event domain 100,000

Event subscriptions per topic within a domain 500

Domain scope event subscriptions 50

Publish rate for an event domain (ingress) 5,000 events/sec or 5 MB/sec (whichever is met first)

Event Domains per Azure Subscription 100

Private endpoint connections per domain 64

IP Firewall rules per domain 16

 Event Hubs limits

 Common limits for all tiers

L IM IT N OT ES VA L UE

Size of an event hub name - 256 characters

Size of a consumer group name Kafka protocol doesn't require the
creation of a consumer group.

Number of non-epoch receivers per
consumer group

- 5

Number of authorization rules per
namespace

Subsequent requests for authorization
rule creation are rejected.

12

Number of calls to the
GetRuntimeInformation method

- 50 per second

Number of virtual networks (VNet) - 128

Number of IP Config rules - 128

Maximum length of a schema group
name

50

Maximum length of a schema name 100

Size in bytes per schema 1 MB

The following limits apply to Azure Event Grid domains .

The following tables provide quotas and limits specific to Azure Event Hubs. For information about Event Hubs

pricing, see Event Hubs pricing.

The following limits are common across all tiers.

Kafka: 256 characters

AMQP: 50 characters

https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/pricing/details/event-hubs/

Number of properties per schema
group

1024

Size in bytes per schema group
property key

256

Size in bytes per schema group
property value

1024

L IM IT N OT ES VA L UE

 Basic vs. standard vs. premium vs. dedicated tiers

L IM IT B A SIC STA N DA RD P REM IUM DEDIC AT ED

Maximum size of
Event Hubs
publication

256 KB 1 MB 1 MB 1 MB

Number of consumer
groups per event
hub

1 20 100 1000
No limit per CU

Number of brokered
connections per
namespace

100 5,000 10000 per
processing unit per
PU

100, 000 per CU

Maximum retention
period of event data

1 day 7 days 90 days
1 TB per PU

90 days
10 TB per CU

Maximum TUs or
PUs or CUs

20 TUs 40 TUs 16 PUs 20 CUs

Number of partitions
per event hub

32 32 100 per event hub
200 per PU

1024 per event hub
2000 per CU

Number of
namespaces per
subscription

1000 1000 1000 1000 (50 per CU)

Number of event
hubs per namespace

10 10 100 1000

Capture N/A Pay per hour Included Included

Size of the schema
registry (namespace)
in mega bytes

N/A 25 100 1024

Number of schema
groups in a schema
registry or
namespace

N/A 1 - excluding the
default group

100
1 MB per schema

1000
1 MB per schema

The following table shows limits that may be different for basic, standard, and dedicated tiers. In the table CU is

capacity unit, PU is processing unit, TU is throughput unit.

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-dedicated-overview
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-scalability
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-scalability

Number of schema
versions across all
schema groups

N/A 25 1000 10000

Throughput per unit Ingress - 1 MB/s or
1000 events per
second
Egress – 2 Mb/s or
4096 events per
second

Ingress - 1 MB/s or
1000 events per
second
Egress – 2 Mb/s or
4096 events per
second

No limits per PU * No limits per CU *

L IM IT B A SIC STA N DA RD P REM IUM DEDIC AT ED

NOTE

 IoT Central limits

 IoT Hub limits

RESO URC E S1 STA N DA RD S2 STA N DA RD S3 STA N DA RD F 1 F REE

Messages/day 400,000 6,000,000 300,000,000 8,000

Maximum units 200 200 10 1

NOTE

RESO URC E L IM IT

Maximum paid IoT hubs per Azure subscription 50

Maximum free IoT hubs per Azure subscription 1

Maximum number of characters in a device ID 128

Maximum number of device identities
returned in a single call

1,000

* Depends on various factors such as resource allocation, number of partitions, storage and so on.

You can publish events individually or batched. The publication limit (according to SKU) applies regardless of whether it is

a single event or a batch. Publishing events larger than the maximum threshold will be rejected.

IoT Central limits the number of applications you can deploy in a subscription to 10. If you need to increase this

limit, contact Microsoft support.

The following table lists the limits associated with the different service tiers S1, S2, S3, and F1. For information

about the cost of each unit in each tier, see Azure IoT Hub pricing.

If you anticipate using more than 200 units with an S1 or S2 tier hub or 10 units with an S3 tier hub, contact Microsoft

Support.

The following table lists the limits that apply to IoT Hub resources.

https://azure.microsoft.com/support/options/
https://azure.microsoft.com/pricing/details/iot-hub/

IoT Hub message maximum retention for device-to-cloud
messages

7 days

Maximum size of device-to-cloud message 256 KB

Maximum size of device-to-cloud batch AMQP and HTTP: 256 KB for the entire batch
MQTT: 256 KB for each message

Maximum messages in device-to-cloud batch 500

Maximum size of cloud-to-device message 64 KB

Maximum TTL for cloud-to-device messages 2 days

Maximum delivery count for cloud-to-device
messages

100

Maximum cloud-to-device queue depth per device 50

Maximum delivery count for feedback messages
in response to a cloud-to-device message

100

Maximum TTL for feedback messages in
response to a cloud-to-device message

2 days

Maximum size of device twin 8 KB for tags section, and 32 KB for desired and reported
properties sections each

Maximum length of device twin string key 1 KB

Maximum length of device twin string value 4 KB

Maximum depth of object in device twin 10

Maximum size of direct method payload 128 KB

Job history maximum retention 30 days

Maximum concurrent jobs 10 (for S3), 5 for (S2), 1 (for S1)

Maximum additional endpoints 10 (for S1, S2, and S3)

Maximum message routing rules 100 (for S1, S2, and S3)

Maximum number of concurrently connected device streams 50 (for S1, S2, S3, and F1 only)

Maximum device stream data transfer 300 MB per day (for S1, S2, S3, and F1 only)

RESO URC E L IM IT

NOTE
If you need more than 50 paid IoT hubs in an Azure subscription, contact Microsoft Support.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins

NOTE

T H ROT T L E P ER-H UB VA L UE

Identity registry operations
(create, retrieve, list, update, and delete),
individual or bulk import/export

83.33/sec/unit (5,000/min/unit) (for S3).
1.67/sec/unit (100/min/unit) (for S1 and S2).

Device connections 6,000/sec/unit (for S3), 120/sec/unit (for S2), 12/sec/unit (for
S1).
Minimum of 100/sec.

Device-to-cloud sends 6,000/sec/unit (for S3), 120/sec/unit (for S2), 12/sec/unit (for
S1).
Minimum of 100/sec.

Cloud-to-device sends 83.33/sec/unit (5,000/min/unit) (for S3), 1.67/sec/unit
(100/min/unit) (for S1 and S2).

Cloud-to-device receives 833.33/sec/unit (50,000/min/unit) (for S3), 16.67/sec/unit
(1,000/min/unit) (for S1 and S2).

File upload operations 83.33 file upload initiations/sec/unit (5,000/min/unit) (for
S3), 1.67 file upload initiations/sec/unit (100/min/unit) (for
S1 and S2).
10,000 SAS URIs can be out for an Azure Storage account at
one time.
10 SAS URIs/device can be out at one time.

Direct methods 24 MB/sec/unit (for S3), 480 KB/sec/unit (for S2), 160
KB/sec/unit (for S1).
Based on 8-KB throttling meter size.

Device twin reads 500/sec/unit (for S3), Maximum of 100/sec or 10/sec/unit
(for S2), 100/sec (for S1)

Device twin updates 250/sec/unit (for S3), Maximum of 50/sec or 5/sec/unit (for
S2), 50/sec (for S1)

Jobs operations
(create, update, list, and delete)

83.33/sec/unit (5,000/min/unit) (for S3), 1.67/sec/unit
(100/min/unit) (for S2), 1.67/sec/unit (100/min/unit) (for S1).

Jobs per-device operation throughput 50/sec/unit (for S3), maximum of 10/sec or 1/sec/unit (for
S2), 10/sec (for S1).

Device stream initiation rate 5 new streams/sec (for S1, S2, S3, and F1 only).

 IoT Hub Device Provisioning Service limits

Currently, the total number of devices plus modules that can be registered to a single IoT hub is capped at 1,000,000. If

you want to increase this limit, contact Microsoft Support.

IoT Hub throttles requests when the following quotas are exceeded.

https://azure.microsoft.com/support/options/

NOTE

RESO URC E L IM IT A DJUSTA B L E?

Maximum device provisioning services
per Azure subscription

10 Yes

Maximum number of registrations 1,000,000 Yes

Maximum number of individual
enrollments

1,000,000 Yes

Maximum number of enrollment
groups (X.509 certificate)

100 Yes

Maximum number of enrollment
groups (symmetric key)

100 No

Maximum number of CAs 25 No

Maximum number of linked IoT hubs 50 No

Maximum size of message 96 KB No

TIP

RAT E P ER-UN IT VA L UE A DJUSTA B L E?

Operations 200/min/service Yes

Device registrations 200/min/service Yes

Device polling operation 5/10 sec/device No

 Key Vault limits

Some areas of this service have adjustable limits. This is represented in the tables below with the Adjustable? column.

When the limit can be adjusted, the Adjustable? value is Yes.

If your business requires raising an adjustable limit or quota above the default limit, you can request additional resources

by opening a support ticket.

The following table lists the limits that apply to Azure IoT Hub Device Provisioning Service resources.

If the hard limit on symmetric key enrollment groups is a blocking issue, it is recommended to use individual enrollments

as a workaround.

The Device Provisioning Service has the following rate limits.

Each API call on DPS is billable as one Operation. This includes all the service APIs and the device registration

API. The device registration polling operation is not billed.

Azure Key Vault service supports two resource types: Vaults and Managed HSMs. The following two sections

https://ms.portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest

 Resource type: vault

 Key transactions (maximum transactions allowed in 10 seconds, per vault per region):

KEY T Y P E
H SM KEY
C REAT E KEY

H SM KEY
A L L OT H ER
T RA N SA C T IO N S

SO F T WA RE KEY
C REAT E KEY

SO F T WA RE KEY
A L L OT H ER
T RA N SA C T IO N S

RSA 2,048-bit 5 1,000 10 2,000

RSA 3,072-bit 5 250 10 500

RSA 4,096-bit 5 125 10 250

ECC P-256 5 1,000 10 2,000

ECC P-384 5 1,000 10 2,000

ECC P-521 5 1,000 10 2,000

ECC SECP256K1 5 1,000 10 2,000

NOTE

 Secrets, managed storage account keys, and vault transactions:

T RA N SA C T IO N S T Y P E
M A XIM UM T RA N SA C T IO N S A L LO W ED IN 10 SEC O N DS, P ER
VA ULT P ER REGIO N

All transactions 2,000

 Backup keys, secrets, certificates

describe the service limits for each of them respectively.

This section describes service limits for resource type vaults .

1

In the previous table, we see that for RSA 2,048-bit software keys, 2,000 GET transactions per 10 seconds are allowed. For

RSA 2,048-bit HSM-keys, 1,000 GET transactions per 10 seconds are allowed.

The throttling thresholds are weighted, and enforcement is on their sum. For example, as shown in the previous table,

when you perform GET operations on RSA HSM-keys, it's eight times more expensive to use 4,096-bit keys compared to

2,048-bit keys. That's because 1,000/125 = 8.

In a given 10-second interval, an Azure Key Vault client can do only one of the following operations before it encounters a

429 throttling HTTP status code:

2,000 RSA 2,048-bit software-key GET transactions

1,000 RSA 2,048-bit HSM-key GET transactions

125 RSA 4,096-bit HSM-key GET transactions

124 RSA 4,096-bit HSM-key GET transactions and 8 RSA 2,048-bit HSM-key GET transactions

1

For information on how to handle throttling when these limits are exceeded, see Azure Key Vault throttling

guidance.

 A subscription-wide limit for all transaction types is five times per key vault limit. For example, HSM-other

transactions per subscription are limited to 5,000 transactions in 10 seconds per subscription.

1

When you back up a key vault object, such as a secret, key, or certificate, the backup operation will download the

https://docs.microsoft.com/en-us/azure/key-vault/general/overview-throttling

T RA N SA C T IO N S T Y P E M A XIM UM KEY VA ULT O B JEC T VERSIO N S A L LO W ED

Backup individual key, secret, certfiicate 500

NOTE

 Limits on count of keys, secrets and certificates:

 Azure Private Link integration

NOTE

RESO URC E L IM IT

Private endpoints per key vault 64

Key vaults with private endpoints per subscription 400

 Resource type: Managed HSM

 Object limits

IT EM L IM IT S

Number of HSM instances per subscription per region 1

Number of keys per HSM Pool 5000

Number of versions per key 100

Number of custom role definitions per HSM 50

Number of role assignments at HSM scope 50

Number of role assignment at each individual key scope 10

 Transaction limits for administrative operations (number of operations per second per HSM instance)

object as an encrypted blob. This blob can't be decrypted outside of Azure. To get usable data from this blob, you

must restore the blob into a key vault within the same Azure subscription and Azure geography

Attempting to backup a key, secret, or certificate object with more versions than above limit will result in an error. It is not

possible to delete previous versions of a key, secret, or certificate.

Key Vault does not restrict the number of keys, secrets or certificates that can be stored in a vault. The

transaction limits on the vault should be taken into account to ensure that operations are not throttled.

Key Vault does not restrict the number of versions on a secret, key or certificate, but storing a large number of

versions (500+) can impact the performance of backup operations. See Azure Key Vault Backup.

The number of key vaults with private endpoints enabled per subscription is an adjustable limit. The limit shown below is

the default limit. If you would like to request a limit increase for your service, please create a support request and it will be

assessed on a case by case basis.

This section describes service limits for resource type managed HSM .

https://docs.microsoft.com/en-us/azure/key-vault/general/backup

O P ERAT IO N N UM B ER O F O P ERAT IO N S P ER SEC O N D

All RBAC operations
(includes all CRUD operations for role definitions and role
assignments)

5

Full HSM Backup/Restore
(only one concurrent backup or restore operation per HSM
instance supported)

1

 Transaction limits for cryptographic operations (number of operations per second per HSM instance)

 R SA k e y o p e r a t i o n s (n u m b e r o f o p e r a t i o n s p e r se c o n d p e r H SM i n s t a n c e)

O P ERAT IO N 2048-B IT 3072-B IT 4096- B IT

Create Key 1 1 1

Delete Key (soft-delete) 10 10 10

Purge Key 10 10 10

Backup Key 10 10 10

Restore Key 10 10 10

Get Key Information 1100 1100 1100

Encrypt 10000 10000 6000

Decrypt 1100 360 160

Wrap 10000 10000 6000

Unwrap 1100 360 160

Sign 1100 360 160

Verify 10000 10000 6000

 E C k e y o p e r a t i o n s (n u m b e r o f o p e r a t i o n s p e r se c o n d p e r H SM i n s t a n c e)

O P ERAT IO N P -256 P -256K P - 384 P - 521

Create Key 1 1 1 1

Each Managed HSM instance constitutes 3 load balanced HSM partitions. The throughput limits are a

function of underlying hardware capacity allocated for each partition. The tables below show maximum

throughput with at least one partition available. Actual throughput may be up to 3x higher if all 3 partitions

are available.

Throughput limits noted assume that one single key is being used to achieve maximum throughput. For

example, if a single RSA-2048 key is used the maximum throughput will be 1100 sign operations. If you use

1100 different keys with 1 transaction per second each, they will not be able to achieve the same throughput.

This table describes number of operations per second for each curve type.

Delete Key (soft-
delete)

10 10 10 10

Purge Key 10 10 10 10

Backup Key 10 10 10 10

Restore Key 10 10 10 10

Get Key Information 1100 1100 1100 1100

Sign 260 260 165 56

Verify 130 130 82 28

O P ERAT IO N P -256 P -256K P - 384 P - 521

 A E S k e y o p e r a t i o n s (n u m b e r o f o p e r a t i o n s p e r se c o n d p e r H SM i n s t a n c e)

O P ERAT IO N 128-B IT 192-B IT 256- B IT

Create Key 1 1 1

Delete Key (soft-delete) 10 10 10

Purge Key 10 10 10

Backup Key 10 10 10

Restore Key 10 10 10

Get Key Information 1100 1100 1100

Encrypt 8000 8000 8000

Decrypt 8000 8000 8000

Wrap 9000 9000 9000

Unwrap 9000 9000 9000

 Managed identity limits

Encrypt and Decrypt operations assume a 4KB packet size.

Throughput limits for Encrypt/Decrypt apply to AES-CBC and AES-GCM algorithms.

Throughput limits for Wrap/Unwrap apply to AES-KW algorithm.

Each managed identity counts towards the object quota limit in an Azure AD tenant as described in Azure

AD service limits and restrictions.

The rate at which managed identities can be created have the following limits:

1. Per Azure AD Tenant per Azure region: 200 create operations per 20 seconds.

https://docs.microsoft.com/en-us/azure/active-directory/enterprise-users/directory-service-limits-restrictions

 Media Services limits

NOTE

 Account limits

RESO URC E DEFA ULT L IM IT

Media Services accounts in a single subscription 100 (fixed)

 Asset limits

RESO URC E DEFA ULT L IM IT

Assets per Media Services account 1,000,000

 Storage (media) limits

RESO URC E DEFA ULT L IM IT

File size In some scenarios, there is a limit on the maximum file size
supported for processing in Media Services.

Storage accounts 100 (fixed)

M EDIA RESERVED UN IT T Y P E M A XIM UM IN P UT SIZ E (GB)

S1 26

S2 60

S3 260

 Jobs (encoding & analyzing) limits

2. Per Azure Subscription per Azure region : 40 create operations per 20 seconds.

When you create user-assigned managed identities, only alphanumeric characters (0-9, a-z, and A-Z) and

the hyphen (-) are supported. For the assignment to a virtual machine or virtual machine scale set to

work properly, the name is limited to 24 characters.

For resources that aren't fixed, open a support ticket to ask for an increase in the quotas. Don't create additional Azure

Media Services accounts in an attempt to obtain higher limits.

(1)

(2)

 The maximum size supported for a single blob is currently up to 5 TB in Azure Blob Storage. Additional limits

apply in Media Services based on the VM sizes that are used by the service. The size limit applies to the files that

you upload and also the files that get generated as a result of Media Services processing (encoding or

analyzing). If your source file is larger than 260-GB, your Job will likely fail.

1

The following table shows the limits on the media reserved units S1, S2, and S3. If your source file is larger than

the limits defined in the table, your encoding job fails. If you encode 4K resolution sources of long duration,

you're required to use S3 media reserved units to achieve the performance needed. If you have 4K content that's

larger than the 260-GB limit on the S3 media reserved units, open a support ticket.

 The storage accounts must be from the same Azure subscription.2

RESO URC E DEFA ULT L IM IT

Jobs per Media Services account 500,000 (fixed)

Job inputs per Job 50 (fixed)

Job outputs per Job 20 (fixed)

Transforms per Media Services account 100 (fixed)

Transform outputs in a Transform 20 (fixed)

Files per job input 10 (fixed)

 Live streaming limits

RESO URC E DEFA ULT L IM IT

Live Events per Media Services account 5

Live Outputs per Live Event 3

Max Live Output duration Size of the DVR window

 Packaging & delivery limits

RESO URC E DEFA ULT L IM IT

Streaming Endpoints (stopped or running) per Media
Services account

2

Dynamic Manifest Filters 100

Streaming Policies 100

Unique Streaming Locators associated with an Asset at one
time

100 (fixed)

 Protection limits

(3)

 This number includes queued, finished, active, and canceled Jobs. It does not include deleted Jobs.3

Any Job record in your account older than 90 days will be automatically deleted, even if the total number of

records is below the maximum quota.

(4)

(5)

 For detailed information about Live Event limitations, see Live Event types comparison and limitations.4

 Live Outputs start on creation and stop when deleted.5

(6)

(7)

 When using a custom Streaming Policy, you should design a limited set of such policies for your Media Service

account, and re-use them for your StreamingLocators whenever the same encryption options and protocols are

needed. You should not be creating a new Streaming Policy for each Streaming Locator.

6

 Streaming Locators are not designed for managing per-user access control. To give different access rights to

individual users, use Digital Rights Management (DRM) solutions.

7

https://docs.microsoft.com/en-us/azure/media-services/latest/live-event-cloud-dvr-time-how-to
https://docs.microsoft.com/en-us/azure/media-services/latest/live-event-types-comparison-reference
https://docs.microsoft.com/en-us/rest/api/media/streamingpolicies

RESO URC E DEFA ULT L IM IT

Options per Content Key Policy 30

Licenses per month for each of the DRM types on Media
Services key delivery service per account

1,000,000

 Support ticket

 Media Services v2 (legacy)

 Mobile Services limits

T IER F REE B A SIC STA N DA RD

API calls 500,000 1.5 million per unit 15 million per unit

Active devices 500 Unlimited Unlimited

Scale N/A Up to 6 units Unlimited units

Push notifications Azure Notification Hubs
Free tier included, up to 1
million pushes

Notification Hubs Basic tier
included, up to 10 million
pushes

Notification Hubs Standard
tier included, up to 10
million pushes

Real-time messaging/
Web Sockets

Limited 350 per mobile service Unlimited

Offline synchronizations Limited Included Included

Scheduled jobs Limited Included Included

Azure SQL Database
(required)
Standard rates apply for
additional capacity

20 MB included 20 MB included 20 MB included

CPU capacity 60 minutes per day Unlimited Unlimited

Outbound data transfer 165 MB per day (daily
rollover)

Included Included

 Multi-Factor Authentication limits

For resources that are not fixed, you may ask for the quotas to be raised, by opening a support ticket. Include

detailed information in the request on the desired quota changes, use-case scenarios, and regions required.

Do not create additional Azure Media Services accounts in an attempt to obtain higher limits.

For limits specific to Media Services v2 (legacy), see Media Services v2 (legacy)

For more information on limits and pricing, see Azure Mobile Services pricing.

https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/newsupportrequest
https://docs.microsoft.com/en-us/azure/media-services/previous/media-services-quotas-and-limitations
https://azure.microsoft.com/pricing/details/mobile-services/

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Maximum number of trusted IP
addresses or ranges per subscription

0 50

Remember my devices, number of
days

14 60

Maximum number of app passwords 0 No limit

Allow X attempts during MFA call 1 99

Two-way text message timeout
seconds

60 600

Default one-time bypass seconds 300 1,800

Lock user account after X consecutive
MFA denials

Not set 99

Reset account lockout counter after X
minutes

Not set 9,999

Unlock account after X minutes Not set 9,999

 Networking limits
 Networking limits - Azure Resource Manager

NOTE

RESO URC E L IM IT

Virtual networks 1,000

Subnets per virtual network 3,000

Virtual network peerings per virtual network 500

Virtual network gateways (VPN gateways) per virtual
network

1

Virtual network gateways (ExpressRoute gateways) per
virtual network

1

DNS servers per virtual network 20

The following limits apply only for networking resources managed through Azure Resource Manager per

region per subscription. Learn how to view your current resource usage against your subscription limits.

We recently increased all default limits to their maximum limits. If there's no maximum limit column, the resource doesn't

have adjustable limits. If you had these limits increased by support in the past and don't see updated limits in the

following tables, open an online customer support request at no charge

https://docs.microsoft.com/en-us/azure/networking/check-usage-against-limits
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-resource-quota
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-about-virtual-network-gateways

Private IP addresses per virtual network 65,536

Private IP addresses per network interface 256

Private IP addresses per virtual machine 256

Public IP addresses per network interface 256

Public IP addresses per virtual machine 256

Concurrent TCP or UDP flows per NIC of a virtual machine
or role instance

500,000

Network interface cards 65,536

Network Security Groups 5,000

NSG rules per NSG 1,000

IP addresses and ranges specified for source or destination
in a security group

4,000

Application security groups 3,000

Application security groups per IP configuration, per NIC 20

IP configurations per application security group 4,000

Application security groups that can be specified within all
security rules of a network security group

100

User-defined route tables 200

User-defined routes per route table 400

Point-to-site root certificates per Azure VPN Gateway 20

Point-to-site revoked client certificates per Azure VPN
Gateway

300

Virtual network TAPs 100

Network interface TAP configurations per virtual network
TAP

100

RESO URC E L IM IT

 Public IP address limits

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Public IP addresses 10 for Basic. Contact support.

Static Public IP addresses 10 for Basic. Contact support.

1,2

1

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-machine-network-throughput

Standard Public IP addresses 10 Contact support.

Public IP addresses per Resource
Group

800 Contact support.

Public IP Prefixes limited by number of Standard Public
IPs in a subscription

Contact support.

Public IP prefix length /28 Contact support.

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

 Load balancer limits

RESO URC E L IM IT

Load balancers 1,000

Rules (Load Balancer + Inbound NAT) per resource 1,500

Rules per NIC (across all IPs on a NIC) 300

Frontend IP configurations 600

Backend pool size 1,000 IP configurations, single virtual network

Backend resources per Load Balancer 1,200

High-availability ports 1 per internal frontend

Outbound rules per Load Balancer 600

Load Balancers per VM 2 (1 Public and 1 internal)

RESO URC E L IM IT

Load balancers 1,000

Rules per resource 250

1

Default limits for Public IP addresses vary by offer category type, such as Free Trial, Pay-As-You-Go, CSP. For

example, the default for Enterprise Agreement subscriptions is 1000.

1

Public IP addresses limit refers to the total amount of Public IP addresses, including Basic and Standard.2

The following limits apply only for networking resources managed through Azure Resource Manager per region

per subscription. Learn how to view your current resource usage against your subscription limits.

Standard Load Balancer

1

 The limit is up to 1,200 resources, in any combination of standalone virtual machine resources, availability set

resources, and virtual machine scale-set placement groups.

1

Basic Load Balancer

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resources-without-resource-group-limit
https://docs.microsoft.com/en-us/azure/networking/check-usage-against-limits

Rules per NIC (across all IPs on a NIC) 300

Frontend IP configurations 200

Backend pool size 300 IP configurations, single availability set

Availability sets per Load Balancer 1

Load Balancers per VM 2 (1 Public and 1 internal)

RESO URC E L IM IT

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Virtual networks 100 100

Local network sites 20 50

DNS servers per virtual network 20 20

Private IP addresses per virtual
network

4,096 4,096

Concurrent TCP or UDP flows per NIC
of a virtual machine or role instance

500,000, up to 1,000,000 for two or
more NICs.

500,000, up to 1,000,000 for two or
more NICs.

Network Security Groups (NSGs) 200 200

NSG rules per NSG 200 1,000

User-defined route tables 200 200

User-defined routes per route table 400 400

Public IP addresses (dynamic) 500 500

Reserved public IP addresses 500 500

Public IP per deployment 5 Contact support

Private IP (internal load balancing) per
deployment

1 1

Endpoint access control lists (ACLs) 50 50

 ExpressRoute limits

2

 The limit for a single discrete resource in a backend pool (standalone virtual machine, availability set, or virtual

machine scale-set placement group) is to have up to 250 Frontend IP configurations across a single Basic Public

Load Balancer and Basic Internal Load Balancer.

2

 The following limits apply only for networking resources managed through the classic deployment model per

subscription. Learn how to view your current resource usage against your subscription limits.

https://docs.microsoft.com/en-us/azure/networking/check-usage-against-limits

RESO URC E L IM IT

ExpressRoute circuits per subscription 10

ExpressRoute circuits per region per subscription, with Azure
Resource Manager

10

Maximum number of routes advertised to Azure private
peering with ExpressRoute Standard

4,000

Maximum number of routes advertised to Azure private
peering with ExpressRoute Premium add-on

10,000

Maximum number of routes advertised from Azure private
peering from the VNet address space for an ExpressRoute
connection

1,000

Maximum number of routes advertised to Microsoft peering
with ExpressRoute Standard

200

Maximum number of routes advertised to Microsoft peering
with ExpressRoute Premium add-on

200

Maximum number of ExpressRoute circuits linked to the
same virtual network in the same peering location

4

Maximum number of ExpressRoute circuits linked to the
same virtual network in different peering locations

16 (For more information, see Gateway SKU.)

Number of virtual network links allowed per ExpressRoute
circuit

See the Number of virtual networks per ExpressRoute circuit
table.

 Number of virtual networks per ExpressRoute circuit

C IRC UIT SIZ E
N UM B ER O F VIRT UA L N ET W O RK L IN KS
F O R STA N DA RD

N UM B ER O F VIRT UA L N ET W O RK L IN KS
W IT H P REM IUM A DD- O N

50 Mbps 10 20

100 Mbps 10 25

200 Mbps 10 25

500 Mbps 10 40

1 Gbps 10 50

2 Gbps 10 60

5 Gbps 10 75

10 Gbps 10 100

40 Gbps* 10 100

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-about-virtual-network-gateways

100 Gbps* 10 100

C IRC UIT SIZ E
N UM B ER O F VIRT UA L N ET W O RK L IN KS
F O R STA N DA RD

N UM B ER O F VIRT UA L N ET W O RK L IN KS
W IT H P REM IUM A DD- O N

NOTE

 Virtual Network Gateway limits

RESO URC E L IM IT

VNet Address Prefixes 600 per VPN gateway

Aggregate BGP routes 4,000 per VPN gateway

Local Network Gateway address prefixes 1000 per local network gateway

S2S connections Depends on the gateway SKU

P2S connections Depends on the gateway SKU

P2S route limit - IKEv2 256 for non-Windows / 25 for Windows

P2S route limit - OpenVPN 1000

Max. flows 100K for VpnGw1/AZ / 512K for VpnGw2-4/AZ

 NAT Gateway limits

RESO URC E L IM IT

Public IP addresses 16 per NAT gateway

 Virtual WAN limits

RESO URC E L IM IT

Virtual WAN hubs per virtual wan Azure regions

VPN (branch) connections per hub 1,000

Aggregate throughput per Virtual WAN Site-to-site VPN
gateway

20 Gbps

Throughput per Virtual WAN VPN connection (2 tunnels) 2 Gbps with 1 Gbps/IPsec tunnel

*100 Gbps ExpressRoute Direct Only

Global Reach connections count against the limit of virtual network connections per ExpressRoute Circuit. For example, a

10 Gbps Premium Circuit would allow for 5 Global Reach connections and 95 connections to the ExpressRoute Gateways

or 95 Global Reach connections and 5 connections to the ExpressRoute Gateways or any other combination up to the

limit of 100 connections for the circuit.

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways

Point-to-Site users per hub 100,000

Aggregate throughput per Virtual WAN User VPN (Point-to-
site) gateway

200 Gbps

Aggregate throughput per Virtual WAN ExpressRoute
gateway

20 Gbps

ExpressRoute Circuit connections per hub 8

VNet connections per hub 500 minus total number of hubs in Virtual WAN

Aggregate throughput per Virtual WAN Hub Router 50 Gbps for VNet to VNet transit

VM workload across all VNets connected to a single Virtual
WAN hub

2000 (If you want to raise the limit or quota above the
default limit, open an online customer support request.)

RESO URC E L IM IT

 Application Gateway limits

RESO URC E L IM IT N OT E

Azure Application Gateway 1,000 per subscription

Front-end IP configurations 2 1 public and 1 private

Front-end ports 100

Back-end address pools 100

Back-end servers per pool 1,200

HTTP listeners 200 Limited to 100 active listeners that are
routing traffic. Active listeners = total
number of listeners - listeners not
active.
If a default configuration inside a
routing rule is set to route traffic (for
example, it has a listener, a backend
pool, and HTTP settings) then that also
counts as a listener.

HTTP load-balancing rules 100

Back-end HTTP settings 100

Instances per gateway V1 SKU - 32
V2 SKU - 125

SSL certificates 100 1 per HTTP listener

The following table applies to v1, v2, Standard, and WAF SKUs unless otherwise stated.

1

1

1

1

1

1

Maximum SSL certificate size V1 SKU - 10 KB
V2 SKU - 16 KB

Authentication certificates 100

Trusted root certificates 100

Request timeout minimum 1 second

Request timeout maximum 24 hours

Number of sites 100 1 per HTTP listener

URL maps per listener 1

Maximum path-based rules per URL
map

100

Redirect configurations 100

Number of rewrite rule sets 400

Number of Header or URL
configuration per rewrite rule set

40

Number of conditions per rewrite rule
set

40

Concurrent WebSocket connections Medium gateways 20k
Large gateways 50k

Maximum URL length 32KB

Maximum header size for HTTP/2 16KB

Maximum file upload size, Standard 2 GB

Maximum file upload size WAF V1 Medium WAF gateways, 100 MB
V1 Large WAF gateways, 500 MB
V2 WAF, 750 MB

WAF body size limit, without files 128 KB

Maximum WAF custom rules 100

Maximum WAF exclusions per
Application Gateway

40

RESO URC E L IM IT N OT E

 Network Watcher limits

1

1

2

2

 In case of WAF-enabled SKUs, you must limit the number of resources to 40.1

 Limit is per Application Gateway instance not per Application Gateway resource.2

RESO URC E L IM IT N OT E

Azure Network Watcher 1 per region Network Watcher is created to enable
access to the service. Only one
instance of Network Watcher is
required per subscription per region.

Packet capture sessions 10,000 per region Number of sessions only, not saved
captures.

 Private Link limits

RESO URC E L IM IT

Number of private endpoints per virtual network 1000

Number of private endpoints per subscription 64000

Number of private link services per subscription 800

Number of IP Configurations on a private link service 8 (This number is for the NAT IP addresses used per PLS)

Number of private endpoints on the same private link
service

1000

Number of private endpoints per key vault 64

Number of key vaults with private endpoints per
subscription

400

Number of private DNS zone groups that can be linked to a
private endpoint

1

Number of DNS zones in each group 5

 Purview limits

 Traffic Manager limits

RESO URC E L IM IT

Profiles per subscription 200

Endpoints per profile 200

 Azure Bastion limits

W O RKLO A D T Y P E* L IM IT **

Light 100

The following limits apply to Azure private link:

The latest values for Azure Purview quotas can be found in the Azure Purview quota page

https://docs.microsoft.com/en-us/azure/purview/how-to-manage-quotas

Medium 50

Heavy 5

W O RKLO A D T Y P E* L IM IT **

 Azure DNS limits

RESO URC E L IM IT

Public DNS Zones per subscription 250

Record sets per public DNS zone 10,000

Records per record set in public DNS zone 20

Number of Alias records for a single Azure resource 20

RESO URC E L IM IT

Private DNS zones per subscription 1000

Record sets per private DNS zone 25000

Records per record set for private DNS zones 20

Virtual Network Links per private DNS zone 1000

Virtual Networks Links per private DNS zones with auto-
registration enabled

100

Number of private DNS zones a virtual network can get
linked to with auto-registration enabled

1

Number of private DNS zones a virtual network can get
linked

1000

Number of DNS queries a virtual machine can send to Azure
DNS resolver, per second

1000

Maximum number of DNS queries queued (pending
response) per virtual machine

200

*These workload types are defined here: Remote Desktop workloads

**These limits are based on RDP performance tests for Azure Bastion. The numbers may vary due to other on-

going RDP sessions or other on-going SSH sessions.

Public DNS zones

1

1

If you need to increase these limits, contact Azure Support.1

Private DNS zones

1

1

These limits are applied to every individual virtual machine and not at the virtual network level. DNS queries

exceeding these limits are dropped.

1

https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/remote-desktop-workloads

 Azure Firewall limits

RESO URC E L IM IT

Data throughput 30 Gbps

Rule limits 10,000 unique source/destinations in network rules

Maximum DNAT rules 298 for a single public IP address.
Any additional public IP addresses contribute to the available
SNAT ports, but reduce the number of the available DNAT
rules. For example, two public IP addresses allow for 297
DNAT rules. If a rule's protocol is configured for both TCP
and UDP, it counts as two rules.

Minimum AzureFirewallSubnet size /26

Port range in network and application rules 1 - 65535

Public IP addresses 250 maximum. All public IP addresses can be used in DNAT
rules and they all contribute to available SNAT ports.

IP addresses in IP Groups Maximum of 100 IP Groups per firewall.
Maximum 5000 individual IP addresses or IP prefixes per
each IP Group.

Route table By default, AzureFirewallSubnet has a 0.0.0.0/0 route with
the NextHopType value set to Internet .

Azure Firewall must have direct Internet connectivity. If your
AzureFirewallSubnet learns a default route to your on-
premises network via BGP, you must override that with a
0.0.0.0/0 UDR with the NextHopType value set as
Internet to maintain direct Internet connectivity. By default,
Azure Firewall doesn't support forced tunneling to an on-
premises network.

However, if your configuration requires forced tunneling to
an on-premises network, Microsoft will support it on a case
by case basis. Contact Support so that we can review your
case. If accepted, we'll allow your subscription and ensure the
required firewall Internet connectivity is maintained.

FQDNs in network rules For good performance, do not exceed more than 1000
FQDNs across all network rules per firewall.

 Azure Front Door Service limits

RESO URC E L IM IT

Azure Front Door resources per subscription 100

Front-end hosts, which includes custom domains per
resource

500

Routing rules per resource 500

Back-end pools per resource 50

Back ends per back-end pool 100

Path patterns to match for a routing rule 25

URLs in a single cache purge call 100

Custom web application firewall rules per policy 100

Web application firewall policy per subscription 100

Web application firewall match conditions per custom rule 10

Web application firewall IP address ranges per match
condition

600

Web application firewall string match values per match
condition

10

Web application firewall string match value length 256

Web application firewall POST body parameter name length 256

Web application firewall HTTP header name length 256

Web application firewall cookie name length 256

Web application firewall HTTP request body size inspected 128 KB

Web application firewall custom response body length 2 KB

RESO URC E L IM IT

 Azure Front Door Standard/Premium (Preview) Service Limits

RESO URC E STA N DA RD SKU L IM IT P REM IUM SKU L IM IT

Maximum endpoint per profile 10 25

Maximum custom domain per profile 100 200

Maximum origin group per profile 100 200

Maximum secrets per profile 100 200

Maximum security policy per profile 100 200

Maximum rule set per profile 100 200

Maximum rules per rule set 100 100

Maximum origin per origin group 50 50

*** Maximum 500 total Standard and Premium profiles per subscription.

Maximum routes per endpoint 100 200

URLs in a single cache purge call 100 100

Custom web application firewall rules
per policy

100 100

Web application firewall match
conditions per custom rule

10 10

Web application firewall IP address
ranges per match condition

600 600

Web application firewall string match
values per match condition

10 10

Web application firewall string match
value length

256 256

Web application firewall POST body
parameter name length

256 256

Web application firewall HTTP header
name length

256 256

Web application firewall cookie name
length

256 256

Web application firewall HTTP request
body size inspected

128 KB 128 KB

Web application firewall custom
response body length

2 KB 2 KB

RESO URC E STA N DA RD SKU L IM IT P REM IUM SKU L IM IT

 Timeout values
 C l i e n t t o F r o n t D o o r

 F r o n t D o o r t o a p p l i c a t i o n b a c k- e n d

 Upload and download data limit

Front Door has an idle TCP connection timeout of 61 seconds.

If the response is a chunked response, a 200 is returned if or when the first chunk is received.

After the HTTP request is forwarded to the back end, Front Door waits for 30 seconds for the first packet

from the back end. Then it returns a 503 error to the client. This value is configurable via the field

sendRecvTimeoutSeconds in the API.

After the first packet is received from the back end, Front Door waits for 30 seconds in an idle timeout. Then

it returns a 503 error to the client. This timeout value is not configurable.

Front Door to the back-end TCP session timeout is 90 seconds.

For caching scenarios, this timeout is not configurable and so, if a request is cached and it takes more

than 30 seconds for the first packet from Front Door or from the backend, then a 504 error is returned

to the client.

W IT H C H UN KED T RA N SF ER
EN C O DIN G (C T E) W IT H O UT H T T P C H UN KIN G

Download There's no limit on the download size. There's no limit on the download size.

Upload There's no limit as long as each CTE
upload is less than 2 GB.

The size can't be larger than 2 GB.

 Other limits

 Notification Hubs limits

T IER F REE B A SIC STA N DA RD

Included pushes 1 million 10 million 10 million

Active devices 500 200,000 10 million

Tag quota per installation or
registration

60 60 60

 Service Bus limits

Q UOTA N A M E SC O P E VA L UE N OT ES

Maximum number of
namespaces per Azure
subscription

Namespace 1000 (default and
maximum)

Subsequent requests for
additional namespaces are
rejected.

Queue or topic size Entity 1, 2, 3, 4 GB or 5 GB.

In the Premium SKU, and
the Standard SKU with
partitioning enabled, the
maximum queue or topic
size is 80 GB.

Defined upon
creation/updation of the
queue or topic.

Subsequent incoming
messages are rejected, and
an exception is received by
the calling code.

Maximum URL size - 8,192 bytes - Specifies maximum length of the raw URL (scheme + hostname + port +

path + query string of the URL)

Maximum Query String size - 4,096 bytes - Specifies the maximum length of the query string, in bytes.

Maximum HTTP response header size from health probe URL - 4,096 bytes - Specified the maximum length

of all the response headers of health probes.

Maximum rules engine action header value character : 640 characters.

Maximum rules engine condition header value character : 256 characters.

For more information on limits and pricing, see Notification Hubs pricing.

The following table lists quota information specific to Azure Service Bus messaging. For information about

pricing and other quotas for Service Bus, see Service Bus pricing.

https://azure.microsoft.com/pricing/details/notification-hubs/
https://azure.microsoft.com/pricing/details/service-bus/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning

Number of concurrent
connections on a
namespace

Namespace Net Messaging: 1,000.

AMQP: 5,000.

Subsequent requests for
additional connections are
rejected, and an exception is
received by the calling code.
REST operations don't count
toward concurrent TCP
connections.

Number of concurrent
receive requests on a
queue, topic, or
subscription entity

Entity 5,000 Subsequent receive
requests are rejected, and
an exception is received by
the calling code. This quota
applies to the combined
number of concurrent
receive operations across all
subscriptions on a topic.

Number of topics or queues
per namespace

Namespace 10,000 for the Basic or
Standard tier. The total
number of topics and
queues in a namespace
must be less than or equal
to 10,000.

For the Premium tier, 1,000
per messaging unit (MU).

Subsequent requests for
creation of a new topic or
queue on the namespace
are rejected. As a result, if
configured through the
Azure portal, an error
message is generated. If
called from the
management API, an
exception is received by the
calling code.

Number of partitioned
topics or queues per
namespace

Namespace Basic and Standard tiers:
100.

Partitioned entities aren't
supported in the Premium
tier.

Each partitioned queue or
topic counts toward the
quota of 1,000 entities per
namespace.

Subsequent requests for
creation of a new
partitioned topic or queue
on the namespace are
rejected. As a result, if
configured through the
Azure portal, an error
message is generated. If
called from the
management API, the
exception
QuotaExceededExceptio
n is received by the calling
code.

Maximum size of any
messaging entity path:
queue or topic

Entity - 260 characters.

Maximum size of any
messaging entity name:
namespace, subscription, or
subscription rule

Entity - 50 characters.

Q UOTA N A M E SC O P E VA L UE N OT ES

If you want to have
more partitioned
entities in a basic or a
standard tier
namespace, create
additional namespaces.

https://portal.azure.com
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-premium-messaging
https://portal.azure.com

Maximum size of a message
ID

Entity - 128

Maximum size of a message
session ID

Entity - 128

Message size for a queue,
topic, or subscription entity

Entity Incoming messages that
exceed these quotas are
rejected, and an exception is
received by the calling code.

Maximum message size:
256 KB for Standard tier, 1
MB for Premium tier.

Due to system overhead,
this limit is less than these
values.

Maximum header size: 64
KB.

Maximum number of
header properties in
property bag:
byte/int.MaxValue.

Maximum size of property
in property bag: Both the
property name and value
are limited at 32KB.

Message property size for a
queue, topic, or
subscription entity

Entity The exception
SerializationException

is generated.

Maximum message
property size for each
property is 32 KB.
Cumulative size of all
properties can't exceed 64
KB. This limit applies to the
entire header of the
brokered message, which
has both user properties
and system properties, such
as sequence number, label,
and message ID.

Number of subscriptions
per topic

Entity Subsequent requests for
creating additional
subscriptions for the topic
are rejected. As a result, if
configured through the
portal, an error message is
shown. If called from the
management API, an
exception is received by the
calling code.

2,000 per-topic for the
Standard tier and Premium
tier.

Number of SQL filters per
topic

Entity Subsequent requests for
creation of additional filters
on the topic are rejected,
and an exception is received
by the calling code.

2,000

Q UOTA N A M E SC O P E VA L UE N OT ES

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-premium-messaging
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-premium-messaging

Number of correlation filters
per topic

Entity Subsequent requests for
creation of additional filters
on the topic are rejected,
and an exception is received
by the calling code.

100,000

Size of SQL filters or actions Namespace Subsequent requests for
creation of additional filters
are rejected, and an
exception is received by the
calling code.

Maximum length of filter
condition string: 1,024 (1
K).

Maximum length of rule
action string: 1,024 (1 K).

Maximum number of
expressions per rule action:
32.

Number of shared access
authorization rules per
namespace, queue, or topic

Entity, namespace Subsequent requests for
creation of additional rules
are rejected, and an
exception is received by the
calling code.

Maximum number of rules
per entity type: 12.

Rules that are configured
on a Service Bus namespace
apply to all types: queues,
topics.

Number of messages per
transaction

Transaction Additional incoming
messages are rejected, and
an exception stating
"Cannot send more than
100 messages in a single
transaction" is received by
the calling code.

100

For both Send() and
SendAsync() operations.

Number of virtual network
and IP filter rules

Namespace 128

Q UOTA N A M E SC O P E VA L UE N OT ES

 Site Recovery limits

L IM IT IDEN T IF IER L IM IT

Number of vaults per subscription 500

Number of servers per Recovery Services vault 250

Number of protection groups per Recovery Services vault No limit

Number of recovery plans per Recovery Services vault No limit

Number of servers per protection group No limit

Number of servers per recovery plan 100

The following limits apply to Azure Site Recovery.

SQL Database limits

 Azure Synapse Analytics limits

 Synapse Workspace Limits

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Synapse workspaces in an Azure
subscription

20 20

 Synapse Pipeline Limits

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

Synapse pipelines in a Synapse
workspace

800 800

Total number of entities, such as
pipelines, data sets, triggers, linked
services, Private Endpoints, and
integration runtimes, within a
workspace

5,000 Contact support.

Total CPU cores for Azure-SSIS
Integration Runtimes under one
workspace

256 Contact support.

Concurrent pipeline runs per
workspace that's shared among all
pipelines in the workspace

10,000 10,000

Concurrent External activity runs per
workspace per Azure Integration
Runtime region
External activities are managed on

integration runtime but execute on linked

services, including Databricks, stored

procedure, HDInsight, Web, and others. This

lim it does not apply to Self-hosted IR.

3,000 3,000

Concurrent Pipeline activity runs per
workspace per Azure Integration
Runtime region
Pipeline activities execute on integration

runtime, including Lookup, GetMetadata,

and Delete. This lim it does not apply to Self-

hosted IR.

1,000 1,000

For SQL Database limits, see SQL Database resource limits for single databases, SQL Database resource limits

for elastic pools and pooled databases, and SQL Database resource limits for SQL Managed Instance.

The maximum number of private endpoints per Azure SQL Database logical server is 250.

Azure Synapse Analytics has the following default limits to ensure customer's subscriptions are protected from

each other's workloads. To raise the limits to the maximum for your subscription, contact support.

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-elastic-pools
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime

Concurrent authoring operations per
workspace per Azure Integration
Runtime region
Including test connection, browse folder list

and table list, preview data. This lim it does

not apply to Self-hosted IR.

200 200

Concurrent Data Integration Units
consumption per workspace per Azure
Integration Runtime region

Region group 1 : 6,000
Region group 2 : 3,000
Region group 3 : 1,500

Region group 1 : 6,000
Region group 2 : 3,000
Region group 3 : 1,500

Maximum activities per pipeline, which
includes inner activities for containers

40 40

Maximum number of linked
integration runtimes that can be
created against a single self-hosted
integration runtime

100 Contact support.

Maximum parameters per pipeline 50 50

ForEach items 100,000 100,000

ForEach parallelism 20 50

Maximum queued runs per pipeline 100 100

Characters per expression 8,192 8,192

Minimum tumbling window trigger
interval

15 min 15 min

Maximum timeout for pipeline activity
runs

7 days 7 days

Bytes per object for pipeline objects 200 KB 200 KB

Bytes per object for dataset and linked
service objects

100 KB 2,000 KB

Bytes per payload for each activity
run

896 KB 896 KB

Data Integration Units per copy
activity run

256 256

Write API calls 1,200/h 1,200/h

This limit is imposed by Azure Resource
Manager, not Azure Synapse Analytics.

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

1 2

2

2

2

2

2

3

3

4

1

https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/

Read API calls 12,500/h 12,500/h

This limit is imposed by Azure Resource
Manager, not Azure Synapse Analytics.

Monitoring queries per minute 1,000 1,000

Maximum time of data flow debug
session

8 hrs 8 hrs

Concurrent number of data flows per
integration runtime

50 Contact support.

Concurrent number of data flow
debug sessions per user per
workspace

3 3

Data Flow Azure IR TTL limit 4 hrs 4 hrs

Meta Data Entity Size limit in a
workspace

2 GB Contact support.

RESO URC E DEFA ULT L IM IT M A XIM UM L IM IT

REGIO N GRO UP REGIO N S

Region group 1 Central US, East US, East US 2, North Europe, West Europe,
West US, West US 2

Region group 2 Australia East, Australia Southeast, Brazil South, Central
India, Japan East, North Central US, South Central US,
Southeast Asia, West Central US

Region group 3 Other regions

 Dedicated SQL pool limits

 Web service call limits

 The data integration unit (DIU) is used in a cloud-to-cloud copy operation, learn more from Data integration

units (version 2). For information on billing, see Azure Synapse Analytics Pricing.

1

 Azure Integration Runtime is globally available to ensure data compliance, efficiency, and reduced network

egress costs.

2

 Pipeline, data set, and linked service objects represent a logical grouping of your workload. Limits for these

objects don't relate to the amount of data you can move and process with Azure Synapse Analytics. Synapse

Analytics is designed to scale to handle petabytes of data.

3

 The payload for each activity run includes the activity configuration, the associated dataset(s) and linked

service(s) configurations if any, and a small portion of system properties generated per activity type. Limit for

this payload size doesn't relate to the amount of data you can move and process with Azure Synapse Analytics.

Learn about the symptoms and recommendation if you hit this limit.

4

For details of capacity limits for dedicated SQL pools in Azure Synapse Analytics, see dedicated SQL pool

resource limits.

Azure Resource Manager has limits for API calls. You can make API calls at a rate within the Azure Resource

https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance
https://azure.microsoft.com/pricing/details/synapse-analytics/
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime
https://azure.microsoft.com/global-infrastructure/services/
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-troubleshoot-guide
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-service-capacity-limits

 Azure Files and Azure File Sync

 Storage limits

NOTE

RESO URC E L IM IT

Number of storage accounts per region per subscription,
including standard, and premium storage accounts.

250

Maximum storage account capacity 5 PiB

Maximum number of blob containers, blobs, file shares,
tables, queues, entities, or messages per storage account

No limit

Maximum request rate per storage account 20,000 requests per second

Maximum ingress per storage account (US, Europe regions) 10 Gbps

Maximum ingress per storage account (regions other than
US and Europe)

5 Gbps if RA-GRS/GRS is enabled, 10 Gbps for LRS/ZRS

Maximum egress for general-purpose v2 and Blob storage
accounts (all regions)

50 Gbps

Maximum egress for general-purpose v1 storage accounts
(US regions)

20 Gbps if RA-GRS/GRS is enabled, 30 Gbps for LRS/ZRS

Maximum egress for general-purpose v1 storage accounts
(non-US regions)

10 Gbps if RA-GRS/GRS is enabled, 15 Gbps for LRS/ZRS

Maximum number of IP address rules per storage account 200

Maximum number of virtual network rules per storage
account

200

Maximum number of resource instance rules per storage
account

200

Maximum number of private endpoints per storage account 200

Manager API limits.

To learn more about the limits for Azure Files and File Sync, see Azure Files scalability and performance targets.

The following table describes default limits for Azure general-purpose v1, v2, Blob storage, and block blob

storage accounts. The ingress limit refers to all data that is sent to a storage account. The egress limit refers to all

data that is received from a storage account.

You can request higher capacity and ingress limits. To request an increase, contact Azure Support.

1

1

1

1 2

2

2

 Azure Storage standard accounts support higher capacity limits and higher limits for ingress by request. To

request an increase in account limits, contact Azure Support.

1

2

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-scale-targets
https://azure.microsoft.com/support/faq/
https://azure.microsoft.com/support/faq/

NOTE

 Storage resource provider limits

RESO URC E L IM IT

Storage account management operations (read) 800 per 5 minutes

Storage account management operations (write) 10 per second / 1200 per hour

Storage account management operations (list) 100 per 5 minutes

 Azure Blob storage limits

RESO URC E TA RGET

Maximum size of single blob container Same as maximum storage account capacity

Maximum number of blocks in a block blob or append blob 50,000 blocks

Maximum size of a block in a block blob 4000 MiB

Maximum size of a block blob 50,000 X 4000 MiB (approximately 190.7 TiB)

Maximum size of a block in an append blob 4 MiB

Maximum size of an append blob 50,000 x 4 MiB (approximately 195 GiB)

Maximum size of a page blob 8 TiB

Maximum number of stored access policies per blob
container

5

Target request rate for a single blob Up to 500 requests per second

Target throughput for a single page blob Up to 60 MiB per second

 If your storage account has read-access enabled with geo-redundant storage (RA-GRS) or geo-zone-redundant

storage (RA-GZRS), then the egress targets for the secondary location are identical to those of the primary

location. For more information, see Azure Storage replication.

2

Microsoft recommends that you use a general-purpose v2 storage account for most scenarios. You can easily upgrade a

general-purpose v1 or an Azure Blob storage account to a general-purpose v2 account with no downtime and without

the need to copy data. For more information, see Upgrade to a general-purpose v2 storage account.

All storage accounts run on a flat network topology regardless of when they were created. For more information

on the Azure Storage flat network architecture and on scalability, see Microsoft Azure Storage: A Highly Available

Cloud Storage Service with Strong Consistency.

For more information on limits for standard storage accounts, see Scalability targets for standard storage

accounts.

The following limits apply only when you perform management operations by using Azure Resource Manager

with Azure Storage.

2

2

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-upgrade
https://docs.microsoft.com/en-us/archive/blogs/hanuk/windows-azures-flat-network-storage-to-enable-higher-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/scalability-targets-standard-account

Target throughput for a single block blob Up to storage account ingress/egress limits

RESO URC E TA RGET

SERVIC E VERSIO N
M A XIM UM B LO C K SIZ E (VIA
P UT B LO C K)

M A XIM UM B LO B SIZ E (VIA
P UT B LO C K L IST)

M A XIM UM B LO B SIZ E VIA
SIN GL E W RIT E O P ERAT IO N
(VIA P UT B LO B)

Version 2019-12-12 and
later

4000 MiB Approximately 190.7 TiB
(4000 MiB X 50,000 blocks)

5000 MiB (preview)

Version 2016-05-31
through version 2019-07-
07

100 MiB Approximately 4.75 TiB
(100 MiB X 50,000 blocks)

256 MiB

Versions prior to 2016-05-
31

4 MiB Approximately 195 GiB (4
MiB X 50,000 blocks)

64 MiB

 Azure Queue storage limits

RESO URC E TA RGET

Maximum size of a single queue 500 TiB

Maximum size of a message in a queue 64 KiB

Maximum number of stored access policies per queue 5

Maximum request rate per storage account 20,000 messages per second, which assumes a 1-KiB
message size

Target throughput for a single queue (1-KiB messages) Up to 2,000 messages per second

 Azure Table storage limits

RESO URC E TA RGET

Number of tables in an Azure storage account Limited only by the capacity of the storage account

Number of partitions in a table Limited only by the capacity of the storage account

Number of entities in a partition Limited only by the capacity of the storage account

1

 Throughput for a single blob depends on several factors, including, but not limited to: concurrency, request

size, performance tier, speed of source for uploads, and destination for downloads. To take advantage of the

performance enhancements of high-throughput block blobs, upload larger blobs or blocks. Specifically, call the

Put Blob or Put Block operation with a blob or block size that is greater than 4 MiB for standard storage

accounts. For premium block blob or for Data Lake Storage Gen2 storage accounts, use a block or blob size that

is greater than 256 KiB.

1

 Page blobs are not yet supported in accounts that have the Hierarchical namespace setting on them.2

The following table describes the maximum block and blob sizes permitted by service version.

The following table describes capacity, scalability, and performance targets for Table storage.

https://azure.microsoft.com/blog/high-throughput-with-azure-blob-storage/
https://docs.microsoft.com/en-us/rest/api/storageservices/put-blob
https://docs.microsoft.com/en-us/rest/api/storageservices/put-block

Maximum size of a single table 500 TiB

Maximum size of a single entity, including all property values 1 MiB

Maximum number of properties in a table entity 255 (including the three system properties, Par titionKey ,
RowKey , and Timestamp)

Maximum total size of an individual property in an entity Varies by property type. For more information, see
Proper ty Types in Understanding the Table Service Data
Model.

Size of the Par titionKey A string up to 1 KiB in size

Size of the RowKey A string up to 1 KiB in size

Size of an entity group transaction A transaction can include at most 100 entities and the
payload must be less than 4 MiB in size. An entity group
transaction can include an update to an entity only once.

Maximum number of stored access policies per table 5

Maximum request rate per storage account 20,000 transactions per second, which assumes a 1-KiB
entity size

Target throughput for a single table partition (1 KiB-entities) Up to 2,000 entities per second

RESO URC E TA RGET

 Virtual machine disk limits

IMPORTANT

RESO URC E L IM IT

Standard managed disks 50,000

Standard SSD managed disks 50,000

Premium managed disks 50,000

You can attach a number of data disks to an Azure virtual machine. Based on the scalability and performance

targets for a VM's data disks, you can determine the number and type of disk that you need to meet your

performance and capacity requirements.

For optimal performance, limit the number of highly utilized disks attached to the virtual machine to avoid possible

throttling. If all attached disks aren't highly utilized at the same time, the virtual machine can support a larger number of

disks.

For Azure managed disks:

The following table illustrates the default and maximum limits of the number of resources per region per

subscription. The limits remain the same irrespective of disks encrypted with either platform-managed keys or

customer-managed keys. There is no limit for the number of Managed Disks, snapshots and images per

resource group.

https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-the-table-service-data-model

Standard_LRS snapshots 50,000

Standard_ZRS snapshots 50,000

Managed image 50,000

RESO URC E L IM IT

 Disk encryption sets

 Managed virtual machine disks
 Standard HDD managed disks

STA N
DA RD
DISK
T Y P E S4 S6 S10 S15 S20 S30 S40 S50 S60 S70 S80

Disk
size in
GiB

32 64 128 256 512 1,024 2,048 4,096 8,192 16,38
4

32,76
7

IOPS
per
disk

Up to
500

Up to
500

Up to
500

Up to
500

Up to
500

Up to
500

Up to
500

Up to
500

Up to
1,300

Up to
2,000

Up to
2,000

Throu
ghput
per
disk

Up to
60
MB/s
ec

Up to
60
MB/s
ec

Up to
60
MB/s
ec

Up to
60
MB/se
c

Up to
60
MB/se
c

Up to
60
MB/se
c

Up to
60
MB/se
c

Up to
60
MB/se
c

Up to
300
MB/se
c

Up to
500
MB/se
c

Up to
500
MB/se
c

 Standard SSD managed disks

For Standard storage accounts: A Standard storage account has a maximum total request rate of 20,000

IOPS. The total IOPS across all of your virtual machine disks in a Standard storage account should not exceed

this limit.

You can roughly calculate the number of highly utilized disks supported by a single Standard storage account

based on the request rate limit. For example, for a Basic tier VM, the maximum number of highly utilized disks is

about 66, which is 20,000/300 IOPS per disk. The maximum number of highly utilized disks for a Standard tier

VM is about 40, which is 20,000/500 IOPS per disk.

For Premium storage accounts: A Premium storage account has a maximum total throughput rate of 50

Gbps. The total throughput across all of your VM disks should not exceed this limit.

For more information, see Virtual machine sizes.

There's a limitation of 1000 disk encryption sets per region, per subscription. For more information, see the

encryption documentation for Linux or Windows virtual machines. If you need to increase the quota, contact

Azure support.

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/disk-encryption
https://docs.microsoft.com/en-us/azure/virtual-machines/disk-encryption

STA
N D
A R
D
SSD
SIZ
ES E1 E2 E3 E4 E6 E10 E15 E20 E30 E40 E50 E60 E70 E80

Dis
k
size
in
GiB

4 8 16 32 64 128 256 512 1,0
24

2,0
48

4,0
96

8,1
92

16,
384

32,
767

IOP
S
per
disk

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
500

Up
to
2,0
00

Up
to
4,0
00

Up
to
6,0
00

Thr
oug
hpu
t
per
disk

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB
/sec

Up
to
60
MB/
sec

Up
to
60
MB/
sec

Up
to
400
MB/
sec

Up
to
600
MB/
sec

Up
to
750
MB/
sec

Ma
x
bur
st
IOP
S
per
disk

600 600 600 600 600 600 600 600 100
0

Ma
x
bur
st
thr
oug
hpu
t
per
disk

150
MB
/sec

150
MB
/sec

150
MB
/sec

150
MB
/sec

150
MB
/sec

150
MB
/sec

150
MB
/sec

150
MB
/sec

250
MB
/sec

Ma
x
bur
st
dur
atio
n

30
min

30
min

30
min

30
min

30
min

30
min

30
min

30
min

30
min

 Premium SSD managed disks: Per-disk limits

P RE
M IU
M
SSD
SIZ
ES P 1 P 2 P 3 P 4 P 6 P 10 P 15 P 20 P 30 P 40 P 50 P 60 P 70 P 80

Dis
k
size
in
GiB

4 8 16 32 64 128 256 512 1,0
24

2,0
48

4,0
96

8,1
92

16,
384

32,
767

Pro
visi
one
d
IOP
S
per
disk

120 120 120 120 240 500 1,1
00

2,3
00

5,0
00

7,5
00

7,5
00

16,
000

18,
000

20,
000

Pro
visi
one
d
Thr
oug
hpu
t
per
disk

25
MB
/sec

25
MB
/sec

25
MB
/sec

25
MB
/sec

50
MB
/sec

100
MB
/sec

125
MB
/sec

150
MB
/sec

200
MB
/sec

250
MB/
sec

250
MB/
sec

500
MB/
sec

750
MB/
sec

900
MB/
sec

Ma
x
bur
st
IOP
S
per
disk

3,5
00

3,5
00

3,5
00

3,5
00

3,5
00

3,5
00

3,5
00

3,5
00

30,
000
*

30,
000
*

30,
000
*

30,
000
*

30,
000
*

30,
000
*

Ma
x
bur
st
thr
oug
hpu
t
per
disk

170
MB
/sec

170
MB
/sec

170
MB
/sec

170
MB
/sec

170
MB
/sec

170
MB
/sec

170
MB
/sec

170
MB
/sec

1,0
00
MB
/sec
*

1,0
00
MB/
sec*

1,0
00
MB/
sec*

1,0
00
MB/
sec*

1,0
00
MB/
sec*

1,0
00
MB/
sec*

Ma
x
bur
st
dur
atio
n

30
min

30
min

30
min

30
min

30
min

30
min

30
min

30
min

Unli
mit
ed*

Unli
mit
ed*

Unli
mit
ed*

Unli
mit
ed*

Unli
mit
ed*

Unli
mit
ed*

Eligi
ble
for
rese
rvat
ion

No No No No No No No No Yes,
up
to
one
yea
r

Yes,
up
to
one
year

Yes,
up
to
one
year

Yes,
up
to
one
year

Yes,
up
to
one
year

Yes,
up
to
one
year

P RE
M IU
M
SSD
SIZ
ES P 1 P 2 P 3 P 4 P 6 P 10 P 15 P 20 P 30 P 40 P 50 P 60 P 70 P 80

 Premium SSD managed disks: Per-VM limits

RESO URC E L IM IT

Maximum IOPS Per VM 80,000 IOPS with GS5 VM

Maximum throughput per VM 2,000 MB/s with GS5 VM

 Unmanaged virtual machine disks

VM T IER B A SIC T IER VM STA N DA RD T IER VM

Disk size 4,095 GB 4,095 GB

Maximum 8-KB IOPS per persistent
disk

300 500

Maximum number of disks that
perform the maximum IOPS

66 40

RESO URC E L IM IT

Total disk capacity per account 35 TB

Total snapshot capacity per account 10 TB

Maximum bandwidth per account (ingress + egress) <=50 Gbps

P REM IUM
STO RA GE DISK
T Y P E P 10 P 20 P 30 P 40 P 50

Disk size 128 GiB 512 GiB 1,024 GiB (1 TB) 2,048 GiB (2 TB) 4,095 GiB (4 TB)

*Applies only to disks with on-demand bursting enabled.

Standard unmanaged vir tual machine disks: Per-disk limits

Premium unmanaged vir tual machine disks: Per-account limits

1

Ingress refers to all data from requests that are sent to a storage account. Egress refers to all data from

responses that are received from a storage account.

1

Premium unmanaged vir tual machine disks: Per-disk limits

Maximum IOPS
per disk

500 2,300 5,000 7,500 7,500

Maximum
throughput per
disk

100 MB/sec 150 MB/sec 200 MB/sec 250 MB/sec 250 MB/sec

Maximum
number of disks
per storage
account

280 70 35 17 8

P REM IUM
STO RA GE DISK
T Y P E P 10 P 20 P 30 P 40 P 50

RESO URC E L IM IT

Maximum IOPS per VM 80,000 IOPS with GS5 VM

Maximum throughput per VM 2,000 MB/sec with GS5 VM

 StorSimple System limits

L IM IT IDEN T IF IER L IM IT C O M M EN T S

Maximum number of storage account
credentials

64

Maximum number of volume
containers

64

Maximum number of volumes 255

Maximum number of schedules per
bandwidth template

168 A schedule for every hour, every day
of the week.

Maximum size of a tiered volume on
physical devices

64 TB for StorSimple 8100 and
StorSimple 8600

StorSimple 8100 and StorSimple 8600
are physical devices.

Maximum size of a tiered volume on
virtual devices in Azure

30 TB for StorSimple 8010
64 TB for StorSimple 8020

StorSimple 8010 and StorSimple 8020
are virtual devices in Azure that use
Standard storage and Premium
storage, respectively.

Maximum size of a locally pinned
volume on physical devices

9 TB for StorSimple 8100
24 TB for StorSimple 8600

StorSimple 8100 and StorSimple 8600
are physical devices.

Maximum number of iSCSI
connections

512

Maximum number of iSCSI
connections from initiators

512

Premium unmanaged vir tual machine disks: Per-VM limits

Maximum number of access control
records per device

64

Maximum number of volumes per
backup policy

24

Maximum number of backups retained
per backup policy

64

Maximum number of schedules per
backup policy

10

Maximum number of snapshots of any
type that can be retained per volume

256 This amount includes local snapshots
and cloud snapshots.

Maximum number of snapshots that
can be present in any device

10,000

Maximum number of volumes that can
be processed in parallel for backup,
restore, or clone

16

L IM IT IDEN T IF IER L IM IT C O M M EN T S

If there are more than 16
volumes, they're processed
sequentially as processing slots
become available.

New backups of a cloned or a
restored tiered volume can't
occur until the operation is
finished. For a local volume,
backups are allowed after the
volume is online.

Restore and clone recover time for
tiered volumes

<2 minutes

L IM IT IDEN T IF IER L IM IT C O M M EN T S

The volume is made available
within 2 minutes of a restore or
clone operation, regardless of
the volume size.

The volume performance might
initially be slower than normal
as most of the data and
metadata still resides in the
cloud. Performance might
increase as data flows from the
cloud to the StorSimple device.

The total time to download
metadata depends on the
allocated volume size.
Metadata is automatically
brought into the device in the
background at the rate of 5
minutes per TB of allocated
volume data. This rate might be
affected by Internet bandwidth
to the cloud.

The restore or clone operation
is complete when all the
metadata is on the device.

Backup operations can't be
performed until the restore or
clone operation is fully
complete.

Restore recover time for locally pinned
volumes

<2 minutes

Thin-restore availability Last failover

Maximum client read/write
throughput, when served from the
SSD tier*

920/720 MB/sec with a single 10-
gigabit Ethernet network interface

Up to two times with MPIO and two
network interfaces.

Maximum client read/write
throughput, when served from the
HDD tier*

120/250 MB/sec

Maximum client read/write
throughput, when served from the
cloud tier*

11/41 MB/sec Read throughput depends on clients
generating and maintaining sufficient
I/O queue depth.

L IM IT IDEN T IF IER L IM IT C O M M EN T S

The volume is made available
within 2 minutes of the restore
operation, regardless of the
volume size.

The volume performance might
initially be slower than normal
as most of the data and
metadata still resides in the
cloud. Performance might
increase as data flows from the
cloud to the StorSimple device.

The total time to download
metadata depends on the
allocated volume size.
Metadata is automatically
brought into the device in the
background at the rate of 5
minutes per TB of allocated
volume data. This rate might be
affected by Internet bandwidth
to the cloud.

Unlike tiered volumes, if there
are locally pinned volumes, the
volume data is also
downloaded locally on the
device. The restore operation is
complete when all the volume
data has been brought to the
device.

The restore operations might
be long and the total time to
complete the restore will
depend on the size of the
provisioned local volume, your
Internet bandwidth, and the
existing data on the device.
Backup operations on the
locally pinned volume are
allowed while the restore
operation is in progress.

*Maximum throughput per I/O type was measured with 100 percent read and 100 percent write scenarios.

Actual throughput might be lower and depends on I/O mix and network conditions.

 Stream Analytics limits

L IM IT IDEN T IF IER L IM IT C O M M EN T S

Maximum number of streaming units
per subscription per region

500 To request an increase in streaming
units for your subscription beyond
500, contact Microsoft Support.

Maximum number of inputs per job 60 There's a hard limit of 60 inputs per
Azure Stream Analytics job.

Maximum number of outputs per job 60 There's a hard limit of 60 outputs per
Stream Analytics job.

Maximum number of functions per job 60 There's a hard limit of 60 functions per
Stream Analytics job.

Maximum number of streaming units
per job

192 There's a hard limit of 192 streaming
units per Stream Analytics job.

Maximum number of jobs per region 1,500 Each subscription can have up to
1,500 jobs per geographical region.

Reference data blob MB 5 GB Up to 5 GB when using 6 SUs or more.

Maximum number of characters in a
query

512000 There's a hard limit of 512k characters
in an Azure Stream Analytics job query.

 Virtual Machines limits
 Virtual Machines limits

RESO URC E L IM IT

Virtual machines per cloud service 50

Input endpoints per cloud service 150

 Virtual Machines limits - Azure Resource Manager

RESO URC E L IM IT

VMs per subscription 25,000 per region.

VM total cores per subscription 20 per region. Contact support to increase limit.

1

2

 Virtual machines created by using the classic deployment model instead of Azure Resource Manager are

automatically stored in a cloud service. You can add more virtual machines to that cloud service for load

balancing and availability.

1

 Input endpoints allow communications to a virtual machine from outside the virtual machine's cloud service.

Virtual machines in the same cloud service or virtual network can automatically communicate with each other.

2

The following limits apply when you use Azure Resource Manager and Azure resource groups.

1

1

https://support.microsoft.com/en-us
https://azure.microsoft.com/pricing/
https://azure.microsoft.com/pricing/

Azure Spot VM total cores per subscription 20 per region. Contact support to increase limit.

VM per series, such as Dv2 and F, cores per subscription 20 per region. Contact support to increase limit.

Availability sets per subscription 2,500 per region.

Virtual machines per availability set 200

Proximity placement groups per resource group 800

Certificates per availability set 199

Certificates per subscription Unlimited

RESO URC E L IM IT

NOTE

 Shared Image Gallery limits

 Virtual machine scale sets limits

RESO URC E L IM IT

Maximum number of VMs in a scale set 1,000

Maximum number of VMs based on a custom VM image in
a scale set

600

Maximum number of scale sets in a region 2,500

1

1

2

3

 Default limits vary by offer category type, such as Free Trial and Pay-As-You-Go, and by series, such as Dv2, F,

and G. For example, the default for Enterprise Agreement subscriptions is 350. For security, subscriptions default

to 20 cores to prevent large core deployments. If you need more cores, submit a support ticket.

1

 Properties such as SSH public keys are also pushed as certificates and count towards this limit. To bypass this

limit, use the Azure Key Vault extension for Windows or the Azure Key Vault extension for Linux to install

certificates.

2

 With Azure Resource Manager, certificates are stored in the Azure Key Vault. The number of certificates is

unlimited for a subscription. There's a 1-MB limit of certificates per deployment, which consists of either a single

VM or an availability set.

3

Virtual machine cores have a regional total limit. They also have a limit for regional per-size series, such as Dv2 and F.

These limits are separately enforced. For example, consider a subscription with a US East total VM core limit of 30, an A

series core limit of 30, and a D series core limit of 30. This subscription can deploy 30 A1 VMs, or 30 D1 VMs, or a

combination of the two not to exceed a total of 30 cores. An example of a combination is 10 A1 VMs and 20 D1 VMs.

There are limits, per subscription, for deploying resources using Shared Image Galleries:

100 shared image galleries, per subscription, per region

1,000 image definitions, per subscription, per region

10,000 image versions, per subscription, per region

https://azure.microsoft.com/pricing/
https://azure.microsoft.com/pricing/
https://docs.microsoft.com/en-us/azure/virtual-machines/availability-set-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/proximity-placement-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-windows
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/key-vault-linux

 See also
Understand Azure limits and increases

Virtual machine and cloud service sizes for Azure

Sizes for Azure Cloud Services

Naming rules and restrictions for Azure resources

https://azure.microsoft.com/blog/2014/06/04/azure-limits-quotas-increase-requests/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resource-name-rules

	Cover Page
	Overview
	Developer guide
	SDKs and tools

	Quickstart
	Web Apps
	Virtual machines
	Linux
	Windows

	Serverless
	Microservices
	Service Fabric
	Container Service
	Azure Spring Cloud

	Tutorials
	Create and deploy a web app
	.NET with SQL DB
	Node.js with Mongo DB
	PHP with MySQL
	Java with MySQL

	Deploy complex VM templates
	Linux
	Windows

	Create an Azure connected function
	Docker deploy web app on Linux

	Samples
	Azure CLI
	Web Apps
	Linux VM
	Windows VM

	Azure PowerShell
	Web Apps
	Linux VM
	Windows VM

	Concepts
	Billing and subscriptions
	Hosting comparisons
	What is App Service?
	Virtual machines
	Linux VMs
	Windows VMs

	Service Fabric overview

	How to guides
	Plan
	Web application architectures
	VM architectures
	Connect to on-premises networks
	Microservices patterns/scenarios

	Develop
	Linux VM
	Windows VM
	Serverless apps
	Microservices cluster

	Deploy
	Web and mobile apps from source control
	Microservices locally
	Linux VM
	Windows VM

	Store data
	Blobs
	File shares
	Key-value pairs
	JSON documents
	Relational tables
	Message queues

	Scale
	Web and mobile apps
	Virtual machines
	Microservice apps

	Secure
	Web and mobile apps

	Backup
	Web and mobile apps
	Virtual machines

	Monitor
	Web and mobile apps
	Windows VM
	Microservices
	Billing alerts

	Automate
	Scale Linux VM
	Scale Windows VM

	Reference
	REST
	SDKs
	.NET
	Java
	Node.js
	PHP
	Python
	Ruby

	Command line interfaces
	Azure CLI
	Azure PowerShell

	Billing

	Resources
	Azure limits and quotas
	Azure regions
	Azure Roadmap
	Pricing calculator
	Samples
	Videos

