
InRule for Microsoft Dynamics 365

Deployment Guide

Document Updated against InRule v5.7.2

Document Updated against InRule for Microsoft Dynamics 365 Integration Framework v2.3.18

Document Updated against Microsoft Dynamics 365 v9.1 online, v9.0 on-prem

Solution Built against Microsoft .NET Framework v4.7.2

InRule does not upgrade this document after each Integration Framework release, please see release notes for

individual versions if the version that you are using does not match the versions listed above.

If you are working with earlier versions of any of the above products, the information in this document may not apply

to you. Please check to see if earlier documentation is available to cover your needs.

CONFIDENTIAL Any use, copying or disclosure by or to any other person than has downloaded a trial version of InRule or signed

an NDA is strictly prohibited. If you have received this document by any other means than a download or an email from an InRule

employee, please destroy it retaining no electronic or printed copies.

© Copyright 2021 InRule Technology, Inc.

Microsoft®, Microsoft Dynamics® and the Microsoft Dynamics Logo are registered trademarks of Microsoft Corporation.

All rights reserved. No parts of this work may be reproduced in any form or by any means – graphic, electronic, or mechanical,

including photocopying, recording, taping, or information storage and retrieval systems – without the written permission from InRule

Technologies, Inc.

InRule, InRule Technology, irAuthor, irVerify, irServer, irCatalog, irSDK and irX are registered trademarks of InRule Technology,

Inc. All other trademarks and trade names mentioned herein may be the trademarks of their respective owners and are hereby

acknowledged.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 2 of 130

Table of Contents

Table of Contents .. 2

1 Introducing InRule® for Microsoft Dynamics 365 .. 4

2 Understanding your options .. 5

2.1 Microsoft Dynamics 365 (Online) – InRule SaaS .. 5

2.2 Microsoft Dynamics 365 (Online) – Self-hosted in Microsoft Azure.. 6

2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS .. 7

2.4 Other Integration Scenarios .. 7

3 Performing the Installation: In Azure ... 8

3.1 An overview of the Components needed .. 8

3.2 Gathering prerequisites ... 9

3.3 Deploying and Configuring Components .. 13

3.3.1 Catalog App Service ... 13

3.3.2 Registering an Azure Active Directory Application (Optional) ... 15

3.3.3 Rule Execution App Service for Dynamics 365 .. 17

3.3.4 Upload License file .. 24

3.3.5 InRule Solution for Dynamics 365 ... 26

4 Performing the Installation: On-Premises ... 35

4.1 An overview of the Components needed .. 35

4.2 Gathering prerequisites ... 36

4.3 Deploying and Configuring Components .. 38

4.3.1 Setting Up an Application Pool in IIS .. 38

4.3.2 Setting Up the IIS Site for the Rule Execution Web Service ... 40

4.3.3 Deploy the Rule Execution Web Service .. 43

4.3.4 InRule Solution for Dynamics On-Prem Deployment .. 45

Appendix A: Additional Resources ... 50

InRule’s Support Website .. 50

InRule’s Support Team ... 50

InRule’s ROAD Team .. 50

Appendix B: Anatomy of a Request for Execution of Rules Diagram ... 51

Appendix C: irX General Integration Concepts ... 52

Appendix D: Accessing Dynamics 365 Directly from Rule Helper .. 53

Appendix E: Methods for Executing Rules from Dynamics 365 and Power Platform 61

1 CDS Events ... 64

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 3 of 130

2 Rules Engine Action .. 66

3 Run Rules Button .. 67

4 Workflow Activity ... 69

5 Form Events .. 70

6 JavaScript .. 74

7 Power Platform .. 75

Appendix F: Rules Configuration and Settings ... 84

Appendix G: Endpoint Override Configuration .. 97

Appendix H: Azure App Service Plan & Application Insights Configuration ... 100

Appendix I: InRule SaaS Portal Configuration .. 103

Appendix J: Dynamics 365 Tracing and InRule Event Logging .. 105

Appendix K: Activating Your License Keys ... 114

Appendix L: Redeploying and Upgrading Versions .. 117

Appendix M: Known Issues, Limitations and Troubleshooting ... 120

Connections .. 120

Updating Entity Status via Rules ... 120

On-Prem Execution Mode ... 120

1-Minute Timeout .. 120

2-Minute Timeout .. 120

S2S User Settings ... 121

Solution File Invalid Error .. 121

Missing Entity Privilege Error .. 121

User Principal Permission Error .. 121

Application Insights Location Error ... 122

Package Deployment Timeout .. 123

Using irX for Dynamics with Multi Factor Authentication (MFA) ... 123

Performance .. 124

Request and Response Message Size Limitations... 129

Miscellaneous Troubleshooting Items ... 129

Locate SAS Key in Azure Portal ... 129

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 4 of 130

1 Introducing InRule® for Microsoft Dynamics 365

InRule for Microsoft Dynamics 365 enables rich rule integration with Microsoft Dynamics 365 and the

Microsoft Power Platform. The end-to-end solution is comprised of:

• irAuthor® with irX for Dynamics 365 – extension to irAuthor, InRule’s premium desktop rule

authoring tool

• InRule Solution for Dynamics 365 – available from the Microsoft AppSource

• Rule Execution Services for Dynamics 365 - InRule SaaS, self-hosted in Azure, or other

This guide focuses on the deployment of the Rule Execution Services for Dynamics and corresponding

InRule Dynamics Solution to your environment. The InRule Dynamics Solution may be deployed directly

from the Microsoft AppSource (recommended in most cases) or from the Integration Framework zip file

downloaded from the InRule Support Site. This guide details the primary deployment paths for cloud-

based integration in Microsoft Azure® as well as on-premises Dynamics.

Before beginning this guide, you may first want to familiarize yourself with the irX for Microsoft Dynamics

365 product by reading the irX for Microsoft Dynamics 365 Help Documentation. This irAuthor extension

will allow you to author rules against Dynamics entities and become familiar with the types of rules-driven

processes that can be implemented. After testing locally from your desktop using irVerify with either your

own ruleapp or the DynamicsRules sample ruleapp, the rules will be ready for execution from Dynamics

or Power Platform. At this point, this guide will become highly relevant for deploying the InRule solution

and services to establish the selected integration patterns.

There are several options available when it comes to choosing how to integrate InRule with Dynamics

365 or Power Platform. Beyond Dynamics, virtually any Power App (Model-driven & Canvas) or Power

Automate Flow that leverages the Common Data Service can benefit from event-driven or on-demand

rule execution. With InRule and Power Platform, business users have unprecedented flexibility to

automate end-to-end business processes such as claims processing, product eligibility, CPQ pricing

models and countless other scenarios. This document provides an addendum, Appendix E: Methods for

Executing Rules from Dynamics 365 and Power Platform that discusses the different options available for

running rules beyond what the primary deployment steps cover. It is a good next step to review for

implementers who are looking for advanced options to address their specific decision automation

concerns.

Additional material is available on the Downloads section of our support website. Please see the

Additional Resources section of this document for support website detail.

https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview
https://support.inrule.com/hc/en-us/categories/360005068551-Downloads
https://inruledynamicsappsource.blob.core.windows.net/documents/irXForMicrosoftDynamicsCRMHelp.pdf
https://inruledynamicsappsource.blob.core.windows.net/documents/DynamicsRules.ruleappx

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 5 of 130

2 Understanding your options

This guide is oriented towards deploying InRule as a cloud-based solution in Microsoft Azure to

interoperate with Microsoft Dynamics 365 Online. Alternatively, Dynamics 365 on-premises version 9.0

and up is still supported via local installation of the InRule services.

The following sections describe which deployment scenario will be the most applicable depending on your

needs:

• 2.1 Microsoft Dynamics 365 (Online) – InRule SaaS-hosted Rule Execution Service

• 2.2 Microsoft Dynamics 365 (Online) – Self-hosted Rule Execution Service in Microsoft Azure

• 2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS Rule Execution Service

• 2.4 Other Integration Scenarios

The primary consideration for InRule SaaS vs self-hosted Azure generally depends on if your

organization is already setup to manage an Azure subscription and services.

• If your organization does not have an Azure subscription, this can be compelling rationale to

go with InRule SaaS and forgo the overhead of Azure management and deployment.

• If your organization has an Azure subscription, it does not exclude you from going with InRule

SaaS, but it may indicate that your IT department has requirements or preferences for self-

managed Azure solutions.

Either way, this guide will provide you with the information to help determine which InRule configuration

will best suit your needs, including Government Cloud and other considerations.

2.1 Microsoft Dynamics 365 (Online) – InRule SaaS

InRule for Dynamics 365 is now available via InRule SaaS, in which case many of the deployment steps

in this document are not applicable and will be managed for you. This is the most stream-lined

deployment available to both qualified Trial users and licensed customers.

1. Important: If you are new to InRule and do not have an InRule SaaS subscription, you can

request a free trial here and specify that you would like to integrate it with your Dynamics 365

instance.

With InRule SaaS, the deployment steps are significantly reduced by eliminating the need to install the

Azure App Services. This narrows the deployment focus down to irAuthor with irX for Dynamics 365 and

the InRule Dynamics Solution from the Microsoft AppSource. The main deployment steps in this scenario

are summarized as follows:

Deployment Step Installation Type

1. irAuthor with irX for Dynamics 365 InRule installer via the InRule Support Site

2. Rule Execution Services for Dynamics 365 *managed by InRule SaaS Support

3. InRule Solution for Dynamics 365 Microsoft AppSource (or script-based)

https://inrule.com/platform-overview/inrule-deployment-options/saas-our-cloud/
https://inrule.com/inrule-trial-dynamics-appsource/
https://support.inrule.com/
mailto:support@inrule.com
https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 6 of 130

All information needed set up the connectivity between Rule Execution Services hosted by InRule SaaS

and your organization’s Dynamics instance can be managed through the InRule SaaS Portal. The

following pieces of information are what will be managed through the Portal. InRule SaaS support will

walk through the specifics, but the general requirements are provided here for reference. More

information can be found in Appendix I: InRule SaaS Portal Configuration.

Entered by users in the SaaS Portal – configuration information for the Rule Execution App Services

• The Organization URL for Dynamics.

• Service account credentials for Dynamics – used to allow the InRule SaaS-hosted Rule Execution

Service to connect to Dynamics. Alternatively, InRule can be granted consent as a Trusted App to

your Azure AD (InRule Support to provide specific instructions).

Provided to users in the SaaS Portal – configuration information for the InRule Dynamics Solution:

• SAS Key - Azure Relay key that the Rule Execution App Service is configured to listen on

• Azure SB Namespace

The net effect of an InRule SaaS deployment is that after the above pre-requisites are met, you get to

skip ahead to Section 3 Configuring the InRule Solution for Dynamics 365. Beyond this initial setup the

remainder of the guide will be beneficial for detailing advanced rule execution methods and

troubleshooting.

2.2 Microsoft Dynamics 365 (Online) – Self-hosted in Microsoft Azure

If you are using Microsoft Dynamics 365 (Online), you will be hosting InRule using a Platform-As-A-

Service (PaaS) model on Microsoft Azure. When setting up the InRule App Services, ensure that all

Azure components and the Dynamics installation are in the same geographical location to reduce timeout

exceptions due to network latency.

This document discusses deploying the following four components:

1. Catalog App Service and Azure SQL Database

2. Azure Relay

3. Rule Execution App Service for Dynamics 365

4. InRule Solution for Dynamics 365

Section 3 of this document, Performing the Installation: In Azure, provides a complete walkthrough.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 7 of 130

InRule for Dynamics Deployment

(Solution, Plugin, Endpoint, Steps)

Azure Service Bus

Rule Execution Azure App Service for Dynamics

Catalog App Service and Azure SQL Database

Microsoft Dynamics 365 (Online) Instance

Microsoft Dynamics 365 (Online) – PaaS with Microsoft Azure

Microsoft Azure Subscription

2.3 Microsoft Dynamics 365 (On Premises) – Local IIS or Azure IaaS

If you are using Microsoft Dynamics 365 (On premises) or plan to deploy to the cloud using an

Infrastructure-As-A-Service (IaaS) model, you will be hosting our integration framework via Internet

Information Services (IIS) on a Window Server OS. This document discusses the following 3 components:

1. Catalog Web Service and Database

2. Rule Execution Web Service for Dynamics 365 On-Premises

3. InRule Solution for Dynamics 365 On-Premises

Section 4 of this document, Performing the Installation: On-Premises, provides a complete walkthrough.

2.4 Other Integration Scenarios

You are welcome to look at alternate integration options. Here are some possible integration options that

you may pursue:

• Integration with Microsoft Dynamics 365 (Online) without the use of an Azure Relay

• Integration with Microsoft Dynamics 365 (Online) utilizing AWS VMs, Azure VMs, or other virtual

machine hosting

• Integration with Microsoft Dynamics 365 (On premises) against Azure PaaS hosted InRule

components. If this is your preferred approach, an on-premises Dynamics installation will work off

the shelf with the InRule installation instructions in the “Performing the Installation: In Azure”

section of this document

While all of these are possible routes, they will not work with the Integration Framework we provide off the

shelf. As such, we strongly encourage that you follow the model outlined in this guide to start with, until

you’ve acquired a more advanced understanding of how all of the pieces of the InRule® for Microsoft

Dynamics 365 Integration Framework work together to provide a solution.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 8 of 130

3 Performing the Installation: In Azure

This section discusses the steps needed to integrate InRule with Microsoft’s online version of Microsoft

Dynamics 365. Using this scenario InRule components are hosted on Microsoft Azure.

3.1 An overview of the Components needed

This guide will provide the instructions for setting up all of the components below:

Dynamics CRM
Online

Server(s)

Rule Execution Azure
App Service for

Dynamics

Azure Service
Bus

Custom
Plugin or
Activity

InRule Rule Catalog as
Azure App Service +

SQL Azure

CRM Service
Endpoint

SQL Azure
Catalog DBRule Authoring in

irAuthor using InRule for
Dynamics CRM

HTTPS

HTTPS HTTPS

HTTPS

HTTPS

SSL

Web Browser
 Org

 Service
 Execute or
CRUD event

 AJAX HTTPS
POST for Rules

 Full Page
HTTPS GET/POST

Batch Processor
(or other clients)

HTTPS POST
for Rules

Catalog App Service and Azure SQL Database

A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution App

Service. This Catalog Service will be hosted as an Azure App Service. The back end of the Catalog

Service utilizes an Azure SQL Database for retrieval and persistence of Rule Applications.

Azure Relay

Dynamics 365 is designed to communicate to third party services through an Azure Relay. Utilizing an

Azure Relay is the preferred communication mechanism allowing for security and quick horizontal scaling

of services. The Rule Execution App Service connects to the Relay and registers itself as a Relay

listener. When Dynamics 365 makes a request to the Relay, the Relay relays that message to a listener

and allows for two-way communications for as long as the connection is open.

The InRule Rule Execution App Service leverages a specific kind of Service Bus called Azure Relay.

Within the context of the InRule architecture, the Relay performs the same function as a “traditional”

Service Bus but includes some extra functionality specific to WCF relays. For the sake of consistency with

Microsoft’s Dynamics documentation, we will it as a Relay throughout this document. However, be aware

that they are different resource types within Azure itself.

Rule Execution App Service for Dynamics 365

The Rule Execution App Service is responsible for loading Dynamics entity data, executing rules against

loaded data, and responding to Dynamics with rule execution results.

InRule Solution for Dynamics 365

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 9 of 130

The InRule Solution contains a custom plugin, an endpoint, client resources, a configuration form, and a

security role called InRule Integration Administrator. It must be configured to communicate with the Azure

Relay.

3.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in

the next section.

.NET Framework

The InRule for Microsoft Dynamics 365 integration framework is built against Microsoft .NET Framework

v.4.7.2. For on-prem installations of the framework, ensure you have this .NET version installed.

Optional Resource Files

The following file can be downloaded from our support website’s downloads section:

• InRule for Microsoft Dynamics 365 Integration Framework.zip

This zip file contains several resources that can be used in advanced deployments. A typical installation

does not require the use of these resources, as all of the required deployment assets are available online.

However, certain deployment scenarios do require the assets contained in this zip file – such as:

Deploying the InRule Solution via PowerShell.

After you have downloaded this file, but before extracting, make sure that you go to the file properties for

the zip and select Unblock. If the zip file is not unblocked before extracting, the deployment scripts will

not be able to execute successfully.

After unblocking the zip file, extract the contents to a working folder. When you are finished, you should

have a directory structure that looks like this:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 10 of
130

Rule Authoring Environment

A Rule Authoring Environment is used to upload a Rule Application to your catalog app service. A Rule

Authoring Environment is a machine or virtual machine where irAuthor has been installed with the irX for

Microsoft Dynamics 365 extension. If you followed the instructions outlined in irX for Microsoft Dynamics

365 Help Documentation then you should already have a rule-authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to

be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX

for Microsoft Dynamics 365 license for the duration of this process. If you’re a system administrator who

does not intend to perform rule authoring duties after the deployment is up and running, you can either

chose to borrow an environment from someone who will use a rule authoring environment, or you will

want to be sure to deactivate your license when you’re finished with your deployment responsibilities.

Administrative Accounts

Dynamics 365 Organization Service URI: You will want to have the root URL of the organization web

service exposed by your Dynamics 365 instance. The server URL is usually in the format of

“https://organization-name.crm.dynamics.com”

│ InRule For Microsoft Dynamics CRM Integration Framework.zip

│

└───InRule For Microsoft Dynamics CRM Integration Framework

 │ readme.txt

 │

 ├───DynamicsDeployment

 │ │ Deploy-CrmPackage.ps1

 │ │ ...(many other supporting files)

 │ │

 │ ├───PkgFolder

 │ └─ ...(many other supporting files)

 │

 ├───RuleApplications

 │ DynamicsRules.ruleappx

 |

 ├───RuleExecutionAzureService

 │ Register-AzureApp.ps1

 │ InRule.Dynamics.Service.json

 │ InRule.Dynamics.Service.parameters.json

 │ InRule.Crm.WebJob.zip

 |

 ├───RuleExecutionOnPremService

 │ DeployScript.ps1

 │ InRule.Crm.WebService.deploy-readme.txt

 │ InRule.Crm.WebService.SetParameters.xml

 | ...(many other supporting files)

 │

 └───RuleHelperDeployment

 │ InRule.Crm.RuleHelper.dll

 └─ ...(many other supporting files)

https://organization-name.crm.dynamics.com/

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 11 of
130

Dynamics Service Account Login and Password: You will want to have a username and account

created specifically for use by the InRule for Microsoft Dynamics 365 Framework App Service. If allowed,

this account should have the ‘System Administrator’ role as it is continually updated with permission to

new entities when they are created. Otherwise, this user can have another security role such as the

‘InRule Integration Administrator’ which is included in the InRule solution. If an alternate role is used, it is

important to note that its permissions are not dynamically updated and will have to be done manually.

This user account will not be needed if you decide to create an S2S user account outlines in Section

3.3.2: Registering an Azure Active Directory Application (Optional) of this document.

Administrative Password to use for SQL Server: You should decide what username and password

you want to use for administrative privileges on the SQL Server. You will use this password when

following the referenced catalog setup guide.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to

connect to the SQL Server Database. In a more secure environment, a separate SQL User should be

created that only has access to the single database needed by the catalog. It is up to the reader of this

document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and

password you want to use for administrative privileges within irCatalog. You will use this password when

following the referenced catalog setup guide and will need to provide it when deploying the Execution

Service.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the

reader to go through the process of utilizing the Catalog Manager to change these credentials to be more

secure.

Administrative Login and Password for Microsoft Azure: You must have a username and password

that will be used to perform administrative tasks within Microsoft Azure.

InRule Azure License File

You will need a special .xml file used for licensing InRule in an Azure cloud environment. This may have

been provided with your InRule Welcome package. You can contact support@InRule.com if you have

questions about where to get your license file.

Deciding resource names

The following worksheet can be used to decide what to name Azure resources as you go through this

Guide.

Many of these resources must have names that are unique in the world; they are hosted on Microsoft

Azure and are given domain names that match. We recommend creating a “Base” name that does not

exceed 14 characters. We recommend encoding an organization name, an application name, and an

environment name into this ‘Base’ name. For Example:

{ApplicationAbbreviation}{OrganizationAbreviation}{EnvironmentAbreviation}

MyAppInRuleDev

12345678901234

mailto:support@InRule.com

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 12 of
130

You can choose to follow this convention or invent your own.

Resource and Description

Example Name

Base Name

MyAppInRuleDev

Azure Resource Group Name

MyAppInRuleDevResourceGroup

Azure SQL Server Name
must be lower case

myappinruledevsqlserver

Catalog Database Name

MyAppInRuleDevCatalogDb

Catalog App Service Name

MyAppInRuleDevCatalogService

Relay Namespace

MyAppInRuleDevRelay

Rule Execution App Service Plan Name

MyAppInRuleDevRuleExecutionAppServicePlan

Rule Execution App Service Name

MyAppInRuleDevRuleExecutionAppService

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 13 of
130

3.3 Deploying and Configuring Components

3.3.1 Catalog App Service

Installing the Catalog App Service

The first major objective for a Dynamics 365 implementation is the deployment of a Catalog service to

Microsoft Azure.

During this process, you will be creating:

• An Azure SQL Server

• An Azure SQL Server Database

• An Azure App Service to host the InRule Catalog in the Azure cloud

When you are finished, you should be able to connect to this app service from a locally installed copy of

irAuthor, and successfully save a Rule App to the catalog.

The full process of installing the Catalog in Microsoft Azure is outlined in the documentation found on the

InRule AzureAppServices GitHub, which can be found here:

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

Please ensure you are installing the irCatalog service, not the irServer Rule Execution Service, which is

found on the same page and is not compatible with Dynamics 365 integration.

Testing the Catalog App Service by uploading the sample Rule App

At the conclusion of the installation process outlined above you should have a Catalog URI, Username,

and Password to use to connect to the catalog service.

To begin, if you have not already done so, download the DynamicsRules sample ruleapp. Then utilize

irAuthor to upload the ruleapp to your InRule Catalog.

1: Navigate to the file in your file explorer and double click on it, this will open the

file with irAuthor.

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager
https://inruledynamicsappsource.blob.core.windows.net/documents/DynamicsRules.ruleappx

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 14 of
130

2: Save the Rule Application by chosing File → Save As →Save to Catalog

3: Choose Add Catalog, enter connection information for the Catalog Server that

you deployed, and then select Use This.

4: Save with the name DynamicsRules and the Label LIVE

Save the Rule Application to the Catalog using the name of DynamicsRules. We must also be sure to

label this Rule Application with the text ‘LIVE’, as configured in the app service configuration. Be sure not

to forget this label, it is a small but important step!

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 15 of
130

At this point, if you can click OK without an error, we have successfully saved the DynamicsRules Rule

App to the new Catalog that you have created. We can now continue by creating the Relay Namespace.

If you have any trouble getting to this point, it is advised that you resolve any issues with the Catalog

before attempting to continue.

3.3.2 Registering an Azure Active Directory Application (Optional)

If you are using InRule SaaS, you do not need to perform any of the steps in this section, as an Azure AD

app has already been created and configured for you. If you are self-hosting, then this section is only

necessary if you intend to leverage a server-to-server (S2S) connection between the rule execution

service and your Dynamics environment. You can also follow the directions here if you are using OAuth

authentication, and do not want to use the Microsoft default app and want to create your own instead.

Server-to-server authentication uses a Dynamics Application User associated to an Azure AD Application

for authentication instead of a named user account. This approach can be beneficial as it allows

Dynamics integration with InRule without having to purchase an additional full user. Additionally, this will

save you from needing to store Dynamics user passwords in Azure. For more information about server-to-

server authentication, please refer to the following link: https://docs.microsoft.com/en-

us/dynamics365/customer-engagement/developer/build-web-applications-server-server-s2s-

authentication

Be sure to reference Appendix M: Known Issues, Limitations and Troubleshooting of this document for

considerations regarding the user account and permissions created with this approach.

Registering an Azure AD application is fully automated in the Register-AzureApp.ps1 PowerShell script

included in the RuleExecutionAzureService folder within the InRule for Microsoft Dynamics 365

Integration Framework.zip file downloaded in Section 3.2: Optional Resource Files.

This script requires the Azure AD PowerShell module to be installed on the computer before running the

script. If this module is not yet installed, you can install it by opening an admin PowerShell window and

executing ‘Install-Module AzureAD`.

1: Navigate to the \RuleExecutionAzureService directory:

2: Execute Register-AzureApp.ps1

The script accepts the parameters “Username” and “Password,” which need to be credentials for an

Azure Active Directory Global Administrator. Alternatively, you can run the script without passing in any

credentials, and the script with prompt you with an interactive login.

By default, the application is registered in the primary directory the user account belongs to. If the app

needs to be registered in a different Azure Active Directory tenant, you can pass in the tenant ID with the

optional “TenantId” parameter.

Without a TenantId passed:

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/build-web-applications-server-server-s2s-authentication
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/build-web-applications-server-server-s2s-authentication
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/build-web-applications-server-server-s2s-authentication

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 16 of
130

With an example TenantId passed:

Observe that no errors occur while the application registration script is running.

When finished, the script will output three values: The application name, application ID, and the secret

key. Save these 3 values, particularly the secret key, as there will be no way to retrieve this later. The

application ID will be needed when deploying the Rule Execution package, and both the Application ID

and Key will be needed when deploying the Rule Execution App Service.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 17 of
130

3.3.3 Rule Execution App Service for Dynamics 365

Next, we will deploy the InRule Rule Execution service as an Azure WebJob running on an App Service,

along with all its Azure resource dependencies. To make this process easier, we’ll be using an Azure

Resource Manager (ARM) template, which allows us to deploy and configure all the Azure resources the

Rule Execution Service relies on.

There are a number of methods for deploying an ARM template; this documentation will detail two: via

Azure CLI and via PowerShell.

Alternatively, while this document does not provide a walkthrough of it, the ARM template provided is

configured to work with Azure Portal deployment. For an overview of how to leverage ARM deployment

through the Azure Portal, reference Microsoft’s documentation: Deploy resources with ARM templates

and Azure portal and navigate to the section titled “Deploy resources from custom template”.

You can navigate directly to the Azure Portal page for deploying an ARM template at this link: Custom

deployment - Microsoft Azure.

1: Locate azuredeploy.parameters.json

Before deploying the ARM template, we need to define certain parameters.

The required azuredeploy.json and azuredeploy.parameters.json files can be downloaded here -

AzureAppServices/Dynamics at master · InRule/AzureAppServices · GitHub.

Alternatively, they can be located within the InRule for Microsoft Dynamics 365 Integration Framework.zip

file downloaded in Section 3.2: Optional Resource Files.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://portal.azure.com/#create/Microsoft.Template
https://portal.azure.com/#create/Microsoft.Template
https://github.com/InRule/AzureAppServices/tree/master/Dynamics

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 18 of
130

2: Update parameters

Open the file with your text editor of choice and edit the parameters listed below

1. appServiceName Provide a name for the Azure App Service that the Rule Execution Service will run on.

2. relayName Provide a name for the Azure WCF Relay (aka Azure Relay). This is NOT the desired
namespace URL for the Relay, it should be the desired name of the actual Azure resource.

3. catalogUri The URI for the Catalog Service that will be used
Example:
https://myappinruledevcatalogservice.cloudapp.net/service.svc

4. catalogUser Username for Catalog Service, default value is ‘admin’.

5. catalogPassword Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

https://myappinruledevcatalogservice.cloudapp.net/service.svc

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 19 of
130

6. crmConnectionString Provide a Dynamics connection string of type OAuth to use a regular named account and
type ClientSecret for S2S authentication. Information on connection string formatting can be
found here:

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-
tooling/use-connection-strings-xrm-tooling-connect

For OAuth authentication, you can use the default app provided by Microsoft instead of
creating and configuring your own application. You can find more about this, as well as the
transition from WS-Trust (Office 365) to OAuth authentication here:
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-
office365-deprecation

If using a named account, it should have the ‘System Administrator’ role or the ‘InRule
Integration Administrator’ role. It is important to note that the ‘InRule Integration
Administrator’ role is not updated when new entities are created. Reference Appendix M:
Known Issues, Limitations and Troubleshooting for more information.

Important: Some customers have reported needing to provide a username in the
format “domain\username” in order to successfully connect using IFD.

7. appServicePlanName

(If you wish to override the default
value)

This is an optional parameter, that, if left blank, will result in the ARM Template creating an
AppServicePlan for you, using your defined appServiceName and appending “Plan” to the
end. For example, defining your appServiceName as “ExampleAppService” would yield the
following automatically generated App Service Plan name: “ExampleAppServicePlan.”

This parameter is intended to be used if you wish to either have a new AppServicePlan be
created using a different name than the one outlined above, or for defining the name of a
pre-existing App Service Plan that you would like to create your resources under. In the
latter case, additional steps are required. For a more comprehensive guide on how to
deploy your resources under an existing AppServicePlan, refer to Appendix H: Azure App
Service Plan Configuration

8. createOrUpdateAppServicePlan By default, this value is set to true, and an App Service Plan will be created by the ARM
template or updated if it already exists using the default naming convention. If you wish to
deploy your app service to an already existing App Service Plan rather than create a new
one, set this value to false and reference Appendix H: Azure App Service Plan and
Application Insights Configuration.

9. inRuleVersion (To deploy most
modern version, leave as default
value)

This parameter allows the user to configure what version of the InRule Rule Execution
Service they wish to deploy. By default, this parameter will be set to the most modern
version.

10. appInsightsInstrumentationKey

(If you wish to use an existing AI
resource)

Provide an Instrumentation Key if you have an existing App Insights resource you'd like to
use for logging and telemetry. If you are configuring this in a nonstandard azure
environment (such as Azure Government), please additionally provide an App Insights
Connection String. Otherwise, leave this value blank and provide a value for the
'appInsightsResourceName' parameter, which will create the resource for you. For more
information on the logging view Rule Execution Service Event Log.

11. appInsightsConnectionString

(If you wish to use an existing AI
resource in a non-standard Azure
environment)

Only override the default value here if you have an existing App Insights resource you'd like
to use, AND you need to use a non-standard connection string. If you need to supply your
own connection string, be sure to set that value here, as well as providing your
instrumentation key in the appInsightsInstrumentationKey parameter. If you want this
template to manage the App Insights resource for you, or only need to provide an
instrumentation key, leave this value as the default and provide values for
appInsightsResourceName or appInsightsInstrumentationKey instead.

Additionally, for any consideration about using app insights or setting it up in a non-standard
Azure environment view Appendix I: Azure App Insights Configuration

12. appInsightsResourceName

(If you wish to create a new AI
resource)

If you want to use Application Insights (AI) as a log sink in addition to the app service
logging already enabled, but do not already have an Insights resource that you want to use,
specify a name for a new resource here. Specifying a value for this parameter will create a
new Application insights resource with the given name and populate the instrumentation key
app setting on the app service with the key from this new resource. If you provide a value
for this parameter, do not provide a value for appInsightsInstrumentationKey. If you

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation
https://docs.microsoft.com/en-us/powerapps/developer/data-platform/authenticate-office365-deprecation

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 20 of
130

receive an error about the location when deploying the template, refer to Application
Insights Location Error

Once you’ve finished configuring your parameters, save the completed parameters file and keep a spare

copy on hand for future upgrades or automation.

3: Option 1: Deploy ARM Template with Azure CLI

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The

following will detail how to use the Azure CLI to deploy the ARM template (Note, this section assumes

Azure CLI has already been installed):

3.1 Run Command Prompt or Powershell

3.2 Navigate to the RuleExecutionAzureService folder

3.3 Enter “az login” to login into Azure

3.4 Enter your Azure admin credentials to login when prompted in the new

browser window opened

3.5 Select the appropriate subscription

If your Azure account has access to multiple subscriptions, you will need to set your active

subscription to where you create your Azure resources:

3.6 Create Resource group

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 21 of
130

If you have not created a resource group yet, you will need to create one. You will need to define a

name and a geographic location for where to host the resource. This example uses Central US:

3.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

If the template deploys successfully, you will see a result that looks similar to this:

The value that is output is your Azure Relay key, which is a value you will need to configure your

Dynamics instance in a later step.

4: Option 2: Deploy ARM Template with Powershell

(If you have already deployed the ARM template via Azure CLI in the section above, this section is not

necessary)

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The

following will detail how to use Powershell to deploy the ARM template (Note, this section assumes Azure

PowerShell has already been installed):

4.1 Run Powershell

4.2 Navigate to the RuleExecutionAzureService folder

4.3 Enter “Connect-AzAccount” to login into Azure

4.4 Enter your Azure admin credentials to login when prompted in the new

browser window opened

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 22 of
130

4.5 Select the appropriate subscription

Upon logging in, your default subscription information will be displayed:

If this is not the subscription you want to deploy to, you can use the “Select-AzureRmSubscription”

cmdlet to change the targeted subscription. Just replace “SubscriptionNameHere” with the name of

the desired subscription:

4.6 Create Resource Group

If you have not created a resource group yet, you will need to create one. You will need to define a

name and a geographic location for where to host the resource. This example uses Central US:

4.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

If the deployment is successful, you should see an output similar to this:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 23 of
130

Note the value of “relayKey” underneath the “Outputs” heading. This value is your Azure Relay key

and will be needed when configuring your Dynamics instance in later steps.

5: Verify Setup

Navigate to the Azure portal and locate the deployed App Service

Click on the app service, and on the nav-bar that appears to the left of the resource overview, select

WebJobs

Ensure the InRule.Crm.WebJob is present and its “Status” is set to “Running”

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 24 of
130

3.3.4 Upload License file
Regardless of how you choose to deploy the ARM template, you’ll need to upload a license file to the web

app service in order for both the catalog service and the rule execution app service to properly function.

The simplest way to upload the license file is via the Azure App Service Editor. Alternatively, you can

deploy the license file via FTP.

Azure App Service Editor

To upload the InRule license file to your execution service, navigate to the Azure portal and your Rule

Execution Service. On the left-hand nav-bar, scroll down until you find the App Service Editor option,

under the Development Tools header:

On the resulting page, press “Go”

From here, place your cursor underneath the “Web.config” file on the left-hand side and right-click, then

select Upload File:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 25 of
130

Find your InRuleLicense.xml file wherever you have it stored, and select Open to finish:

With that, your license file should be uploaded and usable by your Rule Execution Service.

FTP
This example leverages Azure CLI in addition to Powershell commands. If you intend to use this

method, please run the CLI from Powershell.

Alternative approaches using Powershell only should be possible if desired but are not detailed in

this document.

First, retrieve the FTP deployment profile (url and credentials) with the az webapp deployment list-

publishing-profiles command and put the values into a variable:

Example: az webapp deployment list-publishing-profiles --name contoso-execution-
prod-wa --resource-group inrule-prod-rg --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

az webapp deployment list-publishing-profiles --name WEB_APP_NAME --resource-group
RESOURCE_GROUP_NAME --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

Then, upload the license file using those retrieved values:

Example:
$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/InRuleLicense.xml");$client.UploadFile($uri,

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles
https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 26 of
130

"$pwd\InRuleLicense.xml");

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/InRuleLicense.xml");$client.UploadFile($uri,
"LICENSE_FILE_ABSOLUTE_PATH")

3.3.5 InRule Solution for Dynamics 365

At this point, all of the Azure Requirements are met. The Azure Relay should be listening for incoming

communication from Dynamics. We must now setup Dynamics, which can be done with either an

AppSource Deployment or a PowerShell Deployment. If trying to deploy a previous version of the

Dynamics solution, the PowerShell Deployment must be used.

2. AppSource Deployment -- You can install the InRule Solution through Microsoft AppSource.

The InRule listing can be found here in the Microsoft AppSource. Once the solution is deployed,

you can proceed to Configuring the InRule Solution in Dynamics

3. PowerShell Deployment -- You can follow the guide below to deploy the Dynamics package via

PowerShell script. This is required if deploying a previous version of the Dynamics solution and

relies on the resources from the Integration Framework zip file outlined in the section Optional

Resource Files

4. Important: You only need to deploy the InRule Solution by one of the two above methods. Doing

both is unnecessary.

5. Important: Only deploy the solution using one of the two above methods. Do not manually import

included solution files.

1: Navigate to the ‘\DynamicsDeployment’ directory:

2: Execute Deploy-CrmPackage.ps1

Deploy-CrmPackage.ps1

If you are using S2S authentication in the execution service, you will need to pass in the Azure Active

Directory application ID as the “AzureAppId” parameter to the Deploy-CrmPackage.ps1 script. This is the

application ID that was output in Section 3.3.2, and will be used to create a new Application User in

Dynamics. If you were not involved in registering your Azure Active Directory application, your Azure

administrator should be able to provide you with this ID. If you are using connection-string based

authentication in the execution service, you do not need to provide this parameter.

https://appsource.microsoft.com/en-us/product/dynamics-365/inruletechnology-1043512.inrule-dynamics?tab=Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 27 of
130

Additionally, the script supports 2 other parameters: “SbNamespaceAddress” and “SasKey”. These

parameters allow you to pass in the fully qualified Relay Namespace Address

(e.g.: https://<<RelayNamespace>>.servicebus.windows.net/<<SB Relay Path>>) and Relay Key for the

Relay your Rule Execution App Service is listening on and will allow the script to auto-configure your

Dynamics instance to point at that Relay. These parameters operate independently of the “AzureAppId”

parameter; they may be alongside it or on their own. However, if you opt to provide a value for either

“SbNamespaceAddress” or “SasKey,” you must provide a value for the other as well.

If you choose not to provide the “SbNamespaceAddress” and “SasKey” parameters, you will receive a

notification (shown below) after the script finishes executing reminding you that you need to manually

configure the SAS Namespace and SAS Key as outlined in Step 4 of this section.

3: Provide Dynamics 365 Service Credentials

By default, the script will display an interactive login window to connect to Dynamics. Please be sure to

check the ‘Display list of available organizations’ to make sure that you select the correct instance of

Dynamics to install to!

Alternatively, the Deploy-CrmPackage.ps1 script also accepts a Dynamics Connection String:

.\Deploy-CrmPackage.ps1 -CrmConnectionString

'AuthType=Office365;Url=https://{DYNAMICSURL}.crm.dynamics.com/;Username={DYNAMICSUSERNAME};Pa

ssword={DYNAMICSPASSWORD}'

Observe that no errors occur while the Deploy Script is running.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 28 of
130

1. Important: This deployment can take a long time to complete. In most cases it takes around 20

minutes.

4: Configure the InRule Solution in Dynamics

Next, we need to configure the Dynamics Solution that has been deployed to point to the Rule Execution

Service that is already available on Azure. We will need to have the Relay Namespace and the Relay Key

(SAS Key) ready for this step. You can find more information about these settings in the Rule Execution

App Service for Dynamics 365 section.

Navigate to the Advanced Settings for you organization, then the Rules Configuration page under the

InRule group:

You will need to define values in the following fields.

Configuration
Form Fields

Details on these settings are found in “Rule Execution App Service for
Dynamics 365” section.

Endpoint Name For basic configuration, this can be left as is.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 29 of
130

SAS Key Name The key output by the ARM template is the ‘RootManageSharedAccessKey’ key,
so this value can be left as the default in most scenarios.

SAS Key This is the key secret value, and is output by the ARM template after completion
of the deployment. If you did not get the value during deployment, you can find it
using the steps in Locate SAS Key in Azure Portal

Note: If you provided the “SasKey” parameter in Step 2 of this section, this
value will already be set.

Azure SB
Namespace
Address

Change the Relay namespace here, as the default value of ‘inrule-crmonline’ will
not work for you. The relay namespace is the same value provided for the relay
name in the ARM template parameters file.

Using the Relay Namespace and the Relay Path, construct the address as
follows: https://<<RelayNamespace>>.servicebus.windows.net/<<SB Relay
Path>>

Note: If you provided the “SasName” parameter in Step 2 of this section,
this value will already be set.

SB Relay Path Unless you have changed the corresponding setting in rule execution app service,
this value can be left as the default, which is ‘ruleexecution’

The following screenshots show the Service Endpoint Configuration screen before and after

configuration.

• [#1 in screenshot] SAS Key Name

• [#3 in screenshot] SAS Key

• [#4 in screenshot] Azure SB Namespace Address

• [#5 in screenshot] SB Relay Path

Please note that you must click on ‘SET’ [#2 in screenshot] before the SAS Key can be entered.

For a more complete description of all of the configuration options available, reference Appendix F: Rules

Configuration and Settings

Notice: If you are using the standard Azure US environment ‘AzureCloud’, then the provided domain

suffix will work fine. However, if you are using an alternate Azure Environment such as US Government or

an international environment – be sure to update the suffix to the appropriate value for your region.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 30 of
130

Be sure to click save, and to observe the “Saved Changes” notice:

Once changes have been saved, configuration can be tested by click the test button [#7 in screenshot].

This test configuration tests these three things:

1. Execution Service Connection. Test sends a request to the execution service that was deployed

and configured to make sure that it is setup correctly.

2. Execution Service to Dynamics Connection. Test makes a request from the execution service to

make sure that it can make a request back to Dynamics with the connection information

configured on the App Service.

3. Rule Catalog Connection. Test makes a request to the Rule Catalog with the connection

information configured on the App Service.

If all the tests succeed, the system has been configured correctly. If any of the tests fail, check the

configurations for the subject under test.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 31 of
130

5: Configure S2S App User

Dynamics 365 supports S2S authentication via Azure AD app as an alternative to username/password

authentication. This removes the need to create a licensed user, and avoids tying authentication to a

regular named account. If you are using InRule SaaS, this Azure AD app has already been created and

configured for you, but if you are self-hosting you can create your own Azure AD app as outlined in

Registering an Azure Active Directory Application (Optional) and use it to authenticate.

Whichever method you are using, you will need to create an associated ‘Application User’ inside

Dynamics. When configuring a InRule SaaS setup, you can follow the instructions in Appendix I: InRule

SaaS Portal Configuration, which will create and set up the Application User for you. If you are self-

hosting, use the steps below.

2. Important: These steps are only necessary for users that want to leverage S2S authentication

and are self-hosting. If you are self-hosting, or using username/password OAuth authentication,

you do not need to follow any of the steps below

5.1: Navigate to Settings > Security:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 32 of
130

5.2: Select Users:

5.3: Toggle to the Application Users View:

5.3: Select New, and Toggle to Application User

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 33 of
130

5.4: Populate the Application ID based on the configured S2S Application (as

outlined in section 3.3.2)

5.5: Populate the Username, Full Name and Primary Email with NEW account info

for what the App User should be called

5.6: Click “Save”

5.7: Click “Manage Roles” in the top menu bar

5.8: Tick the box for "InRule Integration Administrator" role and click OK

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 34 of
130

6: Verify a successful deployment!

A ‘Run Rules’ button will now exist on the edit form of all Dynamics entities. The way this button behaves

will depend on the settings that have been configured under the Rule Configuration section; this

document assumes the default configuration behavior. To understand what settings are available and

what they mean, please see Appendix F: Rules Configuration and Settings of this document.

Open up an Account and execute ‘Run Rules’. The default deployment is configured to run a Rule App

from the catalog named DynamicsRules, which is what we uploaded to the catalog in the Verify Catalog

stage. If everything has been set up correctly, you should see the “Rule Execution Completed” message

and the description of the account will be updated to provide the date and time.

If there are any issues with executing rules and you are using an S2S user account from section 3.3.2,

check Appendix M: Known Issues, Limitations and Troubleshooting of this document. If you are using the

connection string, make sure the user account specified has the necessary privileges to access the

particular entity.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 35 of
130

4 Performing the Installation: On-Premises

This section discusses the steps needed to integrate InRule with Microsoft’s on-premises version of

Microsoft Dynamics.

This section assumes that you already have an IIS web server and an on-premises version of Dynamics

deployed and configured.

4.1 An overview of the Components needed

Catalog Web Service and Database

A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution Service.

This Catalog Service will be hosted as a web service on an IIS server. The back end of the Catalog

Service utilizes a SQL Server or Oracle database for retrieval and persistence of Rule Applications. The

Installation Documentation and InRule Installer, which will be used to install the service itself, are

available on our support website’s downloads section provides instructions for setting up the catalog.

Rule Execution Web Service for Dynamics 365 On-Premises

The WCF Web Service implementation is designed to be generically applied to any given Dynamics Entity

and corresponding InRule rules that may apply to that Entity. After the web service is published, the

service can be directed to run various Rule Applications against different Entity types by passing

arguments in the REST calls. This will require a separate deployment than the Catalog Web Service; this

process will be covered in the “Deploy the Rule Execution Web Service” section.

InRule Solution for Dynamics 365 On-Premises

The RuleExecutionServices solution contains a custom plugin, client resources, and a configuration

form. Unlike the Online solution, this is configured to work directly against the execution service, rather

than requiring the “middle-man” of the Azure Relay.

Dynamics CRM
On Premise

Server(s)

Business Rule Service as
WCF REST Service

Custom
Plugin or
Activity

InRule Rule Catalog
Web Service

SQL Server or
Oracle

Catalog DB
Rule Authoring in

irAuthor using InRule for
Dynamics CRM

HTTPS

HTTPS

HTTPS

HTTPS

Web Browser
 Org

 Service
 Execute or
CRUD event

 HTTPS
POST for Rules

 Full Page
HTTPS GET/POST

Batch Processor
(or other clients)

HTTPS POST
for Rules

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 36 of
130

4.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in

the next section.

Required Files

The following files should be downloaded from our support website’s downloads section before you begin:

• InRule for Microsoft Dynamics 365 Integration Framework.zip

• InRule Catalog Installer – InRule Installer.exe

Please download and extract each of these archives to corresponding subdirectories within a working

folder.

When you are finished, you should have a directory structure that looks like this:

Files in bold will be used directly in the walkthrough steps below.

│ InRule For Microsoft Dynamics CRM Integration Framework.zip

│

└───InRuleForMicrosoftDynamicsCRMIntegrationFramework

 │ readme.txt

 │

 ├───DynamicsDeployment

 │ │ Deploy-CrmPackage.ps1

 │ │ ...(many other supporting files)

 │ │

 │ ├───PkgFolder

 │ └─ ...(many other supporting files)

 │

 ├───RuleApplications

 │ DynamicsRules.ruleapp

 |

 ├───RuleExecutionAzureService

 │ Register-AzureApp.ps1

 │ InRule.Dynamics.Service.json

 │ InRule.Dynamics.Service.parameters.json

 │ InRule.Crm.WebJob.zip

 |

 ├───RuleExecutionOnPremService

 │ DeployScript.ps1

 │ InRule.Crm.WebService.deploy-readme.txt

 │ InRule.Crm.WebService.SetParameters.xml

 | ...(many other supporting files)

 │

 └───RuleHelperDeployment

 │ InRule.Crm.RuleHelper.dll

 └─ ...(many other supporting files)

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 37 of
130

Rule Authoring Environment

A Rule Authoring Environment is used to upload a Rule Application to your catalog app service. A Rule

Authoring Environment is a machine or virtual machine where irAuthor has been installed with the irX for

Microsoft Dynamics 365 extension. If you followed the instructions outlined in irX for Microsoft Dynamics

365 Help Documentation, then you should already have a rule-authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to

be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX

for Microsoft Dynamics 365 license for the duration of this process. If you’re a system administrator who

does not intend to perform rule authoring duties after the deployment is up and running, you can either

chose to borrow an environment from someone who will use a rule authoring environment, or you will

want to be sure to deactivate your license when you’re finished with your deployment responsibilities.

Administrative Accounts

Dynamics On-Prem Organization Service URI: You will want to have the root URL of the organization

web service exposed by your Dynamics 365 instance. The server URL is usually in the format of

“http://crm-server:port/organization-name”

Dynamics Service Account Login and Password: You will want to have a username and account

created specifically for use by the InRule for Microsoft Dynamics 365 Framework Web Service.

Administrative Password to use for SQL Server: You should decide what username and password

you want to use for administrative privileges on the SQL Server. This walkthrough will construct a

connection string that will utilize these resources to connect to the catalog.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to

connect to the SQL Server Database. In a more secure environment, a separate SQL User should be

created that only has access to the single database needed by the catalog. It is up to the reader of this

document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and

password you want to use for administrative privileges within irCatalog.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the

reader to go through the process of utilizing the Catalog Manager to change these credentials to be more

secure.

InRule License Keys

You will need your InRule irServer license keys. These can be found at

https://support.inrule.com/activations.aspx. You can contact support@InRule.com if you have questions

about where to get your license keys. For guidance on how to activate your keys, reference Appendix K:

Activating Your License Keys.

https://support.inrule.com/activations.aspx
mailto:support@InRule.com

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 38 of
130

4.3 Deploying and Configuring Components

4.3.1 Setting Up an Application Pool in IIS

Before a website can be setup to host the catalog web service, a suitable application pool needs to be

created. Any IIS server will already have a DefaultAppPool that can be used; whether this section is

necessary will depend on your organizations architecture and requirements.

1: Open IIS Manager

2: Click on Application Pools on the left-hand nav pane

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 39 of
130

3: Click “Add Application Pool” under “Actions” in the right-hand

pane

4: Define a name for the Application Pool and Create

.NET CLR Version and Managed pipeline mode should be left as their default values. Press OK

5: Click on the new App Pool and Select “Advanced Settings” on the

right-hand pane

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 40 of
130

6: Under the “Process Model” header, select the small “…” button

next to the “Identity” property

Here you can select what kind of identity model you want to use for your application pool. You’ll want to

either use the Application Pool Identity or create a custom account.

The Application Pool Identity creates a virtual account with the same name as your new application pool.

All worker processes within this application pool will run under this account

Custom accounts are the best solution if you want to use your Windows credentials to authenticate to the

Catalog web service.

Press “OK” when you have made your selection and are finished.

4.3.2 Setting Up the IIS Site for the Rule Execution Web Service

Next, we’ll need to setup a website in IIS to host the execution web service. This will require a Windows

Server with IIS installed.

1: Open IIS Manager

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 41 of
130

2: Click on sites on the left-hand nav pane

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 42 of
130

3: Click “Add Website” under “Actions” in the right-hand pane

4: Define website information

Define a site name, application pool and host name for the website; these can be configured however

makes sense within your organization.

The physical path needs to be set to the actual Dynamics Rule Execution web service folder. This will

require you having the InRule components downloaded onto the same server you are setting up the

website on

Lastly, select either HTTP or HTTPS, depending on which makes sense for your architecture. If you opt to

use HTTPS, you will be required to select a certificate before you can finalize the site.

Once you’ve populated all the required fields, press OK to finalize and start the website

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 43 of
130

5: Verify your website successfully created

4.3.3 Deploy the Rule Execution Web Service

1: Open your “RuleExecutionOnPremService” folder:

For guidance on how to find this folder, reference the “Required Files” section above. The folder will need

to be copied onto the IIS server you set up your website on in the previous section.

2: Open the InRule.Crm.WebService.SetParameters.xml file in

Notepad or a similar text editor

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 44 of
130

3: Change placeholder parameter values to real values

1 IIS Web Application Name The name of your IIS website as defined in the “Setting up the Catalog Web Service in IIS”
section

2 UseInRuleCatalog Defines if the catalog is being used to store rule apps. Set to true if using the catalog, and false if
using file system

3 CatalogUri The URI for the Catalog Service that will be used

4 CatalogLabel Defines the label text used to by the service to target the specific rule app in the catalog. Labels
are assigned to rule apps in the catalog

5 CatalogUser Username for Catalog Service, default value is ‘admin’.

6 Catalog Password Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

7 CatalogSSO Defines whether to use app pool identity to authenticate to the catalog web service

8 RuleAppDirectory Specifies the directory where rule apps will be stored if using file system instead of the catalog. If
using the catalog, leave as-is.

9 DynamicsCRM-Web.config
Connection String

Provide a Dynamics connection string. Information on connection string formatting can be found
here: https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-
premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

Important: Some customers have reported needing to provide a username in the format
“domain\username” in order to successfully connect using IFD.

4: Save your changes

5: Launch PowerShell as an administrator

6: Navigate to the “RuleExecutionOnPremService” folder

https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customerengagement/on-premises/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 45 of
130

7: Run the “DeployScript.ps1” file

Observe that no errors occur while this script does its work.

It is worth noting that when deploying plugins without isolation in an on-prem environment, Dynamics
requires that the user registering the plugin must be added as a Deployment Administrator from
Deployment Manager. If the registering user lacks the proper permissions, when deploying the package
Dynamics will return an error stating “Assembly must be registered in isolation.”

4.3.4 InRule Solution for Dynamics On-Prem Deployment

At this point, all of the InRule server components are setup. The rule execution service should be listening

for incoming communication from Dynamics. We must now setup Dynamics. To make this process easier,

we will be using PowerShell.

1: Launch PowerShell as an administrator:

2: Navigate to the ‘\Dynamics Deployment’ directory:

3: Execute Deploy-CrmPackage.ps1

For Dynamics On-Prem v9, run Deploy-CrmPackage.ps1 with the added argument: -OnPrem.

5: Provide Dynamics On-Prem Service Credentials

You will need to login for this script to continue, please be sure to check the ‘Display list of available

organizations’ to make sure that you select the correct instance of Dynamics to install to!

Alternatively, the Deploy-CrmPackage.ps1 script also accepts a Dynamics Connection String:

.\Deploy-CrmPackage.ps1 -CrmConnectionString

'AuthType=AD;Url=https://{DYNAMICSURL}.crm.dynamics.com/;Username={DYNAMICSUSERNAME};Password=

{DYNAMICSPASSWORD}'

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 46 of
130

This is a sample connection string; with an on-premises install, there are a wide variety of options that

may be relevant, depending on your architecture. For more information on connection string formats, refer

to Microsoft’s available documentation, found here.

Important: Some customers have reported needing to provide a username in the format

“domain\username” in order to successfully connect using IFD.

3. Important: This deployment can take a long time to complete. In most cases it takes around 20

minutes.

Observe that no errors occur while the script is executing.

6: Configure the InRule Solution in Dynamics

Next, we need to tell the Dynamics Solution that has been deployed where to find the Rule Execution

Service deployed earlier. We will need to have the Rule Execution Service URI ready for this step.

Navigate to the Rules Configuration Page

When the Rule Services Solution is entered for the first time, the Welcome to InRule for Microsoft

Dynamics 365 wizard will appear:

Close the wizard, as it is applicable to Online only.

https://msdn.microsoft.com/en-us/library/mt608573.aspx?f=255&MSPPError=-2147217396

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 47 of
130

At the top of the InRule Solution configuration page, you will see the Service Endpoint Configuration

options for the solution:

All of these settings can be left as their default values for an on-premises installation, as they pertain to

the Online solution only.

Instead of configuring the above, you will need to scroll down all the way to bottom to the “Rule

Configurations” section and select the active Rule Configuration

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 48 of
130

The following popup should appear:

You can configure the naming conventions of this rule configuration as you see fit, but under “Advanced”

on the right-hand side of the page, you will need to set the Service Endpoint URI to the URI of your Rule

Execution Service endpoint

Be sure to click save (the small save button in the bottom-right corner)

Now that everything has been configured, to can test the configuration by click the test button. This test

configuration tests these three things:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 49 of
130

1. Execution Service Connection. Test sends a request to the execution service that was deployed

and configured to make sure that it is setup correctly.

2. Execution Service to Dynamics Connection. Test makes a request from the execution service to

make sure that it can make a request back to Dynamics with the connection information

configured on the App Service.

3. Rule Catalog Connection. Test makes a request to the Rule Catalog with the connection

information configured on the App Service.

If all the tests succeed, the system has been configured correctly. If any of the tests fail, check the

configurations for the subject under test.

7: Verify a successful deployment!

A ‘Run Rules’ button will now exist on the edit form of all Dynamics entities. The way this button behaves

will depend on other settings that have been configured under the Rule Configuration section; this

document assumes the default configuration behavior. To understand what settings are available and

what they mean, please see Appendix E: Methods for Executing Rules from Dynamics 365 and Power

Platform of this document.

Open up an Account and execute ‘Run Rules’. The default deployment is configured to run a Rule App

from the catalog named DynamicsRules, which is what we uploaded to the catalog in the Verify Catalog

stage. If everything has been set up correctly, you should see the “Rule Execution Completed” message

and the description of the account will be updated to provide the date and time.

It is worth noting that the On-Prem plugin will be deployed outside of Sandbox mode. To read more on

why this is necessary and the resulting implications, reference Appendix M: Known Issues, Limitations

and Troubleshooting.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 50 of
130

Appendix A: Additional Resources

Having trouble? Relax! InRule offers many additional resources to help you get InRule correctly

integrated with Microsoft Dynamics 365.

InRule’s Support Website

InRule’s support website can be found at http://support.inrule.com. If you do not already have a login for

our support site, the client administrator at your company has the ability to create an account for you. If

you are unsure of who your client administrator is, please email support@inrule.com.

InRule’s Support Team

The support team at InRule is available to help with any product support needs, troubleshooting

suspected product bugs, resolving any licensing issues, and free tele-hugs.

The best way to reach Support is through a detailed email sent to support@inrule.com.

You can also reach our support team by calling +1 (312) 648-1800.

InRule’s ROAD Team

ROAD Services agreements can be used to engage with ROAD, InRule’s professional services team.

ROAD can provide your organization with specialized consulting and tailored Architecture and Authoring

Guidance.

ROAD can assist with less common installation requirements, such as deployment to third party cloud

providers or integration with custom software.

ROAD can be contacted by emailing ROADServices@InRule.com

http://support.inrule.com/
mailto:support@inrule.com
mailto:support@inrule.com
mailto:ROADServices@InRule.com

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 51 of
130

Appendix B: Anatomy of a Request for Execution of Rules Diagram

The below diagram helps to give a top-level understanding of how InRule is integrated with Microsoft

Dynamics 365 (Online). Please note this this diagram is a simplification that does not cover topics like

caching, iterations, and multiple environments. It serves to show how the request moves through different

Azure resources.

1. A Dynamics 365 Event based on a configured step fires, such as ADD, UPDATE, DELETE, or CUSTOM. This generates a call

to the Relay, which is setup to relay requests to the connected Rule Execution App Service.

2. The Relay receives the request and relays it to the Rule Execution App Service, which has attached itself to the Relay as a

relay listener. For On-Premises, the rule execution service interacts directly with Dynamics.

3. The Rule Execution App Service makes a request to the Catalog Service, asking for a copy of the requested Rule App.

4. The Catalog Service Queries its SQL Server based database for a copy of the requested Rule App.

5. The SQL Server responds with the Rule App.

6. The catalog service responds to the Rule Execution App Service with the Rule App.

7. The Rule App executes inside the Rule Execution App Service.

8. Optionally, the Rule App has an opportunity to query Dynamics 365 for additional data needed to execute rules.

9. The Rule App completed execution

10. The Rule Execution App Service responds through the Azure Relay

11. The Azure Relay relays the response to Dynamics 365, where the receiving plugin synchronizes changes.

Microsoft Dynamics 365 (Online)

Microsoft Azure Service Bus

Rule Execution Azure App Service

Catalog Service (Azure App Service)

SQL Server & Database [Microsoft Azure SQL Server]

RuleApp

Step 1: A CRM Event, based on a configured step fires
Such as ADD, Update, Delete, or Custom

A call goes out to the service bus

Step 11: Service Bus relay response
containing any changes to Dynamics 365

Step 2: The Service Bus communicates
to the Rule Execution App Service

Step 3: The Rule Execution App Service requests
to download the RuleApp from the Catalog Service

Step 4: Catalog Service queries database for RuleApp
Step 5: SQL Server responds with RuleApp

to catalog service

Step 6: The catalog service responds to the
Rule Execution App Service with

the RuleApp

Step 10: Rule Execution App Service
responds through service bus relay

Step 9:
Rule App completes

Step 7:
App Service executes

the RuleApp

Step 8: (optional) RuleApp utilizes RuleHelper to query
additional data from Dynamics 365 Instance

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 52 of
130

Appendix C: irX General Integration Concepts

Runtime Mapping across Nested Relationships

Much like Dynamics 365, the InRule rule engine offers strong support for hierarchical and relational data.

Within a given Rule Application, data can be considered across parent-child relationships within a single

rule request. These relationships can take the form of Collections (1 - * relationships) or 1 – 1

relationships.

• Note: When N:N relationships are imported into InRule, they behave as 1:N Collection
relationships within the Rule Application.

In addition to the abilities of both products to handle relational data, both products also offer the ability to

declaratively configure “Entities” and “Fields”. Both products also allow for different strongly-typed Entities

and Fields to be accessed with loosely-typed SDK interfaces. Because of these inherent similarities and

flexible interfaces, it is possible to build a reusable mapping component that can convert any given graph

of loosely typed Dynamics Entities to InRule Entities, and vice versa.

Controlling irVerify Behavior with Load, Save and Inactive Record

Settings

When working with a tree composed of many related Dynamics Entities, it is often useful to have explicit

control over which relationships are either automatically loaded or automatically considered in change

detection for persistence. If a relationship is skipped during the initial load routines, then it is available to

be conditionally populated later using rules.

In the irX rule authoring ribbon, there are three buttons that give the rule author the control to denote if a

relationship should be automatically loaded, saved or have inactive records excluded.

• Note: Automatic loading and saving is enabled by default for all relationships that are
imported from Dynamics. The rule author can opt-out of these automatic behaviors by
unselecting “Auto Load” or “Auto Save”. When these buttons are selected, metadata
attributes are written into the Rule Application for the given relationship. These metadata
attributes are used by the irVerify data loader when recursively loading data or detecting
changes for persistence.

• Important: If loading or saving is disabled for a given relationship, then it is also disabled for
all Entities that are children of that relationship.

Since Microsoft Dynamics 365 uses the "inactive" status to do a soft delete of records, it is possible to

include both active and inactive records when loading a Collection or relationship. You can use the

"Exclude Inactive" button to exclude inactive records, returning only active records. To ensure that this

feature works correctly, the child Entity of the Collection or relationship should map the Dynamics 365

Status field.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 53 of
130

Appendix D: Accessing Dynamics 365 Directly from Rule Helper

In the default Rule Execution setup, all relationships between Entity types must be established before

these entities can be used by the rule app. This behavior is intuitive, but it is not ideal for all business

problems. The InRule Integration framework provides a ‘Rule Helper’ assembly that can be used directly

in a rule app and allows rules to load, compare, and assign data that is not related in Dynamics before

rules are executed. The Integrating the Rule Helper Component section of this appendix provides more

information for setting up a Rule App to use the Rule Helper.

When to use the Query from Rules Approach

The query from rules approach adds value for the following business problems:

• The rules need to reference “lookup” information that may be in a list or set of Entities that are not
specifically related to the current Entity hierarchy

• The purpose of rules is to create new relationships between Entity instances that already exist in
Dynamics

• The rules need to compare many combinations of unrelated Dynamics Entities and produce
results about best possible matches or scores

• A custom filter is required when loading data for 1:N or N:N relationships

Working with Disconnected Fields when Loading and Saving Data

One of the most important integration concepts when loading Dynamics data from rules is the notion of

“Disconnected” Fields and Fields that have “Auto Load” and “Auto Save” disabled.

irX allows the rule author to explicitly control the “Auto Load” and “Auto Save” behaviors of Fields that are

connected to Dynamics.

The example below shows a Collection named CandidateProducts. Since the Collection is not marked

with a blue triangle, it is not considered to be attached to Dynamics.

• Important: Although Entity Fields and Collections may be “Disconnected” from Dynamics,
the types contained by the Collections can be set to types that were imported from Dynamics.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 54 of
130

• Note: If a Field is added to the schema using irAuthor, then it will be disconnected from
Dynamics. If a Field has been imported from Dynamics using irX, then it can be disconnected
from Dynamics by clicking the “Disconnect Item” button in the irX ribbon.

• Important: Two additional settings appear in the irX ribbon that offer additional control over
automatic loading and saving behaviors for Fields that remain connected to Dynamics. In the
example below, both buttons are “lit up”, which denotes that the settings are enabled. By
default, automatic loading and saving is enabled for all Fields that are connected to
Dynamics.

Integrating the Rule Helper Component

InRule provides a sample rule application (DynamicsRules) that is already configured for RuleHelper

usage. You can simply edit this rule app, or, if you wish to integrate RuleHelper into an existing rule app,

you can copy both the UDF Library “RuleHelper” and End Point ‘CrmHelper” from the DynamicsRules rule

to another rule application.

If you wish to manually create the UDF Library and End Point in irAuthor, follow the steps below.

1. Create a new rule app using the irX add-in for irAuthor.

2. Create a new “.NET Assembly Function Library” end point and bind the end point to the
InRule.Crm.RuleHelper.dll assembly. Select the DynamicsDriver class and then select the
methods that should be callable from rules. Edit the name of the end point to “CrmLib” or similar.
Select the methods from the DynamicsDriver that are needed for the Rule Application. You do not
need to select all the methods—only import the methods that will actually get used by rules.
Additional methods can always be imported later be revisiting the endpoint screen and reloading
the assembly.

https://inruledynamicsappsource.blob.core.windows.net/documents/DynamicsRules.ruleappx

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 55 of
130

3. Add a User Defined Function library and set the name to “CrmHelpers” or similar. This library will

contain functions that the rules will call to query Dynamics.

4. Add a User Defined Function to the new library. The example below shows a UDF that will be
used to execute the QueryCollection method on the DynamicsDriver. Fill out the UDF with script
that will call a method on the DynamicsDriver.

• Note: The methods on the DynamicsDriver are designed to be reused for more than one
Entity type, Field, or set of Fields. The name of the Target Field or Collection should be
supplied as a string. When querying a Collection of results, an optional “where” clause can be
provided that will be forwarded to calls against the CRM SDK. In addition, an “order by”
clause can be provided to return sorted results.

• Important: This integration pattern relies on the “Context” object that is available from
irScript. The Context object returns information based on the context under which a given
UDF is executed. For example, when executing an Entity Rule Set, the Context.Entity returns
a reference to the Entity against which the current Rule Set is executing. The Context and its
child properties are passed to the DynamicsDriver so it has enough information to form calls
to Dynamics 365 and map responses back to the InRule Rule Session.

• Important: When using Context with a Decision, Context.Entity cannot be used by
Decisions. Instead, the UDF will need to pass the entity in as a parameter.

• Note: The Context.FunctionLibraries property can be used to create calls to the .NET
assembly library methods, such as the methods imported in Step 5 above. The following
script example demonstrates how to use the Context object in irScript to form a call to a static
.NET method:

Context.FunctionLibraries.DynamicsDriver.QueryCollection(Context,

Context.Entity, collectionName, filter, orderBy, connectionString);

• Important: The “connectionString” argument is optional due to overloading of the methods
on the DynamicsDriver is not passed in the by the rule engine, then it will be looked up from
either the .NET config file based on the given environment. A sample connection string that
need to be defined in the irAuthor.exe.config XML is included below. For information on

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 56 of
130

Dynamics connection string formatting, refer to https://docs.microsoft.com/en-
us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-
tooling-connect. As a rule of thumb, it is generally not recommended to override the
connection string in this manner as it can perpetuate difficult debugging scenarios and
inadvertant dependencies.

5. Rules can now be authored to execute methods on the DynamicsDriver. These methods can be
used to load Collections, single Entities, or single Fields from Dynamics based on conditional
logic within rules.

• Note: The example above includes a call to the default business language templates for a
method on the DynamicsDriver. The InRule vocabulary features can be used to modify these
templates to be more user-friendly for business users.

• Important: The Target Collection in the sample rule is called “FamilyMembers”. This is a
Field that either does not exist in Dynamics (only for use in rules), or has been imported and
then “disconnected” from Dynamics using the “Disconnect Field” button, or has “Auto Load”
disabled.

• Note: Please see the following sections for more details on the creating the “filter” clauses
similar to the one used this example.

Filtering Queries using the Where Clause Builder

When loading data from Dynamics during rule execution, it is critical that the rule author is able to author

logic to specify which Entity data to load. Using the RuleHelper, this is accomplished by allowing the rule

author to pass in a “filter” or “where” clause into the calls against the DynamicsDriver class.

During execution of the DynamicsDriver, the filter clause is parsed into an Abstract Syntax Tree (AST)

and then translated into a LINQ expression tree, so it can be consumed using the CRM SDK. The filter

clause is based on the InRule function syntax format.

• Note: The InRule function syntax format is used for the following reasons:

o The syntax rule format is consistent with the rule authoring experience used
throughout irAuthor

o This format can make good use of the InRule AST parser that is included as part of
irSDK

The diagram below depicts the logical flow of steps used by the DynamicsDriver and WhereClause

builder classes to query data from rules.

<connectionStrings>
<add name="DynamicsCRM"
connectionString="AuthType=Office365;Username=jsmith@contoso.onmicrosoft.com;
Password=passcode;Url=https://contoso.crm.dynamics.com"/>

</connectionStrings>

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 57 of
130

The diagram and notes below contain some additional information about forming the filter clause in a rule:

• All the Field names that are used are the Dynamics friendly names that are used in the Rule
Application. These names are mapped back to the Dynamics Field names in the parser.

• String literals should be wrapped in single quotes, date literals should be wrapped in pound signs.

• Simple operators are supported to compare values, such as =, !=, >, < (ex. Age > 21, Name !=
‘Ralph’).

• Multiple conditions can be chained together using ‘and’ and ‘or’ keywords.

• The expression tree builder will attempt to call a given .NET framework function if it appears in
the expression.

o The .NET call must be expressed as a function, with the first argument being the name of
the Field to operate on. The remainder of the arguments will be passed through in order
to the .NET function call when it is formed.

o Examples: StartsWith(FirstName, ‘A’) EndsWith(LastName, ‘ez’) Contains(LastName,
‘Smith’)

o Any non-static methods on the .NET String class are candidates to be called as functions
using the parser syntax above. However, InRule has only tested the StartsWith,
EndsWith, and Contains methods on the String class.

• The following keywords and operators are supported by the InRule AST parser and expression
tree translation code: =, <>, !=, +, -, *, /, or, and, xor, >, >=, <, <=, ^, %

The filter expression also supports querying against related entities, simply by appending the related

entity name in front of the relevant query field. Querying against related entities requires that all entities

Dynamics CRM
Database

Dynamics
Organization

Service

Rule Engine

Initiate queries
with optional

filters

Continue
Running
Rules...

Execute LINQ
query using

expression tree
with

CRM xRM SDK

Running
Rules...

Parse Filter
(Where) Clause to

AST using
InRule.Repository

Translate AST
to .NET

expression tree

Populate RuleSession
with InRule Entities
using EntityMapper

Simple type values as
literals or passed from

field values

Condition operators
(and/or)

CRM friendly
names

.NET String functions,
with field to operate on

as first argument

Comparison operators
(=, >, !=, etc.)

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 58 of
130

queried in the relationship chain be imported into irAuthor. The queried fields on each of the queried

entities do not necessarily need to be imported, but if they are not, the entire Dynamics schema field

name must be used, rather than their irAuthor aliases.

In this example, we are populating a collection by querying the Contact entity, which is the “parent” entity

here. We are then applying a filter statement to return only contacts with related Cases that have

Descriptions starting with “A.” Cases in this example is the “child” entity. Notice how the hierarchy of the

related entity down to field is denoted. If you wanted to drill down another layer to a “grandchild” entity (in

this example, an entity related to Case), it would be accomplished by simply continuing the chain from

entity to field. Below is an example of a “grandchild” case:

This example would return Accounts that have related Contacts with Cases with Descriptions starting with
“A.” The filter expression can support querying in this manner up to 10 “layers” deep, including the initially
queried entity. Put another way, you can have up to 10 total different related entities in a single filter
expression.

The filter expression supports querying against multiple properties from different related entities. In the

below example, we are querying for Contacts with Cases that have Descriptions starting with “A” and also

have Leads with Names starting with “A.”

Ordering Query Results with the OrderByClauseBuilder

The DynamicsDriver class also supports the ability to control the order of the results returned from

Dynamics by passing in an optional “order by” clause. The order by clause can accept only a single Field

name, which should be the name of the Field in the Rule Application. The results are always sorted in

ascending order, unless the Field name is followed by the “desc” syntax. Please see the examples below:

To sort ascending, pass the Field name to use in the sort:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 59 of
130

To sort descending, pass the Field name to use in the sort followed by the “desc” keyword:

• Note: The “order by” clauses generally contain much simpler expressions than “where”
clauses. However, InRule syntax rules format is used for the order by clause to be consistent
with the where clause approach.

• Important: The parsing and translation of the order by clause is handled in the Rule Helper
contained in the

Methods Available in the Rule Helper

The following table lists the public, static methods that are available in the DynamicsDriver

Method Name Description
LoadMappedChildCollection Populates a child Entity Collection based on an existing 1:N

relationship in Dynamics. The Collection is populated based on
existing parent-child relationship data in Dynamics.

LoadMappedChildEntity Populates a child Entity Field based on an existing 1:1 relationship in
Dynamics. The Field is populated based on existing parent-child
relationship data in Dynamics.

QueryCollection Populates an Entity Collection with a set of a given Entity type. An
optional filter clause (where clause) can be used to define selection
criteria for the Entity set. The Collection does not need to correspond
to a 1:N relationship in Dynamics.

QueryEntity Populates an Entity Field or variable based on a query to Dynamics.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. The Field does not need to correspond
to a 1:1 relationship in Dynamics. If more than one Entity is returned
from the query to Dynamics, then the first Entity in the set is used.

QueryField Populates a primitive Field or variable based on a query to Dynamics.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. If more than one Entity is returned from
the query to Dynamics, then the Field value from the first Entity in the
matching set is used.

QueryNtoNCollection Loads entities across an N:N Collection that has been defined in
Dynamics. The relationship name and parent and child ID Fields must
be provided.

LoadMappedNtoNCollection Similar to QueryNtoNCollection, except that the relationship must be
imported into the Rule Application.

GetUserLocalTimeFromUtc Converts a Dynamics UTC time value into the local time for a given
user. This method makes use of the LocalTimeFromUtcTimeRequest
that is part of the CRM SDK.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 60 of
130

Additional Flags Available to Control Loading and Caching Behaviors

in the Rule Helper

During a given query operation, there may be advanced use cases that require specific control over

loading or reloading data from Dynamics 365. The optional overloads of the QueryEntity and

QueryCollection methods expose a set of optional Boolean flags that help control caching and depth of

loading behaviors. The table below list these parameters:

Parameter Name Description
loadChildren Denotes if the execution service should recurse the Entity graph and

load all children. If false, no children are loaded below the Collection
Members that are loaded. The default value is true.

useCaching Denotes if previously loaded Dynamics Entities should be reused from
the InRule entity cache, or if new entity instances should be created. If
false, the original entity data will be requested from Dynamics, and a
copy of the Entity is created. The Instance ID is not set to the GUID of
the Dynamics Entity, which will also prevent changes to this entity from
being written back to Dynamics. This functionality can, for example, be
used to load the original values for an entity persisted in Dynamics
when rules are run on update and compare the original and updated
values. The default value is true.

overwriteIfLoaded Denotes if a previously loaded Dynamics Entity should be repopulated
with the latest values in Dynamics. This behavior will overwrite Field
values stored in the cache. The default value is false.

cacheInAppDomain Denotes if the result of the query should be saved in the persistent
AppDomain cache. The difference between this parameter and the
‘useCaching’ parameter above is that enabling this parameter will save
the query result in a cache that will persist across multiple different rule
executions, where the above parameter only enables caching within the
scope of a single rule execution. For more information, refer to
Configuring the AppDomain Cache

Note: The default values should always be used for the cache settings unless there is a specific
use case that requires different behaviors.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 61 of
130

Appendix E: Methods for Executing Rules from Dynamics 365 and

Power Platform

InRule supports several methods for the execution of rules from both Dynamics 365 and Power Platform.

As Microsoft has evolved its singular app platform vision across Dynamics 365, Power Apps, and Power

Automate, many of the common integration techniques employed for one or the other, can now be

extended to all. This is made possible by the Common Data Service (CDS) which is the backbone data

integration service across Dynamics 365 and Power Platform. InRule for Dynamics 365 is designed to

work directly with CDS entities for event handling, data loading/saving, and schema mapping functions.

The diagram below depicts the high-level integration flow for InRule with Dynamics 365, Power Apps, and

Power Automate in an Azure Cloud Environment.

The following sections provide a detailed overview of the methods for executing rules and how they apply

to various aspects of Dynamics 365 and Power Platform. While the listed methods provide proven

coverage across most functional needs, your implementation needs may vary, so this guide provides

more technical details to help you create the right solution.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 62 of
130

Method of Rule

Execution

Dynamics

365

Power Platform

Power Apps

Power Automate

Model-Driven

Apps

Canvas

Apps

Power App

Portal

CDS Events
(Plugin events)

● ● ● ● ●

Rules Engine Action
(InRule Plugin)

● ● ◑ ◑ ●

Run Rules Button

● ●

Workflow Activity

● ●

Form Events

● ●

JavaScript

● ●

One thing that is consistent across all options is that each support mapping entity data to be used in

execution of rules. InRule for Dynamics supports both explicit and auto rule sets, in addition to decisions.

All these options can be used together, and each have factors to consider when choosing which to use.

Some of the key considerations are outlined below.

User Control

If users need to be able to execute rules on demand, the Run Rules button and Workflow activity are the

easiest choice to work with. The Run Rules button is displayed on the command bar of every entity, so it

can easily be clicked at any time by end users to get feedback from rules. Using the custom workflow

activity also allows rules to be run on demand, potentially as part of a more complex process that contain

a rules processing step.

Rules can be invoked indirectly by the user by tying rule execution to events within Dynamics. The typical

way to accomplish this is by configuring the InRule plugin to run on entity Create or Update events. Form

events like field change or form save can also be used to trigger rule execution. For more advanced form

scenarios, like integrating with another command bar button, custom JavaScript can also be used. The

included Custom Action can even be used to respond to user events outside Dynamics, by providing a

web API endpoint that can be accessed by external systems.

Display in the User Interface

If you want to display information to the end user based on rule execution, the run rules button is the

easiest method. When executing rules from the button, any Errors, Warnings and Informational

notifications will be shown in the notification pane, along with any Validations. Executing rules via the

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 63 of
130

included form events helper function or calling the executeRules function from custom JavaScript will also

display the same information.

Using the custom workflow activity itself will not display any data in the UI, but the workflow activity does

provide output variables with the results of rule execution that can be displayed in a dialog or output via

some other method if desired.

Plugin events will not typically display any info in the UI, but any errors or validations will show up in the

plugin error pop-up if the plugin is set to run synchronously.

Execution Against Dirty Data

If you need to execute rules against dirty form data, or any entity state other than what is saved to the

database, you can enable the ‘Use Dirty Entity Image’ setting as described in An Explanation of the

InRule Custom Action Options. If this option is enabled when running rules from the ‘Run Rules’ button,

the current form values will be collected and sent to the rules. This can be used to perform form value

validation, or to provide insight into a what-if scenario prior to changes being saved. This same config

value also governs the behavior for form events or any custom JavaScript that calls executeRules.

The custom workflow activity and plugin events do not provide the ability to specify a dirty entity image.

They can only run against the data provided by the plugin pipeline. However, in the case of a plugin

entity update event the entity change image is automatically included. In addition, the custom action

provides a dirtyEntityImage field that accepts a json-serialized entity image.

Responding to API Events

If you want to always execute rules when an entity changes, no matter how those events are initiated, you

need to register the included plugin to an event. Running rules based on plugin events means that not

only will rules be executing when creating or saving entities from within the Dynamics 365 Entity Forms

UI, but they are also executed when entities are changed through API calls.

API calls are frequently consumed by 3rd party add-on user interfaces, Extract-Transform-Load (ETL)

synchronization with other software products, and by custom software solutions as an integration point

with Dynamics 365. By utilizing this option, an implementer can take advantage of rule execution for

needs beyond the Dynamics 365 Entity Forms UI.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 64 of
130

1 CDS Events

The InRule Solution contains a plugin that can act as a handler for events fired by the Common Data

Service. By registering new steps to Create or Update events against CDS Entities, rules execute against

the entities that are associated with an event as it occurs.

Configuring Plugin Events

You can register plugin steps using the InRule Rules Configuration page included with the InRule

Solution. Alternatively, for advanced scenarios, you may use the Plugin Registration Tool from the

Microsoft Dynamics 365 Software Development Kit (SDK), but this is typically only needed for special

circumstances where greater plugin management is warranted.

There are two steps required to register a plugin event:

1. Create a Rule Configuration Record (or use the Default Rule Configuration) - create or update

a Rule Configuration record according to the steps in Updating InRule Rules Configuration

Records

2. Associate the configuration record to the create or update message of an entity by following

the steps in Associating an InRule Configuration record to an Entity

Pre-Operation vs Post-Operation for plugin step registration. Plugin step registrations can be configured

to run on either Pre-Operation or Post-Operation. By default, the InRule configuration page will register all

plugin steps to Post-Operation. In some scenarios Pre-Operation may be preferred. For example, if there

are both create and update plugin steps registered to the same entity, using Post-Operation for create

can result in extraneous update messages being fired when running rules on create. The create plugin

step registration can be changed to Pre-Operation using the Microsoft Plugin Registration Tool. There are

a few limitations to Pre-Operation plugin step registrations. Since Pre-Operation takes place before the

entity is saved to CDS, new entity associations and status code checking will not work.

Validation and Cancellation

When running rules from a plugin, you may want to cancel any changes that have been made to the

entity as well as any changes made from rules. One way to accomplish this is by returning a validation

error from the rules. If the plugin detects any validation errors, it will skip saving any changes made by the

rules and stop the plugin pipeline to prevent any further changes. If an end user is saving or creating an

entity and this happens, they will see the following error:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 65 of
130

For a better validation user experience, you can also run rules on the ‘OnSave’ event of a form, as

described in the Form Events section.

Plugin Registration Tool (Advanced Scenarios Only)

Important: This tool registers all steps to Post Operation stage of execution. If an alternate
stage is desired the registration will need to be modified with the Microsoft Plugin Registration
tool linked and pictured below. Other custom configuration scenarios may include changing the
Execution Mode to ’Asynchronous’ or adjusting the Execution Order.
You will also need to use the registration tool if you want to register the plugin to events other
than ‘Create’ or ‘Update’. Link to download SDK tools: https://docs.microsoft.com/en-
us/dynamics365/customer-engagement/developer/download-tools-nuget

The unsecure configuration field contains the GUID identifier for the associated Rule

Configuration. If there are additional inrule_RulesEngineAction steps they will all be stored in this

configuration field on the InRule Custom Action Step as entity name, ID pairs.

https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget
https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/download-tools-nuget

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 66 of
130

2 Rules Engine Action

The InRule Solution contains a plugin that has a preregistered step called the RulesEngineAction. The

InRule Custom Action allows developers to trigger the execution of rules by calling into the CDS API.

Actions provide an easy way to trigger functionality in Dynamics and can be invoked using multiple

different methods. Registering an action creates a corresponding web API endpoint. This endpoint can be

used by external code, or in the case of the ‘Run Rules’ button, called from JavaScript. Actions can also

be called from workflows directly with the workflow designer, or through a custom workflow activity.

To call this endpoint, you will need to make a POST request to the following url:

https://[your_org_url]/api/data/v9.0/inrule_RulesEngineAction. The body of the request should contain a

JSON object string with the following fields. ‘ruleSetName’ can be either a rule set or decision name.

Label and ruleParameters are optional. If ‘label’ is not supplied, the default value configured on the

execution service will be used. To pass parameters to the rule set or decision, use ruleParameters and

provide a JSON string in the following format: {"parameter1Name":"parameter1Value",

"parameter2Name", "parameter2Value"}

• entityId

• entityTypeName

• ruleAppName

• ruleSetName

• persistChanges

• label

• ruleParameters

The custom action will return a JSON response with the following schema. This schema can be supplied

to JSON parsing steps in Power Automate flows to help with processing rule execution results

{ "type": "object", "properties":{
 "NotificationResponse": { "type": "object", "properties": {
 "Notifications": { "type": "array", "items": { "type": "object", "properties": {
 "Type": { "type": "integer" },

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 67 of
130

 "Message": { "type": "string" } },
 "required": ["Type", "Message"] } } } },
 "ValidationResponse": { "type": "object", "properties": {
 "Validations": { "type": "array", "items": { "type": "object", "properties": {
 "FieldName": { "type": "string" },
 "FieldDisplayName": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["FieldName", "FieldDisplayName", "Message"] } } } },
 "ContextResponse": { "type": "object", "properties": {
 "PropertyBag": { "type": "array", "items": { "type": "object", "properties": {
 "key": { "type": "string" },
 "value": { "type": "string" } },
 "required": ["key", "value"] } } } },
 "ErrorResponse": { "type": "object", "properties": {
 "Errors": { "type": "array", "items": { "type": "object", "properties": {
 "Source": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["Source", "Message"] } } } } }
}

3 Run Rules Button

The ‘Run Rules’ button makes it easy for the end user to choose when to execute rules. Executing rules

via the Run Rules button allows for the display of Informational, Warning, and Error notification types,

which provide rich feedback to end users. Multiple rule sets can also be configured for interactive

selection giving users the option of choosing which rules to run for a given record or dataset. The InRule

Solution places this button on the ribbon of each Dynamics 365 or model-driven app Entity Form, as

shown here:

When the Run Rules button is pressed, the included JavaScript will execute rules against the current

entity based on the settings defined in the InRule Solution – Rules Configuration Form, described in

Appendix F: Rules Configuration and Settings. Once you have set up the basic InRule configuration and

validated all functionality, you can hide this button from all forms where it is not used to prevent confusion

for end users. To do this, follow the steps in Disabling the InRule Run Rules Button to hide the button in

the default configuration, and then create new configurations to show the button only on the entities that

have associated rules.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 68 of
130

Using the Rule Set Dropdown

Out-of-the-box, the Run Rules button is scoped to only run the default rule set that is specified in the

configuration file. However, you also have the option to add additional rule set configurations for selection

by the end user. When these are added, the Run Rules Button will display a dropdown menu to allow the

end user to select the rule set or decision. To enable this functionality, follow the steps in Configuring the

Run Rules Button for an Entity Form

Running Rules with parameters

If you need to collect information from end users that is not on an entity form, you can configure rule set

parameters to get this information at runtime. When parameters are configured for a selected rule set or

decision, the end user will see the following dialog to allow them to input the parameters:

Users can optionally provide values for each parameter by setting the ‘Value’ field using the editable grid.

Once they have filled out the parameters, they can click the ‘Ok’ command button, and rule execution will

continue as usual. If the user clicks the ‘Cancel’ button or closes out of the dialog for any reason, rule

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 69 of
130

execution will also be canceled. This functionality is primarily intended for use with the ‘Run Rules’ button,

but these parameters can also be passed in directly to the Rules Engine Action, which can be called from

flows, JavaScript or other external callers.

Using the Run Rules button from Entity View

The Run Rules button can also be used from an entity view page. This allows for running rules against

multiple entities at once. To do so, simply navigate to the entity view for the entity type you wish to run

rules against and select the entities against which you want to run rules.

Once at least one entity is selected, a Run Rules button will appear in the Ribbon. This Run Rules button

functions identically to the Run Rules button on an entity page and provides a similar dropdown menu for

multiple rule sets or decisions associated with an individual rule configuration.

Running rules in this manner will use the rule configuration associated to the entity type that you are

running against.

Running rules in this manner will use the rule configuration associated to the entity type that you are

running against.

A key limitation to be aware of while running rules via this approach is that entity view pages are unable

to display any sort of banner notifications or rule execution status. Should you want to view any

notifications associated with a rule execution from a view page, refer to the plugin trace log.

Additionally, the entity view page run rules button will only execute rules against entities loaded on the

current page, up to a maximum of 100 entities.

4 Workflow Activity

If you need to run rules from a workflow, the solution provides a custom workflow activity that invokes the

included custom action. The custom workflow activity passes in the entity ID and type automatically for

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 70 of
130

you and provides the rest of the custom action settings as input fields on the activity. The activity also

returns the details of the response as individual fields, instead of raw json. These are the fields returned:

• Informational Notifications

• Warning Notifications

• Error Notifications

• Validations

• Errors

When using the custom workflow activity, you can select the option to throw an exception on failure. If you

choose to throw an exception on failure, the workflow will end immediately if the custom action fails, and

the user will see an error message if they are running the workflow synchronously. If you want to

implement conditional logic to handle failures, you can disable this option and check for the existence of

data in the Error return variable to determine if the activity failed.

If you don’t want to use the default configuration for a particular entity, create a new InRule Configuration

record according to Updating InRule Rules Configuration Records and then associate it with that entity by

following Associating an InRule Configuration record to an Entity.

Additionally, if you want to run rules against multiple entities, you can leverage custom workflows from an

entity view page and run the workflow against selected entities. This functions similarly to the entity view

page Run Rules button, but the notable difference is that custom workflows allow for the execution of

custom logic on the selected entities before the execution of rules.

 Important: Before you can use the custom workflow activity, you will need to update the max

plugin depth setting for the custom action step to be at least 2, instead of the default value of 1.

This is because causing a plugin to be run from a workflow adds 1 to the current plugin depth. For more

information on plugin depth, please refer to Changing the Max Plugin Depth

5 Form Events

While the ‘Run Rules’ button provides an easy way to run rules on demand, you can also run rules

automatically on form events, such as ‘OnSave’. To help with this, the invokeCustomAction.js web

resource provides a helper function called ‘executeRulesOnEvent’ that you can easily register to an

event.

When this function is registered to the ‘OnSave’ event of a form, it will trigger the rules configured for the

entity or event (see specific steps below). Any validation errors returned by the rules will automatically

cancel the save operation and display the messages in the notification pane. Alternatively, if you need to

use validations to prevent saving for updates made from the CDS API, you’ll need to configure rules to

run on the ‘Update’ or ‘Create’ event for an entity as described in the Plugin Events.

Important: If you want to use the dirty field values currently on the form, and not the values

already saved to CDS when running rules, make sure you set ‘Use Dirty Entity Image’ to true when

setting the InRule Configuration for this entity. You can do this by following the steps in Updating InRule

Rules Configuration Records and Associating an InRule Configuration record to an Entity.

1. Registering a function to a form event requires customizing the entity form. If you want to make

this change in a solution navigate to that solution first. Otherwise, navigate to Settings ->

Customization -> Customize the System

https://word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DUS&rs=en%2DUS&wopisrc=https%3A%2F%2Fsigaostudios.sharepoint.com%2Fsites%2FInRuleCRMProjectResponse%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F6b4f63e6b18c4938949323b8cb61c539&wdenableroaming=1&mscc=0&hid=56B0F79E-A0CF-9000-8529-6532D4B2A0C5&wdorigin=Sharing&jsapi=1&newsession=1&corrid=bbe4ec4b-74ba-41f5-84ca-e8cc23479cc2&usid=bbe4ec4b-74ba-41f5-84ca-e8cc23479cc2&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlushFallback#_Plugin_Events

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 71 of
130

2. Navigate to the entity and form you’d like to customize and select it

3. Once the form is open, select ‘Form Properties’ in the ribbon bar, click ‘Add’ under ‘Form

Libraries’, find inrule_invokeCustomAction.js and add it

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 72 of
130

4. Select the desired Control and Event under ‘Form Handlers’ and click ‘Add’. In the window that

pops ups, select ‘inrule_invokeCustomAction.js’ for the Library, and enter

‘inRule.executeRulesOnEvent’ for the Function. Under the ‘Parameters’ section, ensure the ‘Pass

execution context as first parameter’ is checked. If you want to override the default rule set and

rule app configured for the entity, the rule app can be passed in as the first parameter, and the

rule set or decision as the second. Both must be passed for this to work.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 73 of
130

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 74 of
130

5. Click ‘Ok’, ‘Ok’ and then save and publish the form

6 JavaScript

While InRule provides the ability to easily run rules on demand with the ‘Run Rules’ button and form

events, you can also write your own JavaScript for more advanced scenarios and consume the functions

provided in the included invokeCustomAction.js resource directly.

Overriding Rule Configuration behavior with user Options and custom JavaScript

The Run Rules ribbon button executes the InRule.executeRules() method without passing in any

parameters. The method will use the configuration defined by the InRule Solution – Rule Configuration

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 75 of
130

Form. However, if an implementer chooses to call the InRule.executeRules() method from within custom

JavaScript code, a userOptions object can be passed in that will override the Rule Configuration.

The bellow JavaScript clip demonstrates how to load up a userOptions object with the values, and then

pass those options on to inRule.executeRules(userOptions). ‘ruleSetName’ can be either a rule set or

decision name. To pass parameters to the rule set or decision, use ruleParameters and provide a JSON

string using the format below

7 Power Platform

Over the years Microsoft has extended the functionality available in Dynamics 365 by providing deep

integration into other Microsoft products. Most of these products now fall under the ‘Power Platform’

umbrella, which includes things like Power Apps and Power Automate. These technologies are

underpinned by the Common Data Service and the Common Data Model, which is the same technology

used to store and manage entities in Dynamics 365. These are some examples of things you can do with

InRule and Power Platform:

• Power Automate – Use the Common Data Service Connector to run rules against an entity as

part of a flow, and use the rule output later in the flow

• CDS and Model-driven Apps – Create custom model-driven apps that execute rules using the

Run Rules button and Plugin events, just like in Dynamics 365

• Canvas Apps – Using the integration with Power Automate, execute rules from forms with

entities to display notifications or take other actions based on rule output

• Power App portal – Run rules and display rule output in customer-facing portals (requires

custom code for UI and triggering custom action – contact InRule for more information)

var formContext = executionContext.getFormContext();

var userOptions = {

 persistChanges: true,

 useDirtyEntity: false,

 entityTypeName: formContext.data.entity.getEntityName()

 entityId: formContext.data.entity.getId,

 useEntityPrefix: false,

 showConfirmation: true,

 showStatus: true,

 ruleAppName: "MyRuleApplication",

 ruleSetName: "MyRuleSet",

 ruleSetParameters: '{"parameter1Name":"parameter1Value",

"parameter2Name", "parameter2Value"}'

};

inRule.executeRules(formContext, userOptions);

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 76 of
130

In the following sections, we will describe in more detail how to use InRule from both Power Automate

flows and Canvas apps.

Power Automate

Power Automate is Microsoft’s low-code solution for building workflows and business logic. The primary

way Power Automate flows can interact with Dynamics is through the Common Data Service Connector.

This connector lets you interact with entities, as well as other CDS-specific functionality, like invoking a

custom action. Using the custom action step, you can call the InRule RulesEngineAction included with the

InRule solution, and pass in all the required information to execute rules against an entity. This will kick

off the same plugin logic that is used by the Run Rules button and entity events within Dynamics and

return the same set of information. If the rules you’ve written handle making all of the changes you need,

you can simply fire the RulesEngineAction and move on, or you can use the rule output later in the flow to

do something. You could, for example, write the notifications returned from rule execution to an email and

send that to a user. The steps below will show you how to set up a flow to execute rules on an entity.

1. Once you’ve installed InRule for Dynamics 365, go to https://flow.microsoft.com, and make sure

you’ve selected the Dynamics or CDS environment containing the InRule solution

2. Create a new flow using whichever trigger is appropriate for your flow, and then add a new

‘Perform an unbound action’ step from the ‘Common Data Service (current environment)’

connector

https://flow.microsoft.com/

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 77 of
130

3. Select the ‘inrule_RulesEngineAction’ action from the dropdown

4. Once you select the action, the step should automatically create the required fields for the

RulesEngineAction. Most of these values will typically be static, but the entity ID will need to be

provided as an input to the flow, or read from an entity object used in the flow

5. If you want to use the output of the rule execution in your flow, you will likely need to parse the

JSON result to access the individual components of the response. To do this, add the ‘Parse

JSON’ step, and select the ‘executionResult’ content from the unbound action step. In the

‘schema’ field, copy and paste the JSON schema from the Custom Action section.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 78 of
130

6. Working with nested objects can be difficult in Power Automate, so if desired you can add an

additional step to help break out the values you want. If, for example, you want to use

notifications and errors, you can parse the initial response as usual in the first step, and then

have one step each to parse out notifications and errors.

If you follow this method, you can select the following properties from the output of the initial step,

then use the provided JSON schemas to parse just that property:

a. Notifications

{ "type": "array", "items": { "type": "object", "properties": {
 "Type": { "type": "integer" },
 "Message": { "type": "string" } },
 "required": ["Type", "Message"] } }

b. Errors

{ "type": "array", "items": { "type": "object", "properties": {
 "Source": { "type": "string" },
 "Message": { "type": "string" } },
 "required": ["Source", "Message"] } }

c. Validations

{ "type": "array", "items": { "type": "object", "properties": {
 "FieldName": { "type": "string" },
 "FieldDisplayName": { "type": "string" },
 "Message": { "type": "string" } },

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 79 of
130

 "required": ["FieldName", "FieldDisplayName", "Message"] } }

d. PropertyBag

{ "type": "array", "items": { "type": "object", "properties": {
 "key": { "type": "string" },
 "value": { "type": "string" } },
 "required": ["key", "value"] } }

7. If you need to return results from this flow to, for example, a canvas app, you can either build your

own response object, or you can feed the execution result directly into the ‘Response’ step, using

the same content and schema as above

Canvas Apps

While model-driven apps like Dynamics 365 are useful in many scenarios, canvas apps provide more

flexibility in design. While canvas apps do not necessarily have to use CDS entities, if your app uses

entity forms or integrates with entities in some other kind of way, you can utilize the integration with

Power Automate to run rules against these entities and display information from rule output directly in

your app. We will provide some boilerplate code here for potential use in a canvas app, but given the

flexibility of canvas apps, your code may look very different. The following directions will show you how to

add a ‘Run Rules’ button to a page with an entity form and use the output from rule execution to display

notifications to the user.

1. The starting point for these steps is a canvas app that already has a screen with an entity form on

it. In order to run rules against the particular entity the user is viewing, you will need to add the ID

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 80 of
130

field for the entity to the form, but you can set the visibility to ‘Off’ so it won’t show on the page

2. Next, we’ll need to create a flow that will invoke the included RulesEngineAction and run the

rules. For more information on how to set up a basic flow to run rules, refer to the previous

section on Power Automate. When creating this flow, you will need to use the ‘Power Apps’

trigger. This will make the flow available for selection and allow for input from the canvas app. To

get input from the canvas app, click in a content field and choose ‘Ask in Power Apps’ from the

‘Power Apps’ trigger. This will automatically create a new content variable that you can reference

in the flow and make that variable available as input to the flow. You can add as many of these

variables as you want, but you will need to add at least one variable for the entity ID. Other values

required by the RulesEngineAction, such as rule app or rule set name, can either be hard coded

into the flow, or passed in via variables

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 81 of
130

3. If you want to use the execution result in your canvas app, you’ll need to add a ‘Response’ step to

the end of the flow. The ‘executionResult’ will need to be returned in the body, and the JSON

schema from the Custom Action section will need to be provided in the ‘JSON Schema’ section

under ‘Advanced Options’

4. Next, you’ll need to add a button and link it to Power Automate flow we just created. To do this,

add a new button to the screen and go to the ‘Action’ tab for the button. Choose ‘Power

Automate’ and you should see the flow you created in the previous step listed here. If you do not

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 82 of
130

see the flow, make sure you canvas app and flow are in the same environment. Select your flow

to associate it to the button

5. You can use the following function snippet as a starting point for the function for your button. This

snippet calls the associated flow (in this case called ‘RunRules’) and sets the output to a variable.

It then loops over all of the notifications in the response, displays them to the user, and refreshes

the form data. Due to limitations in the way notifications work in canvas apps, only the most

recent notification is shown, but you can expand on the sample with your own custom code. In

this example, all of the properties required for the RulesEngineAction are passed in to the flow,

but you may choose to set these in the flow itself. The only value that must be passed in is the

entity ID, which is the first parameter here. When editing this code in the function editor, the

intellisense will display which parameter maps to which variable in the flow.

Set(response, RunRules.Run(AccountIdValue, "account", "DynamicsRules", "UpdatePhone", true));

ForAll(response.NotificationResponse.Notifications,
Switch(Type,
0, Notify(Message, NotificationType.Information),
1, Notify(Message, NotificationType.Warning),
2, Notify(Message, NotificationType.Error)));

Refresh(Accounts);

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 83 of
130

6. Once the setup is complete, you can test the rule execution by previewing the app and hitting the

‘Run Rules’ button. If execution is sucessful, you should see any notifications from rule execution

displayed in the app

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 84 of
130

Appendix F: Rules Configuration and Settings

The InRule Solution – Rules Configuration Form provides a central location where you can configure rule

execution options across the various methods of executing rules. By leveraging these Rule

Configurations users can configure the Run Rules Button and events to execute Rule Sets or Decisions

for a given entity, which provides the ability to run complex logic against that entity and its related entities.

At a summary level, the steps for setting up the Run Rules Button are as follows:

• Create a Rule Configuration Record

• Configure Rules Button Settings

• Create a Rule Set Configuration for each Rule Set or Decision

• Associate a Rule Configuration Record to an Entity

The Run Rules Button is also able to take advantage of Rule Sets or Decisions that utilize parameters,

more information about which can be found in:

• Using Input Parameters for Rule Sets or Decisions

Rule Configurations can also be configured to run a Rule Set or Decision against an entity on certain

events (entity create or update). The primary areas of focus for associating a Rule Set or Decisions with

an event are:

• Update a Rule Configuration Record

• Associate a Rule Configuration Record to An Entity Event

These events only use the primary Rule App and the primary Rule Set or Decision that are configured on

the Rule Configuration, so the Rule Set Configurations and Parameter Configurations that can be used

with the Run Rules Button are not necessary.

Create or Update Rule Configuration Records

1. If you are already logged in to Dynamics 365 or a Power App, click on the settings cog in the top
right and go to ‘Advanced Settings’. Alternatively, if you are in Power Platform Admin center, go
to the settings for your environment and then click on ‘All legacy settings’. From the settings
menu, select Rules Configuration under the InRule section.

Navigate to Settings in Dynamics Navigate to Settings in Power Platform

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 85 of
130

2. From the settings menu, click on ‘Rules Configuration’ under the ‘InRule’ section

3. The Rules Configuration page contains 3 panes – Service Endpoint Configuration, Step
Registration Configuration, and Rules Configuration. The following steps will focus on Rules
Configuration, then Step Registration.

4. Either add New or select an existing Rule Configuration record (eg Default). The following steps
use the Default record, but since Default is more of a global Rule Configuration, you should
consider creating a new Rules Configuration specific to the entity that you want to associate to
the Run Rules button. Select either a new or existing Rules Configuration record to edit:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 86 of
130

5. Configure the General Settings for the Rule Configuration as follows:

a. Choose a Name

• for a Rule Configuration that will be used for a specific entity (which is typically

the case), it’s best to create a name that represents the entity along with the

purpose of the rules (e.g. LoanEligibilityConfg)

b. Enter a Description

c. Enter the Rule App containing the Rule Set or Decision

• This setting is used as a global/default setting when individual Rule Set

Configurations are not provided in the Rules Button Settings section. If the Rule

Configuration is being associated to an entity event, then use this setting. If the

Rule Configuration is being used for the Run Rules Button, then use the Rule Set

Configurations in the Rules Button Settings section and this setting can be left

empty.

d. Enter the Rule Set or Decision to execute

• Similar to the Rule App setting, this setting is used as a global/default setting

when individual Rule Set Configurations are not provided in the Rules Button

Settings section. The same logic applies for when to set this field as compared to

when to use the Rule Set Configurations (described here).

e. Press “Save” in the top-left corner

Configure Rules Button Settings

Out-of-the-box, the Run Rules button is scoped to only run the default rule set that is specified by the

Rule Set Name field on the ‘Default’ Rule Configuration. However, you also have the option to add

additional Rule Set Configurations to allow one or more rule sets/decisions to be selected from the Run

Rules Button. When these are added, the Run Rules Button will display a dropdown menu to allow the

end user to select from a list of rule sets and decisions. To enable this functionality, follow the steps

below:

1. Create or update a Rule Configuration according described in the previous step.

• Unless you want this list to appear on all entities, do not modify the ‘Default’ Rule

Configuration record.

2. The Rules Button Options can typically be left as the default values, for a complete overview of

these settings go to An Explanation of the Rules Button Options.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 87 of
130

3. Under Rules Button Settings, click the ‘Add Existing Rule Set Configuration’ button on the ‘Rule

Set Configurations’ sub-grid. From here, you can search for an existing Rule Set if you have

already created one as part of another configuration, or you click ‘New Record’ to create a new

record

4. If you choose to create a new record, fill out the fields on the form that pops up. Rule Set Name,

Type and Rule App are required. Optionally, you can provide a Display Name, which will be

displayed in the dropdown instead of the Rule Set Name. Sort Order is also optional and takes

an integer which will be used to sort the Rule Set list in ascending order.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 88 of
130

Important: When running rules using a Decision, the decision authored in irAuthor must have an

input parameter with the entity type you are running rules against. Additionally, any output

parameters are not used by the framework, as the same entity is used as output.

This root entity parameter is provided by the framework automatically and does not need to be

defined in the Rule Set Configuration page (only in the Rule Application Decision definition). For

more information on how to configure other input parameters for your rule set or decision, refer to

Using Input Parameters for Rules.

5. Associate the configuration record above with the entity you’d like the list to appear on by

following the steps in Associating an InRule Configuration record to an Entity

6. Go to the entity page for the configuration that you have just edited and ensure that the Run

Rules button now has the desired rule set or decision options listed.

Using Input Parameters for Rule Sets or Decisions

If you need to collect information from end users that is not on an entity form, you can use rule

parameters for the user to enter at runtime. If you configure a rule set or decision to use parameters,

when a Dynamics user clicks on this rule for execution, they will get a dialog to allow them to input the

parameters.

Important: This functionality is not supported in on-prem environments, and is not intended for

use with Dynamics events.

To enable this behavior, you will first need to add the parameters to the rule set or decision in irAuthor.

InRule for Dynamics supports all the primitive parameter types, but not entity parameters. However, these

are all collected as string values and converted in the execution service, so the end user must ensure the

values are formatted properly when providing them:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 89 of
130

Important: When defining a Decision, the decision authored in irAuthor must have an input

parameter with the entity type you are running rules against. Additionally, any output parameters

are not used by the framework, as the same entity is used as output.

Next you will need to edit the Rule Set Configuration record to use this rule set or decision, along with its

associated parameters. In order to get to this point, you should have already gone through these steps:

1. First set up a config record if you haven’t already done so according to Updating InRule Rules

Configuration Records.

2. Next add an associated rule set config record following the steps in Configuring the Run Rules

Button for an Entity Form.

After filling out the form fields and saving the record, you’ll now be able to add parameter config entries in

the Parameters sub-grid.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 90 of
130

When adding a parameter, you only need to provide the parameter name, and optionally a description.

Repeat this process for each parameter you want to add. Once parameters are added to a rule set

configuration, the ‘Run Rules’ button will automatically display the parameter input dialog to users.

Associating a Rule Configuration record to an Entity

If you want to use different Rule Configurations for different Dynamics entities, you can create multiple

configuration records and then associate them to a particular entity. The same configuration record can

be associated to multiple different entities if desired. For Rule Configurations you wish you use with the

Run Rules Button, inrule_RulesEngineAction with be the SDK message you select.

Please note that if you wish to associate an inrule_RulesEngineAction to a specific entity type, this will

override the “default” custom action step. The “default” inrule_RulesEngineAction is a “global” custom

action step registration which all entities will default to using until you register a custom action step for a

specific entity type.

1. Create or update the configuration record according to the previous steps

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 91 of
130

2. Return to the Rules Configuration page and navigate to the Step Registration Configuration

section and click Add New

3. Choose the SDK Message (Update, Create, inrule_RulesEngineAction)

a. Update – Update of the primary entity

b. Create – Create of the primary entity

c. inrule_RulesEngineAction – The custom action message invoked when the ‘Run Rules’

button is clicked. Choose this to override the default behavior for a particular entity

whenever the ‘Run Rules’ button is clicked, custom JavaScript is executed using the

included invokeCustomAction.js resource, the workflow activity is used, a form event is

used, or the custom action is invoked through some other means.

4. Select a Primary Entity for your rule registration to use

5. Open the Rule Configurations for Step dropdown menu that appears and select the Rule

Configuration that you made above.

6. Click “Update Step Registration” and verify that the registration successfully saves

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 92 of
130

An Explanation of the Rules Button Options

The below options must be passed into the InRule Custom Action. InvokeCustomAction.js exposes

InRule.executeRules() which will use values defined in the InRule Solution – Configuration Form.

Alternatively, a consumer of InRule.executeRules() can pass in an object that provides specific values

that should be used on a call by call basis

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 93 of
130

Show Run Rules
Button

If true, then the Inrule Run Rules Button will be visible on all pages.

If false, then the InRule Run Rules Button will be globaly removed. This will
only effect the the use of the button, but not other registered plugin steps.

UseDirtyEntity

If true, the InRule Custom Action will expect that form data will be included in
the API call. The form data is used to populate the root entity in the Rule
Engine. This is useful in scenarios when data has changed on the Dynamics
form but the save button has not yet been pressed. This allows a user to run
rules against data before a save takes place.

If false, the only data passed to the Custom Action is the Entity ID (guid) of
the entity, and the Custom Action will query Dynamics directly for that entities
data. This limits the InRule Custom Action to being aware only of data that
has been fully saved to Dynamics.

UseEntityPrefix

If true, then the supplied RuleSetName is interpreted as a suffix to the
EntityTypeName. For example: if the supplied RuleSetName is “DefaultRules”
and the EntityTypeName you are dealing with is “Account”, then the
RuleSetName actually used will be “AccountDefaultRules”.

If false, then the supplied RuleSetName is interpreted literally.

ShowConfirmation

If true, this will ask the user in the
User Interface with the following
visual prompt before actually
executing rules:

ShowStatus

If true, a status messages will
be displayed within the
Dynamics interface when
rules are executing, when
rules are finished, and if rules
are cancelled by the
confirmation dialog.

Displaying the Entity Image in Trace Logs

When troubleshooting rule execution, it can sometimes be helpful to see the entire image returned from

the execution service. By default, this image is written to the trace log as json. However, enabling this

option can cause other parts of the trace log to be truncated, so this can be conditionally disabled from

the Rule Configuration Form. To disable the entity image, follow the steps below:

1. Navigate to the InRule Solution Rule Configuration Form

2. Scroll down and select the ‘Default’ record under the ‘Rule Configurations’ section. Please note

that the change made in this specific record will take effect across the whole system.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 94 of
130

7. Set the Return Full Entity Image Button under the Rule Execution Service section

8. Save the Entity in the bottom right hand corner

Disabling the Run Rules Button

Out-of-the-box, the Run Rules button is used to manually initiate the execution of rules. In some

instances, the Run Rules button may not be needed, and the button can be disabled as described below.

1. Create or update a Rule Configuration according to Create or Update Rules Configuration

Records. If you want to hide the button for all forms on all entities, edit the default record.

Otherwise, create a new record for the specific entity you’d like to show or hide the button on.

2. Set the Show Run Rules Button under the Rules Button Settings section

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 95 of
130

3. If you edited the default record, you can skip this step. Otherwise, you’ll need to associate the

Configuration record you just modified with a particular entity by following the steps in Associating

an InRule Configuration record to an Entity

Changing the Max Plugin Depth

Dynamics provides the plugin depth property to the plugin context to track the current depth of the call

stack. Whenever another plugin or process is executed within the scope of the current transaction, this

value is incremented by 1 in the invoked plugin. This value is commonly used to prevent infinite loops,

where multiple plugins keep firing each other. The Max Plugin Depth setting in the InRule Configuration

will stop execution of the plugin whenever the depth is greater than the specified value. By default, this

value is set to 1, but you may need to change it in certain cases, such as using the included custom

workflow activity, or running rules from within your own custom plugin. To update this value, change the

‘Max Plugin Depth’ setting using the steps in Updating InRule Rules Configuration Records, and

optionally associate the record with a specific event and entity by following the steps in Associating an

InRule Configuration record to an Entity

Disabling Persist Changes

When Persist Changes is set to enabled all changes made to all entities by InRule are persisted back to

Dynamics. When disabled any changes made by InRule are sent back in the response and can be

consumed by the caller, but they are not persisted back to Dynamics.

The Persist Changes setting can be found in the Plugin section of the Rule Configuration.

Configuring the AppDomain Cache

When using the Rule Helper, the integration framework provides the ability to save query results in a

persistent cache in the execution service AppDomain. This is useful if you have relatively static data that

is used consistently in one or more rule apps, since this cache persists across rule executions. By default,

this cache is disabled, but you can enable it by setting a value for the cache timeout in the Rule

Configuration. To update this value, change the ‘AppDomainCache’ setting to the desired retention time

in seconds using the steps in Create or Update a Rule Configuration Record, and optionally associate the

record with a specific event and entity by following the steps in Associating a Rule Configuration record to

an Entity. If this value is set to zero, the next time the rule helper is used from the execution service the

cache will be cleared. The cache will also be cleared if the execution service is ever restarted. For more

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 96 of
130

information on how to use the rule helper, refer to Appendix D: Accessing Dynamics 365 Directly from

Rule Helper

Calling ApplyRules (Auto Fire Mode Rule Sets)

To execute a Rule Set with its Fire Mode set to “Auto,” simply do not define a Rule Set for your rule

configuration and associate that rule configuration to the entity type that your auto Rule Set is associated

with.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 97 of
130

Appendix G: Endpoint Override Configuration

As of version 5.5, InRule for Dynamics now supports Overriding Endpoint Configuration via Azure App

Service App Settings. This allows for the overriding of various endpoint settings configured on a rule app,

such as REST API URLs or Database Connection Strings, by setting App Settings on your execution

service App Service.

To set an endpoint override on your app service, simply navigate to your rule execution app service and

go to the Configuration view:

Select “New Application Setting”

The name of the override uses the following convention:

inrule:runtime:overrides:<YourEndpointNameHere>:<OverrideType>:<OverrideSetting>

Your endpoint name should match the name of the endpoint or data object in the rule app you wish to

override. The available override types are:

• DatabaseConnection

• MailServerConnection

• WebServerAddress

• WebServiceWsdlUri

• WebServiceMaxReceivedMessageSize

• XmlDocumentPath

• XmlSchema

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 98 of
130

• XmlSchemaValidation

• InlineTable

• InlineXmlDocument

• InlineValueList

• SqlQuery

• RestService

The endpoint setting is the name of the setting to override for that Endpoint Type. Some Endpoint Types
have several Endpoint Settings; the available settings for each Endpoint Type can be read about in the
InRule support site documentation.

Below is what a properly configured end-result would look like, using a DatabaseConnection override as
an example:

The value of the override App Setting would then be set to whatever value you wish to override with.
Once your override is set, simply save the changes to your app service. Upon the next execution of rules,
the specified endpoint type will be overridden with the supplied value.

Rest Service Override

Unlike other override types, the RestService override type is made of multiple sub-types listed below.
When overriding a rest service endpoint, only include the ‘RestService’ override type in the key, not the
sub-type. For example, if overriding the reset service certificate path, you would need to create two app
settings with the following keys:

inrule:runtime:overrides:YouRestServiceName:RestService:RestServiceX509CertificatePath
inrule:runtime:overrides:YouRestServiceName:RestService:RestServiceX509CertificatePassword

The following are the RestService override sub-types and associated settings

• RestServiceRootUrl
o RestServiceRootUrl

• RestServiceAuthenticationType
o AuthenticationType
o RestServiceUserName
o RestServicePassword
o RestServiceDomain

• RestServiceX509CertificatePath
o RestServiceX509CertificatePath
o RestServiceX509CertificatePassword

• RestServiceAllowUntrustedCertificates
o RestServiceAllowUntrustedCertificates

https://support.inrule.com/hc/en-us/articles/360061544332-Runtime-Overrides-How-to-Quickly-and-Securely-Point-to-Desired-Endpoints

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 99 of
130

 Important: If an override type contains multiple settings, like RestServiceX509CertificatePath or

RestServiceAuthenticationType, be sure to include an App Setting for each of the settings listed in the

documentation.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 100 of
130

Appendix H: Azure App Service Plan & Application Insights

Configuration

Azure App Service Plan Overview

The Dynamics Rule Execution Azure App Service runs on an Azure App Service Plan. The ARM

Template deployment process outlined in Section 3.3.3: Rule Execution App Service for Dynamics 365

will, by default, automatically deploy an App Service Plan for you.

This App Service Plan will be deployed to the subscription and resource group provided during the

deployment process. Additionally, the plan will be configured with a “B1” (Basic, Small) pricing tier. This is

the lowest tier possible for the Rule Execution App Service to run in, as it is the lowest tier that allows

running in Always On mode. Always On is required to permit a continuous web job to run on the app

service. Thus, regardless of whether or not you opt to allow the ARM template to create an App Service

Plan for you, or use a pre-existing one, the plan must, at a minimum, be of the “B1” tier or higher.

 Important: If you leave the ARM template configured to re-deploy the App Service Plan, updating

an existing one, the pricing tier of that App Service Plan will be set to the default pricing tier,

regardless of what it may currently be set to. If you do not wish the pricing tier to be reverted to

default, it is recommended you follow the steps below.

Should you wish to use a pre-existing Azure App Service Plan rather than have a new one created for

you, a few configuration steps within the ARM template itself are necessary.

Configuring the ARM Template to Use an Existing Azure App Service

Plan

1: Locate InRule.Dynamics.Service.parameters.json

The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined in

Section 3.3.3: Rule Execution App Service for Dynamics 365

2: Populate “appServicePlanName” parameter

Open the file in your text editor of choice. First, populate the “appServicePlanName” parameter at the

bottom of the parameters file. Set the value equal to the name of your app service plan.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 101 of
130

3: Update “createOrUpdateAppServicePlan” parameter

Next, you’ll need to set the parameter called “createOrUpdateAppServicePlan” to false.

4: [Optional] Create “servicePlanResourceGroupName” parameter

In the event the App Service Plan you intend to use is located in a different resource group than the one

you are deploying the ARM template against, you need to add a parameter to inform the ARM template

what resource group your App Service Plan is in. Create the “servicePlanResourceGroupName”

parameter as shown below and define the value as the name of the resource group your App Service

Plan exists in.

5: Save InRule.Dynamics.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section 3.3.3:

Rule Execution App Service for Dynamics 365 as normal; your rule execution app service will now deploy

to the App Service Plan you defined in the steps above

Azure Application Insights Overview

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 102 of
130

For improved logging capabilities, the Dynamics Rule Execution Service is configured to use an Azure

App Insights resource as a logging sink in addition to the logging the App Service itself already has. ARM

Template deployment process outlined in Section 3.3.3: Rule Execution App Service for Dynamics 365

will, by default, automatically deploy an App Insights resource for you.

The app insights resource will aggregate all the logs generated from the execution service. These logs

can be tremendously useful for debugging any issues encountered with the Rule Execution Service.

Depending on the level of event logging configured for the Rule Execution Service Event Log, these logs

can add insight into rule executions, entity loading, overall execution timing, and any errors encountered

during rule execution.

App Insights in non-Standard Azure Instances (Government Cloud)

If this is your first time deploying the arm template and you would like for the template to create the app

insights resource for you, then no other configuration is required.

However, if you would like to use a pre-existing app insights resource then you need to set the

appInsightsInstrumentationKey and the appInsightsConnectionString for that resource in the

azuredeploy.parameters.json. Then proceed with the rest of the deployment steps outlines in Section

3.3.3: Rule Execution App Service for Dynamics 365

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 103 of
130

Appendix I: InRule SaaS Portal Configuration

InRule SaaS offers customers the most streamlined deployment process, eliminating the need to install

and manage the Azure App Services, as InRule will manage the deployment of the Rule Execution

Service for Dynamics 365 for you. SaaS customers are also able to use their SaaS portal to access the

information needed for configuring the InRule Solution for Dynamics 365 and provide Service Account

credentials for the SaaS-hosted Rule Execution Service to connect to a Dynamics environment.

Granting Consent and Creating Application User

To allow the Rule Execution Service to connect with the Dynamics environment, an administrator for the

Dynamics 365 environment will then need to grant consent. For those wishing to use an S2S connection,

an application user will then need to be created. This can all be done through the InRule SaaS page

provided in the InRule Solution for Dynamics 365.

Access Solution Configuration Information

SaaS Customers can find the information needed for configuring the InRule Solution for Dynamics 365

through the Configuration page of their SaaS portal. This page will have a section for each Rule

Execution Service instance hosted for the customer by InRule.

Providing Connection Information

Clicking the “Manage” button for a Dynamics 365 section will allow users to provide connection

information that will allow the SaaS-hosted Rule Execution Service to interact with their Dynamics

environment. You have two options for authentication type, S2S and Office 365. If you choose S2S,

InRule will manage the credentials for accessing Dynamics, and you will just need to create the

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 104 of
130

associated Application User in your Dynamics instance. If you want to provide and manage your own

credentials, you can choose Office 365, which will authenticate with a named user account.

1: Using an Office 365 Connection

For an Office 365 connection, the Organization URL as well a Service Account username and password

will need to be provided.

2: Using an S2S Connection

For an S2S connection, only the Organization URL will need to be configured in the portal.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 105 of
130

Appendix J: Dynamics 365 Tracing and InRule Event Logging

Dynamics 365 Plug-In Trace Logging

The Dynamics Plug-In Trace Log feature is a debugging tool made available within Dynamics itself for

reviewing plugin events and exceptions. This section will highlight how to enable this feature within

Dynamics and how to utilize it. Currently, Plug-In Trace Logs only work with the Execution Service in

online deployments. For more detail on the limitations of on-prem deployments, reference Appendix M:

Known Issues, Limitations and Troubleshooting.

Enable Plug-In Trace Log

To enable the Plug-in Trace Log, first navigate to Settings > Administration.

Once you’re in the Administration section, click on System Settings.

From here you can navigate to the Customization tab and select All for the Enable logging to plug-in
trace log field. Then click OK. This will create trace logs for all plugin events within your Dynamics
environment. In the context of InRule, this includes Create, Update, and Custom Action events.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 106 of
130

Viewing Plug-In Trace Log

To review Plug-In Trace Logs after they have been enabled, navigate to Settings > Plug-in Trace Log.

Here, there will be a list populated with all logged plugin events. If you do not see a list of logs in a similar

fashion as below, that means no plugin events have been logged.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 107 of
130

For this example, we will view the resulting log of executing a Custom Action from manually running rules.

To view a specific log, simply click on the hyperlinked Type Name text.

The first section within a specific trace log is the Configuration section, which details the various

configuration details about the event, including the Rule Configuration ID used, the event type, the plugin

step ID, and more. This section can be useful for debugging by providing a quick means of determining

whether or not the rules executed were properly configured.

The second section, the Execution section, is typically the most useful for debugging. It will provide a

block of all messages logged by the plugin during its execution, as well as any exception details, if the

event resulted in an exception.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 108 of
130

The message block logs rule execution “milestones.” In the event that the plugin fails to execute properly,

the message block is useful for determining at what point it is failing. The Exception Details block will

provide any related details to any exception thrown and is generally the first place to look to diagnose the

nature of a plugin execution failure.

Additionally, when interested in performance information, the application logs will also provide insight into

data loading time. As can be seen below, this is broken up into total loading time, which is how long the

entire loading process takes with internal processing included, total org time, which is strictly the summed

total of all entity loading times, and then loading times for each collection loaded. This will also display the

total number of entities in each collection.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 109 of
130

Rule Execution Service Event Log

Event logging can be enabled in the Rule Execution App Service to monitor application events. These

logs can be tremendously useful for debugging any issues encountered with the Rule Execution Service.

Configuring Event Logging Levels

The Application Event Log can quickly become bogged down with too many logs, making finding specific

logs that you may be interested in more difficult. To cut down on excessive informational logs, the Rule

Execution Service, by default, will be deployed with a logging level of “Warn,” meaning only Warnings and

Errors will be logged. However, this can be adjusted as needed for whatever your needs may be.

To adjust your Rule Execution Service’s logging level, navigate to your App Service as created as a part

of the Azure deployment process detailed in Section 3.3.3: Rule Execution App Service for Dynamics.

Once you’re looking at the overview of your app service, select Configuration in the settings menu:

Scroll down until you see the Configuration section:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 110 of
130

Locate the inrule:logging:level setting. Note that its value is currently set to “Warn.”

Simply change the value to the desired logging level. You may select from one of the following levels that

the Rule Execution Service leverages:

Logging Level Details

Info Logs all application events, including Informational
events that track the general flow of the
application

Warn Logs Warning and Error events. Warning events
highlight abnormal or unexpected events in the
application flow, but don’t otherwise cause
application execution to stop

Error Logs only Error events. Error events result in the
halt
ed execution of the application’s current activity
due to a failure

Once you have configured the setting to the desired to level, press Save at the top of the page:

Viewing Application Event Logs

To enable event logging, login to Azure and navigate to your App Service as created as a part of the

Azure deployment process detailed in Section 3.3.3: Rule Execution App Service for Dynamics.

Once you’re looking at the overview of your app service, select Diagnose and solve problems

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 111 of
130

Select Diagnostic Tools

Select Application Events Logs

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 112 of
130

You should see a list of all application events logged by the rule execution service, denoted with the

notification level, timestamp, source, event ID, and web server. Selecting an event log will cause the log

details to appear below the list of logs.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 113 of
130

In the event of rule service issues, error events in this log stream can be useful for debugging purposes.

For example, below is an example of an error event log in an instance where the rule service contacting

the catalog looking for a rule application that didn’t exist:

Typically, the response message at the beginning of the log and the Error Information section provide the

most pertinent debugging information.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 114 of
130

Appendix K: Activating Your License Keys

Whether you’re deploying the Online or On-Prem solution will determine the appropriate method for

activating your InRule licenses. For Online installations, you will have an Azure license file provided to

you by InRule which will be deployed to your Azure app service via FTP. This process is detailed in the

Performing the Installation: In Azure section.

For On-Prem, you will leverage the InRule License Activation Utility and follow the walkthrough below.

1: Download the license activation utility:

Download and install the InRule Activation Utility from support.inrule.com on the server where you intend

to deploy the InRule Execution Service.

2: Run the Activation Utility:

Run the activation utility as an Administrator to install Event Log

Source.

3: Find your license keys:

Go to support.inrule.com and select Licensing Info on the left-hand navigation bar to find your irServer

license keys. Which one(s) you’ll need are dependent on what environment you intend to setup your

InRule components in.

https://support.inrule.com/
https://support.inrule.com/

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 115 of
130

4: Enter your name, organization name and license keys into the

Activation Utility:

Enter your name, organization and the relevant license keys into the Activation Utility and press Activate

5: Verify your license keys have activated:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 116 of
130

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 117 of
130

Appendix L: Redeploying and Upgrading Versions

In most cases, updating InRule for Dynamics is a relatively straight forward process. You will simply go

back through the installation steps in this document and deploy the new version of the Dynamics package

and execution service over the existing versions. This appendix discusses some special cases and

considerations to be aware of when upgrading.

Version Compatibility Considerations

This list includes specific fixes or changes included in releases. Issue number and title are included here,

but you can refer to the release notes section of the support site for further information

Important: When upgrading to a new version, irAuthor, the Dynamics Solution, and the Azure

Rule Execution Service should always be upgraded together

Issue Number Version Description

DYN-447 5.7.0 Remove solution support for Dynamics 8.2

DYN-445 5.7.0 Deprecate usage of Xrm.Page. As a result, formContext will need to be
passed as the first parameter to inRule.executeRules, if calling the
function from custom JavaScript

DYN-407 5.7.0 Deprecate custom S2S authentication with built-in connection string
support

DYN-502 5.7.0 Rule configurations have been updated to use Rule Set configuration
entities rather than a single rule set list field. The new Rule Set
configuration allows for setting Display Names, Sort value, Description,
and Parameters. This should not affect existing rule configurations; an
upgrade for rule configurations to this new model will automatically occur
when upgrading to v5.7.0

S2S Legacy Settings Deprecation

In older version of the execution service S2S connection information was provided in individual app

settings. Configuring the connection information this way has been deprecated and this connection

information should now be provided as a connection string. The original app settings still work, but you

should consider migrating to the new connection string settings, as these will be removed in a later

release. See link for configuring connection string information: https://docs.microsoft.com/en-

us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect

Execution Service App Settings

When running an ARM template deployment to upgrade an existing app service, the new deployment will

remove all app settings that currently exist and replace them with the settings during the new deployment.

Because of this, it is important to save your parameters file when you do a deployment. If you do not have

your previous parameters file you can find it in the deployments section of the Azure Portal. This also

means that any settings that were changed or added manually, such as logging level or endpoint

overrides, will be removed.

Alternatively, current app setting values can be manually set in the ARM template parameter file prior to

deployment to have the template deploy using those values. Should you go this route, be thorough during

the transfer process, it is common for values to have been manually changed over time. For a thorough

https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect
https://docs.microsoft.com/en-us/powerapps/developer/common-data-service/xrm-tooling/use-connection-strings-xrm-tooling-connect

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 118 of
130

breakdown of the relevant parameters, reference Section 3.3.3: Rule Execution App Service for

Dynamics 365.

Lastly, redeploying or upgrading via the ARM template will remove your InRule license from the resulting

app service. The license file will need to be manually added back; for a walkthrough on how to do this,

reference Section 3.3.4: Upload License File.

Solution Customizations

If you have used the Plugin Registration tool to change the ‘Run in User’s Context’ setting on the ‘InRule

Custom Action Step’, you will need to set this back when updating. Additionally, in the unlikely event you

have made any other customizations to resources included in the solution, such as the JavaScript web

resources, you will need to re-apply these customizations after updating the solution.

Upgrading from Cloud Service-based versions

Earlier versions of InRule for Dynamics used Azure’s legacy Cloud Service platform for the rule execution

service. The last version to support this was 5.1.1. Versions from 5.2.0 and on now use Azure App

Service for the same purpose. When upgrading from one of these versions, simply follow the steps for

creating, deploying, and configuring the new Azure resources. Both the App Service and Cloud Service

versions use Azure Relay for communication with Dynamics, but in most cases, it is simpler to let the

provided ARM template provision a new Relay for use with the App Service. Continue following the rest of

the steps in the Deployment Guide to deploy the new version of the Dynamics package and configure it to

point to the new Relay and execution service. Once you have verified the new setup is working, you can

delete the old Cloud Service resources.

Switching from Dynamics On-Prem to Online

While there are no universal steps for transitioning from an on-prem to online version of Dynamics, there

are a few conceptual differences in the way InRule for Dynamics works in each that you should be aware

of. In on-prem installations, communication with the rule execution service is typically handled directly via

HTTP. In Dynamics Online, communication is handled via an Azure Relay resource that manages the

WCF Relay. Depending on the specifics of how your migration takes place, you may need to re-install the

Dynamics package entirely, or it may still be installed on the migrated instance, along with associated

config records. Either way you will need to follow all the steps in Performing the Installation: In Azure for

deploying to Azure, and ensuring that the required Relay information is updated in Dynamics. Once you

complete all these steps, you will need to update any existing InRule Configuration records to replace the

URI that was in the ‘Service Endpoint Id (or Uri)’ field with the appropriate value (d2e50ca1-ef4c-e611-

80e9-6c3be5a82b30).

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 119 of
130

Using the new Entity-based Configuration

From version 5.0.28 and on, step registrations can be configured from within Dynamics. This new system

uses Rules Configuration records and associates them to step registrations created in the Rules

Configuration UI. Before you can use this new configuration, you will need to delete any custom

registrations (registrations other than ‘InRule Custom Action Step’) under the OnlinePlugin:

Once you’ve deleted these registrations, you can create new ones from Dynamics using the steps in

Appendix F: Rules Configuration and Settings

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 120 of
130

Appendix M: Known Issues, Limitations and Troubleshooting

This portion of the document lists current known issues and limitations that may be encountered in usage

of the Integration Framework. Most should only be encountered in limited edge cases.

Connections

Support for Connections is currently limited. You can bring in the Connection entity relationship through

irX as well as write rules against the Connection entity, however, the ability to write rules against the

Connected entity itself through the Connection relationship is not supported. For example, if you have an

Account Connected to a Contact, you can write rules against the Connection entity itself and do things

like change the Role, Role Type, or other fields on the Connection entity, however, you will not able to

write rules against the Contact entity. The Connection entity sits between the two Connected entities (in

this case Account and Contact) and contains all the Connection metadata describing the Connection.

Updating Entity Status via Rules

Currently, irX supports the updating of an entity’s status through rules for “standard” entities that can only

swap states between “Active” and “Inactive,” as well as for the Case entity. Given technical limitations

around how Cases are set to the “Resolved” status through rules, doing so currently auto-defines the

Case Resolution field as “Resolved by rules.” This can be edited within Dynamics itself after the fact if you

wish to change it, but there is no way to set the Case Resolution to anything different via rules at this

time. Additionally, rules that update an entity from “Resolved” or “Inactive” back to any variety of “Active”

that also update another field on the entity are not supported at this time. To support this operation, you

will first need to reactivate the entity, then make any desired changes to any fields on that entity after the

fact, rather than doing both in a single rule.

Other entities with similar “Resolved” states such as Order are not supported at this time.

On-Prem Execution Mode

Running the plugin in an On-Prem Dynamics environment requires running outside of Sandbox mode.

Plugins in sandbox isolation mode run under partial trust, which prevents plugins from doing things like

accessing the file system and registry. This also prevents reflection from being used, which is necessary

for serializing Dynamics classes for communication over WCF. When using service endpoints to

communicate with Azure Relay, Dynamics provides helper classes that handle this serialization, but no

such classes are provided for On-Prem communication. It is worth noting that a side-effect of running

outside sandbox mode is Dynamics will not write to the plugin trace-log.

1-Minute Timeout

Because of Dynamics default configuration, a 1-Minute Timeout may occur when a request to the Azure

Relay takes longer than a minute to respond. This can occur because of latency between Dynamics and

the rule execution service, or anything else that causes the rule execution service to take more than 1

minute to respond.

2-Minute Timeout

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 121 of
130

Dynamics plugin execution is configured to timeout when the plugin runs for more than two minutes. In

online implementations there is nothing that can be done about this behavior because the plugin cannot

be taken out of sandbox mode. Since On-Prem implementations must be run outside of sandbox mode,

this timeout period can be changed by updating the configuration.

S2S User Settings

If the ‘InRule Integration’ user is being used with the associated ‘InRule Integration Administrator’ role, the

entity permissions are not updated after the initial creation. If a new entity type is created, it will not

automatically be added to this security role and will have to be added manually. This user account can be

assigned to the ‘System Administrator’ role to alleviate the stale permission issue, as it is automatically

updated with permission when new entities are created

Solution File Invalid Error

If you are encountering the error above, it is likely because you are attempting to import the InRule

solution file using Dynamics’ included Import Solution tool. This is not the recommended approach for

upgrading the solution components. Because there are many operations involved in an upgrade beyond

the Dynamics solution – preserving step registrations and SAS keys, applying security role permission

sets, etc., all InRule solution installations and upgrades should be conducted using the approach

outlined in Section 3.3.5: InRule Solution for Dynamics 365.

Missing Entity Privilege Error

If, after attempting to run rules, you see an error like the one below, make sure that the ‘InRule

Integration’ user has been assigned the ‘InRule Integration Administrator’ role, and that the role has the

permissions needed to access any entities necessary.

User Principal Permission Error

If your rule updates entity records, you may see an error like the one below when running rules. This is

because by default any changes are saved using the current user’s account. If the rule runner does not

have access to any of the entities being changed, execution will fail with this error.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 122 of
130

This error can be resolved in two ways. First, the user’s permissions in Dynamics can be updated so that

they have the required permissions. Second, the InRule Custom Action step registration can be updated

with the plugin registration tool to run under a different user context. By default this is set to ‘Calling User’,

but if your rules need to update an entity that end users do not have access to, you can change it to

‘System’, or choose a specific user account that has access.

Application Insights Location Error

Application Insights resources are not available in every region, the list of supported regions can be found

in Microsoft’s Product Availability. By default the ARM template will attempt to deploy the App Insights

resource in the resource group specified for the template deployment. If this resource group is in one of

the unsupported regions you will get the following error:

https://azure.microsoft.com/en-us/global-infrastructure/services/?products=all®ions=non-regional,us-central,us-east,us-east-2,us-north-central,us-south-central,us-west-central,us-west,us-west-2

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 123 of
130

To fix this error we will have to choose a specific region for the Application Insights resource in the ARM

template parameters file.

1. Locate InRule.Dynamics.Service.parameters.json
The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined

in Section 3.3.3: Rule Execution App Service for Dynamics 365

2. Create an “appInsightsLocation” parameter

Open the file in your text editor of choice. First, create the appInsightsLocation” parameter at

the bottom of the parameters file. Set the value equal to a region where Application Insights

resources are offered.

3. Save InRule.Dynamics.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section

3.3.3: Rule Execution App Service for Dynamics 365 as normal; your rule execution app service

will now deploy to the App Service Plan you defined in the steps above

• Should you encounter the following error repeatedly being logged in your AppService’s
Application Log:
Unhandled Exception: System.ServiceModel.AddressAlreadyInUseException: This
endpoint requires IsDynamic = False
You need to delete the Azure Relay that your Webjob is attempting to connect to and redeploy it
using the ARM Template included in the InRule deployment package.

Package Deployment Timeout

When running the deployment script from InRule Solution for Dynamics 365, the Dynamics Package

Deployer tool may timeout when communicating with Dynamics. This will result in a ‘The request channel

timed out while waiting for a reply’ error. Depending on where in the process this error happens, the

Package Deployer tool may retry or may stop execution. Once it completes, be sure to validate the

service endpoint and custom action settings in Appendix F: Rules Configuration and Settings, as

incomplete deployments can reset these to default values.

Using irX for Dynamics with Multi Factor Authentication (MFA)

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 124 of
130

Advanced login options have been added in irX for Dynamics to allow users with MFA to authenticate. To

authenticate in this manner select Use Advanced Login in the environment picker. This will reveal a

Login to Dynamics 365 Environment button. Once selected, the advanced login form will be displayed.

Select Office 365, enter your credentials, and complete the login process.

Considerations with Advanced Login:

1. Sign in as Current User (SSO) for Office 365 is not currently supported

2. If On-Premises connection is attempted with an Office 365 environment, you may see the

following error in the Error Log A CDS server name is required. To resolve, use Office 365

login.

Performance

Plugin Trace Log

When troubleshooting performance issues, the plugin trace log provides detailed metrics to help analyze

the various components of rule execution performance. At a high level, the plugin trace logs provide run

times for the various execution steps. The ‘Performance’ section of the plugin trace form includes a field

for ‘Execution Duration’, which is the total process time for the plugin request. In addition, the InRule

plugin also provides a more detailed breakdown of steps in the trace text. These are broken into Plugin

Setup, Execution Service and Save.

Plugin setup time is usually short and includes config entity loading and parsing of input parameters.

Execution Service time will typically be longer, as this includes communication latency over Azure Relay,

loading of additional entity data, and execution of rules. Save time will not always show up in trace logs,

but if any entity changes come back from rule execution the time needed to save them will be reflected

here. The trace log will also include a message noting the number of entities returned from the execution

service for saving. This saving should not take much time for a handful of entities but can take several

seconds for large change sets.

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 125 of
130

For a further breakdown of the data loading and execution time from the rule execution service, the ‘Info’

level event logs for the App Service can be accessed through the Azure Portal.

Included below is a sample trace log that includes these features.

Entered InRule.Crm.ServicePlugins.OnlinePlugin.Execute()
Plugin context retrieved. Message is inrule_RulesEngineAction
Loading configuration entity with ID 42260319-bd49-e911-a973-000d3a1d5285
Configured with depth check of: 0
Plugin context depth: 1
Primary Entity name: none
Primary Entity ID: 00000000-0000-0000-0000-000000000000
Step ID: 070ad2c4-ae70-e711-811a-e0071b6a6141
Step Name: InRule Custom Action Step
Original Input parameters:
Parameter name: entityId, Value: f908cdfa-9b94-ea11-a811-000d3a8df742
Parameter name: ruleAppName, Value: AccountRuleApp
Parameter name: ruleSetName, Value: InvoiceReconciliationRules
Parameter name: entityTypeName, Value: account
Parameter name: persistChanges, Value: True
Parameter name: dirtyEntityImage, Value:
Output parameters:
Parameter name: executionResult, Value:
No entity image present in message. Locating and retrieving entity from CRM using ID f908cdfa-
9b94-ea11-a811-000d3a8df742 and type account
Posting the execution context to the service endpoint d2e50ca1-ef4c-e611-80e9-6c3be5a82b30
using RuleApp 'AccountRuleApp' and RuleSet 'InvoiceReconciliationRules'.
Plugin Setup Time: 16.6833ms
Plugin Execution Service Time: 704.7022ms
Received string response from rule execution service. Response length: 2734
Response json data:
{"EntityImage":null,"EntityChangesResponse":{"EntityChanges":[{"Id":"0a38ba18-9c94-ea11-a811-
000d3a8df742","ChangeType":0,"Entity":null,"EntityImageContainer":{"Attributes":[{"Name":"tota
ldaysnonbillable","Value":2.5625}],"EntityName":"account","Id":"0a38ba18-9c94-ea11-a811-
000d3a8df742"},"RelationshipContainer":null}]},"NotificationResponse":{"Notifications":[{"Type
":0,"Message":"Days Booked: 0"},{"Type":0,"Message":"Days Used: 0"},{"Type":0,"Message":"Days
Remaining: 0.0000"},{"Type":0,"Message":"Days Invoiced_Paid: 0"},{"Type":0,"Message":"Days

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 126 of
130

Invoiced_Open: 0"},{"Type":0,"Message":"Days Invoiced_Total: 0"},{"Type":0,"Message":"Amount
Invoiced Total: 0"},{"Type":0,"Message":"Training Booked: 1.5"},{"Type":0,"Message":"Training
Used: 1.5"},{"Type":0,"Message":"Total Days Booked: 1.5"},{"Type":0,"Message":"Total Days
Used: 1.5"},{"Type":0,"Message":"Total Days Comp: 1.5"},{"Type":0,"Message":"Total Days Non-
Billable: 2.5625"},{"Type":0,"Message":"Services Non-Billable:
0.0313"},{"Type":0,"Message":"Training Non-Billable:
0.5938"}]},"ValidationResponse":{"Validations":[]},"ContextResponse":{"PropertyBag":[]},"Error
Response":{"Errors":[]},"RuleExecutionLog":null}
SAVE: Saving 1 changes to CRM
Processing change -- Update on entity ID 0a38ba18-9c94-ea11-a811-000d3a8df742 -- type account
Synchronizing change images:
Completed sync changes image
Save Time: 74.1592ms
Output parameter "executionResult" populated with execution service response
Exiting InRule.Crm.ServicePlugins.OnlinePlugin.Execute()

Plugin Persistence Performance

When changes are made to entities as part of rule execution, these changes are bundled up and sent

from the execution service back to the plugin for saving. Performance testing in this area indicates you

can expect to be able to save around 10 changes a second, although other things can increase this time,

such as other plugins registered to the entity being updated, and initial plugin start-up times. This

performance constraint is specific to Dynamics overall (as compared to InRule) and has been verified with

direct testing using XRM with simple entities.

Regional Performance

To maximize performance by reducing network traversal time, ensure that your Dynamics 365 instance

and Azure resources (App Service, Azure Relay, etc.) are deployed to the same Azure Region.

To determine what region your Azure resources are deployed to, navigate to that resource’s overview

page in the Azure portal and reference the “Location” property at the top of the page:

Determining your Dynamics 365 region is unfortunately less straightforward. First, log in to your Dynamics

instance and select Settings:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 127 of
130

Under the Customization header, select “Customizations”

Select “Developer Resources”

Look for the endpoint address in the Discovery Service section:

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 128 of
130

This endpoint address can be compared against the endpoints in this Microsoft document. They each
map to a major Azure region. While Dynamics does not provide a means of determining your sub-region
(such as US-East or US-West), this will allow you to at least know which major region your Dynamics
instance is located in.

Since you cannot change or configure your Dynamics region in any way, it is recommended instead that
you move your Azure resources to a sub-region that falls within the same major region that your
Dynamics instance is in.

Decreasing message size

Large message sizes when communicating over the Azure Relay to the execution service can result in

lower performance and potentially failed requests if the size is too large. When testing performance, it is

recommended to turn off ‘Rule Execution Log Enabled’ and ‘Return Full Entity Image’ in the ‘Rule

Execution Service’ section of the InRule config entity, as these settings can contribute significantly to the

size of the message returned from the execution service.

Batch Processing

InRule rule execution is primarily oriented at the level of an individual transaction for a given entity

context. This is relatively straight-forward when rules are based on an entity event or on-demand process

-- for example, Validate Account or Qualify Lead. In other scenarios, there may be a desire to execute

rules across multiple entities that are related to a logical parent at a point in time - for example a tranche

of Loans or Leads from a Tradeshow. In this case, InRule’s collection handling is well suited to load and

execute rules against multiple entities based on the relationship to the parent rule entity. The multiple

entity scenario works great, to a point. The primary consideration is that all of the entity data is processed

in a single rules execution request that can result in the loading and saving of hundreds to thousands of

entities.

If the entity count for a rules execution request is expected to be upwards of 1,000 to 10,000+ entities, it’s

advisable to reassess, measure throughput and potentially consider batch approaches. Unfortunately,

neither Dynamics nor InRule have a one-size-fits-all solution for managing batch operations. However, in

https://docs.microsoft.com/en-us/previous-versions/dynamicscrm-2016/developers-guide/gg328127(v=crm.8)?redirectedfrom=MSDN

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 129 of
130

these scenarios, a single rule execution request can usually be broken into multiple requests by

employing common batch solution techniques and tools. The end goal is to establish a solution where a

batch process will manage the iteration across the primary entities (e.g. Leads for a Tradeshow) and

issue the rule execution requests for either individual Leads or smaller groups of Leads.

Request and Response Message Size Limitations

Request Message Size
If the request message size is too large the execution service will return an `Internal Server Error`. You
can enable WPF Tracing on the Rule Execution App Service to validate this is the issue.

Response Message Size
If the response message is too large the plugin will show this error message:

The maximum message size quota for incoming messages (xxxxxxx) has been exceeded. To
increase the quota, use the MaxReceivedMessageSize property on the appropriate binding
element. Please see Known Issues and Limitations in the inRule Deployment Guide

The response size limit can not be changed, since it is not configurable in Dynamics 365, but there are a
few things you can do to reduce its size. In the relevant Rule Configuration settings, under the Rule
Execution Service section, you can disable the return of the entity image and the rule execution log.

Miscellaneous Troubleshooting Items

• Relay Provider Error - When deploying the Azure WCF Relay (aka Azure Relay), you will need

to ensure the Azure subscription you are deploying the Relay into has the Relay provider

enabled. This can sometimes happen with older subscriptions that have not used relays before.

For more information about this issue, refer to the link here

• Plugin Isolation for On-Prem - When deploying plugins without isolation in an on-prem

environment, Dynamics requires that the user registering the plugin must be added as a

Deployment Administrator from Deployment Manager. If the registering user lacks the proper

permissions, when deploying the package Dynamics will return an error stating “Assembly must

be registered in isolation.”

Locate SAS Key in Azure Portal

When setting up the connection to the rule execution service in Dynamics, you will need to provide the

SAS key and Service Bus Namespace Address for the Azure Relay that the execution service is listening

to. If you deploy the Azure resources using the provided ARM template and instructions, you should get

this value when the deployment completes.

If you need to locate the SAS key, you can retrieve it by navigating to the relay resource in the Azure

portal. The execution service uses the ‘RootManageSharedAccessKey’ by default, which you can find in

the ‘Shared access policies’ menu on the sidebar. Once you open the policy, you can copy out either the

primary or secondary key.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-register-provider-errors

InRule for Microsoft Dynamics 365 Deployment Guide

Copyright© 2021 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 130 of
130

Finally, the Service Bus Namespace Address can be derived from the Name of the Azure Relay or the

‘Primary Connection String’. For example, an Azure Relay defined as:

• Name: 123dynamicsrelay

• Connection String (beginning with): Endpoint=sb://123dynamicsrelay.servicebus.windows.net...

The equivalent Service Bus Namespace Address is:

• Azure SB Namespace Address: https://123dynamicsrelay.servicebus.windows.net/ruleexecution

