
Shifting Docker
security left

Table of contents

Authors

Brian Vermeer (@BrianVerm)
Snyk

William Henry (@ipbabble)
RedHat

TL;DR							 3

An introduction to this report			 4

State of Docker security

The Docker landscape				 		 5

Known vulnerabilities in Docker images				 6

Vulnerabilities in base images					 7

Addressing Docker security

Container security ownership					 8	

Security testing the OS layer					 9

Finding out about vulnerabilities					 10

How to improve your Docker security

Choosing the right base image					 11

Use multi-stage builds						 14

Rebuilding images						 15

Scanning images during development				 16

Scanning containers during production				 16

http://twitter.com/BrianVerm
http://twitter.com/ipbabble

3All rights reserved. 2019 © Snyk

TL;DR

	 Docker vulnerabilities are widespread

èè The top 10 official Docker images with more than 10 million downloads

each contain at least 30 vulnerabilities.

èè Of the top 10 most popular free certified Docker images, 50% have

known vulnerabilities.

	 Easy fixes can have big security impact

èè Each of the top ten most popular default 20% of the Docker images with
vulnerabilities could have been solved by a simple image rebuild.

èè 44% of Docker images had known vulnerabilities for which there were
newer and more secure base images available.

èè 45% of developers never discover new vulnerabilities disclosed in their

production containers.

	 Scan your Docker images frequently

èè Scan your Docker images as part of your development workflow and in
your CI/CD pipelines.

èè Proactive remediation advice: tools such as Snyk pinpoint which image
layers introduce vulnerabilities and offer remediation advice.

èè Monitor your Docker containers in production by automatically

scanning your base image and packages.

	 Use multi-stage builds and build often!

èè By using multi-stage builds, you only copy the artifacts you actually

need, reducing unnecessary vulnerabilities in your images.

èè Re-build your Docker images as part of your development pipeline.

	 There is a lack of clear ownership for
	 Docker security

èè 68% believe developers should be responsible for owning container
security, followed by operations (39%).

èè 80% of developers say they don’t test their Docker images
during development.

èè 50% of developers don’t scan their Docker images for vulnerabilities

at all.





 



How you can improve:

	 Choose the right Docker base image

èè Work with the smallest base image: don't package what you
don't need!

èè Proactive remediation advice: tools such as Snyk offer recommended
image upgrades and alternatives with the fewest vulnerabilities from

which you can choose.

4All rights reserved. 2019 © Snyk

An introduction to this report

Docker turned 6 years old this year. Over the course

of these 6 years, the adoption of Docker—and

containers in general—has grown massively. Currently

57% of developers claim to use containers in their

day-to-day work (see our graph later in this section).

With the advent of container technologies, developers

have been able to build innovative solutions more

easily. Lots of these open source solutions are freely

available. Today, even major software vendors post

pre-built images in public registries such as Docker

Hub, enabling developers to download and use

these images.

In 2015 Docker, Red Hat, CoreOS, IBM, Google and

a broad coalition of industry leaders focused on

common standards for software containers, founding

the Open Container Initiative (OCI). This initiative

was founded with the goal to host an open source,

technical community. In addition, it aims to build

a vendor-neutral, open-specification and portable

runtime for container-based solutions. Since the time

OCI standards were released, many other build and

runtime technologies have been developed. So, while

this article often mentions “Docker containers” and

“Docker images” it should be understood that there

are many technologies available that adhere to the

OCI (open container initiative) standards. At the time

of writing this piece, Docker is still, by far, the most

popular OCI build tool and runtime. The dominance

of Kubernetes and its use of CRI-O is beginning to

change that landscape.

As more organizations create, spread and use Docker

containers, the risk of security vulnerabilities grows.

Docker images are largely built on top of other

images, meaning a vulnerability in one image is also

present in all the images that utilize it.

The wide adoption of Docker comes at a price — a

single vulnerability can be widely spread and have

major impact.

We took a closer look at the raw data from our State

of Open Source Security report, to gain a better

understanding of the Docker landscape and its

associated security risks and best practices. In this

report we look at common security problems with

Docker containers and Docker images and some of

the actions you can take to improve security.

14%

57%29%

 No, but plan toNoYes

Do you use containers?

https://cri-o.io/
https://snyk.io/opensourcesecurity-2019/
https://snyk.io/opensourcesecurity-2019/

5All rights reserved. 2019 © Snyk

State of Docker security

The Docker landscape

Today, Docker is widely used and Docker Hub is the

default place to go if you need a Docker image. Docker

Hub is the world's largest library and community for

container images. At the time of writing this blog,

Docker Hub already had over 2 million (2,085,422)

images available to download and use instantly, and

that number grows daily.

Anyone can push images to Docker Hub but Docker

Hub labels certain images as more trustworthy than

others. While Docker offers official recognition and

even certification for some contributors and their

images, even those images still contain vulnerabilities

that should be managed.

Currently, Docker Hub contains:

èè 223 images published by verified publishers.
These products are published and maintained
directly by a commercial entity.

èè 151 official images available for use. Official
images are a curated set of Docker open
source and "drop-in" solution repositories.

èè 40 Docker images certified by Docker,

meaning that they must conform to best
practices and pass certain baseline tests.

èè Each of the top 10 official Docker images with
more than 10 million downloads and each
of them with at least 30 vulnerabilities.

èè Of the top 10 most popular free Docker
certified images, half with known
vulnerabilities. One image we checked had

almost 160 known vulnerabilities.

The adoption of application container technology

is increasing at a remarkable rate and is expected

to grow by a further 40% in 2020, according to

451 Research.

https://docs.docker.com/docker-hub/publish/certify-images/
https://451research.com/

6All rights reserved. 2019 © Snyk

Docker Hub is the main source for publicly available

Docker images. While Docker advises you to use

official images or Docker-certified images as a security

best practice, it can be seen that the top 10 most

popular Docker images each contains vulnerabilities.

All of these images are official images.

Accordingly, we decided to scan through ten of the

most popular images with Snyk’s recently released

container vulnerability management features.

For every Docker image that we scanned, we were

able to find vulnerable versions of system libraries.

The last scan as of March 11, 2019 shows that the

official Node.js image ships with 567 vulnerable

system libraries. The remaining nine images ship

with at least 31 publicly known vulnerabilities each.

Solutions

In light of these facts, following are container

vulnerability management solutions that

we suggest:

èè Scanning images during development

èè Scanning containers in production

Known vulnerabilities in Docker images

Vulnerabilities per Docker image

63

567

91

0

100

500

600

130

80

postgresnode httpd mongonginx mysql rediscouchbase memcached ubuntu

31

57
42

50
42

Key takeaways

Each of the top 10 official
images on Docker Hub

contain at least 30
vulnerabilities

https://snyk.io/blog/container-vulnerability-management-for-developers/

7All rights reserved. 2019 © Snyk

The majority of vulnerabilities are found in the

operating system (OS) layer. The images described in

the previous section are images that are built on top

of a base image. Therefore, the choice of a good

base image is crucial in decreasing the number

of vulnerabilities.

The node image is built on top of one of the buildpack-

deps images. The Docker buildpack-deps are a

collection of common build dependencies used for

installing various modules and widely used as a base

image for building other images.

Currently, the default buildpack-deps version is

“stretch”, which refers to the Linux distribution

(distro) on which it is based. This stretch version

contains 567 vulnerabilities—-corresponding precisely

to the number of vulnerabilities in the latest node

image that uses this buildpack-deps image as its base

image. It is striking that the three buildpacks that are

based on ubuntu images (xenial, biomic and cosmic)

contain fewer vulnerabilities than the debian-based

buildpacks, suggesting that currently ubuntu-based

images are a better choice from a security standpoint.

Solutions

In light of these facts, following are container

vulnerability management solutions that

we suggest:

èè Choosing the right base image

èè Rebuilding images

Vulnerabilities in base images

Vulnerabilities in buildpack-deps

0

200

400

600

800

xenialjessie buster
(test)

sid
(unstable)

stretch bionic cosmic

699

567

205 220 226

141 140

ubuntudebian

Key takeaways

The top two most popular
base images each have over

500 vulnerabilities

8All rights reserved. 2019 © Snyk

Addressing Docker security

Container security ownership

When Docker is an integral part of your own

ecosystem, somebody needs to take responsibility for

it. Most people agree that responsibility is a shared

effort. When asked who owns container security

(with the option to select more than one answer)

most respondents believed that developers should

be responsible for owning container security (68%),

thereafter followed by operations (39%).

Although security ownership is a shared effort within

DevOps, or better yet—DevSecOps, we see that

the majority believe that developers play a key role.

This is similar to what we see regarding the security

responsibility for application code. According to

The State of Open Source Security report, 81% of

respondents believe that developers should own the

security of their applications.

Organizations may want to also consider partnering

with the trusted vendor of the base images in order

to manage some of the security risk when working

with your CI/CD pipelines. Vendors such as Red

Hat provide scanned and signed images. They also

provide fast turnaround to CVEs on base images

that can then trigger application image rebuilds in

CI/CD pipelines. This doesn’t negate the need for

scanning during the DevOps lifecycle but reduces

the latency between vulnerable production images

and healthy production images. Sharing the risk

with a third party can help reduce the overall risk. Who is responsible for your container image security?

27%

12%

0%

20%

40%

60%

80%

3%

39%

68%

NobodyOtherSecurity
team

OperationsDevelopers

	 Key takeaways

èè 68% of developers believe they themselves should be
responsible for container security.

èè 50% of developers don’t scan their operating system (OS) layer
Docker image for vulnerabilities.

èè 45% of developers never discover new vulnerabilities disclosed
in their production containers.

èè 80% of developers don’t test their Docker images

during development.

9All rights reserved. 2019 © Snyk

Security testing the OS layer

Unfortunately, just 19% of developers claim to

test their Docker images during development

for vulnerabilities in the Operating System layer.

This means that over 80% of developers do not

shift security left to test their images during

development—unfortunately, discovering

vulnerabilities later is costlier.

On top of this, half (50%) of the users don’t perform

any sort of scan for the OS layer of their Docker

image. It’s important to understand what is in the OS

layer of your images. Blindly using Docker images is

very dangerous as you’ll no doubt bring in countless

vulnerabilities. You can easily reduce the risk by

scanning them and first understanding the known

vulnerabilities in each image you’re considering.

By using a scanning tool for Docker images,

such as the one Snyk provides, the vulnerable

images can be caught throughout the complete

development cycle. Starting locally, when a

developer selects a particular Docker image,

scanning prevents vulnerable Docker images

coming into your environment. Repeat scanning

in all stages and through the end of the CI/

CD pipeline to prevent an image with known

vulnerabilities from going into production.

Vulnerabilities in images are naturally discovered

as time passes, making it crucial to keep track

of your production images. The median time

before a vulnerability is found and reported is

2.5 years. Currently, 9% of users claim to scan

their images when in production. An image

might have been safe when it was deployed in

production, but from that point forward over

90% of developers wouldn’t know the current

security status of their images.

When do you scan your Docker image for OS vulns?

0% 20% 40%

9%

14%

19%

31%

During development

At build time

In production

Periodically during audits

Other

We don’t

1%

50%

10% 30% 50%

10All rights reserved. 2019 © Snyk

Finding out about vulnerabilities

We also asked how people find out that a container

they are running contains disclosed vulnerabilities.

45% probably never check. A reasonable amount (15%)

of the respondents check public databases such as the

CVE database. Keep in mind that the CVE database

is only the tip of the iceberg though. The process of

registering a CVE may take several weeks and many

vulnerabilities might not even become a CVE entry,

but may still be a major risk to your system.

Solutions

In light of these facts, following are container

vulnerability management solutions that we suggest:

èè Use multi-stage builds

èè Rebuilding images

èè Scanning images during development

èè Scanning containers in production

How do you find out about new vulnerabilities in
your deployed containers?

0% 20% 40%

15%

33%

22%My security team

We track the
public databases

We use scanning tools

Other

I probably won’t

3%

45%

10% 30% 50%

11All rights reserved. 2019 © Snyk

How to improve your Docker security

There are many actions we can take to lower the risk

of running in a container that someone might exploit.

These include:

èè Choosing the right base image

èè Use multi-stage builds

èè Rebuilding images

èè Scanning images during development

èè Scanning containers in production

We also have a Docker security cheat sheet containing

best practices that you can follow.

Choosing the right base image

A popular approach to this challenge is to have two

types of base images: one used during development

and unit testing and another for later stage testing

and production. In later stage testing and production

your image does not require build tools such as

compilers (for example, Javac) or build systems (such

as Maven) or debugging tools. In fact, in production,

your image may not even require Bash.

We see dramatic differences between the basic

operating system images and the different variants.

Most of the time, a full-blown operating system

image is not necessary. Image build tools, like

Buildah, allow you to build images from scratch

and only install the packages you need and their

dependencies. This lowers the attack plain on images

considerably. Consider a Python application image

with nothing but the Python package, it’s dependent

packages, and the Python application.

An additional advantage of Buildah is that it does

not require the Docker daemon process. This is

important in large scale container deployment

platforms that reuse resources for building

container images. The Docker daemon is a

privileged process that has an open socket used to

communicate with it. If the Docker daemon gets

exploited then the node becomes compromised

and often that means an entire cluster can be

compromised. Either explicitly isolating build nodes

or using a tool like Buildah will eliminate the need

for a Docker daemon.

	 Key takeaways

èè Work with the smallest base image:
Don't package what you don't need!

èè All 567 vulnerabilities in the Node.js
image are inherited from the base image.

https://snyk.io/blog/10-docker-image-security-best-practices/

12All rights reserved. 2019 © Snyk

Selecting a stripped version or another

implementation of a Linux distro can help trim down

the number of vulnerabilities. When scanning the

Alpine base image, a minimal 5MB in size Docker

image based on Alpine Linux, we don’t find any known

vulnerability, however that is mostly due to the Alpine

project not maintaining a security advisory program,

and so if vulnerabilities are present there is no official

advisory to share them on in any case. Still, Alpine

makes a good case of a very minimal and stripped-

down base image upon which to build.

While no vulnerabilities were detected in the version

of the Alpine image we tested, that’s not to say that

it is necessarily free of security issues. Alpine Linux

handles vulnerabilities differently than the other

major distros, who prefer to backport sets of patches.

At Alpine, they prefer rapid release cycles for their

images, with each image release providing a system

library upgrade.

Vulnerabilities in OS images

0

55

31

0

20

40

60

42

1

ubuntudebian debian
stretch-slim

fedoracentos

0

alpine

13All rights reserved. 2019 © Snyk

As you can see in the graph above, changing the base

image inside the Dockerfile or simply using another

tag of a standard image can make a lot of difference.

When building your own image from a Dockerfile be

sure that you do not depend on larger images than

necessary. This shrinks the size of your image and also

minimizes the number of vulnerabilities introduced

through your dependencies.

Based on scans performed by Snyk users, we

found that 44% of docker image scans had known

vulnerabilities, for which there were newer and more

secure base image available. This remediation advice is

unique to Snyk. Developers can take action to upgrade

their Docker images. Automating the process of

scanning for newer or better base images and alerting

to this can be considered a best practice.

Vulnerabilities in Node.js images

567

0

200

400

600

65

node:10-alpinenode:latest node:10-slim

100

300

500

0

14All rights reserved. 2019 © Snyk

Use multi-stage builds

Multi-stage builds are available when using Docker

17.05 and higher. These kinds of builds are designed

to create an optimized Dockerfile that is easy to read

and maintain.

With a multi-stage build, you can use multiple images

and selectively copy only the artifacts needed from

a particular image. You can use multiple FROM

statements in your Dockerfile, and you can use a

different base image for each FROM, copying the

artifacts from one step to the next. You can leave the

artifacts that you don't need behind and still end up

with a concise final image.

This method of creating a tiny image does not only

significantly reduce complexity but also the change

of implementing vulnerable artifacts in your image.

So instead of images that are built on images that

again are built on other images, with multi-stage

builds you are able to “cherry-pick” your artifacts

without inheriting the vulnerabilities from the base

images on which you rely. More information on

how to build multi-stage builds can be found in the

Docker docs.

As mentioned earlier in the report, another approach

is to use tools like Buildah to create minimal

production images with only the packages required

to run your application. For more information on

Buildah see Buildah.io and Podman and Buildah for

Docker Users.

Key takeaways

With multi-stage builds,
you only copy the artifacts

you actually need

https://docs.docker.com/develop/develop-images/multistage-build/
https://buildah.io/
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/
https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users/

15All rights reserved. 2019 © Snyk

Rebuilding images

Every Docker image builds from a Dockerfile. These

Dockerfiles for the Docker images on Docker Hub are

publicly available on GitHub. A Dockerfile contains a

set of instructions which allows you to automate the

steps you would normally manually take to create an

image. Additionally, some libraries may be imported

and custom software can be installed. These are all

instructions in the Dockerfile. In the State of Open

Source Security 2019 report, we discovered that 20%

of the Docker images with vulnerabilities could have

been solved by a simple rebuild of the image.

Building your image is basically a snapshot of that

image at that moment in time. When you depend on a

base image without a strict tag, every time a rebuild is

done the base image can be different. When packages

are installed using a package installer, rebuilding can

change the image.

A Dockerfile containing the following can potentially

have a different binary with every rebuild.

FROM ubuntu:latest

RUN apt-get -y update && apt-get

install -y python

Any Docker image should be rebuilt regularly to

prevent known vulnerabilities in your image that

have already been solved. When rebuilding use the

no-cache option --no-cache to avoid cache hits

and to ensure a fresh download.

For example:

docker build --no-cache -t

myImage:myTag myPath/

In summary, follow these best practices when

rebuilding your image:

èè Each container should have only
one responsibility.

èè Containers should be immutable, lightweight
and fast.

èè Don’t store data in your container (use a
shared data store).

èè Containers should be easy to destroy
and rebuild.

èè Use a small base image (such as Linux Alpine).

èè Smaller images are easier to distribute.

èè Avoid installing unnecessary packages.

èè This keeps the image nice, clean and safe.

èè Avoid cache hits when building.

èè Auto-scan your image before deploying with
a tool like Snyk’s container scan to avoid
pushing vulnerable containers to production.

èè Scan your images daily both during
development and production for
vulnerabilities. Based on that, automate the
rebuild of images if necessary.

Key takeaways

20% of the vulnerable
Docker images can be fixed

by a rebuild

16All rights reserved. 2019 © Snyk

Creating an image from a Dockerfile and even

rebuilding an image can introduce new vulnerabilities

in your system. Previously we saw that 68% of

users believe that developers have a fair amount of

responsibility in container security. Scanning your

docker images during development should be part of

your workflow to catch vulnerabilities as early

as possible.

When thinking of shifting security left, developers

should ideally be able to scan a Dockerfile and their

images from their local machine before it is committed

to a repository or a build pipeline.

This does not mean that you should replace CI-

pipeline scans with local scans, but rather that it is

preferable to scan at all stages of development, and

preferably scans should be automated.

Think about automated scans during build, before

pushing the image to a registry and pushing an image

to a production environment. Refusing that an image

go into a registry or enter the production system

because the automated scan found new vulnerabilities

should be considered a best-practice.

Snyk’s recently released container vulnerability

management scan Docker images by extracting

the image layers and inspecting the package

manager manifest info. We then compare every OS

package installed in the image against our Docker

vulnerability database. In addition to that, it is also

crucial to scan the key binaries installed on the

images. Snyk also supports scanning the key binaries

that are often not installed by the OS package

manager (dpkg, RPM and APK), but by other

methods such as a RUN command.

When giving developers the tools to scan Dockerfiles

and images during development on their local

machines, another layer of protection is created and

developers can actively contribute to a more secure

system in general.

It turns out that 91% of respondents do not scan

their docker images in production. Actively

checking your container could save you a lot of

trouble when a new vulnerability is discovered

and your production system might be at risk.

Periodically (for example, daily) scanning your

docker image is possible by using the Snyk

monitor capabilities for containers. Snyk creates

a snapshot of the image's dependencies for

continuous monitoring.

Additionally you should also activate runtime

monitoring. Scanning for unused modules

and packages inside your runtime gives

insight about how to shrink images. Removing

unused components prevents unnecessary

vulnerabilities from entering both system and

application libraries. This also makes an image

more easily maintainable.

Scanning containers
during production

Scanning images
during development

https://snyk.io/blog/container-vulnerability-management-for-developers/
https://snyk.io/blog/container-vulnerability-management-for-developers/
https://snyk.io/vuln?type=linux
https://snyk.io/vuln?type=linux

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st.,

first floor

Boston

WeWork 9th Floor

501 Boylston St

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Report authors

Brian Vermeer (@BrianVerm), Snyk

William Henry (@ipbabble), RedHat

Report design

Growth Labs (@GrowthLabsMKTG)

Snyk helps you use open source and stay secure.

Get started at snyk.io

http://twitter.com/snyksec
https://snyk.io
http://twitter.com/BrianVerm
http://twitter.com/ipbabble
http://twitter.com/GrowthLabsMKTG
https://snyk.io

