
Enterprise Analyzer Reports

Portability Assessment

 Level 1 Qualifications Source

1. Inventory Report - A list of all source types in the workspace and projects, including

counts of objects and source lines

2. Unresolved Report - A list of objects referenced within the source code supplied

but the repository does not have the source for the object

3. Unreferred Report - Sources describing objects that have no reference to them by

other objects

4. Cross Reference Report - The Cross-reference Report identifies all application

references

5. System Programs - List of System Programs invoked from the inventory

6. List of all Objects in the Project – List of all objects in the project

7. Unique List of PDS Members Used in Project – Unique list of PDS members used

in project

8. Unique Missing Objects – List of unique missing include files and referenced objects

Level 1 Qualifications Data

9. Unique List of Tables - Unique list of tables used in the repository

10. CRUD Report - View the data operations each program in the project performs

and the data objects on which the programs operate

11. Unique list of VSAM KSDS and ESDS – Unique list of ORGRANIZATION IS INDEXED

data stores

12. Inbound Interface Files – Sequential files that are not CREATED by the application

13. Outbound Interface Files – Sequential files that are CREATED by the application but

not used in the application

14. Created and Consumed Files – created and consumed files

15. Fixed length to be migrated – Fixed length files that are going to be migrated

16. Variable Length Files defined in programs – variable length files that are going to

be migrated

17. Files with multiple data records – files with multiple data record types

18. Types of Data COBOL sequential – ORGANIZATION IS SEQUENTIAL or

ORGANIZATION OS RECORD SEQUENTIAL file declarations

19. Unique list of Data JCL GDG Base – Unique list of GDGs with (+1)

20. Instances of Data JCL GDG Base – List of GDGs with (+1)

21. Variable length COBOL - Variable length files require additional effort to convert.

COBOL RECORDS [IS] VARYING

22. Variable length JCL – Variable length files require additional effort to convert,

Includes RECFM=VB or VBA

23. File Usage COBOL Create – Files opened for output

24. File Usage COBOL Read – Files opened for input

25. File Usage COBOL Update – files opened for update

26. File Usage JCL CREATE– Files referenced in a JCL DD statement with Disposition

“NEW”

27. File Usage JCL READ – Files referenced in a JCL DD statement with Disposition “SHR”

28. File Usage JCL Update – Files referenced in a JCL DD statement with Disposition

“MOD”

29. DSNs Referring to a Member in a PDS – Inventory of all JCL Control Cards by

listing all PDS libraries with the members that are used in production by the JCL

30. Seed Files – Identify Seed Files, files with DISP of OLD or SHR are needed by the JCL

and are therefore Seed Files

31. List of all files in the project – List of all files in the project

32. Record Types – Multiple 01 levels within a single file definition (FD) entry of a COBOL

program

33. Logical files that use records COMP and S9 – Logical files that use in their record

structures COMP and S9

Assessment

34. Embedded Hex General – Application list where EBCDIC Hex characters are used

35. BLL Cells used – Is Base Locator Logic for cell addressing used, and where

36. Supported System Programs – System programs supported in the Micro Focus

environment

37. Unsupported System Programs – system programs not supported in the Micro

Focus environment

38. Unsupported System Programs and without FDS – Unsupported System

programs that do not have FDS

39. Conversion Requirements – Source modules requiring conversion to another

format, as in called assembler or Easytrieve modules

40. Modification of pointers by implicit redefinition - Modification of group item

containing a pointer is unsafe, as the memory occupied by the pointer is treated as an

alphanumeric data item. In other words, if you move a non-pointer to a group item

containing a pointer, pointer problems could exist

41. Possible Pointer Modification via CALL Statements and Prototypes - Call

prototypes can be used to validate the pointer parameters passed on CALL statements.

So reporting problems on parameters that comply with the prototype can be avoided.

42. Variable Indexing – Potential pointer problems stemming from modifying pointers by

variable indexing

43. Constant Reference Modification – Potential pointer problems stemming from

modifying pointers by constant reference

Executive Reports

Application Summary

44. Lines of Code - Number of lines of code, plus the number of lines of code in included

files and any files they include. Comments and blank lines are not counted.

45. Program Volumes - V = N * log2(n), where N is Program Length and n is Vocabulary.

Minimum number of bits required to code the program.

46. Maintainability Index - MI = 171 - 5.2 * ln (PgmVolume) - 0.23 * ExtCycComp - 16.2 *

ln (LOC) + 50 * sin (sqrt (2.46 * CommentLines/SourceLines)), where PgmVolume is

Program Volume, ExtCycComp is Extended Cyclomatic Complexity, LOC is Lines of Code,

CommentLines is Comment Lines, and SourceLines is Source Lines.

47. Cyclomatic Complexity - v(G) = e - n + 2, where v(G) is the cyclomatic complexity of

the flow graph (G) for the program in question, e is the number of edges in G, and n is

the number of nodes. Quantity of decision logic. The number of linearly independent

paths (minimum number of paths to be tested). v(G) = DE + 1, where DE is the number

of binary decisions made in the program.

48. Function Points - Lines of Code divided by K, where K depends on the language:

COBOL=77, Natural=52, PL/I=67, PowerBuilder=24. Estimate of the number of end-user

business functions implemented by the program.

49. 3-Maintainability Index - 3-MI = 171 - 5.2 * ln (PgmVolume) - 0.23 * ExtCycComp -

16.2 * ln (LOC), where PgmVolume is Program Volume, ExtCycComp is Extended

Cyclomatic Complexity, and LOC is Lines of Code.

50. Dead lines - Number of dead lines in programs and used include files. Dead lines are

source lines containing Dead Data Elements or Dead Statements. Also, source lines

containing dead constructs.

51. Recursive Number of source lines with COPY - Number of lines of source, plus

the number of lines of source in included files and any files they include. Comments and

blank lines are counted.

52. Recursive number of comments with COPY - Number of lines of source

containing comments, plus the number of lines of source containing comments in

included files and any files they include. Inline comments placed on lines with

statements are not counted.

53. Number 0f Code Lines without COPY - Number of lines of source code. Included

files are not counted. Comments and blank lines are not counted.

54. Commented Code Ratio – Ratio of commented code lines to total source lines

55. Inventory project Details – List of different files types in application area

Repository Statistics

56. Unverified Objects - Objects that have not been verified

57. Verified with errors objects – Objects that have at least one unrecognizable

construct

58. Lightly verified objects – Objects that have syntax that can pass light verification

test

59. Missing Objects – Objects that are referenced but are not part of repository

60. Unresolved Report –

61. Unreferred Report – Objects that are in repository but nor referenced by any other

objects

Performance Optimization (Drill down for ways to

improve COBOL)

62. ALTER Statements

63. Arithmetic statements with different byte sizes

64. CALL statements where the program name does not match

65. Complex arithmetic expressions

66. DIVIDE statement with decimal alignment

67. Do not use CORRESPONDING

68. Do not use ON SIZE ERROR

69. Do not use REMAINDER

70. EVALUATE statements where the item is declared in the linkage section

71. EVALUATE statements where the item is a part of a complex expression

72. EVALUATE statements with a larger number of WHEN condition

73. GO TO statements when paragraph is the procedure unit

74. Initialize statements for multiple variables

75. MOVE CORRESPONDING statements

76. MOVE statements where there could be padding

77. MULTIPLY statement with decimal alignment concerns

78. No GOBACK at end of ENTRY block

79. Numeric data items not 1, 2, 4 or 8 bytes

80. OCCURS DEPENDING ON should be avoided

81. PERFOMR compare the counter to a literal value

82. PERFORM statements that do not reference sections

83. PERFORM statements that overlap with others

84. PERFORM THRU statements

85. Procedure falls through to another Procedure

86. Statements that do not use ending scope delimiters

87. STRING statements

88. UNSTRING statements

89. Use of EXIT PROGRAM

Quality Assessment (Drill down for areas that could

complicate a re-factor))

90. ALTER statements

91. Avoid REDEFINES of group items

92. Binary Table Search

93. Block size must be zero

94. Choosing efficient computational data items (Declarations)

95. Choosing efficient computational data items (Statements0

96. Comp field declarations must use a sign

97. Comparison of Direct and Relative Indexing

98. Computational statements

99. Computational statements with constants

100. DCLGEN copybooks used for host variables

101. Declaration of numeric items used as subscripts

102. Do not use SECTIONs within the PROCEDURE DIVISION

103. Do not use SPECIAL-NAMES paragraph

104. EVALUATE conditions with decreasing probabilities

105. EVALUATE must have WHEN OTHER clause

106. Exception and Error Handling

107. Explicit Scope Terminators

108. GO TO statements that target non-EXIT paragraphs

109. GOBACK statement must be in first paragraph

110. GOTO must branch to paragraph with an EXIT statement

111. Group items used as transferred data items containing initialized elementary

items

112. IF statements not deeper than 3 levels

113. Initialized elementary items used as transferred data items

114. Large table declarations

115. Level 66 declarations not to be used

116. Level 77 declarations not to be used

117. Level numbers that do not align in multiples of 4

118. Look for MOVE statements where the SIGN could be lost

119. Making exponentiation efficient

120. Misalignment in MF COBOL declarations

121. Missing index or subscript checks

122. Must have ENVIRONMENT DIVISION

123. No Switches

124. Non binary OCCURS DEPENDING ON

125. Optimization of constant and variable items

126. Optimization of duplicate items

127. Optimization of variable length data items

128. Paragraphs with at least 4 nested IF statements

129. RECORD SIZE must be zero for fixed length records

130. Relative indexes

131. Relative subscripts

132. Relative subscripts or indexes

133. Running efficiently with CICS

134. SECTION paragraph must have EXIT statement

135. Serial table SEARCH

136. Subscript declarations not binary of 4 or 8 digits

137. Subscripts instead of indexes

138. Test field values using 88 level items

139. Unitialized data items

140. Use figurative constants in the VALUE clause

141. Variables with at least 3 subscripts

