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Introduction 
In 2016, the documentary film AlphaGo chronicled how 
Alphabet subsidiary DeepMind’s AlphaGo AI defeated 
then-champion Lee Sedol in a five-game series of Go. 
Long considered one of the most strategically complex 
games ever created (along with games like shogi and 
chess), AlphaGo was able to pick up the game not as a 
collection of steps and procedures, but by learning and 
self-discovering a system of fuzzy rules and strategies. 
With this understanding, AlphaGo competed with, 
and defeated, human champions.

While these feats of AI strength encourage companies like 
DeepMind to continue their pursuit of human-like “strong 
AI,” it drives companies like Microsoft with their Project 
Bonsai and Tesla with their Autopilot AI to innovate 
new “useful” AI through cutting-edge machine 
teaching approaches.

In late 2020 Microsoft and Neal Analytics built and 
certified an AI neural net “brain” to serve as a medium 
expert operator in a PepsiCo snack foods R&D plant. 

This brain controls the extruders that make Cheetos 
snack foods, ingesting feedback from a computer 
vision system to measure quality attributes like length, 
diameter, density, and curl in real time while using 
that feedback to learn how to control the extruder 
across a huge variety of scenarios. The AI additionally
learned how to adapt its controls to compensate for 
changing conditions, such as wetter or drier corn. 
Most importantly, this brain was designed by chemical 
and mechanical engineers who imparted actual 
on-the-ground expertise to the system, rather than 
AI experts without industry experience.

It’s hard to overstate how important this kind of 
innovation has been in the field of AI. Specifically, 
we are seeing a transformation in AI around the 
interrelationship between intelligent AI, neural 
network brains, and expert machine teaching that 
connects general-purpose AI and application-specific 
“useful” AI.

Unlike the rule-based algorithms that drive AI in games 
of chess on your phone, AlphaGo learns strategies 
and creative responses to each board position with an 
impressive measure of forward thinking and planning 
based on its experience playing many games against 
itself. In this way, it resembles human skill acquisition 
more than systems that calculate or look up their 
next move.

Indeed, there are concrete differences between 
how researchers develop AI in labs to test the limits 
of what AI can learn on its own, and the ways that 
companies like Microsoft, Tesla, and SpaceX teach 
“useful” AI what humans already know about how to 
perform a particular high-value task in the real world 
using techniques that have been proven in research labs.

This white paper will outline a path to production-
ready, decision-making AI for engineering managers 
who operate complex, high-value processes. Instead 
of debating the bar that machines need to cross to 
demonstrate human intelligence, we draw on key 
concepts from the history of AI and combine them 
with state-of-the-art automation technology in 
pursuit of systems better suited for optimization and 
control—useful AI. We assert that useful AI provides 
the next evolution in industrial control, automation, 
and optimization and that teaching is the primary 
mechanism for enabling useful AI.

Useful AI can be defined as “intelligent 
systems that can control or optimize an 
asset better than existing methods can.”
This definition distinguishes AI as a practical solution 
to real-world problems while still leveraging insights 
into machine learning gained from gaming examples. 
Useful AI limits the scope of expectation to complex but 
well-defined control and optimization problems usually 
predicated on a specific asset, system, or process. 
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Useful AI recognizes  
AI as an evolution of  
automated control and  
optimization systems 
There are three primary automation methods used 
in real-world systems and processes.

1 Control theory uses mathematics and science  
to calculate its next action, usually based on  
feedback.

2 Optimization algorithms search options, then  
select a course of action from those options  
based on objective criteria.
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Expert systems codify human expertise as 
rules and look up methods to make decisions. 
Each methodology exhibits strengths and 
weaknesses that we should consider while 
trying to devise superior control using AI.

Method How are decisions made? Strengths Weaknesses 

Control Theory  Mathematical equations calculate 
 the next actions based on sensor 

inputs.

Reliable and predictable.  Not very flexible; can be
susceptible to interference.

Optimization 
Algorithms 

 Algorithms search a huge 
 number of options, then select 

the next action using objective  
criteria.

Thorough and exploratory; useful 
when there is limited expert  
knowledge.

 Don’t handle uncertainty or  
 fuzzy real-world cases well.  

Time- and compute-intensive.

Expert Systems  Look up actions from a large 
 database of rules and heuristics 

 that navigate clearly defined
logical paths. 

 Work well when a lot of expert 
knowledge is available.

 Can be difficult for actual experts
 in the field to provide rules.  

 Don’t capture the nuances of a 
field of expertise. 
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Automated systems have evolved significantly since
control theory was born in 1897. Known as PID
control, these early systems were built to steer the 
rudders of navy ships. In 2016, around the same time 
that DeepMind released AlphaGo, Boston Dynamics 
built a robot called Atlas, which began walking. It 
performed leaps and flips in 2018, demonstrated
robust walking in 2020, and was recently filmed
dancing to famous pop tunes. However, Atlas
doesn’t use the same kinds of learning AI that 
DeepMind trained to beat grandmasters in 
chess and Go. The methods that power Atlas to
these amazing feats are more closely related to 
optimization algorithms and control systems 
that are used to control processes in factories.
Reinforcement learning, the predecessor of the AI 
behind AlphaGo, has roots in control theory and 
uses optimization algorithms to help it learn. But
we seem to be approaching the end of the runway 
of what control theory-based automation can do 
autonomously. Systems like Atlas require a huge
amount of time, money, and specialized expertise 
to build.

Because of these limitations on what automated 
systems can further accomplish autonomously, 
humans frequently make supervisory decisions 

and then hand them to automated systems to carry 
out. Humans also often step in to make real-time
decisions when automated systems falter in very 
dynamic conditions or fuzzy scenarios. For example, 
a mining company may use an expert system to 
produce aluminum in a smelting plant. The expert
system was programmed to alternate between two 
time-tested strategies that were effective individually 
but required specific insights about what conditions 
necessitated moving from one to the other—a task 
that proves difficult for an expert system locked into 
a codified rule set. When the expert system causes
adverse process conditions by switching strategies 
too early or too late, machine alerts call humans 
to step in and use their expert intuition to get the 
process back on track.

The innovation challenge is to move from purely 
linear intelligence models that we see in expert 
systems to add depth, flexibility, and growth to
the more flexible systems we see today. Instead of
compiling rules and instructions in lookup tables, 
these flexible systems need to adopt different
learning methods that support executive decision 
making and creative thinking and meet the demands 
of production engineering and logistics environments.
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Useful AI creates 
control and optimization 
systems that learn 
A neural network is a system of interconnected 
“nodes,” synthetic imitations of neurons in our brains, 
that accept different weights (or values of importance) 
based on the effect that the weight of each node has
on the output of the entire network. The network
learns how to represent complex relationships between 
network input and output as the weights of each 
node evolve. This approach is called deep learning.
So, a neural network will associate success in a task 
with certain conditions and assign more weight to 
relevant nodes, thus building strategies based on 
the consequences of its actions.

Imagine how complex the function is that describes 
the relationship between an arbitrary set of pixels in a
image and whether those pixels form a specific imag
like a human face, a cat, or a dog. Neural networks
build these correlations and correctly identify cats 
and dogs in images, for example, because they can 
approximate any function. Before neural networks,
engineers and scientists relied exclusively on simpler
mathematical relationships to describe how variables
related to each other. Because they can approximate
any function, neural networks help correlate comple
relationships and serve as the foundation for learnin
in complex, realistic, fuzzy, nuanced environments.

networks to output sequential prescriptive decisions like 
an automated control system. In reinforcement learning,
which rose out of control theory in the 1960s, AI learns 
to make decisions by practicing in simulation. Algorithms
train agents (which are just instances of a program that 
does something in a program, like a machine playing a 

game in a multiplayer environment) that learn from 
trial and error based on rewards. For example, a
game-playing agent may learn strategies in a game by 
completing tasks and earning points. By earning points 
based on specific actions, the agent develops 
an approach to the game.

Researchers combined the flexibility of deep learning 
with agent-based reinforcement learning to create 
deep reinforcement learning (DRL) as an approach 
that brings deep learning structures to active agents 
in a reward or weighted reinforcement-learning 
environment.

While some view DRL through the lens of the heights 
or hype that AI research can achieve, DRL possesses a 
quality that sets it far apart if we view it from the lens of 
a feedback-based control system: it learns. This quality 
of learning by practicing across a variety of scenarios 
endows DRL with a set of qualities that present as an 
evolution of control and optimization capabilities.

 

 
 
 
 
 

 

   
 

 
 

  
 

  

 
 

  
 

 
 

n 
e,

 
 

x 
g 

This means that no matter how complex, a neural 
network can describe the operations you need to 
perform on any inputs to get any output (as proven by 
the Universal Approximation Theorem). So, a neural 
network can represent the complex functions needed 
to recognize patterns in pixels without needing step-
by-step algorithmic instructions. 

Deep learning, when paired with a form of machine 
teaching called “reinforcement learning,” trains neural 

Learning 

Traditional systems 
leverage static 

Useful AI learns 
non-linear relationships 

expertise across fuzzy conditions 

Delayed Gratification

Useful AI makes 
decisions with forward 
thinking 

Traditional systems 
often make 
shortsighted decisions 

Sensory Perception 

Traditional systems 
cannot consider some 
sensory information 

Useful AI considers 
visual, sound, and 
categorical features as 
it makes decisions 

 
 
 
 

 

 
 
 

 
 

  
  

 
  

  

  
 

 
 

 
 

 

 
 

 

DRL exhibits other unique qualities among decision-
making techniques, even qualities so compelling that they 
merit consideration as higher-level executive reasoning.
The first unique quality is that it can learn. The second 
unique quality is that DRL uses forward thinking as it 
makes decisions. DRL algorithms maximize future reward, 
which presents as delayed gratification in practice. 
Researchers at Microsoft Project Bonsai amusingly 
experienced this while teaching the Jaco robotic arm 
to grasp and stack one block on another.
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This seven-jointed robot arm folded in on itself while 
performing the task, so the researcher set a reward for 
the distance between the block and the shoulder of the 
robotic arm and a stiff penalty for bringing the block 
closer to and shoulder. After more practice at the task, 
the agent learned to wind up, bringing the block closer 
to its shoulder at great short-term penalty, to strike the 
block or throw the block. This machine agent learned 
that it could achieve much greater rewards in the long 
term by winding up and throwing the block. Of course, 
what the researcher intended was to reward the agent 
for keeping the robot wrist far from the shoulder. This 
change in reward disincentivized the throwing behavior 
and prompted the robot to learn to extend its arm 
during the movement.

The third unique quality of useful AI that sets it 
apart from automated systems is the ability to learn 
from “what it sees and hears” and make supervisory 
decisions. For example, when controlling kilns that 
cook limestone as the first step in the cement-making
process, operators provide supervisory control 
based on the visual appearance of the kiln flame.
The operators supervise the process differently 
depending on the shape of the flame, the color of 
the flame, and the haziness of the air inside the kiln.
This kind of “extra-sensory perception” moves AI toward 
higher-level executive functioning in the context of 
machine and process control. While automated systems
cannot make supervisory decisions based on visual and 
auditory perception, useful AI can.

DRL is also the only technology of any kind that has 
demonstrated the ability to learn strategy. 

Early chess-playing machines utilized programmed 
strategy, but DRL agents learn strategy as they gain 
experience. For example, AlphaChess learned and 
regularly used the 12 most common opening move 
sequences in chess on its own without being taught.

If useful AI can learn strategies from the games of 
Chess and Go, it can also learn strategies that are 
used to control high-value equipment and processes. 
For example, a piece of equipment called a gyratory 
crusher is commonly used to crush rocks as the first 
step in many mining processes. The goal is to crush 
as much rock as possible (measured in tons per hour) 
to the particle size that will fit through the holes in 
a large shaking sieve. A gyrating steel arm rotates 
inside the cone and crushes the rocks against the 
steel cone. The rocks then fall through the bottom 
of the funnel. If you stuff the crusher chock-full, the 
resulting compression forces crush even the largest, 
hardest rocks, but it takes more time for the rocks 
to move through the crusher. If you fill the crusher 
⅔ to ¾ full, you can move more material through the 
crusher per hour, but the crusher doesn’t generate as 
much compressive force. The first control strategy 
efficiently crushes large, hard rocks. This second 
control strategy is perfect for increasing throughput 
when the rocks are softer and smaller. 

A responsive, useful AI can learn to move between 
these two strategies to maximize throughput. 
Importantly, however, this AI can be taught these 
strategies from an expert who knows the strategies 
and when to use them. 

Crusher Crusher“Choke” Strategy “Regulate” Strategy 

CrusherConveyor Rocks 
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Expert teachers for expert learnings:  
Helping real AI succeed beyond  
simplified learning scenarios
Hands-on teaching has always been the most effective 
technique to bootstrap skill acquisition in learners. If you 
wanted your child to learn basketball, simply placing them 
on a court with a ball would not be the most productive 
way to teach them. You would want your child to know that 
the skill of dribbling exists and that there are multiple time-
tested ways to increase their chances of getting the ball 
into the net: the layup, the jump shot, and the hook 
shot. Likewise, AI doesn’t simply learn a task by learning 
rules. It learns best with a combination of experience 
through doing and expert teaching. 

Machine teaching attempts to bridge the gap between 
the algorithm, the data, and the experts by providing 
experts in different fields with ways to break down 
problems into steps, which they could then translate into
a system that machine learning algorithms can understand 
and learn from. Programmers and AI researchers usually 
don’t have expertise in the areas for which they develop AI, 
and subject matter experts often don’t have any advanced 
algorithm or neural network experience. Machine teaching, 
therefore, serves to break down a programmatic barrier 
between machine learning expertise and process experts.

Machine teaching relies on the fundamental tendency 
of teachers to break down tasks into concepts, skills, and 
strategies, then orchestrate the practice and execution 
of these skills into a meaningful sequence. In this way, 
we merge attributes of expert systems with DRL to 
provide some of the explainability of the expert system 
with the adaptability and creativity of learning AI.

We borrow the top-level rules of expert systems to 
provide the structure of the system or process’s decision 
tree, but we replace the second layer of rules, which 
provide the instructions about how to navigate the 
decision tree, with DRL agents that learn strategies. 
The decision tree is the teaching layer that describes 
what skills and strategies the AI will learn, and the 
neural network neurons comprise the machine learning 
layer. In this way, the structure provides some of the 
explainability and predictability of expert systems with 
the creativity and flexibility of DRL agents.

Let’s return to the example of the gyratory crusher 
above. The structure of the expert system, which reflects 
the two operating modes of the machine, outlines 
three skills that should be taught and learned. The first 
skill is the strategy of choking the crusher when the 
mine produces larger, harder rocks. The second skill is 
the strategy of regulating the crusher when the mine 
produces smaller, softer rocks. The third skill decides 
when to choke the crusher and when to regulate the 
crusher. This act of using subject matter expertise to 
define these three skills is itself teaching. Then, if we 
train each of three separate DRL agents on one of the 
three skills above, the combined brain will not only tell 
the engineers which next action to take to control the 
crusher but also which skill it is using at each decision 
point to make that decision.

Learning Agent vs. Expert System 
Modular AI Captures the Best of Both Worlds 

Savant, self-learning agents  
master creative solutions to 
control problems but are a 
black box.

Modular AI provides some  
of the explainability of rule 
systems and  the creativity   
of the learning agent.

Rules and expert systems are 
predictable, maintainable, and 
explainable but completely 
static. 
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The next age of useful  
AI requires teaching  
intelligence  
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We assert that teaching is required for and will usher  
in the next age of useful AI. Alan Turing opened the  
door to the second age of machine intelligence by  
suggesting that instead of building a new machine to  
provide intelligence for each task,  a master machine  
could be programmed with different algorithms. 
Before that, each example of machine intelligence  
from the steam regulator to automatons to player  
pianos to the IBM voting machine required an  
entirely different machine. 

We have learned well from Turing, but now that  
learning algorithms exist, do we need to write a new  
learning algorithm for each new task? One insight  
offered from Microsoft Project Bonsai is that most  
of the AI that we have taught to successfully make  
useful decisions in real-world applications was built  
from the same small handful of learning algorithms.  
A new algorithm wasn’t required for each new feat of  
intelligence, but a teacher was. This is why we believe  
that teaching, not programming, will usher in the next  
age of useful AI.  

Era of Intelligence Scope of Intelligence Examples 

Machine 
Intelligence 

Build a new machine to 
provide intelligence for 
each task. 

Automaton, IBM 
Voting Machine 

Algorithm 
Intelligence 

Write a new algorithm 
to provide intelligence 
for each new task. 

Turing Computer 

Teaching 
Intelligence 

Teach a learner each 
new task. 

AlphaGo 
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Solving real-world 
problems with AI 

The Microsoft Project Bonsai platform presents many of the innovations discussed in 
this white paper, including DRL and an emphasis on machine teaching. With it, experts 
in various fields can utilize low-code approaches to teach a neural network brain to 
make decisions that control processes and equipment through complex scenarios.

Many Microsoft Partners are already working with 
Project Bonsai to improve their day-to-day operations: 

1 PepsiCo  makes several kinds of food and drink  
products, including delicious Cheetos. Because 
food production relies heavily on precise  
manufacturing systems, PepsiCo is always  
interested in optimizing those systems for  
efficiency and cost savings.

PepsiCo recently partnered with Microsoft for a 
pilot plant utilizing Project Bonsai autonomous 
solutions. This solution reads data from the 
system gathered by sensors and makes decisions  
about optimizing consistency, length, and other  
specifications for Cheetos. This brain, which 
was  certified as a medium expert operator, 
adjusts to changing conditions that cannot  
be measured (such as variations in cornmeal  
moisture) to make more accurate and uniform  
Cheetos from that production line.

2 Petrochemical company SCG  also utilizes a  
Project Bonsai solution to connect their engineers  
to optimizing systems. The author interviewed 
expert engineers to design an AI and build a 
curriculum to teach that AI the same two skills 
that each operator at the plant is trained in. The 
AI practiced using these two skills across plant 
variations such as changing the composition  
of input reagents and different catalysts. With 
open machine teaching and low-code solutions, 
Project Bonsai allowed engineers at SCG and the 
AI to work together to learn about the system 
and make changes to optimize production. 
The result was an expert operator AI that could 
control the reactor and reduce the calibration 
time of the reactor simulation from six months 
to two weeks.  

3 Sberbank,  one of the largest Russian and  
Eastern European banks, implemented a 
robotic arm to handle heavy coin bags that  
were a common part of their operations. Each 
coin bag weighed over four pounds, and it was 
difficult to clear coin bags from deep carts. 
Sberbank worked with Microsoft to use the  
Project Bonsai platform to act as the brain for  
a mechanical arm that could automatically  
remove the coins without the need for a human 
operator.  The brain succeeded in this difficult 
grasping task 97% of the time. 

Additionally, Tesla has been utilizing AI and  
machine learning for its fleet of self-driving 
electric cars. The Autopilot AI is one of the key 
components of Tesla’s cars. While not much 
is known about the AI itself, it is common  
knowledge that the deep learning algorithms  
are also informed by crowdsourced data  
collected from all Tesla vehicles and then  
stored in the cloud. This data informs the 
underlying neural nets of the machine learning  
brains to essentially create their spatial location  
and response strategies.
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Conclusion 
AI and machine learning are an evolution of thought, 
practice, and implementation not only of machines 
but also of how we envision what learning and 
thinking are. The invention of the neural network, DRL 
methodologies, and the rise of big data and powerful 
cloud computers have ushered in a new AI boom where 
useful AI is innovating several major industries. 

Perhaps more importantly, this new age of AI has 
introduced researchers and professionals to a new way 
to teach machines. With innovative no-code or low-code 

solutions, experts in any field can feasibly teach 

a machine brain how to perform specific functions. 

Bridging the gap between experts and AI is a critical 
next step in the evolution of machine learning and AI 
as a useful solution to real-world problems. 

Finally, as experts find new ways to teach and deploy 

AI, the possibilities of what machines can think, learn, 
and do become almost limitless. 

Learn more about Microsoft 
Autonomous Systems  → 
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