
Project 0x Case Study | A MythX Project

Project 0x
Case Study

CONTENTS

Abstract ��� 3

Problem statement ��4

Smart contract security solution ���4

MythX Pro vulnerability scan��4

Greybox targeted fuzzing ���6

Verification of custom properties ��9

Conclusion �� 11

Technical milestones ��11

Technology partnership ���11

2 Project 0x Case Study | A MythX Project

Abstract
Smart contracts facilitate the transfer of value and help determine digital
asset behavior. This results in a higher need for formal proofs and computer-
aided checks compared to traditional software as traditional software does
not typically perform these functions. 0x is an open protocol that enables the
peer-to-peer exchange of assets on the Ethereum blockchain. It is one of the
largest open protocols with over 30 projects building on top of it, amassing
over 713,000 total transactions, and a volume of $750 million.

On December 2nd 2019, the 0x v3.0 release went live. The release included
a significantly more complex exchange environment. As such, 0x sought out
MythX, along with ConsenSys Diligence to perform a manual security audit, to
increase confidence in the correctness of the smart contract code.

MythX performed the following techniques in the 3.0 branch of the 0x
monorepo:

• Run MythX Pro to check each smart contract individually for bugs

• Execute fuzzing campaigns on a live multi-contract environment using the
Harvey greybox fuzzer

• Formally verify security and correctness properties of the smart contracts
using symbolic execution and greybox fuzzing

As a result:

• 37 potential issues were detected by MythX Pro

• 149 potential issues were detected by MythX’s extended greybox fuzzing
campaign

• 5 custom contract properties were verified through custom checks

Continuously verifying the code using MythX, including the custom checks
built-in this project, was recommended to prevent regressions and new
security issues�

3 Project 0x Case Study | A MythX Project

https://mythx.io/swc-coverage

Problem statement
0x’s network of decentralized exchanges has processed over $750 million
since inception. As such, 0x wanted to ensure that no funds would be at
risk during the transition from v2.0 to v3.0. The v3.0 release has a more
complicated exchange environment due to an increased amount of smart
contracts interacting with each other, resulting in more complexities and
potentially introducing hidden bugs. 0x’s need to deeply analyze the code,
integrate continuous analysis into their deployment pipeline, and verify
specific contract properties led to a natural partnership with MythX. Both
automated analysis and human auditing was conducted to ensure high
confidence that the v3.0 release would be secure and bug-free.

Smart contract security solution

MYTHX PRO VULNERABILITY SCAN

MythX Pro, a security analysis tool that detects 26 different types of security
vulnerabilities by performing static analysis, dynamic analysis, and symbolic
execution, was used to detect smart contract bugs on 197 contracts. Each
smart contract was compiled individually and checked against a class of
known vulnerabilities from the SWC registry. The SWC registry is a database
that contains a list of known smart contract vulnerabilities, with each known
vulnerability having its own SWC identifier (ID).

The following table lists the bug classes that were tested for. A checkmark
in the “Pass” column indicates that no issues were detected in the category,
while an “X” indicates that one or more issues in the category were found.

4 Project 0x Case Study | A MythX Project

“Working with the MythX team solidified our perspective on the
effectiveness of fuzz testing, and strengthened the trust in the
audit report ConsenSys led on our v3.0 release.” - 0x Team

Table 1: Vulnerabilities checked with MythX Pro

SWC ID Bug Class Pass

SWC-100 Function Default Visibility ✓

SWC-101 Integer Overflow and Underflow ❌

SWC-102 Outdated Compiler Version ✓

SWC-103 Floating Pragma ✓

SWC-104 Unchecked Call Return Value ✓

SWC-105 Unprotected Ether Withdrawal ❌

SWC-106 Unprotected SELFDESTRUCT Instruction ✓

SWC-107 Reentrancy ✓

SWC-108 State Variable Default Visibility ✓

SWC-109 Uninitialized Storage Pointer ✓

SWC-110 Assert Violation ❌

SWC-111 Use of Deprecated Solidity Functions ✓

SWC-112 Delegatecall to Untrusted Callee ✓

SWC-113 DoS with Failed Call ✓

SWC-114 Transaction Order Dependence ✓

SWC-115 Authorization through tx.origin ❌

SWC-116 Timestamp Dependence ❌

SWC-118 Incorrect Constructor Name ✓

SWC-119 Shadowing State Variables ❌

SWC-120 Weak Sources of Randomness ✓

SWC-123 Requirement Violation ✓

SWC-124 Write to Arbitrary Storage Location ✓

SWC-127 Arbitrary Jump ✓

SWC-128 Gas Exhaustion ✓

SWC-129 Typographical Error ✓

SWC-130 Right-To-Left-Override Control Character ✓

MythX Pro detected a total of 37 potential issues that needed to be checked.
Most findings reflected suspected best practice violations such as variable
names shadowing, ignoring failures of external calls, and using tx.origin to
determine the control flow. Most of the issues turned out to be expected
behavior. However, a few potentially problematic issues such as integer
overflows were discovered.

5 Project 0x Case Study | A MythX Project

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-130

Diagram 1: Vulnerabilities discovered sorted by severity

GREYBOX TARGETED FUZZING

Along with using MythX Pro, several 6-hour fuzzing campaigns were
executed using the Harvey greybox fuzzer, a lightweight test-generation
approach that effectively detects bugs and security vulnerabilities. In order
to detect deep security vulnerabilities, Harvey predicts new inputs that are
more likely to reveal vulnerabilities in smart contracts, and fuzzes transaction
sequences in a targeted and demand-driven way.

All 20 migrated or deployed contracts, and many more contracts via inherited
functionality, were fuzzed using Harvey. A custom setup was created wherein
all smart contracts were deployed to a Ganache node. This allowed for all
the smart contracts and all its dependencies to be analyzed, enabling more
elaborate, comprehensive, and accurate fuzzing on the contracts.

It was also observed that the fuzzer kept finding new issues over time. It was
shown that only 65% of the issues were detected within the first 30 minutes,
which highlights the importance of long-running custom fuzzing campaigns.

6 Project 0x Case Study | A MythX Project

Diagram 2: Issues discovered over 30-minute time periods

In addition, a coverage estimate was generated to estimate the residual risk that
a new path or behavior would appear. This is helpful because input fuzzing is a
randomized process and does not yield a guarantee that all issues have been
discovered. Diagram 4 shows the estimated residual risk for the smart contracts
that were analyzed. Having a lower estimated residual risk value indicates that
the chances of a new vulnerability or behavior appearing is low.

Diagram 3: Estimated residual risk of the analyzed smart contracts

7 Project 0x Case Study | A MythX Project

In total, Harvey discovered 149 issues consisting of:

Table 2: Harvey discovered issues

SWC ID # of Issues

SWC-101 (Integer Overflow and Underflow) 68

SWC-104 (Unchecked Call Return Value) 5

SWC-107 (Reentrancy) 6

SWC-110 (Assert Violation) 37

SWC-113 (DoS with Failed Call) 11

SWC-123 (Requirement Violation) 22

SWC-124 (Write to Arbitrary Storage Location) 0

SWC-127 (Arbitrary Jump with Function Type Variable) 0

Diagram 4: Vulnerabilities found sorted by SWC types

The results were reviewed manually to understand why the issues were
flagged, with a greater focus on the issues that were most likely to cause
security risks such as re-entrancy and improper handling of external calls. All
22 instances of SWC-104, SWC-107, and SWC-113 were reviewed. The review
did not uncover exploitable vulnerabilities. It was also noted that the issues
with the highest risk were intended by the 0x developers. For example in

8 Project 0x Case Study | A MythX Project

Example 1, the transaction would not be reverted for failing calls, which could
result in propagating the failure. However, this issue along with the others
detected are mitigated since the contract that could exploit the vulnerabilities
is a “trusted” contract, which is another 0x contract.

Example 1: How the transaction will not revert if the call fails

For example, the 0x developers intentionally ignored return values in

OrderTransferSimulationUtils.sol (line 117):

(, bytes memory returnData) = address(_EXCHANGE).

call(simulateDispatchTransferFromCallsData);

In LibAssetData.sol (line 82) the return value is not ignored, but the

transaction is not reverted if the call failed:

(bool success, bytes memory returnData) = tokenAddress.

staticcall(balanceOfData);

balance = success && returnData.length == 32 ? returnData.readUint256(0) : 0;

VERIFICATION OF CUSTOM PROPERTIES

Custom tests for five security properties were created for the 20 deployed
smart contracts to check the intended behavior of specific contracts, also
known as functional correctness. Fuzzing, symbolic execution, and SMT
solving were used to determine whether the smart contracts behaved
correctly with respect to the properties.

Generally, such tests are implemented by inserting runtime assertions into
the code. MythX or offline versions of Harvey and Mythril, an analysis tool
that performs symbolic execution and SMT solving, are then used to detect
counterexamples.

The custom properties were chosen by referring to 0x’s design document
on bug classes to avoid and to see which bugs were expressible for 0x’s
codebase. Table 2 shows which properties were checked for. A check
mark indicates that this property holds where an “x” indicates detected
unintended behavior�

9 Project 0x Case Study | A MythX Project

https://github.com/ConsenSys/0x-v3-mythx-report#verification-of-custom-properties

Table 2: List of custom properties checked for against 0x’s codebase

Property Description Result

Exchange Payment Verify that the contract account balance is zero
ether at the end of a transaction ✓

Asset Transfers Trig-
gered by Unauthorized
Sender

Verify that successful asset transfers always origi-
nate from an authorized sender ✓

Filling Closed Orders Verify that only open orders can be filled
✓

Fixed-point Integer
Arithmetics

Arithmetic operations on fixed-point signed inte-
gers don’t overflow ❌

Asset Proxy Actors cannot execute proxy calls unless they are
explicitly listed in the authorities array by the owner ✓

Three instances of integer underflows were detected for the property, Fixed-
point Integer Arithmetics.

Example 2: Outputs of three instances of integer underflows

_add(0x800,

0x800)

_mul(0x800,

0xff)

_div(0xffffffffffffffffffffffffffffffff00000000000000000000000000000000,

0xfffffffffffffffffffffffffffffff

In addition to the checks listed above in Table 2, another custom check
for a more specific property was created based on an issue discovered by
the ConsenSys Diligence audit team. The check verifies the complex state
invariants for the MixinStorage contract. After using Harvey, it was determined
that the code responsible for the issue was not part of the contracts that were
deployed to the mainnet. It will be possible to automatically check the property
once this contract is part of the migrated contracts. This would be an example
of checking for violations during the course of the development life cycle.

10 Project 0x Case Study | A MythX Project

Conclusion
The MythX team was able to detect 37 potential issues using MythX Pro, 149 potential
issues using MythX’s extended greybox fuzzing campaign, and verified 5 custom contract
properties through custom checks. To prevent regression and newly introduced security bugs,
continuously verifying the code using MythX, including the custom checks built in this project,
was recommended.

TECHNICAL MILESTONES

The completion of the 0x project performed by both MythX and ConsenSys Diligence not
only resulted in high confidence that the upcoming 0x v3.0 release will be secure, it has also
produced a significant milestone for Ethereum security.

• MythX Pro is the first automated security analysis tool that is able to perform both symbolic
execution and fuzzing on a major project

• Comprehensive coverage and realistic analysis and testing was performed by deploying
smart contracts to a local testnet and extracting information to create the initial state
(deployed state) for the greybox fuzzing campaign

• The estimated residual risk on the likelihood that a new path or behavior would appear was
calculated on smart contracts analyzed by our Harvey greybox fuzzer

TECHNOLOGY PARTNERSHIP

About MythX About ConsenSys Diligence

MythX, a ConsenSys product, scans for security
vulnerabilities in Ethereum smart contracts. Its
comprehensive range of analysis techniques which
include static analysis, dynamic analysis, and symbolic
execution, accurately detects security vulnerabilities
and provides an in-depth analysis report. With a vibrant
ecosystem of world-class integration partners that
amplify developer productivity, MythX can be utilized in
all phases of the smart contract development lifecycle.

Our smart contract auditing and blockchain security
services are delivered by a highly experienced team,
driven by their passion for enabling more secure
platforms and ecosystems. ConsenSys Security auditors
and researchers are distributed all over the world
and focused on creating tools that are truly helpful to
auditors and smart contract developers.

For more information, visit mythx.io For more information, visit diligence�consensys�net

11 Project 0x Case Study | A MythX Project

http://mythx.io
https://diligence.consensys.net/

Project 0x Case Study | A MythX Project

“Working with the MythX team solidified
our perspective on the effectiveness of
fuzz testing, and strengthened the trust
in the audit report ConsenSys led on our
v3.0 release.”

0x Team

	_n6ykvse1i1o7
	_1abtqmvydcko
	_kgiqceu5nha
	_9tglff5y8y45
	_8nhxnhdhm9iv
	_6r50ns2qsm4h
	_nw23yq8fnv0m
	_ze13por07ba
	_s3gjtfis8ivv
	_9cll3mos2p7
	_7dxu5oic6d8y
	_zgot7indjhcm
	_c4nmgadhapct
	_obl9u4xk9dko
	Abstract
	Problem statement
	Smart contract security solution
	MythX Pro vulnerability scan
	Greybox targeted fuzzing
	Verification of custom properties

	Conclusion
	Technical milestones
	Technology partnership

