
eBook

Unit Regression Tests
A new type of test created by
Diffblue Cover

eBook

What's wrong with traditional unit testing?
Unit tests, which verify the behavior of individual building blocks of code, are
expensive. They are time-consuming for developers to write, they can be
resource-intensive to maintain, and a critical mass of them is needed before
they add much value. But they are also expensive to not create: if a major bug
slips through to production, it can cost the business untold sums in lost
customers, revenue and reputational damage.

Traditionally, there's been no way around this expense, so development
teams have accepted a trade-off: under pressure to deliver new feature code,
developers typically only write the unit tests that cover the business logic they
think is most critical. They save time, but risk missing any number of less
obvious, but still critical test cases.

A changing approach to unit testing, powered by AI, has made it easier than
ever for development teams to get more of the tests they need. Unit
regression tests are a new category of tests created by Diffblue Cover, a tool
developed by the team of world-leading experts in software verification at the
University of Oxford spin-out Diffblue.

By describing the historical behavior of your code, these unit regression tests
track both intended and unintended changes in the behavior of code over
time. Their strength is in their numbers and the speed at which AI creates
them—hundreds of times faster than the equivalents could be written by
people. But what are they, how else do they differ from traditional unit tests,
and what benefits do they offer?

This eBook provides a rundown of the basics of unit regression tests written
by Diffblue Cover:

● What are unit regression tests?

● How are unit regression tests created?

● The financial benefits of unit regression tests

● How to get started with unit regression tests

Find out more at diffblue.com

2

https://www.diffblue.com/

eBook

What are unit regression tests?

Traditional functional regression testing and unit testing aren’t topics that are
typically discussed together, but they ultimately aim to achieve the same goal
in two different ways, with varying levels of success.

Regression tests (typically an automated functional test) aim to verify the
consistency of functionality from release to release—usually investment is
focused on important use cases. They typically run late in the pipeline, as part
of final verification of the program, and are usually end-to-end functional
tests, which require a realistical test environment, including dependencies like
databases, APIs, etc. For these reasons, traditional regression tests are
typically slow, expensive and (as a black box) ineffective at helping find where
the unintended behavior has been introduced.

Traditional unit tests, on the other hand, run as early as possible in the
development cycle and are designed to pinpoint errors in a single module.
They have to run quickly so they can be used by the developer as part of the
code-build-test-repeat cycle without impacting productivity. Having a full set
of dependencies (such as databases, APIs, etc.) isn’t practical for fast-running
tests that run often. Dependencies are mocked—stubbed out with code that

Find out more at diffblue.com

3

https://www.diffblue.com/

eBook

returns test data, for example, returning simulated data instead of making an
actual database query.

Upon closer inspection, it becomes clear that one of the main purposes of unit
tests is to also find regressions. Once a unit test has been authored and the
code committed, the unit test will forever provide a benchmark to which future
commits can be judged. Developers run unit tests periodically to see if
something that previously worked has broken or changed. This, however, only
starts to deliver value if a critical mass of code is exercised with a
complementary critical mass of unit tests. This is defined as code coverage,
expressed as a percent of how much code is exercised by the unit test.

Having a small number of targeted unit tests can prevent some key issues,
typically for high risk business logic that the developer has deemed valuable
enough to write unit tests for. Unit tests don't provide any protection outside
of the code that they cover, and this is why most organizations fail to see
regression benefits from their unit tests without investing significant human
resources in re-visiting existing code to implement unit tests.

Unit regression tests that are written and maintained automatically by
Diffblue Cover, on the other hand, exist in volume by default, as will be
explained in the next section. This is why they can quickly and efficiently allow
developers to find changes in the behavior of their code, and even in edge and
corner cases. Having a wide array of unit tests reduces risk and associated
cost, so developers can have more confidence that the changes they make
won't break the pipeline.

Find out more at diffblue.com

4

https://www.diffblue.com/

eBook

How are unit regression tests created?

The primary difference between traditional unit tests and unit regression tests
is that unit regression tests are automatically created using Diffblue Cover.
Diffblue Cover's AI engine can quickly write a suite of unit tests that are
derived from existing code, so they reflect the current functionality of the
program. This primary map of the code is used to test new commits, for
example, to see what changed.

Because unit regression tests will only be created en masse, the individual
tests themselves matter less than their collective capability as a net for
catching regressions. The breadth and depth of tests that can be generated
by Diffblue Cover quickly encompasses a wide variety of scenarios, including
edge cases, corner cases and simpler boilerplate code that might have been
missed (either intentionally due to cost, or accidentally) by a human.

What do unit regression tests look like?
Tests created by Diffblue Cover always compile, run quickly, and are easy to
understand. Here's an example of a test created by Diffblue Cover for JUnit.

This unit of code checks the current balance and open status of a bank
account:

Find out more at diffblue.com

5

https://www.diffblue.com/

eBook

public void takeFromBalance(final long amount) throws

AccountException {

 if (getAccountState() != AccountState.OPEN) {

 throw new AccountException("Cannot continue,

account is closed.");

 }

 if (currentBalance + amount < 0) {

 throw new AccountException("Not enough funds");

 }

 currentBalance -= amount;

}

A test for this code that was automatically created by Diffblue Cover is below:

@Test

public void takeFromBalanceTest() throws AccountException

{

 // Arrange

 Account account = new Account(1234567890L, new

 Client("Bob"), 10L);

 // Act

 account.takeFromBalance(10L);

 // Assert

 assertEquals(0L, account.getCurrentBalance());

}

In this test, the Account object has been initialized with real-world value of
an account number, the client name and the account current balance.

Find out more at diffblue.com

6

https://www.diffblue.com/

eBook

In '// Act' , the method takeFromBalance is being called with 10, which
will exercise the method logic.

In '// Assert' , the test is asserting that if you take 10 away from the
Account balance of 10, you will be left with 0.

How this protects you against a regression
This test demonstrates how the method is meant to behave. If the method
functionality were to be changed in an unintended way, this test would fail:
For example, a trivial but common mistake is using the wrong operator; just
changing the operator in "currentBalance += amount" would cause the test to
fail, alerting the developer to a regression.

Find out more at diffblue.com

7

https://www.diffblue.com/

eBook

The financial benefits of unit regression tests

Shift Left Testing
The cost of fixing bugs increases drastically when they are identified in later
stages of the SDLC: It's 30 times more expensive to fix a bug that's detected
in production or post-release, compared to one found in the
requirements/architecture stage. Because AI-generated unit regression tests
are small and plentiful, they compile and run quickly to find precisely where
the errors are very early in the pipeline, well before traditional regression tests
run.

This makes it easier to find and fix mistakes when it is the cheapest and
easiest to do so (before the developer has moved on to the next task) and also
drives ownership and accountability for quality.

Find out more at diffblue.com

8

https://www.diffblue.com/

eBook

Image Source: The Exponential Cost of Fixing Bugs on DeepSource.io, with
data from NIST

Another key advantage of AI-generated unit regression testing is the speed at
which they can be created, and the subsequent time and cost savings.
Though many organizations have code coverage goals of around 60-80%,
quickly increasing existing code coverage by even 20% can allow developers
to catch regressions that could otherwise have potentially huge impacts at
later stages of the software development lifecycle. The cost of manually
writing enough unit tests to increase coverage by this amount would be
substantial, as demonstrated below.

Calculating savings of AI-generated unit regression tests
Findings from the 2019 Diffblue developer survey showed that the time spent
writing unit tests costs companies an average of £14,287 per developer, per
year. With an average of 45 developers employed at the companies included
in the study, the typical unit testing cost for a mid-size company (with at least
500 employees) is approximately £643,000 per year, plus ad hoc maintenance
to keep unit tests updated after they're written.

As a thought experiment to demonstrate the time saved by unit regression
tests, suppose that 30% of the possible unit tests for an application cover

Find out more at diffblue.com

9

https://deepsource.io/blog/exponential-cost-of-fixing-bugs/
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://www.diffblue.com/Education/research_papers/2019-diffblue-developer-survey/
https://www.diffblue.com/

eBook

complex business logic. When it comes to complex business logic, a human
will often produce more accurate unit tests than AI-generated tests; these
complex tests take up 50% of the time a developer spends writing unit tests.

Running Diffblue Cover will create unit regression tests that increase code
coverage for utility code by an average of 35% additional coverage for the
whole application. In this case, AI-generated tests for this utility code yield a
1000x increase in authoring speed. Because the tests are automatically
maintained by Diffblue Cover, they require no additional time or work to keep
them up-to-date.

As a result, using Diffblue Cover to create unit regression tests would save an
organization on average up to 25% of their total time (and cost) of unit testing.
For the organizations included in the above study, this would amount to an
average savings of £160,000/year, without even accounting for the time
saved by automatically maintaining the tests.

The time developers save by using unit regression tests could also be
reinvested in writing more unit tests for the highly complex business logic that
would benefit from a human author, further improving the quality and
resilience of the company's code.

Find out more at diffblue.com

10

https://www.diffblue.com/

eBook

Demonstrated Savings from Diffblue Cover
In practice, Diffblue Cover validates the calculations above. For one customer,
Diffblue Cover created 3,200 tests for a back-end application
overnight—1,000 times faster than writing the equivalent number manually.

This saved the company over one man-year, in addition to providing more
confidence in application stability when adding new code, which also
improved the speed at which engineering teams could deliver business value.

Diffblue Cover also increased coverage for another module within an
important backend system by 36%, and picked up on edge cases in other
applications that could have led to customer-impacting incidents.

Find out more at diffblue.com

11

https://www.diffblue.com/

eBook

How to get started with unit regression tests

Unit regression tests are created by Diffblue Cover and can currently be made
for Java code. Diffblue Cover supplements the necessary work of creating
tests for teams that are already strapped for time, allowing them to spend
more of their time on the most valuable and creative aspects of their work.

Diffblue Cover automatically writes tests for new code (e.g. a development
branch) and because a new baseline test suite is created each time Diffblue
Cover is run, the tests are always up-to-date without manually maintaining
them.

Unit tests don't have to be expensive. Sign up for a free trial of Diffblue
Cover to see how unit regression tests can efficiently improve your company's
code quality, or join one of our regular open demos to see the tool
demonstrated live. You can also watch the latest demo on our website.

Find out more at diffblue.com

12

http://www.diffblue.com/free-trial
http://www.diffblue.com/free-trial
https://www.diffblue.com/open-demo/
https://www.diffblue.com/video-demo/
https://www.diffblue.com/

