

Typical approach to AI/ML deployment

Amazon/Azure/Google/Watson APIs

Other APIs
Python/R libraries Data Scientists
Solution Architects Enterprise
@ Developers
@ Data Normalisation
CB? Data Lakes

Model Building

% @ @@ Model Pipelining

@ Production Integration
D7
rA’ @
B

Unique bespoke system

Our solution to AI/ML deployment and Data Science

Amazon/Azure/Google/Watson APIs
Other APIs
Python/R libraries

Enterprise

AICHOO
Al OS

AICHOO OS provides the easiest, quickest, lowest-risk implementation for any enterprise
machine learning application, with minimal need for specialist staff such as data
scientists.

Benefits of Aichoo OS

Intelligently automates key processes present in the data science activities.

Automatically evolves ML pipeline using library of universal Agents achieving true
self-learning capability.

Data science project becomes a structured and re-useable process which can reach
tangible results within weeks.

Data scientists can concentrate their brain power on developing portable AICHOO
Agents, which can be re-used on other projects and offered for sale to others via
marketplace.

Once the marketplace has enough Agents which can be activated on the AICHOO
instance, companies most likely require no data scientists for typical projects as all
procedures can be configured and executed by skilled IT personnel or even business line
staff.

From a business perspective AICHOO provides the missing framework that all clients are
implicitly expecting because they assume that this is what Al tools provide.

Typical ML Pipeline

¢ X i L N () e
Pre-processing F?aturg Traditional Model Deep Fusion Post-processing
Engineering
Text Statical Boosting
Cleaning Features , Models |
Inear Stackin
Stc\a/:lr(\)r:’ﬂn Features Models 9
9 Fine-grained
INPUT Graph Factorization Rescale OUTPUT
; Stop words Features Machine : ,
Stacking
Shared words (" \
Deletion Representation-based
Deep Model
‘ [Interaction-based] J 4 k
.) _ J ,

Source: https://github.com/HouJP/kaggle-quora-question-pairs/blob/master/img/flowchart.png

Fixed architecture

Pipeline hard-coded in e.g., Python

Difficult to integrate different steps into coherent process

Difficult to parallelise computations

Difficult to optimise end-to-end

Difficult to change and re-use

Not obvious how to move to live production in an enterprise environment
Impossible to keep up-to-date with changes in original source data or environment

Aichoo ML Pipeline

Aichoo OS Memory (column based database)

azure_t azure_t
a_key_ a_key_
questio phrases phrases
nl _questi _questi

azure_t azure_t azure_t azure_t azure_t azure_t azure_t azure_ta azure_ta azure_ta azure_t azure_ta azure_ta azure_ta azure_ta azure_ta azure_t
a_key_ a_key a key_ a_ key_ a_key_ a_key a_key_ _key_phr _key_phr _key_phr a_key p _key_ph _key_ph _key phr _key_ph _key_phr a_key_p
h h h h h h h . ases_qu ases_qu ases_qu hrases_ rases_q rases_q ases_qu rases_q ases_qu hrases_
_questi _questi _questi _questi _questi _questi _questi estionl_1 estionl_1 estionl_1 question uestion1 uestion] estionl_1 uestion1 estion1_1 question

°“'-a‘n-g' ::;—_‘s-c' onl1.0 onl_110n1_1.2 onl_1_3 onl 14 onl_15 onl_16 _10 n 2 111’ 1’ 11 18 11 18 1119
Whatis

the step
by step
guide to
investin
sh...
Whatis
the story
of
Kohinoor en 1 o o o 0 0 o o 0 1) 0 0 o o 1 a 0 a
(Koh-i-
Noor)
Dia...
How canl
increase
the speed
of my
internet

Universal architecture

Any possible pipeline
Transparent and flexible
Agents are multi-purpose
Fits enterprise environment
Easy to optimise and adapt

en 1 a a a 0 0 o 0 0 a o 0 0 0 a a 0 1)

-

N

en 1 a a a a 0 o 0 0 o o 0 0 o a a 0 a

co...
why am|
mentally
very
lonely?
How canl
solve...
Which
one
dissolve
inwater en 1 a 1) 1] 1] 0 o 1] 0 1) 1] 0 1] 1 1) 1) 0 1)
quikly
sugar,
salt...
Astrology:
lama
g+ Coprioom en 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SunCap
moon and

en 1 o o a 0 [t} o o [t} o o 0 o o o o [t} a

S

C...

6 5"°g'3y' en 1 a 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
How canl
be agood
geologist

en 1 o o a 0 0 o o 0 o 1) 0 o o o o 0 a

?
hendo

Jucuee en 075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
% instead

of L7

Aichoo ML Pipeline

A

gz
T -]

N

'4
& [Agents |

N

[Agent1]
[AgentN | (=)

amn?

(| [Agents |
[Agents |

Heliocentric Architecture

e Infinitely expandable

e Unrestricted connectivity between
Agents

e Infinite complexity

e FEasy to change configuration and
optimise to objective

e Parallelised by design

e Super deep network of Agents

Aichoo OS Agent

e Any self-contained procedure that reads columns from Aichoo OS Memory and adds new
columns to the Memory as its outcome

e Agents executed on Jupyter Notebooks server

Agents can be created in any of the 40 languages supported by Jupyter e.g., Python, R, Julia,

Scala etc.

Agent is capable of receiving any type of column as source

Agent has parameters that affect its procedure and outcome

Source columns are given to Agent’s instance by Aichoo OS Kernel

Multiple instances of any Agent with different parameters can be created and executed in

parallel by the Kernel

e Agentis implemented as a class with two required methods e.g., in Python:

class cls_agent_{id}:
def run(self, mode):

def apply(self, df_add):

agent_{id} = cls_agent_<{id}()

e Agent can call any external API (e.g., Azure/Watson/Google/AWS) to perform its function

Aichoo OS Agent Types A

Typically receives data from other sources, transforms or converts columns into other
formats. It usually has fixed parameters that do not need optimising.

Complex procedure that takes subset of available columns in Memory, builds a model
and creates a simulation of the input data based on its model. It is called Evolving
because OS Kernel implements an evolutionary algorithm to hyper-tune all such
Agents’ parameters. Evolving Agent literally evolves and self-improves with time.

Each type of Simple and Evolving Agents copies itself as many times as allowed by computational/hardware
resources, creating a multitude of agent instances. Consequently each instance of Simple and Evolving Agents
continually expands Aichoo OS Memory with its output.

It is essentially the same as Evolving Agent but it is always configured to construct the
final objective function needed for the decision making target specified by user.

Procedure that assembles the final pipeline of Simple, Evolving and Target agents
needed to produce the decision on new incoming data. It creates a complete executable
code which is loaded into memory of the computing cluster with all required
pre-loading of data and models. It provisions such code as REST API and handles API
requests to apply the final model pipeline on new incoming data.

It is similar to Output Agent but its purpose is to produce reports based on all data
available in Aichoo OS Agents and Memory.

Aichoo OS Agent Library

e Agent’s code is fully transparent
e Libraries are kept in GitHub and Aichoo GUI integrates with GitHub
e Aichoo maintains a public library of Agents

e Public library already has hundreds of Agents implementing most common data processing
and ML procedures

e Public agents already created for integration with Watson/Azure/AWS/Google APIs

e Users can fork public library and continue developing on their private GitHub repos

10

Aichoo OS Data Flow Architecture

| Agent Representations
| fneut Data e |_datapipeline

Simple Agent 1

‘Simple Agent S

Representation 1

Representation 2

Representation 3

Evolvmg Ageht-iE

i’érget Agent“1—
Target Agent 2

.

' ATarget Agent T)
. » _—/ S
Aichoo OS Memo Output Agent 1

(_ Output Agent2)

Predictions/Decisions —

|_data pipeline

Represeéxtation N

Output Agent O

Output to othersystems

A

11

Aichoo OS Kernel Components Architecture

1o

Object Storage

Web GUI
' > \\\ 2 E E v

N3~ Evolutionary
BV Watson algorithms
Simple Agent 1 - ‘—& —
. z _
: : b d : :
L \

£) Google Cloud

(Evolving Agent E]
Target Agent 1

Target Agent 2

: Simple Agent S '
Output Agent 1

Output Agent 2

DNAs

C Output Agent 0) Target Agent T)
Computing

cluster 'A. e
Jupyter Spor‘llg L

TensorfFlow

A

Kernel implements
self-learning
evolutionary process

Creates most suitable
pipeline of agents
needed to achieve the
objective

Agents loaded from
library in GitHub

12

Aichoo OS API

Procedure that assembles the final pipeline of Simple, Evolving and Target agents
_ needed to produce the decision on new incoming data. It creates a complete executable
code which is loaded into memory of the computing cluster with all required

pre-loading of data and models. It provisions such code as REST API and handles API
requests to apply the final model pipeline on new incoming data.

-}, swagger /api-docs.json Expiors

AIOS spec ™

[Base URL: /]
/lapi-docs.json

AIOS spec for Swagger
Terms of service

Schemes

AIOS AP for AIOS v

‘ /node={node}&api={api}#set_output_module_started

(/node={node}&api={api}#get_output_module_log

{ /node={node}&api={api}#get_out_agent_result

{ /node={node}&api={api}#run_out_agent

{ /node={node}&api={api}#get_row_count

{ /node={node}&api={api}#get_best_dna_current

‘ /node={node}&api={api}#get_best_dna_executed

{ /node={node}&api={api}#get_dna_results

l /node={node}&api={api}#get_dna_list

) - (- ")) () (—m — {e—")

{ /node={node}&api={api}#get_dna_genes

13

Aichoo OS API

Output Module N

e For each pipeline that needs to go to production user would create Output Agent

e Output Agent assembles the final pipeline only of the agents needed to produce the decision
on new incoming data

e It creates an instance of Output Module which is a segregated Jupyter Kernel into which all
agents code and models are pre-loaded

e Output Agent provisions such pre-loaded segregated code as secure REST API and handles
API requests to apply the pipeline on new incoming requests

14

