Hello, World!

Version: 10.0 / Modifications: 0

Introduction

Hello, Woxrld!

As with all new programming languages, the " Hello, World! "program generally is a
computer program that outputs or displays the message "Hello, World!". Such a program
is very simple in most programming languages and is often used to illustrate the basic
syntax of a programming language. It is often the first program written by people learning
to code.\

. Now step inside and follow these steps to complete your very first composition with
Composable Architecture Platform.
Requirements

A running local, or cloud hosted instance of X.
Installed console version 10.0.0.21050 or later.
Chrome or Firefox browsers are supported.

Ports 80 and 443 are required to be available to run the console and X Engine.
For the purposes of these instructions [your server name] = localhost
For example: http://[your server name]/console/ = http://localhost/console

You need access to a console login screen like this:

http://localhost/console/

® Composable Architecture +

26548.tomorrowx.com/console/

COMPOSABLE

ARCHITECTURE

PLATFORM

User ID

Password

US English ~

100021050 |

Composable Architecture Platform - Console -

Say Hello [content file]
Click the link to open http://localhost/hello.html in a new browser tab:

able Architecture @ Hello, World! +

@ trial-user-0126548.tomorrowx.com/hello.htmi

Please enter your name

| |

Hello World - Content file -

You'll see a simple html content file called hello.html has already been pre-deployed
and is served up to the browser by the running X Engine.

Go ahead and enter your name in the form and press the Say Hello button. The form
submission responds with Hello .

http://localhost/hello.html

@ Composable Architecture (@® trial-user-0126548.tomor

55 @ trial-user-0126548.t0moImrowx.co m/SayHello

SayHello Response

Background Information

The X Engine loads hello.html , prompting the user to enter a name and to click a
button labelled Say Hello. When the button is clicked, the text entered should be
appended to "Hello". For example, if the text entered is "World!" then the result will be
"Hello World!"

Objective

The user experience needs improving because any text entered is currently ignored. Can
you follow this guide to improve the user experience?

First up, let's go and see where the hello.html file lives...

Login [console]

Login to the console using the default credentialsin your case if you are working on the
localhost console, use the default credentials: http://localhost/console/

User ID: admin

Password: admin

Open Repositories

http://localhost/console/

Once logged in, press Start followed by Repositories.

We typically call these “repos”. It's the home, or workspace in the console of where your
work lives.

[JET

.Scr'm'\s

1. Press Start

® Project Management

S8 Repositories

2. Press Repositories

6 Operations

6 Documentation

Navigate to Repositories

Now Click on the Hello World repository folder (no need to expand the folder tree just

now, as that's where you can save and restore your repository backups — we'll get to that
soon enough!).

Now press View and then expand the Content Files folder.

B sart = Repostories = ello Worid
- o
& == Maintain repository: Hello World
Details:
Repostory name: Hallo: World
it Hanbian, Wosrhl!
Wersion name: Viermion 10 v
+ -

Al e GroLpS:
an: @

1. Click Hello World

Repository: Hello World

Rl fike fior upicaad: Choose Files | Ho file chosen

t

Upiicad

Hello World repo

= Repositories gt

= Repositories =-Hello World
[+] Hello World 3 Configurations
+] Rule Sets
Expand the Content Files folder Test Data
Data Files
= Content Files
o hello.html
Trace Data

Hello World Content Files - navigation -

Content files can be HTML, XML, images, or any other binary content that may be
required to be served when requested.

Content files can also be dynamically modified by content rule sets, we're not covering
those in this example.Content files live within a content path that must map to the
content path of the application. In our simple example, hello.html is served under
localhost being the root directory, so therefore it resides in the top-level Content Files
folder.

http://localhost/hello.html

As the Hello World configuration has already been deployed from the console to the
target server X Engine, this is why the page loads when requested.

Update Content Files

So, let’s inspect the html file. Click on hello.html, and a new portal window will open for
the file. Click on the Update button as follows.

http://localhost/hello.html

@ Connected Agile™ - X Consele X @ localhost/SayHello x| +

A3 < @ localhost/console/portal.jsp 6 Guest

» N - I
e Connected Agile Welcome Demo User a O]
’ Console w

Password Log Out
£ ot = Repositodes = HeloWodd W hello.bimi

== Repositoric
el wertd Q_ Maintain content file: hello.html
= Hello World 54 3 | | [eutent e detalle:

Repository: Hello World

Content Path

Fil namw: Il htrnd
: gt in documentation:
Trace Data s e
Updsted: Monday, February B, 2021 at 7:52:25 PM Eastern Eurapean Standard Time:
File size: 3408
MDS Hash: 681 54T CTGdBeebA0bBANT 1803
Preview Update Deletr Save Cogry Downiload

Updating the hello.html

A new browser window opens to show a html editor for the hello.html content file. Note
the input parameter name on the form is set to Name. We don’t need to make any
changes to the html file so you can close this window.

@ ® ® localhost/consolefcontenteditor.jsp?session=node01rvqyychkjxo9wezppprz9t4414&cookie=node0irvgyyc...

@® localhost/console/contenteditor.jsp?session=node01rvqyychkjxo9wezppprz9tdd14&cookie=node0Trvgyyc...

-
Save
i 1- <html>
2- <head>
3 <title>Hello, World!</title>
i+ </head>
5~ <body>
6 <hl>Please enter your name</hl><p>
7- <form action="SayHello" method="post">
8 <input type="text"|name="Name"><p> |
9 <button type="submit">5ay Hello</button>
1@ </form>
11
12 </body>
13 </html>

hello.html content file

So that's a small introduction to Content Files. Next, let’s take a look at Rule Sets.

SendResponse [rule set]

With the Hello World repository open, expand the Rule Sets folder, then click the
SendResponse rule set and press Update in the portal window that opens.

e e @ Connected Agile™ - X Conss * @ lecalhost/SayHello x +

& C @ localhost/consolefportal jsp Y Guest
, [a o
/- — . 1 Ag @ Welcome Dema User
Console
Password Log Out
£} sttt = Repositories = HeloWord M SendResponse
= Repositories o X # SendResponse

e e # Maintain Rule Set: SendResponse
Ruleset detalls:

Repository:

Helle World

SendResponse

PRespond with & misissge
admin
Thursdsy, January 21, 2021 8t 12:73:48 AM Eastern European Standard Time

[53 *2] i - N I

View Update Deicte Rename Copy Downicad

3. Press Update

Update a Rule Set

The rules editor is the graphical design tool for composing and maintaining rule sets. The
rules editor is launched as a separate browser window from within the console
application when you press Update.

Rules Editor — example for reference only

Go ahead and browse the vast catalogue of what we describe as “digital blocks” on the
left-hand side. The catalogue is grouped into collections. To use any block in the
catalogue, expand the group folder, then click and drag a block onto the main canvas as
shown.

In this example, you can expand the Alert group folder and drag the Send Kapow SMS
block onto the canvas.

| T/% 8

| Grouped Wl ml FRule Info

o KIAX TN

Alert \

@sSend Clickatell Sh

@Send Kapow SMs | —_—

@Send Routee SM§
RSend SMTP Emal content

\.IhS-::nd SMTP E
N o
5 ASend Weheh
Authentication
Arure

Bulk Data

Calendar

Case Management
Chat Bot

Code Execution
Comments
Conditions

Console Output
Console Rules
Conversion

Data Base

Data Collections
Data Sets

Database Tables
[PN NPT

HE BB BBB B B & @ %8 %

Rules Properties — example for reference only

SendResponse

R

. ...

Send Kapow SMS block

T

Send response
to browser

Now click to select the Send Kapow SMS block on the canvas, and the left-hand side

catalogue will switch to the Properties tab.

Grouped Searchable| Properties | Rule Info

| Send Kapow SMS v
Label | Send Kapow SMS |
Rule Class | software.tomorrow.rules.rules |
Description Send SMS message

Message Variable | [MESSAGE ||

Phone Number Va | [MOBILE |

Chain Id | OK |

Last connection | [

Chain Id | Failed |

Last connection] [

Prosperities tab for a rule

Each block has properties you need to set when composing, along with adding a more
meaningful description (like adding comments in code).

In this example you can set the properties as two variables called MESSAGE and
MOBILE. The properties of this the block requires these in order to perform its intended
function. These variables would need to contain the values of the SMS message, and the
phone number to send the SMS message to.

Everything else is taken care of.

_[@énm Kapow SMS '|. oK

B Failed
Send SMS
message
| Cut
Copy

Delete Rule

Checking the help section for a Rule

Each block has additional online help you can access by right-clicking over the selected
block and pressing Help.

Give it atry.

Set Variable

So, let’s get back to our example. Click to select the first block called Set Variable and
view its Properties.

Selected blocks banner colour turns grey.

H@T Y 8

p— [e | i SendResponse

Set Variable |

e SL*1: T J— { oK
Label [Set variable | A8 Set Variable | ue | ¥ HTTP Response |
Rule Class software tomarmow.rules_rule: I il Fal
1 Create a Send response
Description Create a response HTML response HTML to browser
Variable Mame RESPONSE
"<himi><body=<h1>Hello
Value “+MNAME +"</h1></body></html>"
Chain Id Cantinue

Last connection HTTP Response

Set Variable block

The block does exactly what it says on the tin. It sets a new variable. In this example
we've set the variable name to RESPONSE. With the value set to a snippet of html code.

We enclose this snippet in quotes.

“<html><body><h1>Hello "+NAME+"</h1></body></html>"

Note how this value has been constructed in three parts.

“STRING"+VAR+"STRING"

You'll remember from earlier, the form submission responds with “Hello”, that's because
the NAME value hasn't been defined or “passed into” this rule so therefore it processes
NAME as a blank value, so the value of RESPONSE would look like this on exit.

“<html><body><h1>Hello </hl1></body></html>"

HTTP Response

Click to select the second block called HTTP Response and inspect the Properties.
Selected blocks banner colour turns grey.

You can also COPY/ CUT/ DELETE / PAST block(s) with a simple right click.

How easy is that?!

&[T/ ¥ W
Grouped ‘ Searchable| Properties | Rule Info | SendResponse

HTTP Response v|
o=

[[Conin oK
e | [HTTP Response | (5] set variable L] | HTTP Response |.
_— | L=
Rule Class | software.tomorrow.rules.rule: | Create s e p—
Description | Send response to browser response HTML to browser

Response Data | iRESPDNSE
HTTP Status code |200

Content Type | | "text/himlcharset=utf-8"

Optional Response | |
Cwerride Header v | y
Override Header F| | L 2

Compress respons || Mo v]
Response data em System v |

Chain Id | oK

Last connaction |

Chain Id | Fail

Last connection |

HTTP Response block Properties

Guess what!?

This block also does exactly what it says on the tin. It responds to an http request with
content of the response data that has been set in the property. In this case the variable
RESPONSE is the html snippet value set in the preceding Set Variable block.

You'll see this block also requires an HTTP Status code and Content Type set.

This rule performs the final response behavior by the X Engine you've already
experienced when you clicked the http://localhost/hello.html link and pressed the Say
Hello button.

Rule Info

Click on the fourth tab called Rule Info for the SendResponse rule set.

AT ¥ § G

Grouped Searchable| Properties | Rule Info

Rule Info Tab

The Export to Group and Short Description represent this rule set as a new block that can
then be (re-)used in other compositions. We will use the Send Response rule that lives in
the Hello World Grouped folder in the next steps.

http://localhost/hello.html

Page Description
Respond with a message

Export to group
Hello World

Short Description
Send Response

¥d

Note it has the Parameter Type set to Input, Parameter Name set to NAME, and has been

Description, Export and Short Description inputs

given a Label of Name.

Parameter Name NAME
Parameter Label Name

Parameter Type Input W

Parameters section

Set values (optionz

We've finished looking at the SendResponse rule set now, so go ahead and close it by
closing the Rules Editor window.

Do NOT save any changes if prompted to do so.

SayHello [rule set]

So, let’s create a new rule set that will pass the html form’s Name value into the response.

Create a new rule set

Click on the Rule Sets folder in the Hello World repository. In the portal window that
opens, set the File Name to SayHello (case sensitive) and press the Create button.

LR N @ Connected Agile™ - X Cons % @ locathosSayHela x +
& & (D localhosticonsolelportal jsp Guest
, nrected Acile™ J
Connected Agile Welcome Demo User a o
h L Password Log Owt
n Start = Repositories = HelloWordd @ Hello World

o= eyt #>

#® Create new Rule Set

Ruleset details:
Repository: Halo Workd w
Fle rame; - Sayeta 2. Set File name: SayHello
215 3
' 3. Press Create
= Hello World """’\‘Freatg'/
Comtent search:
- Q
- Search
1. Click
Upload rubsset:
cont Rule Sets
o he Repository: Halo World w
- folder
Lozl file for upload: Choose Files | Mo fle chasen

Create New Rule Set

Now open the newly created SayHello rule set for editing. Click on the SayHello rule set
that has now appeared in the rule set folder of the Hello World repository and press
Update just as you did to inspect the SendResponse rule set.

o8 e @ Connected Agile™ - X Consolr X @ localhost/SayHello x| +
“ c O lecalhost/console/portal.jsp _J Guest
Connec ted Agike™ Welcome Demo User ﬂ (')
Console - Password Log Qut
8 et = Repositories = HeloWerd # SayMello
= Repositories oL X # SayHello

Maintain Rule Set: SayHello
e
-t_, Repository: Hello Warld

s 1C!ick SayHello Fo S
,
.

T
§m
-

Downioad

Update the newly created Rule Set - SayHello

Search the catalogue

Go to the search tab and search for “Response” and drag the Send Response block onto
the rules editor canvas.

Alternatively, you can find the same block in the catalogue from the first Grouped tab,
located in the Hello World group folder. This is because the Rule Info tab of the
SendReponse rule set has an export group defined as Hello World.

Either method is fine to search the catalogue and drag blocks onto the canvas.

+ Graphs

= Hello World
#®Send Response

[+] HTML Helpers

| LTrTn

Hello World Folder

Wire blocks together
Click on the Send Response block
yes, we've turned a rule set into a new block in the catalogue for re-use

and once again just set the properties. So, now set the Name property to Name (case
sensitive, no quotes).

Remembering this was the input parameter set in the hello.html content file we looked at
earlier.

Click and hold over the orange cog, then click-release over the green dot to “wire” the first
block into the rule set in a right to left direction. Incidentally, all subsequent blocks are
wired from the block exit chain point (right hand side) to the input of the next block (left
hand side).

Press SAVE and close the rules editor window as shown.

L= e amts 3 Press SAV
[r—— Searchable| Properties | Rule Info a y ? | I O
|_-f--£4j - 2. Wire block
| Send Response v to green dot
Label | [send Response
Rule Class | software.tomorrow.rules.rule | -
Description I ' 1 ¥ Send Response

Name I.:Name 4 1 Set TO Name

Rule Set file name | SendResponse.xml |

kil

Save the Rule Set

That's all you need for your new rule set.

HelloWorld [configuration]

The HelloWorld configuration defines the input into the X Engine and the rule sets to run.

General tab

Expand the configurations folder and click the HelloWorld configuration. The General tab
is the default view, and ensure you now select the SayHello rule set from the dropdown
list of available rule sets. This is the “initialising” rule set that is processed by the X
Engine on the very first transaction it receives.

Embedded (dependent) rule sets that have been wired within the SayHello rule set are
also deployed along with it's parent, so you only need to set the top-level ruleset.

Therefore, any dependent rule sets will get deployed along with the configuration without
having to define them.

You'll note here that there are three other types of rule set that can be set to initialize and
run when processing data. These are for (1) CONTENT, on (2) STARTUP, and on (3)
COMPLETION. These are not required in this example.

£ st = Repositories = HelloWord e HelloWorid

e -

= Repositonies
SRS RO ". Maintain Configuration: HelloWorld.xml
Repository: Hello World
Configuration scthong:
[t w [v . " (4]
Dbt S Dulete Verty Dowricad Cogry Deploy
- ."\\
General jswce pareds GoalFekls Combases Timers
= Hello World =\
- ”‘_" T— ™~ H__Eilr"/ A "Hello, Worldi®™ program generally is a computer program that
= - outputs or displays the message “Hello, World!®. Such a

progras is wery simple in most programming languages, and is
often used to illustrate the basic syntax of a programming
language. It is often the first program written by pecple

1. Expand Configurations
2. Click HelloWorld

3. Select the SayHello rule set

Specifying the initial Rule Set in our Hello World Configurations

Timers tab — information for reference only

Just to mention in passing, there is a fifth rule set you can set in the Timers tab of the
configuration. These are rule sets that are initiated and run (as the name suggests) on a
timed basis. For example, when a rule set is required to perform a defined process say,

every 24 hours.

Details:

SayHello v

Timers Tab

Input source tab

Click on the Input Source tab and inspect the different sources of data options available.

N

I

Ge1 Input SOUrCe jutFields Global Fields Databases Timers

Production
o erver Type: Receive Web Application data v Click on the source of
Collct Test Data: () data dropdown list

Max Test Records: 10000

Security settings:
HttpOnly:
Secure: J
SameSite: ® o O Lax O Strict
X-Frame-Options: ® No () peny () Same Origin
HSTS: Max age (s) include Subdomains: __| Preload: [
Server header:
Auto Start: (Applies to web apps and polling)
Echo console to System Log:
Enable debug mode]
Fail open on fatal error:

Maximum chain events before run is considered
v 100000
looping:

Performance collection level: Transaction count ~

Input Source Tab

For this example, we are configuring the X Engine to process web application data, but as
you can see this is just one of a multitude of available options to define in the
configuration, dependent on the composition and data sources being processed.

Execute a load test against a server

Process all CSV files in a directory

Process all XLS files in a directory

Process all XML files in a directory

Process all identifier delimited files in a directory

Process all multiline CSV files in a directory

Receive input via HTTP POST
Run on a heart beat

Run once and stop

Configuring X Engine for web application data

Databases tab — information for reference only

Click on the Databases tab. It's here where you define the databases being made
available to the X Engine. You are not required to define a database for this example so

there’s no need to configure a database.

Example only:

Details:
S Databases
General Inputsource Input Fields

| HelloWordDB

e IR
X Engine v

MySQL

Databases Tab

If you are interested, database connectivity specifying JDBC driver, connection string and
schema credentials is an administrator set-up task in the console. You don’t need to

complete that right now.

Deploy

With the new SayHello rule set defined as the rule set in the configuration, you can go

ahead and press the Deploy button.

HelloWorld

*" Maintain Configuration: HelloWorld.xml
Repository: Hello World

A ® O ¥ © @& &

Delete Verify Download

Deploy our repo

Select X Engine as the target server and press the Deploy button.

HelloWorld — >

Deploy to Production Servers

Details:

Configuration Hello World: HelloWorld.xmi

Target Servers: X Engine 4 1. Select X Engine

T C
ately .\/ﬂ‘\ . 2. Click Deploy

/I Refresh
. Deploy

b /s

Specifying the Target Server and deploying

Wait for the deployment to complete and the server restart in a few seconds, and you'll
see the X Engine server details are shown.

. Manage Tomorrow Software server: X Engine

Details:
Description: X Engine
Server Status: Ready
Server Error:
Q O il % [|
Console Re-deploy Stop Start trace View server logs

X Engine details

Test

Click the link to open http://localhost/hello.html in a new browser tab and refresh the
page.

http://localhost/hello.html

@ Composable Architecture (@3 Hello, World! & Hello World - Docs

C @ trial-user-0126548.tomorrowx.com/hello.html

Please enter your name

World]|

Say Hello

hello world form

Enter World! the press the Say Hello button, and if successful you'll receive a Hello World!
response.

@ Composable Architecture | @9 trial-user-0126548.tomor & Hello World - Docs

C @ trial-user-0126548.tomorrowx.com/SayHello

Hello World!

SayHello Response

[the crowd erupts into wild applause " "%]
Want some more?

Then read on....

Performance data and live probes

With the Hello, World! example now working successfully, let’s give you a glimpse under
the hood of the X Engine.

Go back to the console and click Get performance data in the X Engine server portal

window you have open.

. Manage Tomorrow Software server: X Engine

Details:
Description: X Engine
Server Status: Ready
Server Error:
e O 0 % - L
[Re-deploy Stop Start trace Start test data collection

Q -
| - - \ .)<
| Get performance data| View server logs New rules wizard
1 f

b

Get Performance Data for X Engine

On the next window click View Rules Performance

i X Engine E3 %

@ Retrieve performance data from server: X Engine

Details:

File name: LocalProxy

4

Retr'eve Click View Rules Performance

'"‘/ o

Vlew Rules Performance \'|

WARNINC{“ : . formance impact. Avoid keeping many windows open and do not use live tracking as a status measure.
1g live data and probing

View Rules Performance

The rules editor window opens in a new window. Double click the Send Response block.

Properties Rule Info SayHel Io

.
Page Description Send Response block

Double click the

i
I'-" Send Response

Export to group

Short Description

SayHello Send Response block

Place a probe on the Set Variable block. Right click over the green exit chain point and
click New probe...

SendResponse
- 1. Right click on green exit chain point
WO Fai
Create a Send response
response HTML to browser

2. Click New probe...

New probe for SendResponse block

Click the Create button. Live probes are triggered by variables and values, and
occurrences thereof. We can leave these blank to just trigger on the next transaction.

SendResponse

le TSSTvaraBi W T Contne 1N

| Selection Variables | |
Create a [l

|

|

response HTML Selection Values

Click the Create button

Create New probe

The exit chain point turns yellow to show the probe is set.

— —1"1 Continue

3
TMI

Yellow probe

Now go to the browser tab of the demo page showing the SayHello output and click the
back button so that the input hello.html page shows.

Input a new name Probe into the input field and click Say Hello, the page responds as
expected with Hello Probe. Go back to the rules editor window with the probe set and
you'll see the exit chain point has turned red to show the probe has been triggered.

_— "~ Continue

|
TML

Two probes

Right click on the red exit chain point and click View probe.

SendResponse
@

1. Right click on red exit chain point

3
Ll

2 — T ankinon 2

4B Set Variable rNew probe...

‘ HTTP Response e
WO Fail

Create a View probe Send response
response HTML to browser

2. Click View probe

View a probe

You can now see the transaction data that has just been processed by the X Engine. The
contents of the two variables NAME and RESPONSE.

[NAME]=[Probe]
[RESPONSE]=[<html><body><h1>Hello Probe</h1></body></html>]

-4 HTTP Response

Transaction data with the content of the two variables NAME and RESPONSE

Aside from helping you view live data to assist with composing or troubleshooting your
solution, it also provides a superior debugging tool that can even be used on production
servers without the need for logging.

