
Hello, World!
Version: 10.0 / Modifications: 0

Hello, World!

As with all new programming languages, the " Hello, World! " program generally is a
computer program that outputs or displays the message "Hello, World!". Such a program
is very simple in most programming languages and is often used to illustrate the basic
syntax of a programming language. It is often the first program written by people learning
to code.\

✨ Now step inside and follow these steps to complete your very first composition with
Composable Architecture Platform.

For the purposes of these instructions [your server name] = localhost

For example: http://[your server name]/console/ = http://localhost/console

You need access to a console login screen like this:

A running local, or cloud hosted instance of X.

Installed console version 10.0.0.21050 or later.

Chrome or Firefox browsers are supported.

Ports 80 and 443 are required to be available to run the console and X Engine.

Introduction

Requirements

http://localhost/console/

Click the link to open http://localhost/hello.html in a new browser tab:

You’ll see a simple html content file called hello.html has already been pre-deployed
and is served up to the browser by the running X Engine.

Go ahead and enter your name in the form and press the Say Hello button. The form
submission responds with Hello .

Composable Architecture Platform - Console -

Hello World - Content file -

Say Hello [content file]

http://localhost/hello.html

The X Engine loads hello.html , prompting the user to enter a name and to click a
button labelled Say Hello. When the button is clicked, the text entered should be
appended to "Hello". For example, if the text entered is "World!" then the result will be
"Hello World!"

The user experience needs improving because any text entered is currently ignored. Can
you follow this guide to improve the user experience?

First up, let’s go and see where the hello.html file lives….

Login to the console using the default credentialsIn your case if you are working on the
localhost console, use the default credentials: http://localhost/console/

SayHello Response

User ID: admin

Password: admin

Background Information

Objective

Login [console]

Open Repositories

http://localhost/console/

Once logged in, press Start followed by Repositories.

We typically call these “repos”. It’s the home, or workspace in the console of where your
work lives.

Now Click on the Hello World repository folder (no need to expand the folder tree just
now, as that’s where you can save and restore your repository backups – we’ll get to that
soon enough!).

Now press View and then expand the Content Files folder.

Navigate to Repositories

Hello World repo

Content files can be HTML, XML, images, or any other binary content that may be
required to be served when requested.

Content files can also be dynamically modified by content rule sets, we’re not covering
those in this example.Content files live within a content path that must map to the
content path of the application. In our simple example, hello.html is served under
localhost being the root directory, so therefore it resides in the top-level Content Files
folder.

http://localhost/hello.html

As the Hello World configuration has already been deployed from the console to the
target server X Engine, this is why the page loads when requested.

So, let’s inspect the html file. Click on hello.html, and a new portal window will open for
the file. Click on the Update button as follows.

Hello World Content Files - navigation -

Update Content Files

http://localhost/hello.html

A new browser window opens to show a html editor for the hello.html content file. Note
the input parameter name on the form is set to Name. We don’t need to make any
changes to the html file so you can close this window.

Updating the hello.html

So that’s a small introduction to Content Files. Next, let’s take a look at Rule Sets.

With the Hello World repository open, expand the Rule Sets folder, then click the
SendResponse rule set and press Update in the portal window that opens.

hello.html content file

SendResponse [rule set]

The rules editor is the graphical design tool for composing and maintaining rule sets. The
rules editor is launched as a separate browser window from within the console
application when you press Update.

Go ahead and browse the vast catalogue of what we describe as “digital blocks” on the
left-hand side. The catalogue is grouped into collections. To use any block in the
catalogue, expand the group folder, then click and drag a block onto the main canvas as
shown.

In this example, you can expand the Alert group folder and drag the Send Kapow SMS
block onto the canvas.

Update a Rule Set

Rules Editor – example for reference only

Now click to select the Send Kapow SMS block on the canvas, and the left-hand side
catalogue will switch to the Properties tab.

Send Kapow SMS block

Rules Properties – example for reference only

Each block has properties you need to set when composing, along with adding a more
meaningful description (like adding comments in code).

In this example you can set the properties as two variables called MESSAGE and
MOBILE. The properties of this the block requires these in order to perform its intended
function. These variables would need to contain the values of the SMS message, and the
phone number to send the SMS message to.

Everything else is taken care of.

Prosperities tab for a rule

Each block has additional online help you can access by right-clicking over the selected
block and pressing Help.

Give it a try.

So, let’s get back to our example. Click to select the first block called Set Variable and
view its Properties.

Selected blocks banner colour turns grey.

The block does exactly what it says on the tin. It sets a new variable. In this example
we’ve set the variable name to RESPONSE. With the value set to a snippet of html code.

Checking the help section for a Rule

Set Variable block

Set Variable

We enclose this snippet in quotes.

Note how this value has been constructed in three parts.

You’ll remember from earlier, the form submission responds with “Hello”, that’s because
the NAME value hasn’t been defined or “passed into” this rule so therefore it processes
NAME as a blank value, so the value of RESPONSE would look like this on exit.

Click to select the second block called HTTP Response and inspect the Properties.
Selected blocks banner colour turns grey.

You can also COPY/ CUT / DELETE / PAST block(s) with a simple right click.

How easy is that?!

“<html><body><h1>Hello "+NAME+"</h1></body></html>”

“STRING”+VAR+”STRING”

“<html><body><h1>Hello </h1></body></html>”

HTTP Response

Guess what!?

This block also does exactly what it says on the tin. It responds to an http request with
content of the response data that has been set in the property. In this case the variable
RESPONSE is the html snippet value set in the preceding Set Variable block.

You’ll see this block also requires an HTTP Status code and Content Type set.

This rule performs the final response behavior by the X Engine you’ve already
experienced when you clicked the http://localhost/hello.html link and pressed the Say
Hello button.

Click on the fourth tab called Rule Info for the SendResponse rule set.

The Export to Group and Short Description represent this rule set as a new block that can
then be (re-)used in other compositions. We will use the Send Response rule that lives in
the Hello World Grouped folder in the next steps.

HTTP Response block Properties

Rule Info Tab

Rule Info

http://localhost/hello.html

Note it has the Parameter Type set to Input, Parameter Name set to NAME, and has been
given a Label of Name.

Description, Export and Short Description inputs

Parameters section

We’ve finished looking at the SendResponse rule set now, so go ahead and close it by
closing the Rules Editor window.

Do NOT save any changes if prompted to do so.

So, let’s create a new rule set that will pass the html form’s Name value into the response.

Click on the Rule Sets folder in the Hello World repository. In the portal window that
opens, set the File Name to SayHello (case sensitive) and press the Create button.

Create New Rule Set

SayHello [rule set]

Create a new rule set

Now open the newly created SayHello rule set for editing. Click on the SayHello rule set
that has now appeared in the rule set folder of the Hello World repository and press
Update just as you did to inspect the SendResponse rule set.

Go to the search tab and search for “Response” and drag the Send Response block onto
the rules editor canvas.

Alternatively, you can find the same block in the catalogue from the first Grouped tab,
located in the Hello World group folder. This is because the Rule Info tab of the
SendReponse rule set has an export group defined as Hello World.

Either method is fine to search the catalogue and drag blocks onto the canvas.

Update the newly created Rule Set - SayHello

Search the catalogue

Click on the Send Response block

yes, we’ve turned a rule set into a new block in the catalogue for re-use

and once again just set the properties. So, now set the Name property to Name (case
sensitive, no quotes).

Remembering this was the input parameter set in the hello.html content file we looked at
earlier.

Click and hold over the orange cog, then click-release over the green dot to “wire” the first
block into the rule set in a right to left direction. Incidentally, all subsequent blocks are
wired from the block exit chain point (right hand side) to the input of the next block (left
hand side).

Press SAVE and close the rules editor window as shown.

That’s all you need for your new rule set.

Hello World Folder

Save the Rule Set

Wire blocks together

The HelloWorld configuration defines the input into the X Engine and the rule sets to run.

Expand the configurations folder and click the HelloWorld configuration. The General tab
is the default view, and ensure you now select the SayHello rule set from the dropdown
list of available rule sets. This is the “initialising” rule set that is processed by the X
Engine on the very first transaction it receives.

Embedded (dependent) rule sets that have been wired within the SayHello rule set are
also deployed along with it’s parent, so you only need to set the top-level ruleset.

Therefore, any dependent rule sets will get deployed along with the configuration without
having to define them.

You’ll note here that there are three other types of rule set that can be set to initialize and
run when processing data. These are for (1) CONTENT, on (2) STARTUP, and on (3)
COMPLETION. These are not required in this example.

HelloWorld [configuration]

General tab

Just to mention in passing, there is a fifth rule set you can set in the Timers tab of the
configuration. These are rule sets that are initiated and run (as the name suggests) on a
timed basis. For example, when a rule set is required to perform a defined process say,
every 24 hours.

Click on the Input Source tab and inspect the different sources of data options available.

Specifying the initial Rule Set in our Hello World Configurations

Timers Tab

Timers tab – information for reference only

Input source tab

For this example, we are configuring the X Engine to process web application data, but as
you can see this is just one of a multitude of available options to define in the
configuration, dependent on the composition and data sources being processed.

Input Source Tab

Configuring X Engine for web application data

Databases tab – information for reference only

Click on the Databases tab. It’s here where you define the databases being made
available to the X Engine. You are not required to define a database for this example so
there’s no need to configure a database.

Example only:

If you are interested, database connectivity specifying JDBC driver, connection string and
schema credentials is an administrator set-up task in the console. You don’t need to
complete that right now.

With the new SayHello rule set defined as the rule set in the configuration, you can go
ahead and press the Deploy button.

Select X Engine as the target server and press the Deploy button.

Databases Tab

Deploy our repo

Deploy

Wait for the deployment to complete and the server restart in a few seconds, and you’ll
see the X Engine server details are shown.

Click the link to open http://localhost/hello.html in a new browser tab and refresh the
page.

Specifying the Target Server and deploying

X Engine details

Test

http://localhost/hello.html

Enter World! the press the Say Hello button, and if successful you’ll receive a Hello World!
response.

[the crowd erupts into wild applause 👏🏻🍾]

Want some more?

Then read on….

hello world form

SayHello Response

Performance data and live probes

With the Hello, World! example now working successfully, let’s give you a glimpse under
the hood of the X Engine.

Go back to the console and click Get performance data in the X Engine server portal
window you have open.

On the next window click View Rules Performance

The rules editor window opens in a new window. Double click the Send Response block.

Get Performance Data for X Engine

View Rules Performance

Place a probe on the Set Variable block. Right click over the green exit chain point and
click New probe…

Click the Create button. Live probes are triggered by variables and values, and
occurrences thereof. We can leave these blank to just trigger on the next transaction.

SayHello Send Response block

New probe for SendResponse block

The exit chain point turns yellow to show the probe is set.

Now go to the browser tab of the demo page showing the SayHello output and click the
back button so that the input hello.html page shows.

Input a new name Probe into the input field and click Say Hello, the page responds as
expected with Hello Probe. Go back to the rules editor window with the probe set and
you’ll see the exit chain point has turned red to show the probe has been triggered.

Create New probe

Yellow probe

Right click on the red exit chain point and click View probe.

You can now see the transaction data that has just been processed by the X Engine. The
contents of the two variables NAME and RESPONSE.

Two probes

View a probe

[NAME]=[Probe]
[RESPONSE]=[<html><body><h1>Hello Probe</h1></body></html>]

Aside from helping you view live data to assist with composing or troubleshooting your
solution, it also provides a superior debugging tool that can even be used on production
servers without the need for logging.

Transaction data with the content of the two variables NAME and RESPONSE

