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1 Introduction to CDI 

The Cooperative Distributed Inferencing (CDI) system is a unique advanced technology 

enabling near-optimal and near real-time decision making on large-scale, heterogeneous 

and distributed information with the use of rules.  CDI integrates absolute, hard and soft 

rules within complex knowledge-based decision support systems to achieve performance 

goals while satisfying various requirements from natural or governing laws, policies, and 

best practices. 

The CDI system has a Distributed Architecture (DA), consisting of a network of Decision 

Elements (DEs) that work together to resolve queries and identify Pareto efficient states.  

The decision elements access shared information from both an Internal Heterogeneous 

Database (IHDB) and External Knowledge Base (EKB).  Each decision element solves a query 

using optimal control theory, starting with a technique called analytic continualization - 

transforming the query and rules into differential equations whose dependent variables 

represent internal variables and parameters of the rules. The decision elements in the 

architecture are synchronized via a Pareto multi-criteria optimization strategy. 

CDI features a self-adapting and learning design.  Since CDI converts the original query into 

an optimal control problem, it can use feedback from the environment (e.g., external 

sensors or internal knowledge updates from other DEs) to refine its internal model; the 

Hamilton-Jacobi-Bellman equation will be updated to reflect new information and 

automatically form soft rule-like constraints internally.   

CDI is particularly applicable when the system has large-scale heterogeneous data, rules 

from government compliances and/or business requirements, and the need to make near 

real-time decisions. Healthcare and energy are two such applications.  
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2.2 Notation 

The following table is intended to summarize the notation that is used throughout the 

document.  This is a work-in-progress. 

Current notation Recommended 

notation 

First 

occurrence 

Comments 

𝑡 same 6.2.2 Notation for algorithmic time. 

𝑞(𝑡) same 15 Notation of canonical 

coordinate vector for entire 

system. 

𝑞 same  Notation of canonical 

coordinate vector dropping 

time dimension. 

𝑞(𝑓) same  Notation of canonical 

coordinate vector for specific 

function 𝑓. 

�̇� same  Notation of first time 

derivative of canonical 

coordinate vector, 𝑑𝑞(𝑡)/𝑑𝑡 

�̈� same  Notation of second time 

derivative of canonical 

coordinate vector, 𝑑2𝑞(𝑡)/

𝑑𝑡2 

ℎ same  Notation of HEAD of Horn 

clause. 

𝜑(𝑞) same  Notation of generic 

proposition. 

𝜎(𝑞) same  Notation of generic 

proposition alternate to 𝜑. 

𝑇𝑖 same  Notation of the TV of a soft 

rule. 
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�̌�(𝑞; 𝜑, 𝜎) same  Generic equational form 

relating two propositions. 

�̌�(𝑞) same  Notation of the equational 

form of  𝜑(𝑞).  

𝜑𝑄(𝑞) same  Notation for proposition 

defined by the query. 

�̌�𝑄(𝑞) same  Notation for equation defined 

by the query. 

𝐽(𝑞) same  Notation for minimization 

function for the query. 

ℒ same  Notation for static Lagrangian 

ℒ𝑘
(𝑜,𝑇)

 same  Notation for total static 

Lagrangian for 𝐷𝐸𝑘. 

    

𝑞 same   

{𝑝𝑎} same   

𝑢(𝑘) same   

𝐻𝑘
(𝑜)

 same  Primary Hamiltonian for the 

absolute rules for 𝐷𝐸𝑘. 

𝐻𝑘
(𝐴)

 same  Hamiltonian for the Tellegen 

agent of the total 

Hamiltonian’s rules. 

𝐻𝑘
(𝑇)

 same  Total Hamiltonian for 𝐷𝐸𝑘. 

    

 

2.3 Abbreviations 
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Current 

abbreviation 

 First occurrence 

CDI Cooperative Distributed Inferencing Section 1 

DE Decision Element Section 1 

IHDB Internal Heterogeneous Database Section 1 

EKB External Knowledge Base Section 1 

DA Distributed Architecture Section 1 

REI Rule Entry Interface Section 6 

RE Rule Editor Section 6 

SII Sensor Ingestion Interface Section 6 

RCE Rule Conversion Engine Section 6 

QLI Query Language Interface Section 6 

MFG Minimization Function Generator Section 6 

QRE Query Response Engine Section 6 

PMOE Pareto Multi-criteria Optimization Engine Section 6 

OP Optimization Process Section 6.1 

LER List of External Repositories Section 6.1 

KC Knowledge Component Section 6.2.1 

TV Truth Valuation Section 6.2.2 

API  Section 6.3 

IE Inference Engine Section 6.8 

PSE Programmable Search Engine Section 6.8 

IRB Inference Rule Base Section 6.8 

UI User Interface Section 6.8 
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NI Network Interface Section 6.8 

VB Variable Buffer Section 6.8.2 

ARB Active Rule Buffer Section 6.8.2 

IP Inference Process Section 6.8.2 

IR Inference Rules Section 6.8.5 

 

3 Overview of the Document 

This document introduces and specifies the architecture for the Cooperative Distributed 

Inferencing (CDI) system. The primary instance of this is the Distributed Architecture (DA) 

for resolving queries by accessing both an Internal Heterogeneous Database (IHDB) 

populated by a special class of Horn Clause rules and external data sources referred to as 

sensors. 

The architecture implements a network of active devices at its nodes.  Active devices may 

be passive, generative, or both. These devices are called Decision Elements (DEs).  The DEs 

cooperate in the resolution of a query posed to one or several of them.  The DEs in a given 

DA are referred to as the team. 

Every DE in a team is programmed to transform rules in its domain, determined by a posed 

query, into an ordinary differential equation, whose dependent variables represent internal 

variables and parameters. The dependent variables include unknowns of the query posed 

to the DE. The DEs in the architecture are synchronized via a Pareto multi-criteria 

optimization strategy. 

This document reviews the components of the CDI system including: 

• Application requirements that the system is designed to accommodate. 

• Functional requirements that satisfy the application requirements and pertain 

directly to the construction and operation of the system components. 

• Subcomponents, which are necessary to implement the functional requirements. 

• Limitations that highlight noteworthy constraints that are inherent to the specified 

implementation of the architecture. 

• Architectural flow describing key aspects of the architecture that indicate how the 

system is to be constructed given the specified essence and key behavior of the 

subcomponents. 
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• Software realization of the architecture that describes the key pieces of software 

necessary for system implementation. 

• Data that describes the kinds of data the system is expected to accept as input and 

produce as output. 

• Data exchange protocols reference key data types and structures that need to be 

exchanged across the system and the protocols for exchange. 

• Environment describing the particulars of the environments that the system will be 

able to operate in and therefore should be tested in. 

• Testing that describes how the system should be tested given the data and operating 

environments. 

4 Application Requirements 

The application requirements discussed in this architecture document articulate the salient 

aspects of the architectural strategy, approach and design.  Key reference documents are 

listed. 

The key areas of application requirements are: 

• System specification that describes what the system should be able to do.  

See Section 4.1. 

• System operation that describes in what contexts the system should be able to 

operate.  See Section 4.2. 

• System performance objectives that describes how well the system should perform in 

the various contexts. See Section 4.3. 
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4.1 Application requirements pertaining to system specification 

4.1.1 Ability to integrate data that may include millions of variables and hundreds of thousands 

of constraints 

4.1.2 Ability to provide data integration over distributed network which assimilates and 

integrates information over time across the network as needed 

4.1.3 Ability to specify queries over a broad range of languages 

4.1.4 Ability to specify queries of a broad range of complexity 

4.1.5 Ability to provide best known response to queries at the local level 

4.2 Application requirements pertaining to system operation 

4.2.1 Ability to operate in a variety of environments including EC2, Azure, and local 

deployments 

4.3 Application requirements pertaining to system performance objectives 

4.3.1 Ability to provide responses to queries at intervals as small as one millisecond 

 

5 Functional Requirements 

Functional requirements match the key application requirements and describe specifically 

what the software should achieve. 

6 Subcomponents 

Subcomponents are fundamental parts of the architecture that perform particular roles. 

This section contains descriptions of each of the subcomponents of the architecture.  The 

subcomponents are: 

1. The Distributed Architecture (DA). 

2. The Internal Heterogeneous Database (IHDB). 

3. The Rule Entry Interface (REI). 

4. The Rule Editor (RE). 

5. The External Knowledge Base (EKB). 

6. The Sensor Ingestion Interface (SII). 

7. The Rule Conversion Engine (RCE). 

8. The Decision Element (DE). 
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9. The Query Language Interface (QLI). 

10. The Minimization Function Generator (MFG). 

11. The Query Response Engine (QRE). 

12. The Pareto Multi-Criteria Optimization Engine (PMOE). 

  

6.1 Distributed Architecture (DA) 

The DA, illustrated in Figure 6.1-1, is a network of computing devices as its nodes called 

DEs that interact and collaborate in the resolution of a query posed by one of them. The 

DEs access data and information stored locally in the Internal Heterogeneous Database 

(IHDB).  The DEs also communicate over the network with sensors and an External 

Knowledge Base (EKB) for real-time data and rules. The DEs implement a distributed, 

dynamic optimization process, herein referred to as the optimization process (OP).  The OP 

implements an optimization process that computes an answer to the active queries as a 

function of data stored in both the IHDBs and EKBs. These repositories of the data are 

needed to implement the OP given a query. 

Network

Internal 

Heterogeneous 

Database

Decision 

Element 

Team

Sensors

External 

Knowledge Base

 

Fig.  6.1-1. Distributed Architecture. 

The DA’s block diagram is shown in Fig.  6.1-1. The rest of the document is devoted to 

describe the functional characteristics of this architecture and in particular, the DEs, IHDB, 

and the sensors. In particular the document will address the following concepts: 

1. The DA 

2. A process for resolving queries by accessing the IHDB and External Knowledge 

Bases (EKBs) through sensors 

3. The constitution of DEs 

4. A query and corresponding rules transformation into an ordinary differential 

equation 
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5. The orchestration of a team of DEs through a Pareto multi-criteria optimization 

strategy 

Figure 6.1-2 illustrates how the DEs communicate over the network to get information 

from a variety of knowledge sources (including sensors, information in a social network, 

dictionary, Wikipedia, etc.), and also access their IHDBs to respond to a query. 

Network

Domain 1 Domain 2 Dictionary Social Network Wikipedia

Decision Elements

External Query / External Answer

Internal 

Heterogeneous 

Database

Sample Knowledge 

Sources  

Fig.  6.1-2. Knowledge Bases. 

A DE has a list of external repositories (LER). Each entry in an LER includes 1) a protocol, 2) 

a heading sub-list, and 3) a translation grammar. Each protocol entry prescribes the access 

procedure to the corresponding knowledge repository. Each heading sub-list entry 

contains a summary of the knowledge contents of the corresponding repository. Finally, 

each translation grammar entry provides a procedure for converting knowledge elements 

of the corresponding repository into the rule representation in the IHDB of the DE. This 

representation is discussed below.  

The EKBs, illustrated in Figure 6.1-2, are a collection of public or private repositories of 

knowledge relevant to the DE posing a query. 

 

6.2 The Internal Heterogeneous Database (IHDB) 

6.2.1 Composition of IHDB as a set of knowledge components (KCs) 

The IHDB encodes knowledge and data provided by the DEs regarding the implemented 

application. The IHDB is divided into knowledge components (KCs). Each KC is consulted 
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and updated by a DE in the DA.  Any pair of KCs may have an overlapping set of rules by 

which they operate, but there is no a priori constraint on intersections or inclusion.  The 

collection of KCs constitutes the existing knowledge of the system, and contributes to the 

IHDB, as illustrated in Figure 6.2-1. 

Network Network

Internal 

Heterogeneous 

Database

Decision 

Elements

 

Fig.  6.2-1. Representation of Knowledge Components for Decision Elements across the Distributed Architecture. 

6.2.2 Algorithmic formulation of a rule 

A KC is a collection of rules, written in a restrictive Horn clause format. Horn clauses are 

consistent with a Prolog-based representation. The format of a Horn clause is given in the 

form of IF-THEN representation,  

𝑝1^ 𝑝2 ^ ⋯ ^𝑝𝐾 ⋯ → 𝑝   

where 𝑝𝑖, 𝑖 = 1, . . . , 𝐾 and 𝑝 are propositional variables that are either True or False (0 or 

1).  The rules are logic entities, that, when instantiated1, obtain a logic value. Typically, the 

logic values a rule can obtain are binary, however, more generally, the logic values are 

taken from the interval [0,1].   

The entire system of rules is evaluated using variables and parameters that are collectively 

referred to as the generalized coordinates (state) of the system and are indexed as follows 

𝑞(𝑡) = {𝑞(1)(𝑡), … , 𝑞(𝑁)(𝑡)}. 

( 6.2-1 ) 
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The time argument 𝑡 refers to the algorithmic time of the system, which means that it is a 

continuous index with respect to the evolution of the system.  There is no requirement that 

it correspond to a physical aspect of the system, although this may naturally occur.  

Physical time may be represented specifically by a canonical coordinate of choice 𝑞(𝑖)(𝑡).   

Alternatively, we may refer to the 𝑞’s without expressly stating the independent time 

argument and write 

𝑞(𝑡) = {𝑞(1), … , 𝑞(𝑁)}. 

( 6.2-2 ) 

Then we should also note that the time derivatives are denoted as 

�̇� =
𝑑𝑞(𝑡)

𝑑𝑡
, �̈� =

𝑑2𝑞(𝑡)

𝑑𝑡2
 

( 6.2-3 ) 

These coordinates are referred to variously as 𝑞, depending on the context and the 

expected arguments of the function to which they are applied.  When it is necessary to 

distinguish between more than one 𝑞 in equational form we generally write 𝑞𝑓 where 𝑓 

denotes the reference function or appropriate domain.  Typically, we assume without loss of 

generality the entire set of canonical coordinates 𝑞 is an argument to any function, term or 

proposition.  In practice, we may further assume it is possible to apply the particular 

required coordinates as need to mathematical construct in question. 

The rules in each knowledge component are of three types: absolute rules, hard rules, and 

soft rules.  Absolute rules and hard rules take logic value 0 (false) or 1 (true) when 

instantiated. Soft rules take any value in the interval [0,1].   

The format of the restrictive Horn Clauses in the IHDB is illustrated in Fig.  6.2-2. A Horn 

Clause is an object composed of two objects a HEAD and a BODY connected by backward 

implication (⟸). The logic implication transfers the logic value of the BODY to the HEAD. If 

the rule is an absolute rule or a hard rule, the logic value is 1(if the BODY is logically true) 

or 0 (if the BODY is logically false). If the rule is a soft rule, the logic value transferred by the 

body is any number in [0, 1]. 

The HEAD is a data structure composed of two objects: A name, ℎ, and a list of arguments 

described by the argument vector 𝑞 = (𝑞(1), … , 𝑞(𝑁)).  The list of arguments includes 

variables and parameters. The variables take values in the domain of the rule and the 

parameters are constants passed to the rule and unchanged by the instantiation of the rule. 

The domain of the rule is a set of values that each of its variables can take. In general, 

variables can take values over numerical or symbolic domains. As an example, a symbolic 
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domain can be a list of diseases. A numeric domain can be a set of pairs of numbers 

representing blood pressure. 

For the applications of CDI, the domains for variables are: real numbers, complex numbers 

(floating point and floating point complex numbers), integer numbers, binary numbers and 

symbolic token on finite domains. 

The BODY of a clause is a data structure composed of one or more terms, denoted 𝜑𝑖(𝑞). 

The composition operation is extended-and, denoted by: ∧. The extended-and works as a 

regular and in absolute rules and hard rules and as a functional product2 on soft rules.  

A rule with a head but not a body is called a fact. A fact’s truth value is determined on the 

basis of the instantiation of its variables.  

TermName

HEAD

Term

Subterm Subterm

HEAD Relation Truth Valuation

Horn Clause

BODY

Arguments

 

Fig.  6.2-2. Horn Clause (rule). 
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Each term in the body of a rule is an extended disjunction (or denoted by ∨) of sub-terms. 

The ∨ operator behaves like the standard-or for absolute and hard rules and behaves in a 

functional form, described later, when connecting sub-terms encoding heads of soft rules. 

A sub-term is either the HEAD of a rule, a relation or a truth valuation (TV). When it is a HEAD 

it may have the same name as the one in the HEAD of the rule but with different arguments.  

This provides a recursive mechanism for rule evaluation.  

When a rule has a sub-term that is the head of another rule it is said that the two rules are 

chained together by the corresponding sub-term.  Note that a rule can be chained to several 

rules via corresponding sub-terms. 

6.2.3 Constraint domains 

Constraint domains augment the BODY clause of Horn clauses to facilitate dynamic 

programming.  Constraints are specified as a relationship between terms.  Define the 

relationship between two terms 

𝜑(𝑞) rel 𝜎(𝑞). 

( 6.2-4 ) 

as a member of the following set 

rel ∈ {=,≠,≤,≥ , statistical propagation, symbolic}. 

( 6.2-5 ) 

A relation can be of two types numeric or symbolic. Numeric relations establish equational 

forms between two functional forms. (For the initial phase only polynomial and affine linear 

functional forms will be considered.)  

In general, an equational form is a set of one or more relations.  For numeric relations, 

𝜑(𝑞) rel 𝜎(𝑞), rel ∈ {=,≠,≤,≥,<,> , statistical propagation}. Table 1 gives the relations 

considered and their symbols.  
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Numeric Relation Symbol Code Form 

Equality = 𝜑 = 𝜎 

Disequation ≠ 𝜑\= 𝜎 

Less-inequality < 𝜑 < 𝜎 

Less-Equal ≤ 𝜑 =< 𝜎 

Great-inequality > 𝜑 > 𝜎 

Great-Equal ≥ 𝜑 >= 𝜎 

Table 6.2-1. Numeric Relations. 

The adopted code forms are the ones used in constraint logic programming. 

A symbolic relation can be of two types: inclusion and constraint.  Inclusion relations are of 

the form: 

𝑥 ∈ 𝑆𝑒𝑡 

( 6.2-6 ) 

where 𝑥 is a variable or a parameter, ∈ is the inclusion symbol and Set is a set of symbolic 

forms or a set of numbers or a composite set of the form shown in Table 6.2-2.  

Composite Set Symbol Code Form 

Intersection ∩ 𝑆𝑒𝑡1/\𝑆𝑒𝑡2 

Union ∪ 𝑆𝑒𝑡1\/𝑆𝑒𝑡2 

Complement \ \𝑆𝑒𝑡 

Table 6.2-2. Composite Sets 

Constraint forms of the symbolic relational type may be one or a set of the forms presented 

in Table 6.2-3.  For numeric relations, 𝜑(𝑞) rel 𝜎(𝑞), rel ∈ {=,≠ , ⊂, ⊃, ⊆, ⊇}. 

Symbolic Relation Symbol Code Form 

Equal = 𝜑# = 𝜎 

Not Equal ≠ 𝜑#\= 𝜎 

Is Contained ⊂ 𝜑# < 𝜎 
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Contains ⊃ 𝜑# > 𝜎 

Is Contained or Equal ⊆ 𝜑# =< 𝜎 

Contains or Equal ⊇ 𝜑# >= 𝜎 

Table 6.2-3. Constraint forms 

A TV is either a variable or a constant with values in the interval [0, 1].  The TV of a Horn 

Clause that is an absolute rule or a hard rule can only take two values: 1 or 0. The TV when 

instantiated is 0 or 1. If the TV for an absolute or hard rule is 1, the rule is said to be in 

inactive state; if the TV is 0, the rule is said to be in active state. 

The TV, 𝑇𝑖, of a soft rule satisfies 

0 ≤ 𝑇𝑖 ≤ 1. 

( 6.2-7 ) 

If 𝑇𝑖 above satisfies, 

𝑇𝑖 ≥ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

( 6.2-8 ) 

the soft clause is said to be in inactive state.  If 

𝑇𝑖 < 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 

( 6.2-9 ) 

the soft clause is said to be in active state, where 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a constant in [0,1] defined for 

each soft clause.  The default value is 0.5. 

This concludes the description of the knowledge representation.  The instantiation process 

of the goal in a DE, as function of its knowledge base, is carried out by the inference engine 

of the DE (see Fig.  6.8-2). This process is the central component of CDI and is described 

later on the document. 

6.2.4 Summary of terminology 

The following table summarizes the terminology we have just reviewed. 

Reference term Definition 

Proposition Defined as a construct as in the 

propositional calculus where the 
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proposition takes on the value of true or 

false. 

Term Recursively according to its assigned sub-

term.  

sub-term A sub-term may be a Horn clause, a relation 

between two other sub-terms or an 

extended truth valuation depending on the 

context of absolute, hard or soft rules.  In 

the case of absolute and hard rules it may 

be evaluated as a proposition.  In the case 

of soft rules it takes a value on the interval 

[0,1] and is considered to be active or true 

in the case that it exceeds its specific 

threshold. 

Horn clause A disjunction of terms with at most one 

positive term. 

definite clause A Horn clause with exactly one positive 

term. 

goal clause A Horn clause with no positive terms. 

Fact A definite clause with no negative terms. 

Head The positive term of a definite clause. 

inactive state The case when a rule will not apply for 

constrained optimization. 

active state The case when a rule will apply for 

constrained optimization. 

truth value, TV The value that is used to determine 

whether a rule is active or inactive. 

Table 6.2-4 
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6.2.5 Horn clause example 

The following example illustrates a Horn clause: 

has_fever(𝑛𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡, ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒, 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

⟸ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 37)

∧ ((ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒 ≥ 70) ∨ 𝑏𝑝(𝑛𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

∨ 𝑤𝑐(𝑛𝑎𝑚𝑒,𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡)) 

( 6.2-10 ) 

The clause establishes under which conditions the patient of name 𝑛𝑎𝑚𝑒, has a fever.  The 

name of the rule is "has_fever", and the arguments are: 𝑛𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡,

ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒, 𝑎𝑛𝑑 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒.  Of these arguments, 𝑛𝑎𝑚𝑒 is a parameter and the other 

arguments (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡, ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒, 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) are variables in the 

clause.  The Body has two terms, 𝜑1(𝑞) and 𝜑2(𝑞), and the second term has three sub-

terms. 

When the arguments are instantiated, they represent, respectively, the name of the patient, 

current body temperature, white blood cell count, heart rate range, and blood pressure. 

The clause body includes other clauses: 𝑏𝑝 (blood pressure) and 𝑤𝑐 (white count). 

This completes the specification of the rule-based framework.  The next step is to specify a 

complete process for converting all rules of this form to a set of equations. 

6.3 Rule Entry Interface (REI) 

The Rule Entry Interface provides a mechanism for: 

1. Providing an API for the entry of rules into the IHDB. 

2. Validating the specification of rules to be inserted into the IHDB. 

3. Routing the rules to the appropriate DEs for insertion to their respective KCs. 

6.4 Rule Editor (RE) 

The Rule Editor allows users to specify rules associated with the systems to be 

interrogated.   

6.5 External Knowledge Base (EKB) 

Need to discuss the following: 

• Is it distributed? 

• What is persisted? 

• Where is it persisted? 

• What is the relation to the IHDB? E.g. are they architecturally co-located? 
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• What is a sensor?  This is a broadly defined notion, but ultimately we will need to 

specify some key instantiations. 

• What does the bus look like? 

• Should we have sensors collocated with DE’s in some cases? 

6.6 Sensor Ingestion Interface (SII) 

TBD. 

6.7 Rule Conversion Engine (RCE) 

The rule conversion engine converts rules of the IHDB into equations. 

6.7.1 Method for specification of a simple term as an equation 

Consider the term 𝜑(𝑞) with the following truth assignment, 

𝜑(𝑞) = {
𝑇 𝑞 ∈ 𝒟𝜑

𝐹 𝑞 ∉ 𝒟𝜑
 

( 6.7-1 ) 

Then we can define the set of arguments that yield positive truth assignment, 

{𝑞 ∈ 𝒟𝜑|𝜑(𝑞) ⟵ 𝑇}. 

( 6.7-2 ) 

and define the corresponding equation �̌�(𝑞) of the term 𝜑(𝑞) as 

�̌�(𝑞) = {
1 𝜑(𝑞) ⟵ 𝑇

0 𝜑(𝑞) ⟵ 𝐹
 

( 6.7-3 ) 

and then extend the range of �̌�(𝑞) to the closed unit interval 

�̌�(𝑞) → [0,1]. 

( 6.7-4 ) 

Revisiting the taxonomy of absolute, hard and soft rules, we recognize that soft rules 

(terms in this example) can take values along the interval 

0 ≤ �̌�(𝑞) ≤ 1 

( 6.7-5 ) 

whereas, absolute and hard rules should satisfy the additional constraint �̌�(𝑞) → {0,1} 

�̌�(𝑞)(1 − �̌�(𝑞)) = 0. 
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( 6.7-6 ) 
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6.7.2 Conversion of the fundamental clauses of propositional calculus to equations 

Define the following notation for the propositional calculus. 

 Symbol  Function 

∧ And 

∨ Or 

⟹ Implication 

~ Not 

∃ Exists 

∀ All 

Statistical propagation  

Table 6.7-1 

Theorem 6.7.1. Given the method for the specification of equations from propositions, we 

prove the following transformations. 

Proposition Equation 

~𝜑(𝑞) 1 − �̌�(𝑞) 

𝜑(𝑞) ∧ 𝜎(𝑞) �̌�(𝑞) ∙ �̌�(𝑞) 

𝜑(𝑞) ∨ 𝜎(𝑞) �̌�(𝑞) + �̌�(𝑞) − �̌�(𝑞) ∙ �̌�(𝑞) 

𝜑(𝑞) ⟹ 𝜎(𝑞) 1 − �̌�(𝑞) + �̌�(𝑞) ∙ �̌�(𝑞) 

𝜑1(𝑞) ∧ 𝜑2(𝑞) ∧ ⋯∧ 𝜑𝑘−1(𝑞) ∧ 𝜑(𝑞)

⟹ 𝜑(𝑞) 

(tail recursive) 

�̌̃�(𝑛, 𝑞) =
ℎ̌(𝑛 − 1, 𝑞)

�̌̃�(𝑛, 𝑞)�̌̃�(𝑛 − 1, 𝑞) − 1
 

 

Table 6.7-2 

6.7.2.1 Proof by enumeration for equational representation of negation 

Define the function �̌�(𝑞; 𝜑, 𝜎)  which represents the equation corresponding to negation 

(~).  Verify by enumeration the correspondence of the mathematical equation values 

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0. 
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𝜑(𝑞) ~𝜑(𝑞)   �̌�(𝑞; 𝜑, 𝜎) = 1 − �̌�(𝑞) 

T F  0 = 1 − 1 

F T  1 = 1 − 0 

Table 6.7-3 

6.7.2.2 Proof by enumeration for equational representation of conjunction 

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to conjunction 

(∧).  Verify by enumeration the correspondence of the mathematical equation values 

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0. 

𝜑(𝑞) ∧ 𝜎(𝑞)   �̌�(𝑞; 𝜑, 𝜎) = �̌�(𝑞) ∙ �̌�(𝑞) 

T T T   1 = 1 ∙ 1  

T F F  0 = 1 ∙ 0 

F F T  0 = 0 ∙ 1 

F F F  0 = 0 ∙ 0 

Table 6.7-4 

6.7.2.3 Proof by enumeration for equational representation of disjunction 

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to disjunction 

(∨).  Verify by enumeration the correspondence of the mathematical equation values 

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0. 

𝜑(𝑞) ∨ 𝜎(𝑞)   �̌�(𝑞; 𝜑, 𝜎) = �̌�(𝑞) + �̌�(𝑞) − �̌�(𝑞) ∙ �̌�(𝑞) 

T T T  1 = 1 + 1 − 1 ∙ 1 

T T F  1 = 1 + 0 − 1 ∙ 0 

F T T  1 = 0 + 1 − 0 ∙ 1 

F F F  0 = 0 + 0 − 0 ∙ 0 

Table 6.7-5 

6.7.2.4 Proof by enumeration for equational representation of implication 

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to disjunction 

(⟹).  First note the equivalence of 

𝜑(𝑞) ⟹ 𝜎(𝑞) and ~𝜑(𝑞) ∨ 𝜎(𝑞). 



27 
 

Veritone Corporation 

( 6.7-7 ) 

Verify by enumeration the correspondence of the mathematical equation values 

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0. 

 

𝜑(𝑞) ~𝜑(𝑞) ∨ 𝜎(𝑞) �̌�(𝑞; 𝜑, 𝜎) = 1 − �̌�(𝑞) + �̌�(𝑞) ∙ �̌�(𝑞) 

T F T T 1 = 1 − 1 + 1 ∙ 1 

T F F F 0 = 1 − 1 + 1 ∙ 0 

F T T T  1 = 1 − 0 + 0 ∙ 1 

F T T F  1 = 1 − 0 + 0 ∙ 0 

Table 6.7-6 

6.7.2.5 Proof for equational representation of tail recursion 

Tail recursion is propositionally defined as 

𝜑(𝑞) ⟸ 𝜑1(𝑞) ∧ 𝜑2(𝑞) ∧ ⋯∧ 𝜑𝑘−1(𝑞) ∧ 𝜑(𝑞) 

( 6.7-8 ) 

where 𝑞 represents the current state and the subscript 𝑘 indicates the 𝑘th rule.  To develop 

an equational representation of the recursive formulation, first define the general function 

�̃�(𝑛, 𝑞) where 𝑛 represents the 𝑛th iteration of the tail recursion and �̃�(𝑛, 𝑞) is the logical 

consequent.  Then rewrite the above formulation using the recursive step, where the 𝑘th 

rule is instantiated for the 𝑛th time, 

�̃�1(𝑛, 𝑞) ∧ �̃�2(𝑛, 𝑞) ∧ ⋯∧ �̃�𝑘−1(𝑛, 𝑞) ∧ �̃�(𝑛 − 1, 𝑞) ⟹ �̃�(𝑛, 𝑞). 

( 6.7-9 ) 

Define 

�̃�(𝑛, 𝑞) ≅ �̃�1(𝑛, 𝑞) ∧ �̃�2(𝑛, 𝑞) ∧ ⋯∧ �̃�𝑘−1(𝑛, 𝑞) 

�̃�(𝑛 − 1, 𝑞) ≅ �̃�(𝑛, 𝑞) ∧ �̃�(𝑛 − 1, 𝑞) 

( 6.7-10 ) 

Then the tail recursion is rewritable as  

�̃�(𝑛, 𝑞) ∧ �̃�(𝑛 − 1, 𝑞) ⟹ �̃�(𝑛, 𝑞) 

�̃�(𝑛 − 1, 𝑞) ⟹ �̃�(𝑛, 𝑞). 

( 6.7-11 ) 
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According to the equational representation of implication, let 

ℎ̌(𝑛 − 1, 𝑞) = 1 − �̌̃�(𝑛, 𝑞) ∙ �̌̃�(𝑛 − 1, 𝑞) + �̌̃�(𝑛, 𝑞) ∙ �̌̃�(𝑛 − 1, 𝑞) ∙ �̌̃�(𝑛, 𝑞). 

( 6.7-12 ) 

Since by definition �̂̃�(𝑛 − 1, 𝑞) = �̂̃�(𝑛, 𝑞) ∙ �̂̃�(𝑛 − 1, 𝑞). Then 

�̌̃�(𝑛, 𝑞) =
ℎ̂(𝑛 − 1, 𝑞) + �̂̃�(𝑛, 𝑞) ∙ �̂̃�(𝑛 − 1, 𝑞) − 1

�̂̃�(𝑛, 𝑞) ∙ �̂̃�(𝑛 − 1, 𝑞)
 

( 6.7-13 ) 

with boundary condition 𝑛 = 0. 

6.7.3 Converting rules based system of inference to the problem of constrained minimization 

TBD 

6.7.3.1 Converting rules to constraints 

The preceding discussion has established an algorithm for converting rules of the form 

ℎ(𝑞) ⟸ 𝜑1(𝑞) ∧ 𝜑2(𝑞) ∧ ⋯∧ 𝜑𝑚(𝑞) 

( 6.7-14 ) 

to constraints of the form 

ℎ̌(𝑞) = �̌�1(𝑞) ∙ �̌�2(𝑞) ∙  ⋯ ∙ �̌�𝑚(𝑞). 

( 6.7-15 ) 

6.8 Decision Element (DE) 

A diagram of the Decision Element (DE) architecture is shown in Figure 6.8-1. It is 

composed of seven elements: 

1. List of external repositories (LER) 

2. Programmable search engine (PSE) 

3. Internal heterogeneous database (IHDB) 

4. Inference engine (IE) 

5. Inference rule base (IRB) 

6. API / user interface (UI) 

7. Network interface (NI) 

A functional description of these elements follows.  In Figure 6.8-1, the IRB is internal to the 

DE, whereas the IHBD is external to the DE but accessible (as shown in Figure 6.1-1). 
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Fig.  6.8-2. Decision Element Architecture. 

6.8.1 List of External Repositories (LER) 

A DE has a List of External Repositories (LER). Each entry in an LER includes 1) a protocol, 

2) a heading sub-list, and 3) a translation grammar. Each protocol entry prescribes the 

access procedure to the corresponding external knowledge repository. Each heading sub-

list entry contains a summary of the knowledge contents of the corresponding repository. 

Finally, each translation grammar entry provides a procedure for converting knowledge 

elements of the corresponding repository in to the rule representation in the IHDB of the 

DE. 

6.8.2 Programmable search engine (PSE) 

The programmable search engine implements a standard hashing algorithm for detecting 

active rules as a function of the current instantiation of the variables in a variable buffer 

(VB) of the IE, and the contents of the active rule buffer (ARB).  The VB contains the 

variables that form part of the query and all additional variables incorporated to this buffer 

during the inference process (IP).  The VB includes all relevant data from the EKB beneficial 

to perform the query.  The IP is described below. The ARB contains all the rules that are 

currently active in the IP.  See the CDI Implementation Document for more description of 

the PSE. 

The search hashing algorithm is characterized by the search rules in the Inference Rule 

Base (see Figure 6.8-1). 
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6.8.3 Internal heterogeneous database (IHDB) 

The IHDB is the repository of the application clauses associated with the DE. These encode 

the domain of knowledge characterizing the expertise of the DE. For example in a medical 

application, a decision element may deal with expertise on heart illnesses, and the 

corresponding clauses might encode diagnoses and treatments for these diseases. 

6.8.4 Inference engine (IE) 

The IE encodes an algorithm, the IP, for assigning values to the variables appearing in the 

query. The IP is summarized in the block diagram of Fig.  6.8-3. 

 

Fig.  6.8-3. Inference Process  
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6.8.5 Inference rule types 

The DE incorporates inference rules (IR) that are a collection of rules for transforming and 

inferring instantiations of the goal.  These rules provide the Inference Engine with 

directives for processing database rules to give a satisfactory instantiation to a given query 

or to request additional information so that a satisfactory instantiation can be generated. 

They are shown in Fig.  6.8-3 in the IRB, and are organized according to their functionality, 

as follows.  

6.8.5.1 Equation rules 

These rules include the formal rules for inference.  This includes all rules for natural 

language modeling from first principles. 

6.8.5.2 Optimizer rules 

These rules include rules for finding the interior point in optimization. 

6.8.5.3 Search rules 

These rules include rules for identifying the nature of insufficient potential.  The goal is to 

apply these rules to acquire additional information required to satisfy the optimization 

goal. 

6.8.5.4 Adaptation rules 

Adaptation rules are used to update the soft rules to relax them further to reduce the 

complexity and constraints of the optimization problem.  The adaptation also serves to 

update the search rules to improve information acquisition. 

6.8.5.5 Language rules and Pattern rules 

These rules embody the machine learning models. 

6.8.5.6 Network rules 

These rules define how information is distributed over the network and what information 

is available from which resources. 

6.8.5.7 Hybridization rules 

The rules define how other rules may be combined. 

6.8.6 User interface (UI) 

The UI provides the utilities for entering queries, pragma rules, displaying query answers, 

status and for general interaction with the IE. 
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6.8.7 Network interface (NI) 

The NI provides a generic mechanism for interacting with other DEs via a procedure 

termed companionship. The companionship procedure implements the active coupling for 

the cooperation of the DEs in query resolution. This procedure is not hierarchical and 

implements a Pareto Agreement set strategy as the mechanism for CDI. 
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6.9 Query Language Interface (QLI) 

Once a query is submitted (see the CDI Implementation Document), it is transformed into 

equational form, instantiated with the active rules, and a Hamiltonian is created for use in 

the optimization. The action is denoted 𝑀(𝑡), and its time derivative is denoted �̇�(𝑡). 

 

Fig.  6.9-1.  Process for developing Hamiltonian from a query and a set of active rules. 
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6.10 Minimization Function Generator (MFG) and Process for Determining Active 

Constraints 

The minimization function generator converts a query to a minimization function.  Again, 

we assume without loss of generality the entire set of canonical coordinates 𝑞 is an 

argument to any proposition 𝜑𝑖.  In practice, we may further assume it is possible to apply 

the particular required coordinates as need to the proposition or function in question.  

Then let 𝜑(𝑘)be the set of propositions associated with 𝐷𝐸𝑘 in the context of query 𝑄.  

These propositions are composed of the proposition associated with the query 𝜑𝑄(𝑞), and 

other propositions 𝜑𝑖(𝑞), comprising the constraints of the system.  The proposition 

𝜑𝑄(𝑞) associated with a given query 𝑄 can be converted to an equation �̌�𝑄(𝑞).  Queries that 

are satisfiable specify a set. 

{𝑞|𝜑𝑄(𝑞) ⟵ 𝑇} 

( 6.10-1 ) 

Similarly, a satisfied query represented as an equation is also a set 

{𝑞|�̌�𝑄(𝑞) = 1}. 

( 6.10-2 ) 

Relaxing the values that �̌�𝑄(⋅) can take to include the unit interval so that soft rules are 

incorporated yields the following constrained optimization expression. Let 𝐽(𝑞) =

 (�̌�𝑄(𝑞) − 1)
2

 be the quadratic criterion that favors a value close to one (representing 

truth). Then the optimization problem is specified as, 

min
𝑞

𝐽(𝑞) 

 ( 6.10-3 ) 

subject to: 

1. �̌�𝑄(𝑞) ≤ 1 

2. �̌�𝑄(𝑞) ≥ 0 

3. A knowledge base on the set {�̌�1(𝑞),… , �̌�𝑛(𝑞),… , �̌�𝑛+𝑠(𝑞)} ⊆ �̌�(𝑘) which represents 

a further set of active constraints specific to the problem: 

a. �̌�𝑖(𝑞) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛, 

b. �̌�𝑖(𝑞) ≤ 1 or, equivalently −(�̌�𝑖(𝑞) − 1) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛, 
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c. and, in the case of absolute and hard rules,  

 �̌�𝑙(𝑞)(1 − �̌�𝑙(𝑞)) = 0 for 𝑛 < 𝑙 ≤ 𝑛 + 𝑠.  

Introduce the indicator functions 

𝑉�̌�𝑖

− = {
0 �̌�𝑖(𝑞) ≥ 0

∞ �̌�𝑖(𝑞) < 0
 

( 6.10-4 ) 

and 

𝑉�̌�𝑖

+ = {
0 1 − �̌�𝑖(𝑞) ≥ 0

∞ 1 − �̌�𝑖(𝑞) < 0
 

( 6.10-5 ) 

which yields the two logarithmic barrier functions 

�̌��̌�𝑖

− = − log(�̌�𝑖(𝑞)) 

( 6.10-6 ) 

and 

�̌��̌�𝑖

+ = − log(1 − �̌�𝑖(𝑞)). 

( 6.10-7 ) 

According to the method of Lagrange multipliers, combine this with the equality 

constraints to form the static Lagrangian function 

ℒ (𝑞; �̌�𝑄 , �̌�(𝑘), 𝜔1
(+)

, … , 𝜔𝑛
(+)

, 𝜔𝑛+1
(−)

, … , 𝜔2𝑛
(−)

, 𝜔2𝑛+1
(𝜆)

, … , 𝜔2𝑛+𝑠
(𝜆)

, 𝜔2𝑛+𝑠+1
(𝑄)

, 𝜔2𝑛+𝑠+2
(𝑄)

)

= �̌�𝑄(𝑞) + ∑[𝜔𝑖
(+)

�̌��̌�𝑖

+ + 𝜔𝑛+𝑖
(−)

�̌��̌�𝑖

− ]

𝑛

𝑖=1

+ ∑𝜔2𝑛+𝑙
(𝜆)

�̌�𝑙(𝑞)(1 − �̌�𝑙(𝑞))

𝑠

𝑙=1

− 𝜔2𝑛+𝑠+1
(𝑄)

log (�̌�𝑄(𝑞)) − 𝜔2𝑛+𝑠+2
(𝑄)

log (1 − �̌�𝑄(𝑞)), 

( 6.10-8 ) 

the roots of which can be found using a formulation of Newton-Raphson.  Since ℒ here 

includes absolute, hard and soft rules we may call it the total static Lagrangian for 𝐷𝐸𝑘 and 

refer to it as ℒ𝑘
(𝑇)

. 
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6.11 Construct equations of motion 

In a separate document 

6.12 Query Response Engine (QRE) which includes Process for Constructing Differential 

Equations 

6.12.1 Application of Newton-Raphson 

Consider a continuous analog of the independent variables of ℒ(∙)  

𝑞 = 𝑞(𝑡) = 
𝑞(1)(𝑡)

⋮
𝑞(𝑣)(𝑡)

 

( 6.12-1 ) 

where each of the 𝑣 total independent variables of ℒ(∙) is mapped to its corresponding 

position in 𝑞(𝑡), the column vector that is represented with a lower-case 𝑞. To reiterate, the 

independent variable 𝑡 refers 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑡𝑖𝑚𝑒 as opposed to physical time which may 

also be represented in the system.  The corresponding unconstrained optimization goal can 

be written as 

min
𝑞1,…,𝑞𝑣

ℒ (𝑞(1)(𝑡), … , 𝑞(𝑣)(𝑡)) 

 ( 6.12-2 ) 

so that ∇𝐿(𝑞) 

∇ℒ(𝑞(𝑡)) =

[
 
 
 
 

𝜕ℒ

𝜕𝑞(1)

⋮
𝜕ℒ

𝜕𝑞(𝑣)]
 
 
 
 

= [
∇ℒ1

⋮
∇ℒ𝑣

] = 0, 

( 6.12-3 ) 

with positive definite Hessian matrix 

∇2ℒ(𝑞(𝑡)) =

[
 
 
 
 

𝜕ℒ

𝜕𝑞(1)𝜕𝑞(1)
⋯

𝜕ℒ

𝜕𝑞(1)𝜕𝑞(𝑣)

⋮ ⋱ ⋮
𝜕ℒ

𝜕𝑞(𝑣)𝜕𝑞(1)
⋯

𝜕ℒ

𝜕𝑞(𝑣)𝜕𝑞(𝑣)]
 
 
 
 

= [
∇ℒ11 ⋯ ∇ℒ1𝑣

⋮ ⋱ ⋮
∇ℒ𝑣1 ⋯ ∇ℒ𝑣𝑣

] => 0. 

( 6.12-4 ) 

Write the recursion for Newton’s method  
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𝑞(𝑘+1)(𝑡) = 𝑞(𝑘)(𝑡) − (∇2ℒ (𝑞(𝑘)(𝑡)))
−1

∇ℒ (𝑞(𝑘)(𝑡)). 

( 6.12-5 ) 

This is equivalently rewritten 

𝑞(𝑘+1)(𝑡) − 𝑞(𝑘)(𝑡)

𝛿
= −

1

𝛿
(∇2ℒ (𝑞(𝑘)(𝑡)))

−1

∇ℒ (𝑞(𝑘)(𝑡)). 

( 6.12-6 ) 

Via continualization we approximate the derivative   

�̇�(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
= −(∇2ℒ(𝑞(𝑡)))

−1

∇ℒ(𝑞(𝑡)). 

( 6.12-7 ) 

6.12.2 Translation of inverted matrix 

Consider 𝑀, an invertible and positive definite matrix.  Then we make the following 

provable assertions. 

1. 𝐴𝑇𝐴 is symmetric. 

2. −ATA has negative eigenvalues. 

Define 

𝑑𝑀(𝑡)

𝑑𝑡
= −𝐴𝑇𝐴𝑀(𝑡) + 𝐴𝑇  

( 6.12-8 ) 

Then as 𝑡 → ∞, 𝑀(𝑡) → 𝐴−1 = ∇2ℒ (𝑞(𝑘)(𝑡))
−1

.  Using ( 6.12-3 ) and ( 6.12-4 ) approximate 

�̇�(𝑡) by rewriting the derivative in the context of 𝑀(𝑡).  This yields the following two 

equations. 

�̇�(𝑡) = −𝑀(𝑡)∇𝐿(𝑞(𝑡)) = [

𝑚11 ⋯ 𝑚1𝑣

⋮ ⋱ ⋮
𝑚𝑣1 ⋯ 𝑚𝑣𝑣

] [
∇ℒ1

⋮
∇ℒ𝑣

] = [
𝑚11∇ℒ1 + ⋯+ 𝑚1𝑣∇ℒ𝑣

⋮
𝑚𝑣1∇ℒ1 + ⋯+ 𝑚𝑣𝑣∇ℒ𝑣

] 

( 6.12-9 ) 

𝑑𝑀(𝑡)

𝑑𝑡
= −(∇2ℒ(𝑞(𝑡)))

𝑇

(∇2ℒ(𝑞(𝑡)))𝑀(𝑡) + (∇2ℒ(𝑞(𝑡)))
𝑇

 

= − [
∇ℒ11 ⋯ ∇ℒ𝑣1

⋮ ⋱ ⋮
∇ℒ1𝑣 ⋯ ∇ℒ𝑣𝑣

] [
∇ℒ11 ⋯ ∇ℒ1𝑣

⋮ ⋱ ⋮
∇ℒ𝑣1 ⋯ ∇ℒ𝑣𝑣

] [

𝑚11 ⋯ 𝑚1𝑣

⋮ ⋱ ⋮
𝑚𝑣1 ⋯ 𝑚𝑣𝑣

] + [
∇ℒ11 ⋯ ∇ℒ𝑣1

⋮ ⋱ ⋮
∇ℒ1𝑣 ⋯ ∇ℒ𝑣𝑣

] 
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= −
∇ℒ11

2 + ⋯+ ∇ℒ𝑣1
2 ⋯ ∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣

⋮ ⋱ ⋮
∇ℒ11∇ℒ1𝑣 + ⋯ + ∇ℒ𝑣1∇ℒ𝑣𝑣 ⋯ ∇ℒ1𝑣

2 + ⋯+ ∇ℒ𝑣𝑣
2

 [

𝑚11 ⋯ 𝑚1𝑣

⋮ ⋱ ⋮
𝑚𝑣1 ⋯ 𝑚𝑣𝑣

]

+ [
∇ℒ11 ⋯ ∇ℒ𝑣1

⋮ ⋱ ⋮
∇ℒ1𝑣 ⋯ ∇ℒ𝑣𝑣

] 

= −

[
 
 
 
 
 
 
 

 

(∇ℒ11
2 + ⋯+ ∇ℒ𝑣1

2 )𝑚11 + ⋯ (∇ℒ11
2 + ⋯+ ∇ℒ𝑣1

2 )𝑚1𝑣 + ⋯

 +(∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚𝑣1 ⋯ +(∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚𝑣𝑣

+∇ℒ11 +∇ℒ𝑣1

⋮ ⋱ ⋮
(∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚11 + ⋯ (∇ℒ11∇ℒ1𝑣 + ⋯ + ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚1𝑣 + ⋯

+(∇ℒ1𝑣
2 + ⋯+ ∇ℒ𝑣𝑣

2 )𝑚𝑣1 ⋯ +(∇ℒ1𝑣
2 + ⋯+ ∇ℒ𝑣𝑣

2 )𝑚𝑣𝑣

+∇ℒ1𝑣 +∇ℒ𝑣𝑣 ]
 
 
 
 
 
 
 

 

= [
∇𝑚11 ⋯ ∇𝑚1𝑣

⋮ ⋱ ⋮
∇𝑚𝑣1 ⋯ ∇𝑚𝑣𝑣

] 

 

( 6.12-10 ) 

The approximation proceeds as follows: 

1. Fix 𝑀(0) = ∇2ℒ(𝑞(0)) and = ∇2ℒ(𝑞(𝑡)). 

2. Use the variation of constants formula to solve 

𝑀(𝑇) = 𝑒−[∇2ℒ(𝑞(𝑇))]
2
𝑡𝑀(0) + [∫ 𝑒−[∇2ℒ(𝑞(𝜏))]

2
(𝑇−𝜏)

𝑇

0

𝑑𝜏] ∇2ℒ(𝑞(𝑇)) 

applying the Magnus expansion to compute the integral. 

The following figure documents the flow of computation. 

 

 

 

 

 

 

 

Initialize 𝑞0, 𝑘 = 0 and express the Hessian 𝐴(𝑞) =

∇2ℒ symbolically. 

Evaluate the Hessian at 𝑞𝑘: 𝐴𝑘 = 𝐴(𝑞𝑘) = ∇2ℒ(𝑞𝑘). 

If ‖𝐴𝑘 − 𝐴𝑘−1‖ ≥ 𝜖, solve �̇�(𝑡) = −(𝐴𝑘)
2𝑀(𝑡) + 𝐴𝑘 

for large 𝑡 = 𝑇.  𝑀(𝑡) ≈ 𝐴𝑘
−1. 

𝑡𝑘+1 ← 𝑡𝑘 + 𝜏 

𝑘 ← 𝑘 + 1 
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6.12.3 Process for determining dynamic Lagrangian via Hemholtz equations 

Given 

𝐺𝑖(�̈�, �̇�, 𝑞) = ∑𝑊𝑖,𝑗(�̇�, 𝑞)

𝑛

𝑗=1

(�̇�, 𝑞)�̈�(𝑗) + 𝐾𝑖(�̇�, 𝑞) = 0     𝑗 = 1,… , 𝑛    

( 6.12-11 ) 

If the three conditions 

𝜕𝐺𝑖

𝜕�̈�(𝑗)
=

𝜕𝐺𝑗

𝜕�̈�(𝑖)
, 

𝜕𝐺𝑖

𝜕�̇�(𝑗)
+

𝜕𝐺𝑗

𝜕�̇�(𝑖)
=

𝑑

𝑑𝑡
(

𝜕𝐺𝑖

𝜕�̈�(𝑗)
+

𝜕𝐺𝑗

𝜕�̈�(𝑖)
) , 

𝜕𝐺𝑖

𝜕𝑞(𝑗)
−

𝜕𝐺𝑗

𝜕𝑞(𝑖)
=

1

2

𝑑

𝑑𝑡
(

𝜕𝐺𝑖

𝜕�̇�(𝑗)
−

𝜕𝐺𝑗

𝜕�̇�(𝑖)
),   

( 6.12-12 ) 

with 𝑖, 𝑗 = 1,… , 𝑛 hold, then  

∑
𝜕2𝐿

𝜕�̇�(𝑖)𝜕�̇�(𝑗)
�̈�(𝑗) +

𝜕2𝐿

𝜕𝑞(𝑗)𝜕�̇�(𝑖)

𝑛

𝑗=1

−
𝜕𝐿

𝜕𝑞(𝑖)
= 𝐺𝑖, 𝑖 = 1,… , 𝑛    

( 6.12-13 ) 

This is a second order, linear hyperbolic differential equation on the Lagrangian 𝐿. It can be 

solved efficiently by the method of characteristics. 

Let  

Integrate �̇�(𝑡) = −𝐺𝑎𝑖𝑛 ∙ 𝑀(𝑇)∇ℒ(𝑞(𝑡)) from 𝑡𝑘 to 

𝑡𝑘 + 𝜏 with initial condition 𝑞𝑘. Set 𝑞𝑘+1 = 𝑞(𝑡𝑘 + 𝜏)  

Continue? 

Stop 
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𝐺(�̈�, �̇�, 𝑞) = 

𝑞(𝑡)

�̇�(𝑡)

�̇�(𝑡)

 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑞(1)

⋮
𝑞(𝑣)

𝑚11∇ℒ1 + ⋯+ 𝑚1𝑣∇ℒ𝑣

⋮
𝑚𝑣1∇ℒ1 + ⋯+ 𝑚𝑣𝑣∇ℒ𝑣

∇𝑚11

⋮
∇𝑚𝑣1

⋮
∇𝑚1𝑣

⋮
∇𝑚𝑣𝑣 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

( 6.12-14 ) 

6.12.4 Process for determining Hessian rank of dynamic Lagrangian 

TBD 

6.12.5 Converting the Lagrangian to the Hamiltonian via the Legendre transformation. 

In our formulation the Lagrangian, 𝐿𝑘
(𝑇)(𝑞, �̇�; 𝜔), may be converted to the Hamiltonian using 

the Legendre transformation, so that 

𝐻𝑘
(𝑇)(𝑞, 𝑝; 𝜔) =

𝜕𝐿𝑘
(𝑇)

𝜕�̇�
�̇� − 𝐿𝑘

(𝑇)(𝑞, �̇�; 𝜔) 

= 𝑝𝑇�̇� − 𝐿𝑘
(𝑇)(𝑞, �̇�; 𝜔) 

( 6.12-15 ) 

6.13 Pareto Multi-Criteria Optimization Engine (PMOE) 

Consider the problem of determining the relaxed Pareto optimal solution to a given system 

query at a given time step.  There are 𝑁 decision elements, 𝑘 = 1,… ,𝑁.  A given decision 

element, 𝐷𝐸𝑘, has the following associated parameters which are constituent to the ARB: 

• A generalized set of coordinates relevant to 𝐷𝐸𝑘, 𝑞. 

• A generalized set of linearly independent momenta {𝑝𝑎} where the index 𝑎 refers the 

linearly independent momenta selected from the canonical set 𝑝. 

• A set of control parameters 𝜔 for hard a soft rules of the system, where 0 ≤ 𝜔𝑖 ≤ 1. 

The ARB has the following components which determine the constraints of 𝐷𝐸𝑘: 
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• The Hamiltonian which identifies the fundamental dynamics of the system of the 

system for the 𝑘’th decision element denoted  

𝐻𝑘
(𝑜)(𝑞, {𝑝𝑎}). 

( 6.13-1 ) 

• The summation of the first class constraints of the system, which is 

∑𝜔𝑖𝑓𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

 

( 6.13-2 ) 

• The summation of the second class constraints of the system which is 

∑𝑔𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

 

( 6.13-3 ) 

• The Tellegen agent which is a function of the Hamiltonians of the absolute rules of the 

other 𝑁 − 1 decision elements in the system 

𝐻𝑘
(𝐴)

= 𝐹𝑘
(𝐴)

(𝐻1
(𝑇)

, … , 𝐻𝑘−1
(𝑇)

, 𝐻𝑘+1
(𝑇)

, … , 𝐻𝐾
(𝑇)

) 

( 6.13-4 ) 

• The total Hamiltonian of the system is denoted 𝐻(𝑇). 

• Approximations to the various Hamiltonian’s are denoted�̂�𝑘
(𝐴)

, �̂�(𝑇) and �̂�𝑘
(𝑜)

 for the 

Tellegen, total, and DE-level Hamiltonians respectively. 

6.13.1 System initialization 

Determining the relaxed Pareto optimal point of the system is a process which includes: 

1. Initialization of 𝑁 decision elements. 

2. Synchronization through companionship of each of the 𝑁 decision elements with its 

respective Tellegen agent. 
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Fig.  6.13-1 shows the information components of the DE that are constituent to updating 

and being updated by the network at initialization. 

 

 

Decision element 𝑘 

𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎};𝜔) 

Active rule buffer 

 

Primary Hamiltonian 

𝐻𝑘
(𝑜)(𝑞, {𝑝𝑎}) 

First class constraints  

∑𝜔𝑖𝑓𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

 

Second class constraints  

∑𝑔𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

 

 

Aggregator 

Receive  𝐻𝑖
(𝑇)(𝑞, {𝑝𝑎};𝜔), 

 𝑖 = 1,… , 𝐾, 𝑖 ≠ 𝑘  

Compute 𝐻𝑘
(𝐴)(𝑞, {𝑝𝑎};𝜔) 

Broadcaster 

Distribute 𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎}; 𝜔) 

Network 
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Fig.  6.13-1 

 

6.13.2 System operation 

Fig.  6.13-2 shows how decision elements interact with the network, receive queries, and 

return results.  In this example, the distributed system effectively implements an abstract 

classifier that has no real implementation.  The DE’s receive sensor data from the network 

which includes new available information which may benefit classification.  The user 

submits a query that is received by a DE which then returns a result. 

Decision element 𝑘 

𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎};𝜔) 

Active rule buffer 

 

Primary Hamiltonian 

𝐻𝑘
(𝑜)(𝑞, {𝑝𝑎}) 

First class constraints  

∑𝜔𝑖𝑓𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

 

Second class constraints  

∑𝑔𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

 

 

Aggregator 

Receive  𝐻𝑖
(𝑇)(𝑞, {𝑝𝑎};𝜔), 

 𝑖 = 1,… , 𝐾, 𝑖 ≠ 𝑘  

Compute 𝐻𝑘
(𝐴)(𝑞, {𝑝𝑎};𝜔) 

Broadcaster 

Distribute 𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎}; 𝜔) 

Network 
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Fig.  6.13-2 

 

Fig.  6.13-3 represents the iterative process of updating the Hamiltonian associated with 

𝐷𝐸𝑘. 

Network 

Abstract 

classifier 
Aggregate rules 

database 

User 

Obtain Result 
  

Submit Query 

 

Knowledge 

component, 

𝐾𝐶1 

Companion 

element, 

�̂�1
(𝐴)

 

Decision 

element, 

𝐷𝐸1, �̂�1
(𝑇)

 

Sensor Data 
Submit Query 

 

Query 
 Result 

  

Knowledge 

component, 

𝐾𝐶2 

Companion 

element, 

�̂�2
(𝐴)

 

Decision 

element, 

𝐷𝐸2, �̂�2
(𝑇)

 

Sensor Data 
Submit Query 

  

Query 
 Result 

  

… 

… 

… 
Knowledge 

component, 

𝐾𝐶𝐾 

Companion 

element, 
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Fig.  6.13-3 

 

 

6.14 Gauge Systems in a Hamiltonian Domain 

The time integral of the Lagrangian 𝐿(𝑞, �̇�) is the action 𝑆𝐿 defined as 

𝑆𝐿 = ∫ 𝐿(𝑞, �̇�)𝑑𝑡
𝑡2

𝑡1

  

where �̇� =
𝑑𝑞(𝑡)

𝑑𝑡
. The Lagrangian conditions for stationarity are first that 

𝑑

𝑑𝑡
𝐿�̇�(𝑛) − 𝐿𝑞(𝑛) = 0 

( 6.14-1 ) 
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where 𝑛 = 1, … , 𝑁,  𝐿�̇�(𝑛) =
𝜕𝐿

𝜕�̇�(𝑛), and 𝐿𝑞(𝑛) =
𝜕𝐿

𝜕𝑞(𝑛).  And, secondarily 

[∑ �̈�(𝑛′)

𝑁

𝑛′=1

] 𝐿�̇�(𝑛)�̇�(𝑛) = 𝐿𝑞(𝑛) − �̇�(𝑛)𝐿�̇�(𝑛)𝑞(𝑛)  

( 6.14-2 ) 

where �̈�(𝑛′) =
𝑑2𝑞(𝑛′)

𝑑𝑡2  and 𝐿�̇�(𝑛)𝑞(𝑛) =
𝜕2𝐿

𝜕(�̇�(𝑛))
2.  The generalized accelerations �̈�(𝑛) are 

immediately determined if 𝐿�̇�(𝑛)�̇�(𝑛)  is invertible, or equivalently 

det (𝐿�̇�(𝑛)�̇�(𝑛)) ≠ 0 

( 6.14-3 ) 

for 𝑖 = 1, … , 𝑁.  If for some 𝑛, det (𝐿�̇�(𝑛)�̇�(𝑛)) = 0, the acceleration vector �̈�(𝑛) will not be 

uniquely determined. 

The departing point for the Hamiltonian approach is the definition of conjugate momentum 

𝑝𝑛 = 𝐿�̇�(𝑛)  

( 6.14-4 ) 

where 𝑛 = 1, … , 𝑁.  We will see that ( 6.14-3 ) is the condition of non-invertibility of   

𝐿�̇��̇� = 

𝐿�̇�(1)�̇�(1) ⋯ 𝐿�̇�(1)�̇�(𝑁)

⋮ ⋰ ⋮
𝐿�̇�(𝑁)�̇�(1) ⋯ 𝐿�̇�(𝑁)�̇�(𝑁)

 

of the velocities of the functions of the coordinates 𝑞 and momenta 𝑝. In other words, in 

this case, the momenta defined in ( 6.14-4 ) are not all independent.  Define the relations 

that follow from ( 6.14-4 ) as 

𝜙𝑚(𝑞, 𝑝) 

( 6.14-5 ) 

where 𝑚 = 1,… ,𝑀.  Write ( 6.14-4 ) in vector notation as  

𝑝 = 𝐿�̇�(𝑞, �̇�). 

Then compatibility demands 

𝜙𝑚 (𝑞, 𝐿�̇�(𝑞, �̇�)) = 0 
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is an identity with 𝑚 = 1,… ,𝑀. 

Relations specified in ( 6.14-5 ) are called primary constraints.  For simplicity let’s assume 

that 𝑟𝑎𝑛𝑘(𝐿�̇��̇�) is constant throughout the phase space, (𝑞, �̇�), so that ( 6.14-5 ) defines a 

submanifold smoothly embedded in the phase space.  This manifold is known as the 

primary constraint surface. 

Let  

𝑟𝑎𝑛𝑘(𝐿�̇��̇�) = 𝑁 − 𝑀′ 

( 6.14-6 ) 

Then there are 𝑀′ independent constraints among ( 6.14-5 ) and the primary constraint 

surface is a phase space submanifold of dimension 2𝑁 − 𝑀′. 

We do not assume that all the constraints are linearly independent so that 

𝑀′ ≤ 𝑀. 

( 6.14-7 ) 

It follows from ( 6.14-5 ) that the inverse transformation from the 𝑝’s to the 𝑞’s is 

multivalued.  That is, given 𝑞, 𝑝 that satisfies ( 6.14-5 ), the inverse image (𝑞, �̇�) that 

satisfies 

𝑝 = (
𝜕𝐿

𝜕�̇�
)

𝑇

 

( 6.14-8 ) 

is not unique, since ( 6.14-8 ) defines a map from a 2𝑁-dimensional manifold (𝑞, �̇�) to the 

smaller (2𝑁 − 𝑀′)-dimensional manifold.  Thus the inverse image of the points of ( 6.14-5 ) 

form a manifold of dimension 𝑀′. 

6.14.1 Conditions on the Constraint Function 

There exist many equivalent ways to represent a given surface by means of equations of the 

form of ( 6.14-5 ).  For example the surface 𝑝1 = 0 can be represented equivalently by 𝑝1
2 = 0, 

√|𝑝1| = 0, or redundantly by 𝑝1 = 0 and 𝑝1
2 = 0.  To use the Hamiltonian formalism, it is 

necessary to impose some restrictions which the regularity conditions for the constraints. 

6.14.1.1 Regularity Conditions 

1. The (2𝑁 − 𝑀′)-dimensional constraint surface 𝜙𝑚(𝑞, 𝑝) should be covered of open 

region: in each region the constraints can be split into independent constraints 

{𝜙𝑚′|𝑚′ = 1,… ,𝑀′} . 
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Their Jacobian matrix 

{
𝜕𝜙𝑚′

𝜕𝑝𝑛, 𝑞(𝑛)
} =

[
 
 
 
 

𝜕𝜙1

𝜕𝑝1, 𝑞
(1)

⋯
𝜕𝜙1

𝜕𝑝𝑛, 𝑞(𝑛)

⋮ ⋱ ⋮
𝜕𝜙𝑚′

𝜕𝑝1, 𝑞
(1)

⋯
𝜕𝜙𝑚′

𝜕𝑝𝑛, 𝑞(𝑛)]
 
 
 
 

 

with 𝑚′ = 1,… ,𝑀′ and 𝑛 = 1,… ,𝑁, is of rank 𝑀′. 

The dependent constraints 𝜙𝑚,  𝑚 = 𝑀′ + 1,… ,𝑀 of the other 𝜙𝑚′ = 0 ⟹ 𝜙𝑚 = 0.  

Alternatively the condition  on the Jacobian. 

2. The function 𝜙𝑚′  can be taken locally as the first 𝑀′ coordinates of a new regular 

system in the vicinity of the constraint surface or the differentials 𝑑𝜙1, … , 𝑑𝜙𝑀′  are 

locally linearly independent: 

𝑑𝜙1 ∧ … ∧ 𝑑𝜙𝑀′ ≠ 0 

( 6.14-9 ) 

3. The variations 𝛿𝜙𝑚′  are of order 𝜖  for arbitrary variations 𝛿𝑞(𝑖), 𝛿𝑝𝑖  of order 𝜖 (Dirac’s 

approach). 

Theorem 6.14.1. If a smooth, phase space function 𝐺 vanishes on  {𝜙𝑚 = 0} then 

𝐺 = ∑ 𝑔(𝑚)𝜙𝑚

𝑀

𝑚=1

 

( 6.14-10 ) 

Proof: (local proof). Set 𝜙𝑚′ ,  𝑚′ = 1,… ,𝑀′ as coordinates (𝑦𝑚′ , 𝑥𝛼) with 𝑦𝑚′ = 𝜙𝑚′ .  In 

these coordinates 𝐺(0, 𝑥) = 0 and 

𝐺(𝑦, 𝑥) = ∫
𝑑

𝑑𝑡

1

0

𝐺(𝑡𝑦, 𝑥)𝑑𝑡 

= ∑ 𝑦𝑚′ ∫
𝜕

𝜕𝑦𝑚′

1

0

𝐺(𝑡𝑦, 𝑥)𝑑𝑡

𝑀′

𝑚′=1

 

= ∑ 𝑔(𝑚′)(𝑦, 𝑥)𝜙𝑚′(𝑦, 𝑥)

𝑀′

𝑚′=1

 

with 
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𝑔(𝑚′)(𝑦, 𝑥) = ∫
𝜕

𝜕𝑦𝑚′

1

0

𝐺(𝑡𝑦, 𝑥)𝑑𝑡. 

( 6.14-11 ) 

Theorem 6.14.2. If the sum ∑(𝜆(𝑛)𝛿𝑞(𝑛) + 𝜇𝑛𝛿𝑝𝑛) = 0 for arbitrary variations 𝛿𝑞(𝑖), 𝛿𝑝𝑖 

tangent to the constraint surface {𝜙𝑚(𝑞, 𝑝) = 0|𝑚 = 1,… ,𝑀}, then 

𝜆(𝑛) = ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑛)

𝑀

𝑚=1

 

( 6.14-12 ) 

𝜇𝑛 = ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

 

( 6.14-13 ) 

Proof. The dimension of  {𝜙𝑚} is 2𝑁 − 𝑀′.  Thus the variations at a point (𝑝, 𝑞) forms a 

2𝑁 − 𝑀′ dimensional space 

∑(𝜆(𝑛)𝛿𝑞(𝑛) + 𝜇𝑛𝛿𝑝𝑛) = 0

𝑁

𝑛=1

 

( 6.14-14 ) 

By the singularity assumption, there exists exactly 𝑀′ solutions to ( 6.14-14 ).  Clearly, the 

gradients {
𝜕𝜙

𝑚′

𝜕𝑞(𝑛)} and {
𝜕𝜙

𝑚′

𝜕𝑝𝑛
} are linearly independent.   They are the basis for solutions to ( 

6.14-14 ).    

Note that in the presence of redundant constraints, the functions 𝑢(𝑚) exist but are not 

unique. 

6.14.1.2 Canonical Hamiltonian 

The Hamiltonian in canonical coordinates is 

𝐻(𝑞, 𝑝) = ∑ �̇�(𝑛)𝑝𝑛

𝑁

𝑛=1

− 𝐿(𝑞, �̇�) 

( 6.14-15 ) 

The rate �̇� enters through the combination through conjugate momenta defined for each 

coordinate 
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𝑝𝑛(𝑞, �̇�) = 𝐿�̇�(𝑛)(𝑞, �̇�) 

( 6.14-16 ) 

This remarkable property is essential for the Hamiltonian approach. It is verified by 

evaluating the change 𝛿𝐻 involved by arbitrary independent variations of position and 

velocities. 

𝛿𝐻 = ∑(�̇�(𝑛)𝛿𝑝𝑛 + 𝛿�̇�(𝑛)𝑝𝑛) −

𝑁

𝑛=1

𝛿𝐿 

= ∑(�̇�(𝑛)𝛿𝑝𝑛 + 𝛿�̇�(𝑛)𝑝𝑛) −

𝑁

𝑛=1

∑ (𝐿𝑞(𝑛)𝛿𝑞(𝑛) + 𝐿�̇�(𝑛)𝛿�̇�(𝑛))

𝑁

𝑛=1

 

( 6.14-17 ) 

Utilizing ( 6.14-16 ) in ( 6.14-17 ) yields 

𝛿𝐻 = ∑ (�̇�(𝑛)𝛿𝑝𝑛 − 𝐿𝑞(𝑛)𝛿𝑞(𝑛))

𝑁

𝑛=1

 

( 6.14-18 ) 

The Hamiltonian defined by ( 6.14-15 ) is not unique as a function of 𝑝, 𝑞.  This can be 

inferred from ( 6.14-18 ) by noticing that {𝛿𝑝𝑛|𝑛 = 1,… ,𝑁} are not all independent.  They 

are restricted to preserve the primary constraints 𝜙𝑚 ≈ 0 which are identities when the 𝑝’s 

are expressed as functions of 𝑞’s via ( 6.14-16 ). 

Using the definition of the differential in several variables applied to 𝛿𝐻 = 𝛿𝐻({𝑞(𝑛)}, {𝑝𝑛}),  

( 6.14-18 ) can be rewritten 

∑ (
𝜕𝐻

𝜕𝑞(𝑛)
𝛿𝑞(𝑛) +

𝜕𝐻

𝜕𝑝𝑛
𝛿𝑝𝑛)

𝑁

𝑛=1

= ∑ (�̇�(𝑛)𝛿𝑝𝑛 − 𝛿𝑞(𝑛) 𝜕𝐿

𝜕𝑞(𝑛)
)

𝑁

𝑛=1

 

or 

∑ (
𝜕𝐻

𝜕𝑞(𝑛)
+

𝜕𝐿

𝜕𝑞(𝑛)
)𝛿𝑞(𝑛)

𝑁

𝑛=1

+ ∑ (
𝜕𝐻

𝜕𝑝𝑛
− �̇�(𝑛)) 𝛿𝑝𝑛

𝑁

𝑛=1

= 0 

( 6.14-19 ) 

From theorem 2 we then conclude for each 𝑛 that. 
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𝜕𝐻

𝜕𝑞(𝑛)
+

𝜕𝐿

𝜕𝑞(𝑛)
= ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑛)

𝑀

𝑚=1

 

and 

𝜕𝐻

𝜕𝑝𝑛
− �̇�(𝑛) = ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛
.

𝑀

𝑚=1

 

( 6.14-20 ) 

So for each 𝑛: 

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

,            𝑛 = 1,… ,𝑁 

( 6.14-21 ) 

and 

−
𝜕𝐿

𝜕𝑞(𝑛)
=

𝜕𝐻

𝜕𝑞(𝑛)
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑛)

𝑀

𝑚=1

,            𝑛 = 1,… ,𝑁. 

 ( 6.14-22 ) 

Note that if the constraints are independent, the vectors ∑
𝜕𝜙𝑚

𝜕𝑝𝑛

𝑁
𝑛=1 , 𝑚 = 1, … ,𝑀 are also 

independent because of the regularity conditions (this is proved later).  Hence no two sets 

of {𝑢(𝑚)|𝑚 = 1,… ,𝑀} can yield the same velocities via ( 6.14-21 ). 

Thus, using 

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚)(𝑞, �̇�)

𝜕𝜙𝑚

𝜕𝑝𝑛
(𝑞, 𝑝(𝑞, �̇�))

𝑀

𝑚=1

 

we can find 𝑢(𝑚)(𝑝, �̇�). If we define the transformation from (𝑞, �̇�) to the manifold  

{𝜙𝑚(𝑞, 𝑝) = 0|𝑚 = 1,… ,𝑀}, from 𝑞, �̇�, 𝑢 → 𝑞, 𝑝, 𝑢  by  

𝑞 = 𝑞,                    𝑛 = 1,… ,𝑁 

𝑝𝑛 = 𝐿𝑞(𝑛)(𝑞, �̇�),   𝑛 = 1,… ,𝑁 − 𝑀′ 

𝑢(𝑚) = 𝑢(𝑚)(𝑞, �̇�),   𝑚 = 1,… ,𝑀′ 

We see that this transformation is invertible since one has from 𝑞, 𝑝, 𝑢 → 𝑞, �̇�, 𝑢  

𝑞 = 𝑞 
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�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

 

𝜙𝑚(𝑞, 𝑝) = 0 

Thus invertibility of the Legendre transformation when 

det(𝐿�̇��̇�) = 0 

 can be regained at the prices of adding extra variables. 

6.14.2 Action Principle of the Hamiltonian Form 

With ( 6.14-21 ) and ( 6.14-22 ) we can rewrite ( 6.14-1 ) in the equivalent Hamiltonian 

form 

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

 

�̇�𝑛 = −
𝜕𝐻

𝜕𝑝𝑛
− ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

 

𝜙𝑚(𝑞, 𝑝) = 0,      𝑚 = 1,… ,𝑀′ 

( 6.14-23 ) 

The Hamiltonian Equations ( 6.14-23 ) can be derived from the following variational 

principle: 

𝛿 ∫ [∑ 𝑞(𝑛)𝑝𝑛

𝑁

𝑛=1

− 𝐻 − ∑ 𝑢(𝑚)𝜙𝑚

𝑀

𝑚=1

]
𝑡2

𝑡1

= 0 

( 6.14-24 ) 

for arbitrary variations of 𝛿𝑞(𝑛), 𝛿𝑝𝑛, and 𝛿𝑢(𝑚) subject to 

𝛿𝑞(𝑡1) = 𝛿𝑞(𝑡2) = 0 

where the 𝑢(𝑚) appear now as Lagrange multipliers enforcing the primary constraints  

𝜙𝑚(𝑞, 𝑝) = 0,   𝑚 = 1, … ,𝑀. 

Let 𝐹(𝑝, 𝑞) be an arbitrary function of the canonical variables, then 

𝑑𝐹

𝑑𝑡
= ∑

𝜕𝐹

𝜕𝑞(𝑛)

𝑁

𝑛=1

�̇�𝑛 + ∑
𝜕𝐹

𝜕𝑝𝑛
�̇�𝑛

𝑁

𝑛=1
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= ∑
𝜕𝐹

𝜕𝑞(𝑛)

𝑁

𝑛=1

[
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

] + ∑
𝜕𝐹

𝜕𝑝𝑛
[−

𝜕𝐻

𝜕𝑝𝑛
− ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

]

𝑁

𝑛=1

 

= [𝐹, 𝐻] + ∑ 𝑢(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

 

( 6.14-25 ) 

The equation ( 6.14-25 ) introduces the new binary operator [∙,∙] which is the Poisson 

bracket and has the form  

[𝐹, 𝐺] = ∑ [
𝜕𝐹

𝜕𝑞(𝑛)

𝜕𝐺

𝜕𝑝𝑛
+

𝜕𝐹

𝜕𝑝𝑛

𝜕𝐺

𝜕𝑞(𝑛)
]

𝑁

𝑛=1

 

= ∑ [𝐹𝑞(𝑛)𝐺𝑝𝑛
+ 𝐹𝑝𝑛

𝐺𝑞(𝑛)]

𝑁

𝑛=1

 

( 6.14-26 ) 

6.14.3 Secondary Constraints 

The basic consistency condition is that the primary constraints be preserved in time.  So for  

𝐹(𝑝, 𝑞) = 𝜙𝑚(𝑞, 𝑝) 

we should have that �̇�𝑚 = 0. {𝜙𝑚(𝑞, 𝑝) = 0}.  So this means 

[𝜙𝑚, 𝐻] + ∑ 𝑢(𝑚′)[𝜙𝑚, 𝜙𝑚′]

𝑀′

𝑚′=1

= 0 

( 6.14-27 ) 

This equation can either reduce to a relation independent of the 𝑢(𝑚′), or, it may impose a 

restriction on the 𝑢’s. 

𝑢 = −{[𝜙𝑚, 𝜙𝑚′]}[𝜙𝑚, 𝐻](𝑞, 𝑝) 

( 6.14-28 ) 

In the case ( 6.14-27 ) is independent of the 𝑢’s ( 6.14-27 ) is called a secondary constraint.  

The fundamental difference of secondary constraints with respect to primary constraints is 

that primary constraints is that primary constraints are the consequence of the definition ( 

6.14-8 ) while secondary constraints depend on the dynamics. 

If 𝑋(𝑞, 𝑝) = 0 is an external constraint, we most impose a compatibility condition 
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[𝑋, 𝐻] + ∑ 𝑢(𝑚)[𝑋, 𝜙𝑚] = 0

𝑀′

𝑚=1

 

( 6.14-29 ) 

Next we need to test whether this constraint: 

Φ(𝑝, 𝑞) = [𝑋,𝐻] + ∑ 𝑢(𝑚)[𝑋, 𝜙𝑚] = 0

𝑀′

𝑚=1

 

( 6.14-30 ) 

( 6.14-31 ) 

Implies new secondary constraints or whether it only restricts the 𝑢’s.  After the process is 

finished we are left with a number of secondary constraints which will be denoted by 

𝜙𝑘 = 0, 𝑘 = 𝑀 + 1,… ,𝑀 + 𝐾 

where 𝐾 is the total number of secondary constraints.  In general, it will be useful to denote 

all the constraints (primary and secondary) in a uniform way as 

𝜙𝑗(𝑞, 𝑝) = 0, 𝑗 = 1,… ,𝑀 + 𝐾 = 𝐽 

( 6.14-32 ) 

We make the same regularity assumptions on the full set of constraints. 

6.14.4 Weak and Strong Equations 

Equation ( 6.14-32 ) can be written as 

𝜙𝑗(∙) ≈ 0 

( 6.14-33 ) 

To emphasize, the quantity 𝜙𝑗  is numerically restricted to be zero but does not vanish 

throughout the space.  What this is means is that 𝜙𝑗  has non-zero Poisson brackets with the 

canonical variables. 

Let 𝐹, 𝐺 be functions that coincide on the manifold {𝜙𝑗 ≈ 0|𝑗 = 1,… , 𝐽} are said the be 

weakly equal and denoted by 𝐹 ≈ 𝐺.  On the other hand, an equation that holds throughout 

the entire phase space and not just on the submanifold {𝜙𝑗 ≈ 0} is called strong. Hence, by 

theorem 1 
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𝐹 ≈ 𝐺 ⟺ 𝐹 − 𝐺 = ∑𝑐(𝑗)(𝑝, 𝑞)𝜙𝑗

𝐽

𝑗=1

 

( 6.14-34 ) 

6.14.5 Restrictions on the Lagrange Multipliers 

Assume that we have found a complete set of constraints 

{𝜙𝑗 ≈ 0|𝑗 = 1,… , 𝐽} 

( 6.14-35 ) 

[𝜙𝑗 , 𝐻] + ∑ 𝑢(𝑚)[𝜙𝑗, 𝜙𝑚]

𝑀

𝑚=1

≈ 0 

( 6.14-36 ) 

We consider ( 6.14-36 ) as a set of non-homogeneous linear equations with 𝑀 ≤ 𝐽 

unknowns with coefficients that are functions of the 𝑞’s and 𝑝’s. 

The general solution of ( 6.14-36 ) for each 𝑗 is of the form 

𝑢(𝑚) = 𝑈(𝑚) + 𝑉(𝑚),   𝑚 = 1,… ,𝑀 

( 6.14-37 ) 

with 𝑉(𝑚) the solution of the homogeneous equation 

∑ 𝑉(𝑚)[𝜙𝑗, 𝜙𝑚]

𝑀

𝑚=1

≈ 0 

( 6.14-38 ) 

The most general solution of ( 6.14-38 ) is a linear combination of linearly independent 

solutions of 𝑉𝛼
(𝑚)

 where 𝛼 = 1,… , 𝐴 with 𝐴 ≤ 𝑀.  Under the assumption that the matrix 



[𝜙1, 𝜙1] ⋯ [𝜙1, 𝜙𝑀]
⋮ ⋰ ⋮

[𝜙𝐽, 𝜙1] ⋯ [𝜙𝐽, 𝜙𝑀]
 

( 6.14-39 ) 

is of constant rank, the number of independent solutions 𝐴 is the same for all 𝑝, 𝑞.  Thus the 

general solution to ( 6.14-36 ) can be written as 
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𝑢(𝑚) ≈ 𝑈(𝑚) + ∑ 𝑣(𝛼)𝑉𝛼
(𝑚)

𝐴

𝛼=1

,   𝑚 = 1,… ,𝑀 

( 6.14-40 ) 

6.14.6 Irreducible and Reducible Cases 

If the equations {𝜙𝑗 = 0|𝑗 = 1,… , 𝐽} are not independent, one says that the constraints are 

reducible.  The system is irreducible when the constraints are independent. However the 

separation of constraints into dependent and independent ones might be difficult to 

perform.  It also may disturb invariance properties under some important symmetry. In 

some cases it may be impossible to separate irreducible from irreducible contexts. 

Reducible cases arise for example when the dynamical coordinates include p-form gauge 

fields. 

Any irreducible set of constraints can always be replaced by a reducible set by introducing 

constraints ??? of the ones already at hand.  The formalism should be invariant under such 

replacements. 

6.14.7 Total Hamiltonian 

We now discuss details of the dynamic equation ( 6.14-25 ) 

�̇� ≈ [𝐹, 𝐻′ + ∑ 𝑣(𝛼)𝜙𝛼

𝐴

𝛼=1

] 

( 6.14-41 ) 

where from ( 6.14-40 ) 

𝐻′ = 𝐻 + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

 

and 

𝜙𝛼 = ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

, 𝛼 = 1,… , 𝐴 

( 6.14-42 ) 

This is the result of theorem 3 (see below). 

Theorem 3. 
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[𝐹, ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

] ≃ ∑ 𝑈(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

 

( 6.14-43 ) 

[𝐹, ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝐴

𝛼=1

] ≃ ∑ 𝑉𝛼
(𝑚)[𝐹, 𝜙𝑚]

𝐴

𝛼=1

 

( 6.14-44 ) 

Proof. 

[𝐹, ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

] = ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕

𝜕𝑝𝑖
∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

−
𝜕𝐹

𝜕𝑝𝑖

𝜕

𝜕𝑞(𝑖)
∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

}

𝑁

𝑖=1

 

= ∑{
𝜕𝐹

𝜕𝑞(𝑖)
[∑

𝜕𝑈(𝑚)

𝜕𝑝𝑖
𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑈(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑖

𝑀

𝑚=1

]}

𝑁

𝑖=1

− ∑{
𝜕𝐹

𝜕𝑝𝑖
[∑

𝜕𝑈(𝑚)

𝜕𝑞(𝑖)
𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑈(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑖)

𝑀

𝑚=1

]}

𝑁

𝑖=1

 

= ∑{[𝐹, 𝑈(𝑚)]𝜙𝑚 + 𝑈(𝑚)[𝐹, 𝜙𝑚]}

𝑀

𝑚=1

 

So 

[𝐹, ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

] − ∑ 𝑈(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

= ∑[𝐹,𝑈(𝑚)]𝜙𝑚

𝑀

𝑚=1

 

( 6.14-45 ) 

and from ( 6.14-34 ) in ( 6.14-45 ), ( 6.14-43 ) follows.  By a similar process we show ( 

6.14-44 ).  We now prove the validity of ( 6.14-41 ). 

Theorem 4. Let 𝐹(𝑞, 𝑝) be a regular function, then 𝐹(𝑝, 𝑞) propagates in time according to 

the approximate equation ( 6.14-41 ). 

Proof. From ( 6.14-25 ), 

𝑑𝐹

𝑑𝑡
= [𝐹,𝐻] + ∑ 𝑢(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

. 

( 6.14-46 ) 
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From ( 6.14-40 ) into ( 6.14-46 ) we obtain, 

𝑑𝐹

𝑑𝑡
≈ [𝐹, 𝐻] + ∑ {𝑈(𝑚) + ∑ 𝑣(𝛼)𝑉𝛼

(𝑚)

𝐴

𝛼=1

} [𝐹, 𝜙𝑚]

𝑀

𝑚=1

 

or 

𝑑𝐹

𝑑𝑡
≈ [𝐹,𝐻] + ∑ 𝑈(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

+ ∑ ∑ 𝑣(𝛼)𝑉𝛼
(𝑚)[𝐹, 𝜙𝑚]

𝐴

𝛼=1

𝑀

𝑚=1

 

( 6.14-47 ) 

Thus from ( 6.14-43 ) and ( 6.14-44 ) of theorem 3, we get 

𝑑𝐹

𝑑𝑡
≈ [𝐹, 𝐻] + ∑[𝐹,𝑈(𝑚)𝜙𝑚]

𝑀

𝑚=1

+ ∑ 𝑣(𝛼) [𝐹, ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

]

𝐴

𝛼=1

 

≈ [𝐹, 𝐻 + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑣(𝛼) ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

𝐴

𝛼=1

] 

≈ [𝐹, 𝐻′ + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑣(𝛼)𝜙𝛼

𝐴

𝛼=1

] 

( 6.14-48 ) 

with 

𝐻′ = 𝐻 + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

 

( 6.14-49 ) 

𝜙𝛼 = ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

 

( 6.14-50 ) 

Now define 

𝐻𝑇 = 𝐻′ + ∑ 𝑣(𝛼)𝜙𝛼

𝐴

𝛼=1

. 

( 6.14-51 ) 

So we obtain 
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𝑑𝐹

𝑑𝑡
≈ [𝐹,𝐻𝑇] 

( 6.14-52 ) 

6.14.8 First and Second Class Functions 

The distinction between primary and secondary constraints is of little importance. We now 

consider a fundamental classification.  It depends on the concept of first class and second 

class functions. 

Definition 1.  A function 𝐹(𝑞, 𝑝) is said to be first class if its Poisson bracket with every 

constraint vanishes weakly, [𝐹, 𝜙𝑗] ≈ 0, 𝑗 = 1,… , 𝐽.  A function of the canonical variables 

that is not first class is called second class.  Thus 𝐹 is second class if [𝐹, 𝜙𝑘] ≉ 0 for at least 

one 𝑘, 𝑘 = 1,… ,𝑀. 

Theorem 5. If F and G are first class functions, then their Poisson bracket is also a first 

class function. 

Proof: By Hypothesis, 

[𝐹, 𝜙𝑗] = ∑ 𝑓𝑗
(𝑘)

𝜙𝑘

𝑀

𝑘=1

 

( 6.14-53) 

[𝐺, 𝜙𝑗] = ∑𝑔𝑗
(𝑙)𝜙𝑙

𝑀

𝑙=1

 

( 6.14-54 ) 

Applying the Jacobi identity, we get 

[[𝐹, 𝐺], 𝜙𝑗] = [𝐹, [𝐺, 𝜙𝑗]] − [𝐺, [𝐹, 𝜙𝑗]] 

= [𝐹,∑𝑔𝑗
(𝑙)𝜙𝑙

𝑀

𝑙=1

] − [𝐺, ∑ 𝑓𝑗
(𝑘)

𝜙𝑘

𝑀

𝑘=1

] 

= ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕

𝜕𝑝𝑖
∑𝑔𝑗

(𝑙)𝜙𝑙

𝑀

𝑙=1

−
𝜕𝐹

𝜕𝑝𝑖

𝜕

𝜕𝑞(𝑖)
∑𝑔𝑗

(𝑙)𝜙𝑙

𝑀

𝑙=1

}

𝑖

−∑{
𝜕𝐺

𝜕𝑞(𝑛)

𝜕

𝜕𝑝𝑛
∑ 𝑓𝑗

(𝑘)
𝜙𝑘

𝑀

𝑘=1

−
𝜕𝐺

𝜕𝑝𝑛

𝜕

𝜕𝑞(𝑛)
∑ 𝑓𝑗

(𝑘)
𝜙𝑘

𝑀

𝑘=1

}

𝑛
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= ∑{
𝜕𝐹

𝜕𝑞(𝑖)
∑{

𝜕𝑔𝑗
(𝑙)

𝜕𝑝𝑖
𝜙𝑙 + 𝑔𝑗

(𝑙) 𝜕𝜙𝑙

𝜕𝑝𝑖
}

𝑀

𝑙=1

−
𝜕𝐹

𝜕𝑝𝑖
∑{

𝜕𝑔𝑗
(𝑙)

𝜕𝑞(𝑖)
𝜙𝑙 + 𝑔𝑗

(𝑙) 𝜕𝜙𝑙

𝜕𝑞(𝑖)
}

𝑀

𝑙=1

}

𝑖

−∑{
𝜕𝐺

𝜕𝑞(𝑛)
∑ {

𝜕𝑓𝑗
(𝑘)

𝜕𝑝𝑛
𝜙𝑘 + 𝑓𝑗

(𝑘) 𝜕𝜙𝑘

𝜕𝑝𝑛
}

𝑀

𝑘=1

−
𝜕𝐺

𝜕𝑝𝑛
∑ {

𝜕𝑓𝑗
(𝑘)

𝜕𝑞(𝑛)
𝜙𝑘 + 𝑓𝑗

(𝑘) 𝜕𝜙𝑘

𝜕𝑞(𝑛)
}

𝑀

𝑘=1

}

𝑛

 

= ∑{𝜙𝑙 ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕𝑔𝑗
(𝑙)

𝜕𝑝𝑖
−

𝜕𝐹

𝜕𝑝𝑖

𝜕𝑔𝑗
(𝑙)

𝜕𝑞(𝑖)
} + 𝑔𝑗

(𝑙) ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕𝜙𝑙

𝜕𝑞(𝑖)
−

𝜕𝐹

𝜕𝑝𝑖

𝜕𝜙𝑙

𝜕𝑝𝑖
}

𝑖𝑖

}

𝑀

𝑙=1

− ∑ {𝜙𝑘 ∑{
𝜕𝐺

𝜕𝑞(𝑛)

𝜕𝑓𝑗
(𝑘)

𝜕𝑝𝑛
−

𝜕𝐺

𝜕𝑝𝑛

𝜕𝑓𝑗
(𝑘)

𝜕𝑞(𝑛)
}

𝑛

+ 𝑓𝑗
(𝑘)

∑{
𝜕𝐺

𝜕𝑞(𝑛)

𝜕𝜙𝑘

𝜕𝑝𝑛
−

𝜕𝐺

𝜕𝑝𝑛

𝜕𝜙𝑘

𝜕𝑞(𝑛)
}

𝑛

}

𝑀

𝑘=1

 

= ∑{𝜙𝑙[𝐹, 𝑔𝑗
(𝑙)] + 𝑔𝑗

(𝑙)[𝐹, 𝜙𝑙]} −

𝑀

𝑙=1

∑ {𝜙𝑘[𝐺, 𝑓𝑗
(𝑘)

] + 𝑓𝑗
(𝑘)[𝐺, 𝜙𝑘]}

𝑀

𝑘=1

 

= ∑[𝐹, 𝑔𝑗
(𝑙)]𝜙𝑙 − ∑[𝐺, 𝑓𝑗

(𝑘)
]𝜙𝑘

𝑀

𝑘=1

+ ∑ {∑𝑔𝑗
(𝑙)𝑓𝑙

(𝑙′)
𝑀

𝑙=1

} 𝜙𝑙′

𝑀

𝑙′=1

𝑀

𝑙=1

− ∑ {∑ 𝑓𝑗
(𝑘)

𝑔𝑘′
𝑘

𝑀

𝑘=1

} 𝜙𝑘′

𝑀

𝑘′=1

 

≈ 0 

We now use theorem 5 to show the following. 

Theorem 6.  𝐻′ defined by ( 6.14-49 ) and 𝜙𝛼  defined by ( 6.14-50 ) are first class 

functions. 

Proof: This follows directly from ( 6.14-36 ) and ( 6.14-38 ). 

We learn from theorem 6 that the total Hamiltonian defined by ( 6.14-51 ) is the sum of the 

first class Hamiltonian 𝐻′ and the first class primary constraints 𝜙𝛼  multiplied by arbitrary 

coefficients. 

6.14.9 First Class Constraints as Generators of Gauge Transformations 

Gauge transformations are transformations that do not change the physical state. 

The presence of arbitrary functions of time 𝑣(𝛼), 𝛼 = 1,… , 𝐴 in the total Hamiltonian, 𝐻𝑇 

(see ( 6.14-51 )) imply that not all the 𝑞’s and 𝑝’s are observable given a set of 𝑞’s and 𝑝’s 

where the state of the physical system is uniquely determined.  However the converse is 

not true: there is more than one set of values of the canonical variables that defines a state.  

To illustrate this, we see that if we give an initial set of values of physical state at time 𝑡, we 

expect the equations of motion to fully determine the state at other times.  Thus any 

ambiguity in the value of the canonical variables at 𝑡2 ≠ 𝑡1 should be irrelevant from the 

physical point of view.  
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6.15 A Derivation Example 

We propose here an alternate formulation of Dirac’s formalism. 

6.15.1 Primary Constraints 

Recall that the momenta, canonically conjugate to the generalized “coordinates” 𝑞(𝑗), 𝑗 =

1, … , 𝑁 is given by 

𝑝𝑗 =
𝜕𝐿(𝑞, �̇�)

𝜕�̇�(𝑗)
, 𝑗 = 1, … , 𝑁. 

( E -- 1 ) 

For non-singular systems the equations in allows us to express �̇�(𝑗), 𝑗 = 1,… ,𝑁 in terms of 

the canonical variables, 

�̇�(𝑖) = 𝑓𝑖(𝑞, 𝑝),         𝑖 = 1,… ,𝑁 

( E -- 2 ) 

By performing a Legendre transformation 

𝐻𝑐(𝑝, 𝑞) = ∑𝑝𝑖𝑓(𝑞, 𝑝)

𝑁

𝑖=1

+ 𝐿(𝑞, 𝑓(𝑝, 𝑞)) 

We obtain the Hamiltonian of the system 𝐻𝑐.  And from this function we obtain the 

standard equations of motion of the system. 

�̇� =
𝜕𝐻𝑐

𝜕𝑝
 

�̇� = −
𝜕𝐻𝑐

𝜕𝑞
 

( E -- 3 ) 

For ( E -- 2 ) to be well-defined we need to have the Hessian W of satisfy 

det 𝑊 ≠ 0 

( E -- 4 ) 

In this case the accelerations �̈�(𝑖) are uniquely determined by the 𝑞(𝑗) and �̇�(𝑖).   

When det𝑊 ≠ 0, the Hamiltonian equations of motion do not take the standard form, and 

we speak of a singular Lagrangian.  For illustration purposes, consider a Lagrangian of the 

form 
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𝐿(𝑞, �̇�) =
1

2
∑∑𝑊𝑖𝑗(𝑞)�̇�(𝑖)�̇�(𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+ ∑𝜂𝑖(𝑞)�̇�(𝑖)

𝑁

𝑖=1

− 𝑉(𝑞) 

( E -- 5 ) 

with 𝑊 a symmetric matrix.  From ( E -- 1 ), the canonical momentum for ( E -- 5 ) is given 

by 

𝑝𝑖 =
1

2
∑𝑊𝑖𝑗(𝑞)�̇�(𝑗)

𝑁

𝑗=1

+ 𝜂𝑖(𝑞),      𝑖 = 1,… , 𝑛. 

( E -- 6 ) 

If 𝑊 is singular of rank 𝑅𝑊, then it possesses 𝑁 − 𝑅𝑊 eigenvectors with corresponding zero 

eigenvalues.  Then for eigenvectors 𝑣𝑗
(𝛼)

 

∑𝑊𝑖𝑗(𝑞)𝑣𝑗
(𝛼)(𝑞)

𝑁

𝑗=1

= 0,      𝛼 = 1, … , 𝑁 − 𝑅𝑊 

So pre-multiplying ( E -- 6 ) by 𝑣𝑗
(𝛼)

   and summing over 𝑖 we get  

∑𝑣𝑖
(𝛼)(𝑞)

𝑁

𝑖=1

𝑝𝑖 = ∑∑(𝑣𝑖
(𝛼)(𝑞)𝑊𝑖𝑗(𝑞)�̇�(𝑗))

𝑁

𝑗=1

+ 𝑣𝑖
(𝛼)(𝑞)𝜂𝑖(𝑞)

𝑁

𝑖=1

 

= ∑𝑣𝑖
(𝛼)(𝑞)𝜂𝑖(𝑞)

𝑁

𝑖=1

,    𝛼 = 1,… ,𝑁 − 𝑅𝑊 

So 

∑𝑣𝑖
(𝛼)(𝑞)

𝑁

𝑖=1

(𝑝𝑖 − 𝜂𝑖(𝑞)) = 0,     𝛼 = 1,… ,𝑁 − 𝑅𝑊. 

( E -- 7 ) 

Let {𝑝𝛼}, 𝛼 = 1,… ,𝑁 − 𝑅𝑊 , denote the linearly dependent elements of 𝑝.  Let {𝑝𝛼}, 𝑎 =

1, … , 𝑅𝑎 be the momenta satisfying ( E -- 1 ).  Then the constraint equations are of the form 

∑ 𝑀𝛼𝛽(𝑞)𝑝𝛽

𝑁−𝑅𝑊

𝛽=1

− 𝐹𝛼(𝑞, {𝑝𝑎}) = 0,     𝛼 = 1,… ,𝑁 − 𝑅𝑊 

( E -- 8 ) 
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𝑀𝛼𝛽(𝑞) = 𝑣𝛽
(𝛼)

 

and 

𝐹𝛼(𝑞, {𝑝𝛽}) = ∑𝑣𝑖
(𝛼)(𝑞)𝜂𝑖(𝑞)

𝑁

𝑖=1

+ ∑ 𝑣𝑏
(𝛼)(𝑞)𝑝𝑏

𝑅𝑊

𝑏=1

 

( E -- 9 ) 

The matrix {𝑀𝛼𝛽} is necessarily invertible because otherwise M would possess 

eigenvectors with zero eigenvalues, implying existence of additional constraints. 

Note that ( E -- 8 ) can be written as 

𝑝𝛼 − 𝑔𝛼(𝑞, {𝑝𝑎}) = 0,    𝛼 = 1, … , 𝑁 − 𝑅𝑊 

with 

𝑔𝛼(𝑞, {𝑝𝑎}) = ∑ 𝑀𝛼𝛽
−1𝐹𝛽(𝑞, {𝑝𝑎})

𝑁−𝑅𝑊

𝛽=1

 

  ( E -- 10 ) 

with dim{𝑝𝑎} = 𝑅𝑊.  So we can define, 

𝜙𝛼(𝑞, 𝑝) = 𝑝𝛼 − 𝑔𝛼(𝑞, {𝑝𝑎}) = 0,    𝛼 = 1,… ,𝑁 − 𝑅𝑊 

  ( E -- 11 ) 

In Dirac’s terminology, constraints of the form of ( E -- 11 ) are referred to as primary 

constraints.  Although the derivation above is based on a Lagrangian, quadratic in the 

velocity terms, it is generally valid for Lagrangians which depend on 𝑞 and �̇� but not on 

higher derivatives. 

Note: Primary constraints follow exclusively from the definition of canonical momenta.   

The derivation above is valid for general Lagrangians and their Hessian.  Let’s assume 

{𝑊𝑖𝑗(𝑞, �̇�)} is the Hessian of a given Lagrangian 𝐿.  Let {𝑊𝑎𝑏|𝑎, 𝑏 = 1,… , 𝑅𝑊} be the largest 

sub-matrix of {𝑊𝑖𝑗} with suitable rearrangement if necessary.  We then solve ( E -- 1 ) for 

𝑅𝑊 velocities �̇�(𝑎) in terms of  {𝑞(𝑖)|𝑖 = 1,… , 𝑛}, {𝑝𝑎|𝑎 = 1,… , 𝑅𝑊} and 

{𝑞(𝛼)|𝛼 = 1,… ,𝑁 − 𝑅𝑊}.  That is 

�̇�(𝑎) = 𝑓𝑎(𝑞, {𝑝𝑏}, {�̇�
(𝛽)}) 

( E -- 12 ) 
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with 𝑎, 𝑏 = 1,… , 𝑅𝑊 and 𝛽 = 𝑅𝑊 + 1,… ,𝑁.   

Inserting these relations into ( E -- 1 ), we get relations of the form 

𝑝𝑗 = ℎ𝑗(𝑞, {𝑝𝑎}, {�̇�(𝛼)}) 

( E -- 13 ) 

with 𝑎, 𝑗 = 1,… , 𝑅𝑊 and 𝛼 = 𝑅𝑊 + 1,… ,𝑁.  This relation reduces to an identity by 

construction.  The remaining equations are of the form 

𝑝𝛼 = ℎ𝛼(𝑞, {𝑝𝑎}, {�̇�(𝛽)}) 

( E -- 14 ) 

with 𝛼 = 1,… ,𝑁 − 𝑅𝑊.  However, the right hand side cannot depend on {�̇�(𝛽)} since 

otherwise we could express more velocities in terms of the momenta of the coordinates of 

the momenta and the remaining velocities.  

6.16 Hamiltonian Equations of Motion for Constrained Systems 

Theorem 6.16.1. In the space Γ𝑝 define by Γ𝑝 = {𝜙𝛼(𝑝, 𝑞)|𝛼 = 1,… ,𝑁 − 𝑅𝑊}  where 𝜙𝛼  is 

defined as ( E -- 11 ).  The Hamiltonian is only a function of {𝑞(𝑖)|𝑖 = 1,… ,𝑁} and momenta 

{𝑝𝑎|𝑎 = 1,… , 𝑅𝑊} and does not depend on {�̇�(𝛼)|𝛼 = 1,… ,𝑁 − 𝑅𝑊} 

Proof.  On Γ𝑝 the Hamiltonian is given by 

𝐻𝑜 = 𝐻𝑐|Γ𝑝
= ∑ 𝑝𝑎𝑓𝑎

𝑅𝑊

𝑎=1

− ∑ 𝑔𝛼�̇�(𝛼)

𝑁−𝑅𝑊

𝛼=1

− 𝐿(𝑞, {𝑓𝑏}, {�̇�
(𝛽)}) 

( E -- 15 ) 

where 𝑓𝑎 , 𝑎 = 1, … , 𝑁 − 𝑅𝑊 is given by ( E -- 12 ) and 𝑔𝛼, 𝛼 = 1,… , 𝑅𝑊 is given by ( E -- 10 ).  

We want to show that 𝐻𝑜 does not depend on �̇�(𝛽), 𝛽 = 1,… ,𝑁 − 𝑅𝑊.  We compute 

𝜕𝐻𝑜

𝜕�̇�(𝛽)
= ∑ 𝑝𝑎

𝜕𝑓𝑎

𝜕�̇�(𝛽)

𝑅𝑊

𝑎=1

− 𝑔𝛽 − ∑
𝜕𝐿

𝜕�̇�(𝑎)
|
�̇�(𝑎)=𝑓𝑎

𝜕𝑓𝑎

𝜕�̇�(𝛽)
−

𝜕𝐿

𝜕�̇�(𝛽)
|
�̇�(𝑎)=𝑓𝑎

𝑅𝑊

𝑎=1

 

= ∑ (𝑝𝑎 −
𝜕𝐿

𝜕�̇�(𝑎)
|
�̇�(𝑎)=𝑓𝑎

)
𝜕𝑓𝑎

𝜕�̇�(𝛽)

𝑅𝑊

𝑎=1

− 𝑔𝛽 −
𝜕𝐿

𝜕�̇�(𝛽)
|
�̇�(𝑎)=𝑓𝑎

 

( E -- 16 ) 

Since by definition 
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𝑝𝑎 =
𝜕𝐿

𝜕�̇�(𝑎)
,    𝑎 = 1,… , 𝑅𝑊 

And from ( E -- 11 ) 

𝑔𝛽 = 𝑝𝛽 =
𝜕𝐿

𝜕�̇�(𝛽)
|
�̇�𝑎=𝑓𝑎

. 

So 

𝜕𝐻𝑜

𝜕�̇�(𝛽)
= 0,    𝛽 = 1,… ,𝑁 − 𝑅𝑊. 

( E -- 17 ) 

and therefore 

𝐻𝑜(𝑞, {𝑝𝑎}, {�̇�(𝑎)}) = 𝐻𝑜(𝑞, {𝑝𝑎}). 

Theorem 6.16.2. In the presence of primary constraints ( E -- 11 ), the Hamilton equations 

of motion are given by 

�̇�(𝑖) =
𝜕𝐻𝑜

𝜕𝑝𝑖
+ ∑ �̇�(𝛽)

𝜕𝜙𝛽

𝜕𝑝𝑖

𝑁

𝛽=1

,             𝑖 = 1,… ,𝑁 

�̇�𝑖 = −
𝜕𝐻𝑜

𝜕𝑞(𝑖)
+ ∑ �̇�(𝛽)

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝑛

𝛽=1

,      𝑖 = 1, … , 𝑁 

𝜙𝛼(𝑝, 𝑞) = 0,                                               𝛼 = 1,… ,𝑁 − 𝑅𝑊 

( E -- 18 ) 

where �̇�(𝛽) are a priori underdetermined velocities. 

Proof:  From ( E -- 15 ) we obtain and the application of Theorem 6.16.1 

𝜕𝐻𝑜

𝜕𝑝𝑎
= 𝑓𝑎 + ∑ 𝑝𝑏

𝜕𝑓𝑏
𝜕𝑝𝑎

𝑅𝑊

𝑏=1

+ ∑
𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

− ∑
𝜕𝐿

𝜕�̇�(𝑏)

𝜕𝑓𝑏
𝜕𝑝𝑎

𝑅𝑊

𝑏=1

 

= �̇�(𝑎) + ∑ (𝑝𝑏 −
𝜕𝐿

𝜕�̇�(𝑏)
)

𝜕𝑓𝑏
𝜕𝑝𝑎

𝑅𝑊

𝑏=1

+ ∑
𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

 

= �̇�(𝑎) + ∑
𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

 

( E -- 19 ) 
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with 𝑎 = 1,… , 𝑛 − 𝑅𝑊.  Further  

𝜕𝐻𝑜

𝜕𝑞(𝑖)
= ∑ 𝑝𝑏

𝜕𝑓𝑏

𝜕𝑞(𝑖)

𝑅𝑊

𝑏=1

+ ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝜕𝐿

𝜕𝑞(𝑖)
|
�̇�𝑎=𝑓𝑎

− ∑
𝜕𝐿

𝜕�̇�𝑏
|
�̇�𝑏=𝑓𝑏

𝜕𝑓𝑏

𝜕𝑞(𝑖)

𝑅𝑊

𝑏=1

 

= ∑ (𝑝𝑏 −
𝜕𝐿

𝜕�̇�(𝑏)
|
�̇�(𝑏)=𝑓𝑏

)
𝜕𝑓𝑏

𝜕𝑞(𝑖)

𝑅𝑊

𝑏=1

+ ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝜕𝐿

𝜕𝑞(𝑖)
|
�̇�(𝑎)=𝑓𝑎

 

= ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝜕𝐿

𝜕𝑞(𝑖)
|
�̇�(𝑎)=𝑓𝑎

 

= ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�(𝑖)
)|

�̇�(𝑎)=𝑓𝑎

 

( E -- 20 ) 

from (add reference).  

𝜕𝐻𝑜

𝜕𝑞(𝑖)
= −�̇�𝑖 + ∑ �̇�(𝛽)

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

 

( E -- 21 ) 

From ( E -- 19 ) and ( E -- 20 ) we get: 

�̇�(𝑎) =
𝜕𝐻𝑜

𝜕𝑝𝑎
− ∑

𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

,        𝑎 = 1,… , 𝑅𝑊 

�̇�𝑖 = −
𝜕𝐻𝑜

𝜕𝑞(𝑖)
+ ∑ �̇�(𝛽)

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑛−𝑅𝑊

𝛽=1

,     𝑖 = 1, … , 𝑁 

( E -- 22 ) 

Since 
𝜕𝐻𝑜

𝜕𝑝𝛼
= 0 and 

𝜕𝜙𝛽

𝜕𝑝𝑎
= 𝛿𝛽𝛼 we can supplement these equations with 

�̇�(𝛼) =
𝜕𝐻𝑜

𝜕𝑝𝛼
− ∑

𝜕𝑔𝛽

𝜕𝑝𝛼
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

,        𝛼 = 1,… ,𝑁 − 𝑅𝑊 

( E -- 23 ) 

So we can write 
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�̇�(𝑖) =
𝜕𝐻𝑜

𝜕𝑝𝑖
+ ∑

𝜕𝑔𝛽

𝜕𝑝𝑖
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

,            𝑖 = 1,… ,𝑁 

�̇�𝑖 = −
𝜕𝐻𝑜

𝜕𝑞(𝑖)
− ∑ �̇�(𝛽)

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

,     𝑖 = 1,… , 𝑁 

( E -- 24 ) 

For consistency with ( E -- 11 ) we should write 

�̇�(𝛼) =
𝑑

𝑑𝑡
− 𝑔𝛼(𝑞, {𝑝𝑎}),        𝛼 = 1,… ,𝑁 − 𝑅𝑊 

( E -- 25 ) 

where �̇�𝛼 is given by the right hand side of ( E -- 22 ). 

6.16.1 Streamlining the Hamiltonian equation of motion (EOM) 

Definition 6.16-1.  A function 𝑓 is weakly equal to 𝑔 denoted by 𝑓 ≈ 𝑔, if 𝑓 and 𝑔 are equal 

on the subspace defined by the primary constraints, 

𝜙𝛽 = 0 when 𝑓|Γ𝑝
= 𝑔|Γ𝑝

 

and 

𝑓(𝑞, 𝑝) ≈ 𝑔(𝑞, 𝑝) ⟺ 𝑓(𝑞, 𝑝) = 𝑔(𝑞, 𝑝) when {𝜙𝛼(𝑞, 𝑝) = 0} 

Theorem 6.16.3.  Assume 𝑓, 𝑔 are defined over the entire space spanned by {𝑞(𝑖)}, {𝑝𝑖}.  

Then if  

𝑓(𝑞, 𝑝)|Γ𝑝
= 𝑔(𝑞, 𝑝)|Γ𝑝

 

( E -- 26 ) 

Then 

𝜕

𝜕𝑞(𝑖)
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑞(𝑖)
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

) 

and 

𝜕

𝜕𝑝𝑖
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑝
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

) 
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( E -- 27 ) 

for 𝑖 = 1,…𝑁. 

Proof:  Consider the two functions 𝑓(𝑞, {𝑝𝑎}, {𝑝𝛽}) and ℎ(𝑞, {𝑝𝑎}, {𝑝𝛽}).  Using ( E -- 11 ) and 

from the hypothesis of the theorem, 

𝑓(𝑞, {𝑝𝑎}, {𝑔𝛼}) = ℎ(𝑞, {𝑝𝑎}, {𝑔𝛼}) 

( E -- 28 ) 

Thus is follows 

(
𝜕𝑓

𝜕𝑞(𝑖)
+ ∑

𝜕𝑓

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑞(𝑖)

𝑎

+ ∑
𝜕𝑓

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝑝

= (
𝜕ℎ

𝜕𝑞(𝑖)
+ ∑

𝜕ℎ

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑞(𝑖)

𝑎

+ ∑
𝜕ℎ

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝑝

 

( E -- 29 ) 

and 

(
𝜕𝑓

𝜕𝑝𝑖
+ ∑

𝜕𝑓

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑝𝑖
𝑎≠𝑖

+ ∑
𝜕𝑓

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑝𝑖
𝛽

)

Γ𝛽

= (
𝜕ℎ

𝜕𝑝𝑖
+ ∑

𝜕ℎ

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑝𝑖
𝑎≠𝑖

+ ∑
𝜕ℎ

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑝𝑖
𝛽

)

Γ𝛽

 

( E -- 30) 

Note since 𝜙𝛼(𝑞, 𝑝) = 𝑝𝛼 − 𝑔𝛼(𝑞, {𝑝𝑎}), we have 

𝜕𝑔𝛽

𝜕𝑞(𝑖)
= −

𝜕𝜙𝛽(𝑞, 𝑝)

𝜕𝑞(𝑖)
 

and 

𝜕𝑔𝛽

𝜕𝑝𝑖
= −

𝜕𝜙𝛽(𝑞, 𝑝)

𝜕𝑝𝑖
 

and 

𝜕𝜙𝛼(𝑞, 𝑝) = 0 

for 𝛼 = 1, … , 𝑁 − 𝑅𝑊 .  We have 

(
𝜕𝑓

𝜕𝑞(𝑖)
− ∑

𝜕𝑓

𝜕𝑝𝛽

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝑝

= (
𝜕ℎ

𝜕𝑞(𝑖)
− ∑

𝜕ℎ

𝜕𝑝𝛽

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝛽

 

which can be written as 
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𝜕

𝜕𝑞(𝑖)
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑞(𝑖)
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

) 

since 𝜙𝛽
𝜕2𝑓

𝜕𝑝𝛽
2⁄ = 0 because 𝜙𝛽 = 0.  Similarly, 

𝜕

𝜕𝑝𝑖
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑝𝑖
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

) 

Corrolary 6.16-1. 

 

�̇�(𝑖) =
𝜕𝐻

𝜕𝑝𝑖
+ ∑𝑣(𝛽)

𝜕𝜙𝛽

𝜕𝑝𝑖
𝛽

 

�̇�𝑖 = −
𝜕𝐻

𝜕𝑞(𝑖)
− ∑𝑣(𝛽)

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

 

for 𝑖 = 1,… ,𝑁. 

Proof.  We consider two Hamiltonians 𝐻({𝑞(𝑖)}, {𝑝𝑖}) and 𝐻𝑜({𝑞
(𝑖)}, {𝑝𝑎}).  Define 

𝐻({𝑞(𝑖)}, {𝑝𝑖}) as follows 

𝐻({𝑞(𝑖)}, {𝑝𝑖}) ≈ 𝐻𝑜({𝑞
(𝑖)}, {𝑝𝑎}). 

Then using the result of Theorem 6.16.1, from ( E -- 29 ) with 𝑓 = 𝐻 and ℎ = 𝐻𝑜 

𝜕𝐻𝑜

𝜕𝑞(𝑖)
≈

𝜕

𝜕𝑞(𝑖)
(𝐻 − ∑ 𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽

𝑁−𝑅𝑊

𝛽=1

) 

( E -- 31 ) 

𝜕𝐻𝑜

𝜕𝑝𝑖
≈

𝜕

𝜕𝑝𝑖
(𝐻 − ∑ 𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽

𝑁−𝑅𝑊

𝛽=1

) 

( E -- 32 ) 

Using ( E -- 31 ) and ( E -- 32 ) in ( E -- 24 ), we get 
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�̇�(𝑖) ≈
𝜕

𝜕𝑝𝑖
(𝐻 − ∑ 𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽
𝛽

) + ∑�̇�(𝛽)
𝜕𝜙𝛽

𝜕𝑝𝑖
𝛽

 

and 

�̇�𝑖 ≈ −
𝜕

𝜕𝑞(𝑖)
(𝐻 − ∑𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽
𝛽

) − ∑�̇�(𝛽)
𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

 

or 

�̇�(𝑖) ≈
𝜕

𝜕𝑝𝑖
(𝐻 − ∑𝜙𝛽 (

𝜕𝐻

𝜕𝑝𝛽
− �̇�(𝛽))

𝛽

) 

and 

�̇�𝑖 ≈ −
𝜕

𝜕𝑞(𝑖)
(𝐻 − ∑𝜙𝛽 (

𝜕𝐻

𝜕𝑝𝛽
− �̇�(𝛽))

𝛽

) 

( E -- 33 ) 

Define 

𝑣𝛽 ≡ �̇�(𝛽) −
𝜕𝐻

𝜕𝑝𝛽
 

𝐻𝑇 ≡ 𝐻 + ∑𝑣(𝛽)

𝛽

𝜙𝛽 

So ( E -- 33 ) becomes 

�̇�(𝑖) ≈
𝜕𝐻𝑇

𝜕𝑝𝑖
 

�̇�𝑖 ≈ −
𝜕𝐻𝑇

𝜕𝑞(𝑖)
 

( E -- 34 ) 
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6.17 Constrained Hamiltonian Systems 

Local symmetries on a Lagrangian based model.  Consider 

𝑞(𝑖) ⟶ 𝑞(𝑖)(𝑡) + 𝛿𝑞(𝑖)(𝑡) 

�̇�(𝑖) ⟶ �̇�(𝑖)(𝑡) + 𝛿�̇�(𝑖)(𝑡) 

with 𝑖 = 1,… ,𝑁. The action of the system is given by 

𝑆(𝑞, �̇�) = ∫𝐿(𝑞, �̇�)𝑑𝑡 

where 𝑞 and �̇� are 𝑛-dimensional column vectors.  The action differential  

𝛿𝑆 = ∫𝐿(𝑞 + 𝛿𝑞, �̇� + 𝛿�̇�)𝑑𝑡 − ∫𝐿(𝑞, �̇�)𝑑𝑡 

= ∫𝐿(𝑞 + 𝛿𝑞, �̇� + 𝛿�̇�)𝑑𝑡 − ∫𝐿(𝑞, �̇�)𝑑𝑡 

= ∫[∑
𝜕𝐿

𝜕𝑞(𝑖)
𝛿𝑞(𝑖)

𝑖

+ ∑
𝜕𝐿

𝜕�̇�(𝑖)
𝛿�̇�(𝑖)

𝑖

] 𝑑𝑡 

= −∫∑[
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�(𝑖)
−

𝜕𝐿

𝜕𝑞(𝑖)
]

𝑖

𝛿𝑞(𝑖)𝑑𝑡 

= −∑𝑑𝑡 ∑𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�)

𝑖

𝛿𝑞(𝑖) 

where we define the Euler-Lagrange differential operator 

𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�) =

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�(𝑖)
−

𝜕𝐿

𝜕𝑞(𝑖)
. 

Note that 

∫∑𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�)𝛿𝑞(𝑖)𝑑𝑡

𝑁

𝑖=1

≡ 0 

( 6.17-1 ) 

on shell.  Expanding 𝐸𝑖
(𝑜)

 

𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�) = ∑[

𝜕2𝐿(𝑞, �̇�)

𝜕�̇�(𝑖)𝜕�̈�(𝑗)
�̈�(𝑗) +

𝜕2𝐿(𝑞, �̇�)

𝜕�̇�(𝑖)𝜕𝑞(𝑗)
�̇�(𝑖)]

𝑗

−
𝜕𝐿(𝑞, �̇�)

𝜕𝑞(𝑖)
 

= ∑𝑊𝑖𝑗(𝑞, �̇�)�̈�(𝑗) +

𝑗

∑
𝜕2𝐿(𝑞, �̇�)

𝜕�̇�(𝑖)𝜕𝑞(𝑗)
�̇�(𝑖)

𝑗

−
𝜕𝐿(𝑞, �̇�)

𝜕𝑞(𝑖)
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= ∑𝑊𝑖𝑗(𝑞, �̇�)�̈�(𝑗) +

𝑗

𝑘𝑖(𝑞, �̇�) 

If 𝐿 is singular, 𝑊(𝑁×𝑁) is not invertible so ( 6.17-1 ) cannot be solved for �̈�𝑖, 𝑖 = 1,… ,𝑁.  If 

Rank(𝑊(𝑞, �̇�)) = 𝑅𝑊 on shell, then there exist 𝑁 − 𝑅𝑊 in the theory.  There exist 𝑁 − 𝑅𝑊 

independent left (or right) zero mode eigenvectors 𝑤𝑖
(𝑜,𝑘)

, 𝑖 = 1, … , 𝑁 − 𝑅𝑊 such that 

∑𝑤𝑖
(𝑜,𝑘)(𝑞, �̇�)𝑊𝑖𝑗(𝑞, �̇�)

𝑖

= 0,      𝑘 = 1,… ,𝑁 − 𝑅𝑊 

( 6.17-2 ) 

Thus 

𝜙(𝑜,𝑘) = ∑𝑤𝑖
(𝑜,𝑘)(𝑞, �̇�)𝐸𝑖

(𝑜)(𝑞, �̇�, �̈�)

𝑁

𝑖=1

 

depend on 𝑞 and �̇� only.  The 𝜙(𝑜,𝑘) also vanish on shell: 

𝜙(𝑜,𝑘)(𝑞, �̇�) = 0,     𝑘 = 1,… ,𝑁 − 𝑅𝑊 

The set {𝜙(𝑜,𝑘)|𝑘 = 1,… ,𝑁 − 𝑅𝑊} are the zero generation constraints.  It is possible that not 

all the  {𝜙(𝑜,𝑘)} are linearly independent.  So we may find linear combinations of the zero 

mode eigenvectors 

𝑣𝑖
(𝑜,𝑛𝑜)

= ∑𝑐𝑘
(𝑛𝑜)

𝑤𝑖
(𝑜,𝑘)

𝑘

 

such that we have 

𝐺(𝑜,𝑛𝑜) = 𝑣(𝑜,𝑛𝑜)𝐸(𝑜) ≡ 0,       𝑛𝑜 , … , 𝑁𝑜 

( 6.17-3 ) 

These are called gauge identities. 

Any variation 𝛿𝑞𝑖,   𝑖 = 1,… ,𝑁, of the form 

𝛿𝑞𝑖 = ∑𝜀𝑛𝑜
𝑣𝑖

(𝑜,𝑛𝑜)

𝑛𝑜

 

Is action invariant by ( 6.17-1 ).  Given this definition of  𝛿𝑞𝑖 and ( 6.17-3 ), we conclude 
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𝛿𝑆 = ∫𝑑𝑡 ∑𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�)∑𝜀𝑛𝑜

(𝑡)𝑣𝑖
(𝑜,𝑛𝑜)

𝑛𝑜

𝑁

𝑖=1

 

= ∫𝑑𝑡 ∑𝜀𝑛𝑜
∑𝐸𝑖

(𝑜)(𝑞, �̇�, �̈�)𝑣𝑖
(𝑜,𝑛𝑜)

(𝑞, �̇�)

𝑛𝑜

𝑁

𝑖=1

 

= ∫𝑑𝑡 ∑𝜀𝑛𝑜
𝐺(𝑜,𝑛𝑜)

𝑁

𝑖=1

 

≡ 0 

everywhere.  The remaining zero generating modes which we denote by 𝑢(𝑜,𝑛𝑜) lead to 

genuine constraints.  They are of the form 𝜙(𝑜,𝑛𝑜)(𝑞, �̇�) = 0 on shell, where 

𝜙(𝑜,𝑛𝑜) = 𝑢(𝑜,𝑛𝑜)𝐸(𝑜). 

( 6.17-4 ) 

The algorithm now proceeds as follows.  We separate the gauge identities ( 6.17-3 ) from 

the nontrivial constraints ( 6.17-4 ) and will list them separately. They will be used for 

determining local symmetry transformations.   

Next we want to search for additional constraints.  We do this by searching for further 

functions of the coordinates and velocities which vanish in the space of physical 

trajectories.  To this effect consider the following 𝑁 + 𝑁𝑜 vector constructed from 𝐸(𝑜) and 

the time derivative of the constraints ( 6.17-4 ) 

 

[𝐸(1)] =

[
 
 
 
 
 

𝐸(𝑜)

𝑑

𝑑𝑡
(𝑢(𝑜,1)𝐸(𝑜))

⋮
𝑑

𝑑𝑡
(𝑢(𝑜,𝑛𝑜)𝐸(𝑜))]

 
 
 
 
 

= [
𝐸(𝑜)

𝑑

𝑑𝑡
𝜙(𝑜)] 

( 6.17-5 ) 

by construction. The constraint 𝜙(𝑜) is valid for all time and therefore 
𝑑

𝑑𝑡
𝜙(𝑜) = 0 on shell, 

but 

𝑑𝜙(𝑜,𝑖)

𝑑𝑡
= ∇�̇�(𝑢(𝑜,𝑖)𝐸(𝑜))�̈� + ∇𝑞(𝑢(𝑜,𝑖)𝐸(𝑜))�̇� 

( 6.17-6 ) 
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So 

[𝐸𝑖1

(1)
] = ∑𝑊𝑖1𝑗

(1)(𝑞, �̇�)�̇�(𝑗)

𝑛

𝑗=1

+ 𝑘𝑖1

(1)(𝑞, �̇�) 

where 𝑖1 = 1,… ,𝑁 + 𝑁𝑜 , and 

[𝑊𝑖1𝑖
(1)

] =

[
 
 
 

𝑊(𝑜)

∇�̇�(𝑢(𝑜,𝑖)𝐸(𝑜))

⋮
∇�̇�(𝑢(𝑜,𝑁𝑜)𝐸(𝑜))]

 
 
 

 

 

[𝑘𝑖1

(1)
] =

[
 
 
 
 
 
 

𝑘(𝑜)

∑
𝜕

𝜕𝑞(𝑗)
(𝑢(𝑜,𝑖)𝐸(𝑜))�̇�(𝑗)

𝑗

⋮

∑
𝜕

𝜕𝑞(𝑗)
(𝑢(𝑜,𝑁𝑜)𝐸(𝑜))�̇�(𝑗)

𝑗 ]
 
 
 
 
 
 

 

( 6.17-7 ) 

We next look for the zero modes of 𝑊(1).  By construction, these zero modes include the o 

modes of the previous level.  The gauge identities at level 1 are. 

𝐺(1,𝑛1) = 𝑣(1,𝑛1)𝐸1 − ∑ 𝑀𝑛1𝑛𝑜

(1,0)

𝑁𝑜

𝑛𝑜=1

(𝑢(𝑜,𝑛𝑜)𝐸(𝑜)) ≡ 0 

( 6.17-8 ) 

where 𝑛1 = 1,… , 𝑁1 and the genuine constraints are of the form 

𝜙(1,𝑛1) = 𝜙(1,𝑛1)𝐸1 = 0 

( 6.17-9 ) 

with 𝑛1 = 1,… ,𝑁1 on shell. 

We next adjoin the new identities ( 6.17-8 ) to the ones determined earlier ( 6.17-3 ) with 

the remaining constraints ( 6.17-9 ) we proceed as before, adjoining their time derivatives 

to ( 6.17-5 ) and construct 𝑊𝑖1𝑖
(1)

 and 𝑘𝑖1

(1)
. 
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The iterative process will terminate at some level M if either i) there is not further zero 

modes, or ii) the new constraints can be expressed as linear combinations of previous 

constraints. 

6.17.1 The maximal set of linearly independent gauge identities generated by the algorithm 
Note that the algorithm steps are of the form 

𝐺(𝑜,𝑛𝑜) = 𝑢(𝑜,𝑛𝑜)𝐸(𝑜) ≡ 0 

( 6.17-10 ) 

𝐺(𝑙,𝑛𝑙) = 𝑢(𝑙,𝑛𝑙)𝐸(𝑙) − ∑ ∑ 𝑀𝑛𝑙𝑛𝑙′

(𝑙,𝑙′)
𝜙(𝑙′,𝑛

𝑙′
)

𝑁
𝑙′

𝑛𝑙′=0

𝑙−1

𝑙′=0

 

( 6.17-11 ) 

with 𝐿 = 1,… ,𝑁𝑙 .  The 𝑀𝑛𝑙𝑛𝑙′

(𝑙,𝑙′)
 are only functions of 𝑞 and �̇�.  And 

𝜙(𝑙,𝑛𝑙) = 𝑢(𝑙,𝑛𝑙)𝐸(𝑙),     𝑛𝑙 = 1,… ,𝑁𝑙, 

( 6.17-12 ) 

𝐸(𝑙) =

[
 
 
 
 
 

𝐸(𝑜)

𝑑𝜙(𝑜)

𝑑𝑡
⋮

𝑑𝜙(𝑙−1)

𝑑𝑡 ]
 
 
 
 
 

 

( 6.17-13 ) 

where 𝜙(𝑙) is a column vector with 𝑁𝑙 components 𝜙(𝑙,𝑛𝑙).  Thus we conclude from ( 6.17-13 

) and ( 6.17-11 ) that the general form of the gauge identity given by ( 6.17-11 ) is of the 

form 

𝐺(𝑙,𝑛𝑙) = ∑∑ ∑ 𝜍𝑚𝑖
(𝑙,𝑚𝑙)

𝑑𝑚

𝑑𝑡𝑚
𝐸𝑖

(𝑜)

𝑙

𝑚=1

𝑀

𝑙=1

𝑁𝑙

𝑖=1

≡ 0 

( 6.17-14 ) 

where 𝜍𝑚𝑖
(𝑙,𝑚𝑙)(𝑞, �̇�) and 𝑁𝑙 < 𝑀.  From ( 6.17-14 ) it also follows that 

∑ ∑ 𝜀(𝑙,𝑛𝑙)𝐺(𝑙,𝑛𝑙)

𝑙

𝑛𝑙=1

𝑀

𝑙=1

≡ 0 
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( 6.17-15 ) 

This identity can also be written as 

∑𝛿𝑞(𝑖)𝐸𝑖
(𝑜)

−
𝑑

𝑑𝑡
𝐹 

where 

𝛿𝑞(𝑖) = ∑ ∑ ∑(−1)𝑚
𝑑𝑚

𝑑𝑡𝑚

𝑙

𝑚=𝑞

𝑁𝑙

𝑛𝑙=1

𝑀

𝑙=1

𝜍𝑚
(𝑙,𝑛𝑙)𝜀(𝑙,𝑚𝑙)(𝑡) 

( 6.17-16 ) 

and 𝐹 is a complicated function of 𝑞 and �̇�.  By collecting indices 𝑙, 𝑛𝑙  together 

𝛿𝑞𝑖 = ∑ ∑ ∑(−1)𝑚

𝑙

𝑚=𝑞

𝑁𝑙

𝑛𝑙=1

𝑀

𝑙=1

𝜍𝑚𝑖

(𝑎)
𝜀(𝑎)(𝑡) 

6.17.2 Example of constrained Hamiltonian system in Lagrangian form 

Let 

𝐿(𝑞, �̇�) =
1

2
�̇�2(1) + �̇�(1)𝑞(2) +

1

2
(𝑞(1) − 𝑞(2))

2
 

( 6.17-17 ) 

𝐸(𝑜) =

[
 
 
 
 
𝑑

𝑑𝑡

𝜕

𝜕�̇�(1)
−

𝜕𝐿

𝜕𝑞(1)

𝑑

𝑑𝑡

𝜕

𝜕�̇�(2)
−

𝜕𝐿

𝜕𝑞(2)]
 
 
 
 

= [
�̈�(1) + 2𝑞(2) − 𝑞(1)

𝑞(1) − 𝑞(2)
] 

( 6.17-18 ) 

𝑊 = [
1 0
0 0

] 

( 6.17-19 ) 

𝑘 = [
�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)
] 

( 6.17-20 ) 

The only 𝑜 mode is 

𝑢(𝑜) = [0,1] 
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Then 

𝐸(𝑜) = 𝑊(𝑜)�̈� + 𝑘(𝑜) 

= [
1 0
0 0

] [
�̈�(1)

�̈�(2)
] + [

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)
] 

Then 

𝑢(𝑜)𝐸(𝑜) = [0 1] [[
1 0
0 0

] [
�̈�(1)

�̈�(2)
] + [

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)
]] 

= −�̇�(1) − 𝑞(2) + 𝑞(1) 

= 0 

( 6.17-21 ) 

on shell.  Then there are no gauge identities for 𝐸(𝑜).  Now construct 𝐸(1). 

𝐸(1) = [
𝐸(𝑜)

𝑡

𝑑𝑡
𝑢(𝑜)𝐸(𝑜)] = 

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)

−�̈�(1) − �̇�(2) + �̇�(1)

 

which can be written 

𝐸(1) = 𝑊(1)�̈� + 𝑘(1) 

= [
0 0
0 0

−1 0
] [

�̈�(1)

�̈�(2)
] + 

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)

−�̇�(2) + �̇�(1)

 

There zero modes of 𝑊(1) are 

𝑊(1) {
[0 1 0]

[1 0 1]
 

The first zero mode is the previous one augmented by one dimension and reproduces the 

previous constraint.  The second mode reproduces the negative of the constraint ( 6.17-21 

).  That is, 

𝑣(1)𝐸(1) = −𝑢(𝑜)𝐸(𝑜) 

with 𝑣(1) = [1 0 1].  This leads to the gauge identity 

𝐺(1) = 𝑣(1)𝐸(1) + 𝑢(𝑜)𝐸(𝑜) ≡ 0 
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6.18 Companionship: Reconciling agents in the network.  

The outline of the companionship process is as follows for a system of 𝑁 agents. 

1. Determine the state action space of the system for 𝑁 − 1 agents to create a Tellegen 

decision element. 

2. Update the remaining agent with the Tellegen DE so that the ?? is minimized. 

3. Repeat process so that all 𝑁 agents are updated with respect to their Tellegen DEs. 

Local DE:

Local Decision Space

Tellegen DE:

State Action Space
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7 Limitations 

7.1 Response time 

TBD  
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8 Architectural flow 

This section show diagrams of various key aspects of the architecture. 

8.1 Deployment Architecture 

In a separate document 

8.1.1 General description of architecture 

In a separate document 

8.1.1.1 Points of scalability  

Points of scalability are the architectural aspects of the system that are required to scale.   

These include: 

• The number of DE’s that can contribute to query resolution. 

• The number of variables that can contribute the query resolution. 

• The number of rules that can contribute to query resolution. 

8.1.1.2 Single points of failure 

TBD 

8.2 High-level Flows 

8.2.1 The Distributed Architecture (DA) 

Show flows for the main things that happen in the DA.: 

8.2.1.1 Flow for query resolution. 

The following diagram provides an overview of query resolution for a particular decision 

element. 
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Fig.  8.2-1 
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• User submits query. 

• System used KB to establish equations of motion for system in Lagrangian or 

Hamiltonian form. 

• System determines optimal trajectory via optimization algorithm of the equations of 

motion that conform to the principle of least action. 

• System returns solution which is a point in the phase space and also serves as an 

answer to the query. 

 

CDI API

Query DE Team
Post Query to QLI

Broadcast Query to 

Network
Wait for response

Return Query 

response

 

8.2.1.2 Flow for updating DE’s with new external repositories. 

 

CDI API

Update DE LER
Submit request to DE

Update DE LER with 

new EKB

Return Update 

Response

  

8.2.1.3 Flow for updating DE’s with new sensor data. 
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CDI API

Update DE with New 

Sensor Data

Submit Request to DE

(or DE Team)

Index Appropriate 

EKB in LER

Translate Data Using 

Translation Grammar

Update IHDB with 

Translated Data

Return Update 

Tesponse

 

8.2.1.4 Flow for updating DE’s with new rules. 

 

CDI API

Update DE with New 

Rule

Submit Request to DE

(or DE Team)

Validate rule 

correctness

Validate rule 

consistency with other 

rules in the IHDB

Update IHDB with new 

rule

Return Update 

Tesponse

 

8.2.2 The Internal Heterogeneous Database (IHDB) 

Show flows for the main things that happen with the IHDB: 

• Flow for adding new rule to the IHDB. 

• Flow for updating an existing rule to the IHDB. 

• Flow for deleting rule from the IHDB. 

• Flow for consistency check for the IHDB. 
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8.2.3 The Rule Entry Interface (REI) 

Show flows for the main things that happen with the REI: 

• Flow for submitting rule to the REI.  This should include a validity check and error 

handling. 

8.2.4 The Rule Editor (RE) 

Show flows for the main things that happen with the RE: 

• Flow for creating rule within the RE including variable selection, syntax checking, 

and test evaluation. 

8.2.5 The External Knowledge Base (EKB) 

Show flows that happen with the EKB: 

• Flow for updating the EKB schema. 

• Flow for updating the EKB with new sensor data.  This may include some 

synchronization if there are to be multiple EKB’s. 

• Flow for notifying DE’s that new sensor data is available. 

8.2.6 The Sensor Ingestion Interface (SII) 

Show flows that happen with the SII: 

• Flow for adding a new sensor to the network. 

• Flow for polling a sensor. 

• Flow for submitting data to the network. 

• Flow for deleting a sensor from the network. 

8.2.7 The Rule Conversion Engine (RCE) 

Show flows that happen with the RCE: 

• Flow for identifying rule sets. 

• Flow for compiling rule sets into equational form. 

8.2.8 The Decision Element (DE) 

Show flows that happen with the DE: 

• Flow for updating the LER. 

• Flow for submitting a query to the DE. 

• Flow for returning response to a query from the DE.  

• Flow for operating the programmable search engine. 
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8.2.9 The Query Language Interface (QLI) 

Show flows that happen with the DE: 

• Flow for formulating a query and submitting to the DA. 

• Flow for receiving a response to a query from the DA. 

 

8.2.10 The Minimization Function Generator (MFG) 

Show flows that happen with the MFG: 

• Flow for formulating translating a query to a minimization function. 

8.2.11 The Query Response Engine (QRE) 

Show flows that happen with the QRE: 

• Flow for finding minimum of the minimization function. 

8.2.12 The Pareto Multi-Criteria Optimization Engine (PMOE) 

Show flows that happen with the QRE: 

• Flow for companionship. 

8.3 Complex Use Cases 

These are flows for use cases that utilize the various aspects of the architecture: 

• Commitment planning 

• Nonlinear feedback system 

• Distributed sensor network with local and aggregate prediction for weather based 

attributes 
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9 Software realization of the architecture 

This section describes key software packages and their corresponding roles in the 

architecture.  An example would be to define Lucene and discuss its role in indexing and 

search.  The purpose is to provide clarity around what software we are using and what it 

does to support the architecture. 

9.1 Production 

9.1.1 Language requirements 

9.1.1.1 Java 

All production code will typically use Java for implementation.  Cases when other languages 

are used are when existing libraries are required for operation based on other languages. 

9.1.2 Persistence requirements 

9.1.3 Messaging and request queuing requirements 

9.1.4 Mathematical algorithm requirements 

9.1.5 API requirements 

9.1.6 Agent related requirements 

9.2 Tools 

9.2.1 Eclipse IDE for Java 

Eclipse is a multi-language software development environment comprising an integrated 

development environment (IDE) and an extensible plug-in system. [Wikipedia] 

Eclipse is the default Java development environment for Veritone. 

9.2.2 Prolog  

Prolog is used for system prototyping. 

9.2.3 Python 

In a separate document 

 

 

http://en.wikipedia.org/wiki/Eclipse_%28software%29
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10 Data exchange protocols 

The system will have needs around the exchange of data in and out of the system and 

among the various subcomponents.  For example, SOAP defines an interface for web 

services.  Thrift and Avro are lighter weight data exchange protocols that enable more 

rapid development cycles and may be appropriate for subcomponents that are tightly 

coupled. 

What is the default case? 

The default communication protocol for our components should be lightweight, fast, easy 

to debug and easy to develop; a good choice is to develop component APIs using Jersey and 

hosting them in Tomcat. 

10.1 Veritone API 

REST HTTP (GET, POST, PUT, DELETE) 

11 Environment 

11.1 Development Environment 

Defines the development configuration environment.  (Needs to be updated.) 

Component Version Notes 

Linux 

 

  

Python 1.6.0_23 (i.e. Java 6 

Update 23) 

 

 

11.2 Deployment Environment 

Defines the deployment configuration environment. 

Component Version Notes 

Linux 

 

7  

Python 1.6.0_23 (i.e. Java 6 

Update 23) 

 



89 
 

Veritone Corporation 

   

 

11.3 Infrastructure Design 

This section discusses the infrastructure design which includes the following. 

• Hardware components that define a deployment. 

• Types of servers and the expected provisioning for a server. 

• Deployment configuration given the server types. 

• Startup processes for servers. 

• Sample diagram for active deployment. 

• Cost analysis of various deployment configurations given environments. 

• Sensor networks. 
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12 Data 

The software is designed to handle certain types of data.  It is important to highlight key 

requirements and limitations around the type of data the system is expected to process.   

Additionally, the system will produce data for users of the system.  This is also defined.  

Frequently, there will be a standard data specification document which discusses system 

requirements and expectations around data.  This is summarized here. 

12.1 Inputs 

Inputs to the system are provided administratively through use of the API and by users 

who submit queries and add preferences to their profiles. 
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