
1

Veritone Corporation

Veritone CDI
Architeture

Wolf Kohn

2

Veritone Corporation

Veritone CDI Architecture

1 Introduction to CDI

The Cooperative Distributed Inferencing (CDI) system is a unique advanced technology

enabling near-optimal and near real-time decision making on large-scale, heterogeneous

and distributed information with the use of rules. CDI integrates absolute, hard and soft

rules within complex knowledge-based decision support systems to achieve performance

goals while satisfying various requirements from natural or governing laws, policies, and

best practices.

The CDI system has a Distributed Architecture (DA), consisting of a network of Decision

Elements (DEs) that work together to resolve queries and identify Pareto efficient states.

The decision elements access shared information from both an Internal Heterogeneous

Database (IHDB) and External Knowledge Base (EKB). Each decision element solves a query

using optimal control theory, starting with a technique called analytic continualization -

transforming the query and rules into differential equations whose dependent variables

represent internal variables and parameters of the rules. The decision elements in the

architecture are synchronized via a Pareto multi-criteria optimization strategy.

CDI features a self-adapting and learning design. Since CDI converts the original query into

an optimal control problem, it can use feedback from the environment (e.g., external

sensors or internal knowledge updates from other DEs) to refine its internal model; the

Hamilton-Jacobi-Bellman equation will be updated to reflect new information and

automatically form soft rule-like constraints internally.

CDI is particularly applicable when the system has large-scale heterogeneous data, rules

from government compliances and/or business requirements, and the need to make near

real-time decisions. Healthcare and energy are two such applications.

3

Veritone Corporation

2 Contents, Notation and Abbreviations

2.1 Table of Contents

1 Introduction to CDI .. 2

2 Contents, Notation and Abbreviations ... 3

2.1 Table of Contents ... 3

2.2 Notation ... 7

2.3 Abbreviations .. 8

3 Overview of the Document .. 10

4 Application Requirements ... 11

4.1 Application requirements pertaining to system specification ... 12

4.1.1 Ability to integrate data that may include millions of variables and hundreds

of thousands of constraints ... 12

4.1.2 Ability to provide data integration over distributed network which assimilates

and integrates information over time across the network as needed 12

4.1.3 Ability to specify queries over a broad range of languages 12

4.1.4 Ability to specify queries of a broad range of complexity .. 12

4.1.5 Ability to provide best known response to queries at the local level.................. 12

4.2 Application requirements pertaining to system operation ... 12

4.2.1 Ability to operate in a variety of environments including EC2, Azure, and local

deployments .. 12

4.3 Application requirements pertaining to system performance objectives 12

4.3.1 Ability to provide responses to queries at intervals as small as one millisecond

 12

5 Functional Requirements ... 12

6 Subcomponents .. 12

6.1 Distributed Architecture (DA) ... 13

6.2 The Internal Heterogeneous Database (IHDB) ... 14

6.2.1 Composition of IHDB as a set of knowledge components (KCs) 14

6.2.2 Algorithmic formulation of a rule .. 15

6.2.3 Constraint domains ... 18

6.2.4 Summary of terminology .. 20

4

Veritone Corporation

6.2.5 Horn clause example .. 22

6.3 Rule Entry Interface (REI) ... 22

6.4 Rule Editor (RE) .. 22

6.5 External Knowledge Base (EKB) .. 22

6.6 Sensor Ingestion Interface (SII) .. 23

6.7 Rule Conversion Engine (RCE) .. 23

6.7.1 Method for specification of a simple term as an equation 23

6.7.2 Conversion of the fundamental clauses of propositional calculus to equations

 25

6.7.3 Converting rules based system of inference to the problem of constrained

minimization ... 28

6.8 Decision Element (DE) ... 28

6.8.1 List of External Repositories (LER) .. 29

6.8.2 Programmable search engine (PSE) ... 29

6.8.3 Internal heterogeneous database (IHDB) .. 30

6.8.4 Inference engine (IE) .. 30

6.8.5 Inference rule types .. 31

6.8.6 User interface (UI) ... 31

6.8.7 Network interface (NI) .. 32

6.9 Query Language Interface (QLI) ... 33

6.10 Minimization Function Generator (MFG) and Process for Determining Active

Constraints ... 34

6.11 Construct equations of motion.. 36

6.12 Query Response Engine (QRE) which includes Process for Constructing

Differential Equations .. 36

6.12.1 Application of Newton-Raphson .. 36

6.12.2 Translation of inverted matrix ... 37

6.12.3 Process for determining dynamic Lagrangian via Hemholtz equations............. 39

6.12.4 Process for determining Hessian rank of dynamic Lagrangian 40

6.12.5 Converting the Lagrangian to the Hamiltonian via the Legendre

transformation. .. 40

6.13 Pareto Multi-Criteria Optimization Engine (PMOE) ... 40

5

Veritone Corporation

6.13.1 System initialization ... 41

6.13.2 System operation ... 43

6.14 Gauge Systems in a Hamiltonian Domain ... 45

6.14.1 Conditions on the Constraint Function ... 47

6.14.2 Action Principle of the Hamiltonian Form ... 52

6.14.3 Secondary Constraints ... 53

6.14.4 Weak and Strong Equations .. 54

6.14.5 Restrictions on the Lagrange Multipliers ... 55

6.14.6 Irreducible and Reducible Cases .. 56

6.14.7 Total Hamiltonian .. 56

6.14.8 First and Second Class Functions .. 59

6.14.9 First Class Constraints as Generators of Gauge Transformations 60

6.15 A Derivation Example ... 61

6.15.1 Primary Constraints .. 61

6.16 Hamiltonian Equations of Motion for Constrained Systems 64

6.16.1 Streamlining the Hamiltonian equation of motion (EOM) 67

6.17 Constrained Hamiltonian Systems .. 71

6.17.1 The maximal set of linearly independent gauge identities generated by the

algorithm .. 75

6.17.2 Example of constrained Hamiltonian system in Lagrangian form 76

6.18 Companionship: Reconciling agents in the network. ... 78

7 Limitations ... 79

7.1 Response time .. 79

8 Architectural flow ... 80

8.1 Deployment Architecture .. 80

8.1.1 General description of architecture .. 80

8.2 High-level Flows.. 80

8.2.1 The Distributed Architecture (DA) ... 80

8.2.2 The Internal Heterogeneous Database (IHDB) .. 83

8.2.3 The Rule Entry Interface (REI) ... 84

8.2.4 The Rule Editor (RE) .. 84

6

Veritone Corporation

8.2.5 The External Knowledge Base (EKB) ... 84

8.2.6 The Sensor Ingestion Interface (SII) .. 84

8.2.7 The Rule Conversion Engine (RCE) .. 84

8.2.8 The Decision Element (DE) .. 84

8.2.9 The Query Language Interface (QLI) .. 85

8.2.10 The Minimization Function Generator (MFG) .. 85

8.2.11 The Query Response Engine (QRE) .. 85

8.2.12 The Pareto Multi-Criteria Optimization Engine (PMOE) .. 85

8.3 Complex Use Cases ... 85

9 Software realization of the architecture... 87

9.1 Production ... 87

9.1.1 Language requirements .. 87

9.1.2 Persistence requirements... 87

9.1.3 Messaging and request queuing requirements .. 87

9.1.4 Mathematical algorithm requirements ... 87

9.1.5 API requirements ... 87

9.1.6 Agent related requirements... 87

9.2 Tools .. 87

9.2.1 Eclipse IDE for Java ... 87

9.2.2 Prolog ... 87

9.2.3 Python .. 87

10 Data exchange protocols .. 88

10.1 Veritone API ... 88

11 Environment ... 88

11.1 Development Environment .. 88

11.2 Deployment Environment .. 88

11.3 Infrastructure Design ... 89

7

Veritone Corporation

2.2 Notation

The following table is intended to summarize the notation that is used throughout the

document. This is a work-in-progress.

Current notation Recommended

notation

First

occurrence

Comments

𝑡 same 6.2.2 Notation for algorithmic time.

𝑞(𝑡) same 15 Notation of canonical

coordinate vector for entire

system.

𝑞 same Notation of canonical

coordinate vector dropping

time dimension.

𝑞(𝑓) same Notation of canonical

coordinate vector for specific

function 𝑓.

�̇� same Notation of first time

derivative of canonical

coordinate vector, 𝑑𝑞(𝑡)/𝑑𝑡

�̈� same Notation of second time

derivative of canonical

coordinate vector, 𝑑2𝑞(𝑡)/

𝑑𝑡2

ℎ same Notation of HEAD of Horn

clause.

𝜑(𝑞) same Notation of generic

proposition.

𝜎(𝑞) same Notation of generic

proposition alternate to 𝜑.

𝑇𝑖 same Notation of the TV of a soft

rule.

8

Veritone Corporation

�̌�(𝑞; 𝜑, 𝜎) same Generic equational form

relating two propositions.

�̌�(𝑞) same Notation of the equational

form of 𝜑(𝑞).

𝜑𝑄(𝑞) same Notation for proposition

defined by the query.

�̌�𝑄(𝑞) same Notation for equation defined

by the query.

𝐽(𝑞) same Notation for minimization

function for the query.

ℒ same Notation for static Lagrangian

ℒ𝑘
(𝑜,𝑇)

 same Notation for total static

Lagrangian for 𝐷𝐸𝑘.

𝑞 same

{𝑝𝑎} same

𝑢(𝑘) same

𝐻𝑘
(𝑜)

 same Primary Hamiltonian for the

absolute rules for 𝐷𝐸𝑘.

𝐻𝑘
(𝐴)

 same Hamiltonian for the Tellegen

agent of the total

Hamiltonian’s rules.

𝐻𝑘
(𝑇)

 same Total Hamiltonian for 𝐷𝐸𝑘.

2.3 Abbreviations

9

Veritone Corporation

Current

abbreviation

 First occurrence

CDI Cooperative Distributed Inferencing Section 1

DE Decision Element Section 1

IHDB Internal Heterogeneous Database Section 1

EKB External Knowledge Base Section 1

DA Distributed Architecture Section 1

REI Rule Entry Interface Section 6

RE Rule Editor Section 6

SII Sensor Ingestion Interface Section 6

RCE Rule Conversion Engine Section 6

QLI Query Language Interface Section 6

MFG Minimization Function Generator Section 6

QRE Query Response Engine Section 6

PMOE Pareto Multi-criteria Optimization Engine Section 6

OP Optimization Process Section 6.1

LER List of External Repositories Section 6.1

KC Knowledge Component Section 6.2.1

TV Truth Valuation Section 6.2.2

API Section 6.3

IE Inference Engine Section 6.8

PSE Programmable Search Engine Section 6.8

IRB Inference Rule Base Section 6.8

UI User Interface Section 6.8

10

Veritone Corporation

NI Network Interface Section 6.8

VB Variable Buffer Section 6.8.2

ARB Active Rule Buffer Section 6.8.2

IP Inference Process Section 6.8.2

IR Inference Rules Section 6.8.5

3 Overview of the Document

This document introduces and specifies the architecture for the Cooperative Distributed

Inferencing (CDI) system. The primary instance of this is the Distributed Architecture (DA)

for resolving queries by accessing both an Internal Heterogeneous Database (IHDB)

populated by a special class of Horn Clause rules and external data sources referred to as

sensors.

The architecture implements a network of active devices at its nodes. Active devices may

be passive, generative, or both. These devices are called Decision Elements (DEs). The DEs

cooperate in the resolution of a query posed to one or several of them. The DEs in a given

DA are referred to as the team.

Every DE in a team is programmed to transform rules in its domain, determined by a posed

query, into an ordinary differential equation, whose dependent variables represent internal

variables and parameters. The dependent variables include unknowns of the query posed

to the DE. The DEs in the architecture are synchronized via a Pareto multi-criteria

optimization strategy.

This document reviews the components of the CDI system including:

• Application requirements that the system is designed to accommodate.

• Functional requirements that satisfy the application requirements and pertain

directly to the construction and operation of the system components.

• Subcomponents, which are necessary to implement the functional requirements.

• Limitations that highlight noteworthy constraints that are inherent to the specified

implementation of the architecture.

• Architectural flow describing key aspects of the architecture that indicate how the

system is to be constructed given the specified essence and key behavior of the

subcomponents.

11

Veritone Corporation

• Software realization of the architecture that describes the key pieces of software

necessary for system implementation.

• Data that describes the kinds of data the system is expected to accept as input and

produce as output.

• Data exchange protocols reference key data types and structures that need to be

exchanged across the system and the protocols for exchange.

• Environment describing the particulars of the environments that the system will be

able to operate in and therefore should be tested in.

• Testing that describes how the system should be tested given the data and operating

environments.

4 Application Requirements

The application requirements discussed in this architecture document articulate the salient

aspects of the architectural strategy, approach and design. Key reference documents are

listed.

The key areas of application requirements are:

• System specification that describes what the system should be able to do.

See Section 4.1.

• System operation that describes in what contexts the system should be able to

operate. See Section 4.2.

• System performance objectives that describes how well the system should perform in

the various contexts. See Section 4.3.

12

Veritone Corporation

4.1 Application requirements pertaining to system specification

4.1.1 Ability to integrate data that may include millions of variables and hundreds of thousands

of constraints

4.1.2 Ability to provide data integration over distributed network which assimilates and

integrates information over time across the network as needed

4.1.3 Ability to specify queries over a broad range of languages

4.1.4 Ability to specify queries of a broad range of complexity

4.1.5 Ability to provide best known response to queries at the local level

4.2 Application requirements pertaining to system operation

4.2.1 Ability to operate in a variety of environments including EC2, Azure, and local

deployments

4.3 Application requirements pertaining to system performance objectives

4.3.1 Ability to provide responses to queries at intervals as small as one millisecond

5 Functional Requirements

Functional requirements match the key application requirements and describe specifically

what the software should achieve.

6 Subcomponents

Subcomponents are fundamental parts of the architecture that perform particular roles.

This section contains descriptions of each of the subcomponents of the architecture. The

subcomponents are:

1. The Distributed Architecture (DA).

2. The Internal Heterogeneous Database (IHDB).

3. The Rule Entry Interface (REI).

4. The Rule Editor (RE).

5. The External Knowledge Base (EKB).

6. The Sensor Ingestion Interface (SII).

7. The Rule Conversion Engine (RCE).

8. The Decision Element (DE).

13

Veritone Corporation

9. The Query Language Interface (QLI).

10. The Minimization Function Generator (MFG).

11. The Query Response Engine (QRE).

12. The Pareto Multi-Criteria Optimization Engine (PMOE).

6.1 Distributed Architecture (DA)

The DA, illustrated in Figure 6.1-1, is a network of computing devices as its nodes called

DEs that interact and collaborate in the resolution of a query posed by one of them. The

DEs access data and information stored locally in the Internal Heterogeneous Database

(IHDB). The DEs also communicate over the network with sensors and an External

Knowledge Base (EKB) for real-time data and rules. The DEs implement a distributed,

dynamic optimization process, herein referred to as the optimization process (OP). The OP

implements an optimization process that computes an answer to the active queries as a

function of data stored in both the IHDBs and EKBs. These repositories of the data are

needed to implement the OP given a query.

Network

Internal

Heterogeneous

Database

Decision

Element

Team

Sensors

External

Knowledge Base

Fig. 6.1-1. Distributed Architecture.

The DA’s block diagram is shown in Fig. 6.1-1. The rest of the document is devoted to

describe the functional characteristics of this architecture and in particular, the DEs, IHDB,

and the sensors. In particular the document will address the following concepts:

1. The DA

2. A process for resolving queries by accessing the IHDB and External Knowledge

Bases (EKBs) through sensors

3. The constitution of DEs

4. A query and corresponding rules transformation into an ordinary differential

equation

14

Veritone Corporation

5. The orchestration of a team of DEs through a Pareto multi-criteria optimization

strategy

Figure 6.1-2 illustrates how the DEs communicate over the network to get information

from a variety of knowledge sources (including sensors, information in a social network,

dictionary, Wikipedia, etc.), and also access their IHDBs to respond to a query.

Network

Domain 1 Domain 2 Dictionary Social Network Wikipedia

Decision Elements

External Query / External Answer

Internal

Heterogeneous

Database

Sample Knowledge

Sources

Fig. 6.1-2. Knowledge Bases.

A DE has a list of external repositories (LER). Each entry in an LER includes 1) a protocol, 2)

a heading sub-list, and 3) a translation grammar. Each protocol entry prescribes the access

procedure to the corresponding knowledge repository. Each heading sub-list entry

contains a summary of the knowledge contents of the corresponding repository. Finally,

each translation grammar entry provides a procedure for converting knowledge elements

of the corresponding repository into the rule representation in the IHDB of the DE. This

representation is discussed below.

The EKBs, illustrated in Figure 6.1-2, are a collection of public or private repositories of

knowledge relevant to the DE posing a query.

6.2 The Internal Heterogeneous Database (IHDB)

6.2.1 Composition of IHDB as a set of knowledge components (KCs)

The IHDB encodes knowledge and data provided by the DEs regarding the implemented

application. The IHDB is divided into knowledge components (KCs). Each KC is consulted

15

Veritone Corporation

and updated by a DE in the DA. Any pair of KCs may have an overlapping set of rules by

which they operate, but there is no a priori constraint on intersections or inclusion. The

collection of KCs constitutes the existing knowledge of the system, and contributes to the

IHDB, as illustrated in Figure 6.2-1.

Network Network

Internal

Heterogeneous

Database

Decision

Elements

Fig. 6.2-1. Representation of Knowledge Components for Decision Elements across the Distributed Architecture.

6.2.2 Algorithmic formulation of a rule

A KC is a collection of rules, written in a restrictive Horn clause format. Horn clauses are

consistent with a Prolog-based representation. The format of a Horn clause is given in the

form of IF-THEN representation,

𝑝1^ 𝑝2 ^ ⋯ ^𝑝𝐾 ⋯ → 𝑝

where 𝑝𝑖, 𝑖 = 1, . . . , 𝐾 and 𝑝 are propositional variables that are either True or False (0 or

1). The rules are logic entities, that, when instantiated1, obtain a logic value. Typically, the

logic values a rule can obtain are binary, however, more generally, the logic values are

taken from the interval [0,1].

The entire system of rules is evaluated using variables and parameters that are collectively

referred to as the generalized coordinates (state) of the system and are indexed as follows

𝑞(𝑡) = {𝑞(1)(𝑡), … , 𝑞(𝑁)(𝑡)}.

(6.2-1)

16

Veritone Corporation

The time argument 𝑡 refers to the algorithmic time of the system, which means that it is a

continuous index with respect to the evolution of the system. There is no requirement that

it correspond to a physical aspect of the system, although this may naturally occur.

Physical time may be represented specifically by a canonical coordinate of choice 𝑞(𝑖)(𝑡).

Alternatively, we may refer to the 𝑞’s without expressly stating the independent time

argument and write

𝑞(𝑡) = {𝑞(1), … , 𝑞(𝑁)}.

(6.2-2)

Then we should also note that the time derivatives are denoted as

�̇� =
𝑑𝑞(𝑡)

𝑑𝑡
, �̈� =

𝑑2𝑞(𝑡)

𝑑𝑡2

(6.2-3)

These coordinates are referred to variously as 𝑞, depending on the context and the

expected arguments of the function to which they are applied. When it is necessary to

distinguish between more than one 𝑞 in equational form we generally write 𝑞𝑓 where 𝑓

denotes the reference function or appropriate domain. Typically, we assume without loss of

generality the entire set of canonical coordinates 𝑞 is an argument to any function, term or

proposition. In practice, we may further assume it is possible to apply the particular

required coordinates as need to mathematical construct in question.

The rules in each knowledge component are of three types: absolute rules, hard rules, and

soft rules. Absolute rules and hard rules take logic value 0 (false) or 1 (true) when

instantiated. Soft rules take any value in the interval [0,1].

The format of the restrictive Horn Clauses in the IHDB is illustrated in Fig. 6.2-2. A Horn

Clause is an object composed of two objects a HEAD and a BODY connected by backward

implication (⟸). The logic implication transfers the logic value of the BODY to the HEAD. If

the rule is an absolute rule or a hard rule, the logic value is 1(if the BODY is logically true)

or 0 (if the BODY is logically false). If the rule is a soft rule, the logic value transferred by the

body is any number in [0, 1].

The HEAD is a data structure composed of two objects: A name, ℎ, and a list of arguments

described by the argument vector 𝑞 = (𝑞(1), … , 𝑞(𝑁)). The list of arguments includes

variables and parameters. The variables take values in the domain of the rule and the

parameters are constants passed to the rule and unchanged by the instantiation of the rule.

The domain of the rule is a set of values that each of its variables can take. In general,

variables can take values over numerical or symbolic domains. As an example, a symbolic

17

Veritone Corporation

domain can be a list of diseases. A numeric domain can be a set of pairs of numbers

representing blood pressure.

For the applications of CDI, the domains for variables are: real numbers, complex numbers

(floating point and floating point complex numbers), integer numbers, binary numbers and

symbolic token on finite domains.

The BODY of a clause is a data structure composed of one or more terms, denoted 𝜑𝑖(𝑞).

The composition operation is extended-and, denoted by: ∧. The extended-and works as a

regular and in absolute rules and hard rules and as a functional product2 on soft rules.

A rule with a head but not a body is called a fact. A fact’s truth value is determined on the

basis of the instantiation of its variables.

TermName

HEAD

Term

Subterm Subterm

HEAD Relation Truth Valuation

Horn Clause

BODY

Arguments

Fig. 6.2-2. Horn Clause (rule).

18

Veritone Corporation

Each term in the body of a rule is an extended disjunction (or denoted by ∨) of sub-terms.

The ∨ operator behaves like the standard-or for absolute and hard rules and behaves in a

functional form, described later, when connecting sub-terms encoding heads of soft rules.

A sub-term is either the HEAD of a rule, a relation or a truth valuation (TV). When it is a HEAD

it may have the same name as the one in the HEAD of the rule but with different arguments.

This provides a recursive mechanism for rule evaluation.

When a rule has a sub-term that is the head of another rule it is said that the two rules are

chained together by the corresponding sub-term. Note that a rule can be chained to several

rules via corresponding sub-terms.

6.2.3 Constraint domains

Constraint domains augment the BODY clause of Horn clauses to facilitate dynamic

programming. Constraints are specified as a relationship between terms. Define the

relationship between two terms

𝜑(𝑞) rel 𝜎(𝑞).

(6.2-4)

as a member of the following set

rel ∈ {=,≠,≤,≥ , statistical propagation, symbolic}.

(6.2-5)

A relation can be of two types numeric or symbolic. Numeric relations establish equational

forms between two functional forms. (For the initial phase only polynomial and affine linear

functional forms will be considered.)

In general, an equational form is a set of one or more relations. For numeric relations,

𝜑(𝑞) rel 𝜎(𝑞), rel ∈ {=,≠,≤,≥,<,> , statistical propagation}. Table 1 gives the relations

considered and their symbols.

19

Veritone Corporation

Numeric Relation Symbol Code Form

Equality = 𝜑 = 𝜎

Disequation ≠ 𝜑\= 𝜎

Less-inequality < 𝜑 < 𝜎

Less-Equal ≤ 𝜑 =< 𝜎

Great-inequality > 𝜑 > 𝜎

Great-Equal ≥ 𝜑 >= 𝜎

Table 6.2-1. Numeric Relations.

The adopted code forms are the ones used in constraint logic programming.

A symbolic relation can be of two types: inclusion and constraint. Inclusion relations are of

the form:

𝑥 ∈ 𝑆𝑒𝑡

(6.2-6)

where 𝑥 is a variable or a parameter, ∈ is the inclusion symbol and Set is a set of symbolic

forms or a set of numbers or a composite set of the form shown in Table 6.2-2.

Composite Set Symbol Code Form

Intersection ∩ 𝑆𝑒𝑡1/\𝑆𝑒𝑡2

Union ∪ 𝑆𝑒𝑡1\/𝑆𝑒𝑡2

Complement \ \𝑆𝑒𝑡

Table 6.2-2. Composite Sets

Constraint forms of the symbolic relational type may be one or a set of the forms presented

in Table 6.2-3. For numeric relations, 𝜑(𝑞) rel 𝜎(𝑞), rel ∈ {=,≠ , ⊂, ⊃, ⊆, ⊇}.

Symbolic Relation Symbol Code Form

Equal = 𝜑# = 𝜎

Not Equal ≠ 𝜑#\= 𝜎

Is Contained ⊂ 𝜑# < 𝜎

20

Veritone Corporation

Contains ⊃ 𝜑# > 𝜎

Is Contained or Equal ⊆ 𝜑# =< 𝜎

Contains or Equal ⊇ 𝜑# >= 𝜎

Table 6.2-3. Constraint forms

A TV is either a variable or a constant with values in the interval [0, 1]. The TV of a Horn

Clause that is an absolute rule or a hard rule can only take two values: 1 or 0. The TV when

instantiated is 0 or 1. If the TV for an absolute or hard rule is 1, the rule is said to be in

inactive state; if the TV is 0, the rule is said to be in active state.

The TV, 𝑇𝑖, of a soft rule satisfies

0 ≤ 𝑇𝑖 ≤ 1.

(6.2-7)

If 𝑇𝑖 above satisfies,

𝑇𝑖 ≥ 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(6.2-8)

the soft clause is said to be in inactive state. If

𝑇𝑖 < 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

(6.2-9)

the soft clause is said to be in active state, where 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a constant in [0,1] defined for

each soft clause. The default value is 0.5.

This concludes the description of the knowledge representation. The instantiation process

of the goal in a DE, as function of its knowledge base, is carried out by the inference engine

of the DE (see Fig. 6.8-2). This process is the central component of CDI and is described

later on the document.

6.2.4 Summary of terminology

The following table summarizes the terminology we have just reviewed.

Reference term Definition

Proposition Defined as a construct as in the

propositional calculus where the

21

Veritone Corporation

proposition takes on the value of true or

false.

Term Recursively according to its assigned sub-

term.

sub-term A sub-term may be a Horn clause, a relation

between two other sub-terms or an

extended truth valuation depending on the

context of absolute, hard or soft rules. In

the case of absolute and hard rules it may

be evaluated as a proposition. In the case

of soft rules it takes a value on the interval

[0,1] and is considered to be active or true

in the case that it exceeds its specific

threshold.

Horn clause A disjunction of terms with at most one

positive term.

definite clause A Horn clause with exactly one positive

term.

goal clause A Horn clause with no positive terms.

Fact A definite clause with no negative terms.

Head The positive term of a definite clause.

inactive state The case when a rule will not apply for

constrained optimization.

active state The case when a rule will apply for

constrained optimization.

truth value, TV The value that is used to determine

whether a rule is active or inactive.

Table 6.2-4

22

Veritone Corporation

6.2.5 Horn clause example

The following example illustrates a Horn clause:

has_fever(𝑛𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡, ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒, 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

⟸ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 37)

∧ ((ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒 ≥ 70) ∨ 𝑏𝑝(𝑛𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

∨ 𝑤𝑐(𝑛𝑎𝑚𝑒,𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡))

(6.2-10)

The clause establishes under which conditions the patient of name 𝑛𝑎𝑚𝑒, has a fever. The

name of the rule is "has_fever", and the arguments are: 𝑛𝑎𝑚𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡,

ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒, 𝑎𝑛𝑑 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒. Of these arguments, 𝑛𝑎𝑚𝑒 is a parameter and the other

arguments (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑤ℎ𝑖𝑡𝑒_𝑐𝑜𝑢𝑛𝑡, ℎ𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒, 𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) are variables in the

clause. The Body has two terms, 𝜑1(𝑞) and 𝜑2(𝑞), and the second term has three sub-

terms.

When the arguments are instantiated, they represent, respectively, the name of the patient,

current body temperature, white blood cell count, heart rate range, and blood pressure.

The clause body includes other clauses: 𝑏𝑝 (blood pressure) and 𝑤𝑐 (white count).

This completes the specification of the rule-based framework. The next step is to specify a

complete process for converting all rules of this form to a set of equations.

6.3 Rule Entry Interface (REI)

The Rule Entry Interface provides a mechanism for:

1. Providing an API for the entry of rules into the IHDB.

2. Validating the specification of rules to be inserted into the IHDB.

3. Routing the rules to the appropriate DEs for insertion to their respective KCs.

6.4 Rule Editor (RE)

The Rule Editor allows users to specify rules associated with the systems to be

interrogated.

6.5 External Knowledge Base (EKB)

Need to discuss the following:

• Is it distributed?

• What is persisted?

• Where is it persisted?

• What is the relation to the IHDB? E.g. are they architecturally co-located?

23

Veritone Corporation

• What is a sensor? This is a broadly defined notion, but ultimately we will need to

specify some key instantiations.

• What does the bus look like?

• Should we have sensors collocated with DE’s in some cases?

6.6 Sensor Ingestion Interface (SII)

TBD.

6.7 Rule Conversion Engine (RCE)

The rule conversion engine converts rules of the IHDB into equations.

6.7.1 Method for specification of a simple term as an equation

Consider the term 𝜑(𝑞) with the following truth assignment,

𝜑(𝑞) = {
𝑇 𝑞 ∈ 𝒟𝜑

𝐹 𝑞 ∉ 𝒟𝜑

(6.7-1)

Then we can define the set of arguments that yield positive truth assignment,

{𝑞 ∈ 𝒟𝜑|𝜑(𝑞) ⟵ 𝑇}.

(6.7-2)

and define the corresponding equation �̌�(𝑞) of the term 𝜑(𝑞) as

�̌�(𝑞) = {
1 𝜑(𝑞) ⟵ 𝑇

0 𝜑(𝑞) ⟵ 𝐹

(6.7-3)

and then extend the range of �̌�(𝑞) to the closed unit interval

�̌�(𝑞) → [0,1].

(6.7-4)

Revisiting the taxonomy of absolute, hard and soft rules, we recognize that soft rules

(terms in this example) can take values along the interval

0 ≤ �̌�(𝑞) ≤ 1

(6.7-5)

whereas, absolute and hard rules should satisfy the additional constraint �̌�(𝑞) → {0,1}

�̌�(𝑞)(1 − �̌�(𝑞)) = 0.

24

Veritone Corporation

(6.7-6)

25

Veritone Corporation

6.7.2 Conversion of the fundamental clauses of propositional calculus to equations

Define the following notation for the propositional calculus.

 Symbol Function

∧ And

∨ Or

⟹ Implication

~ Not

∃ Exists

∀ All

Statistical propagation

Table 6.7-1

Theorem 6.7.1. Given the method for the specification of equations from propositions, we

prove the following transformations.

Proposition Equation

~𝜑(𝑞) 1 − �̌�(𝑞)

𝜑(𝑞) ∧ 𝜎(𝑞) �̌�(𝑞) ∙ �̌�(𝑞)

𝜑(𝑞) ∨ 𝜎(𝑞) �̌�(𝑞) + �̌�(𝑞) − �̌�(𝑞) ∙ �̌�(𝑞)

𝜑(𝑞) ⟹ 𝜎(𝑞) 1 − �̌�(𝑞) + �̌�(𝑞) ∙ �̌�(𝑞)

𝜑1(𝑞) ∧ 𝜑2(𝑞) ∧ ⋯∧ 𝜑𝑘−1(𝑞) ∧ 𝜑(𝑞)

⟹ 𝜑(𝑞)

(tail recursive)

�̌̃�(𝑛, 𝑞) =
ℎ̌(𝑛 − 1, 𝑞)

�̌̃�(𝑛, 𝑞)�̌̃�(𝑛 − 1, 𝑞) − 1

Table 6.7-2

6.7.2.1 Proof by enumeration for equational representation of negation

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to negation

(~). Verify by enumeration the correspondence of the mathematical equation values

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0.

26

Veritone Corporation

𝜑(𝑞) ~𝜑(𝑞) �̌�(𝑞; 𝜑, 𝜎) = 1 − �̌�(𝑞)

T F 0 = 1 − 1

F T 1 = 1 − 0

Table 6.7-3

6.7.2.2 Proof by enumeration for equational representation of conjunction

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to conjunction

(∧). Verify by enumeration the correspondence of the mathematical equation values

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0.

𝜑(𝑞) ∧ 𝜎(𝑞) �̌�(𝑞; 𝜑, 𝜎) = �̌�(𝑞) ∙ �̌�(𝑞)

T T T 1 = 1 ∙ 1

T F F 0 = 1 ∙ 0

F F T 0 = 0 ∙ 1

F F F 0 = 0 ∙ 0

Table 6.7-4

6.7.2.3 Proof by enumeration for equational representation of disjunction

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to disjunction

(∨). Verify by enumeration the correspondence of the mathematical equation values

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0.

𝜑(𝑞) ∨ 𝜎(𝑞) �̌�(𝑞; 𝜑, 𝜎) = �̌�(𝑞) + �̌�(𝑞) − �̌�(𝑞) ∙ �̌�(𝑞)

T T T 1 = 1 + 1 − 1 ∙ 1

T T F 1 = 1 + 0 − 1 ∙ 0

F T T 1 = 0 + 1 − 0 ∙ 1

F F F 0 = 0 + 0 − 0 ∙ 0

Table 6.7-5

6.7.2.4 Proof by enumeration for equational representation of implication

Define the function �̌�(𝑞; 𝜑, 𝜎) which represents the equation corresponding to disjunction

(⟹). First note the equivalence of

𝜑(𝑞) ⟹ 𝜎(𝑞) and ~𝜑(𝑞) ∨ 𝜎(𝑞).

27

Veritone Corporation

(6.7-7)

Verify by enumeration the correspondence of the mathematical equation values

corresponding to the mapping 𝑇 → 1 and 𝐹 → 0.

𝜑(𝑞) ~𝜑(𝑞) ∨ 𝜎(𝑞) �̌�(𝑞; 𝜑, 𝜎) = 1 − �̌�(𝑞) + �̌�(𝑞) ∙ �̌�(𝑞)

T F T T 1 = 1 − 1 + 1 ∙ 1

T F F F 0 = 1 − 1 + 1 ∙ 0

F T T T 1 = 1 − 0 + 0 ∙ 1

F T T F 1 = 1 − 0 + 0 ∙ 0

Table 6.7-6

6.7.2.5 Proof for equational representation of tail recursion

Tail recursion is propositionally defined as

𝜑(𝑞) ⟸ 𝜑1(𝑞) ∧ 𝜑2(𝑞) ∧ ⋯∧ 𝜑𝑘−1(𝑞) ∧ 𝜑(𝑞)

(6.7-8)

where 𝑞 represents the current state and the subscript 𝑘 indicates the 𝑘th rule. To develop

an equational representation of the recursive formulation, first define the general function

�̃�(𝑛, 𝑞) where 𝑛 represents the 𝑛th iteration of the tail recursion and �̃�(𝑛, 𝑞) is the logical

consequent. Then rewrite the above formulation using the recursive step, where the 𝑘th

rule is instantiated for the 𝑛th time,

�̃�1(𝑛, 𝑞) ∧ �̃�2(𝑛, 𝑞) ∧ ⋯∧ �̃�𝑘−1(𝑛, 𝑞) ∧ �̃�(𝑛 − 1, 𝑞) ⟹ �̃�(𝑛, 𝑞).

(6.7-9)

Define

�̃�(𝑛, 𝑞) ≅ �̃�1(𝑛, 𝑞) ∧ �̃�2(𝑛, 𝑞) ∧ ⋯∧ �̃�𝑘−1(𝑛, 𝑞)

�̃�(𝑛 − 1, 𝑞) ≅ �̃�(𝑛, 𝑞) ∧ �̃�(𝑛 − 1, 𝑞)

(6.7-10)

Then the tail recursion is rewritable as

�̃�(𝑛, 𝑞) ∧ �̃�(𝑛 − 1, 𝑞) ⟹ �̃�(𝑛, 𝑞)

�̃�(𝑛 − 1, 𝑞) ⟹ �̃�(𝑛, 𝑞).

(6.7-11)

28

Veritone Corporation

According to the equational representation of implication, let

ℎ̌(𝑛 − 1, 𝑞) = 1 − �̌̃�(𝑛, 𝑞) ∙ �̌̃�(𝑛 − 1, 𝑞) + �̌̃�(𝑛, 𝑞) ∙ �̌̃�(𝑛 − 1, 𝑞) ∙ �̌̃�(𝑛, 𝑞).

(6.7-12)

Since by definition �̂̃�(𝑛 − 1, 𝑞) = �̂̃�(𝑛, 𝑞) ∙ �̂̃�(𝑛 − 1, 𝑞). Then

�̌̃�(𝑛, 𝑞) =
ℎ̂(𝑛 − 1, 𝑞) + �̂̃�(𝑛, 𝑞) ∙ �̂̃�(𝑛 − 1, 𝑞) − 1

�̂̃�(𝑛, 𝑞) ∙ �̂̃�(𝑛 − 1, 𝑞)

(6.7-13)

with boundary condition 𝑛 = 0.

6.7.3 Converting rules based system of inference to the problem of constrained minimization

TBD

6.7.3.1 Converting rules to constraints

The preceding discussion has established an algorithm for converting rules of the form

ℎ(𝑞) ⟸ 𝜑1(𝑞) ∧ 𝜑2(𝑞) ∧ ⋯∧ 𝜑𝑚(𝑞)

(6.7-14)

to constraints of the form

ℎ̌(𝑞) = �̌�1(𝑞) ∙ �̌�2(𝑞) ∙ ⋯ ∙ �̌�𝑚(𝑞).

(6.7-15)

6.8 Decision Element (DE)

A diagram of the Decision Element (DE) architecture is shown in Figure 6.8-1. It is

composed of seven elements:

1. List of external repositories (LER)

2. Programmable search engine (PSE)

3. Internal heterogeneous database (IHDB)

4. Inference engine (IE)

5. Inference rule base (IRB)

6. API / user interface (UI)

7. Network interface (NI)

A functional description of these elements follows. In Figure 6.8-1, the IRB is internal to the

DE, whereas the IHBD is external to the DE but accessible (as shown in Figure 6.1-1).

29

Veritone Corporation

Network

Internal

Heterogeneous

Database

Programmable Search Engine Inference Engine

Equation rules

Optimizer rules

Search rules

Adaptation rules

Language rules

Pattern rules

Network rules

Hybridization rules

Inference Rule Base

A
P

I
/
U

s
e
r

In
te

rf
a

c
e

Fig. 6.8-2. Decision Element Architecture.

6.8.1 List of External Repositories (LER)

A DE has a List of External Repositories (LER). Each entry in an LER includes 1) a protocol,

2) a heading sub-list, and 3) a translation grammar. Each protocol entry prescribes the

access procedure to the corresponding external knowledge repository. Each heading sub-

list entry contains a summary of the knowledge contents of the corresponding repository.

Finally, each translation grammar entry provides a procedure for converting knowledge

elements of the corresponding repository in to the rule representation in the IHDB of the

DE.

6.8.2 Programmable search engine (PSE)

The programmable search engine implements a standard hashing algorithm for detecting

active rules as a function of the current instantiation of the variables in a variable buffer

(VB) of the IE, and the contents of the active rule buffer (ARB). The VB contains the

variables that form part of the query and all additional variables incorporated to this buffer

during the inference process (IP). The VB includes all relevant data from the EKB beneficial

to perform the query. The IP is described below. The ARB contains all the rules that are

currently active in the IP. See the CDI Implementation Document for more description of

the PSE.

The search hashing algorithm is characterized by the search rules in the Inference Rule

Base (see Figure 6.8-1).

30

Veritone Corporation

6.8.3 Internal heterogeneous database (IHDB)

The IHDB is the repository of the application clauses associated with the DE. These encode

the domain of knowledge characterizing the expertise of the DE. For example in a medical

application, a decision element may deal with expertise on heart illnesses, and the

corresponding clauses might encode diagnoses and treatments for these diseases.

6.8.4 Inference engine (IE)

The IE encodes an algorithm, the IP, for assigning values to the variables appearing in the

query. The IP is summarized in the block diagram of Fig. 6.8-3.

Fig. 6.8-3. Inference Process

Select active rules of
the system including
all absolute and hard

and soft rules
according to query

Convert active rules
to equations via
continualization

Create static
Lagrangian

Create total
Hamiltonian via

Legendre
transformation

Generate combined
Hamiltonian via
Nambu bracket

Generate
Goal

Generate equations
of motion from

combined
Hamiltonian

Solve for query by
determining the

optimal trajectory
through the phase

space

Return query result

Search for gauges in
total Lagrangian

Gauges
found?

Eliminate gauge
related rules from

active rule set

Use inverse
variational method

of Hemholtz to
compute total

Lagrangian

Construct equations
of motion

Construct differential
equations

Determine rank of
Hessian for dynamic

Lagrangian

Internal
heterogeneous

database (IHDB)

Adaptation

Compute Error

Yes

No

Failure potential

Submit
query

Inference controller

Correction potential

Output

Sensor data
Inference rules
Equation rules
Optimizer rules

Search rules
Adaptation rules

Pattern rules
Network rules

Hybridization rules

31

Veritone Corporation

6.8.5 Inference rule types

The DE incorporates inference rules (IR) that are a collection of rules for transforming and

inferring instantiations of the goal. These rules provide the Inference Engine with

directives for processing database rules to give a satisfactory instantiation to a given query

or to request additional information so that a satisfactory instantiation can be generated.

They are shown in Fig. 6.8-3 in the IRB, and are organized according to their functionality,

as follows.

6.8.5.1 Equation rules

These rules include the formal rules for inference. This includes all rules for natural

language modeling from first principles.

6.8.5.2 Optimizer rules

These rules include rules for finding the interior point in optimization.

6.8.5.3 Search rules

These rules include rules for identifying the nature of insufficient potential. The goal is to

apply these rules to acquire additional information required to satisfy the optimization

goal.

6.8.5.4 Adaptation rules

Adaptation rules are used to update the soft rules to relax them further to reduce the

complexity and constraints of the optimization problem. The adaptation also serves to

update the search rules to improve information acquisition.

6.8.5.5 Language rules and Pattern rules

These rules embody the machine learning models.

6.8.5.6 Network rules

These rules define how information is distributed over the network and what information

is available from which resources.

6.8.5.7 Hybridization rules

The rules define how other rules may be combined.

6.8.6 User interface (UI)

The UI provides the utilities for entering queries, pragma rules, displaying query answers,

status and for general interaction with the IE.

32

Veritone Corporation

6.8.7 Network interface (NI)

The NI provides a generic mechanism for interacting with other DEs via a procedure

termed companionship. The companionship procedure implements the active coupling for

the cooperation of the DEs in query resolution. This procedure is not hierarchical and

implements a Pareto Agreement set strategy as the mechanism for CDI.

33

Veritone Corporation

6.9 Query Language Interface (QLI)

Once a query is submitted (see the CDI Implementation Document), it is transformed into

equational form, instantiated with the active rules, and a Hamiltonian is created for use in

the optimization. The action is denoted 𝑀(𝑡), and its time derivative is denoted �̇�(𝑡).

Fig. 6.9-1. Process for developing Hamiltonian from a query and a set of active rules.

Submitted query,

 𝜑𝑄(𝑞)

Active rules,

 𝜑(𝑘)

Continualize query and rules

Continualized

query, �̌�𝑄(𝑞)

Continualized

active rules, �̌�(𝑘)

Create static Lagrangian from

continualized query and active rules

 ℒ(𝑞; �̌�𝑄 , �̌�(𝑘), 𝜔)

Compute �̇�(𝑡) and �̇�(𝑡)

Formulate 𝐺(�̈�, �̇�, 𝑞) =

𝑞(𝑡)

�̇�(𝑡)

�̇�(𝑡)

Determine solutions to the second order

differential equations 𝐺𝑖

Determine rank of Hessian of

ℒ(𝑞; �̌�𝑄 , �̌�(𝑘), 𝜔)

Determine Hamiltonian 𝐻(𝑝, 𝑞) from

ℒ(𝑞; �̌�𝑄 , �̌�(𝑘), 𝜔) via Legendre

transformation

34

Veritone Corporation

6.10 Minimization Function Generator (MFG) and Process for Determining Active

Constraints

The minimization function generator converts a query to a minimization function. Again,

we assume without loss of generality the entire set of canonical coordinates 𝑞 is an

argument to any proposition 𝜑𝑖. In practice, we may further assume it is possible to apply

the particular required coordinates as need to the proposition or function in question.

Then let 𝜑(𝑘)be the set of propositions associated with 𝐷𝐸𝑘 in the context of query 𝑄.

These propositions are composed of the proposition associated with the query 𝜑𝑄(𝑞), and

other propositions 𝜑𝑖(𝑞), comprising the constraints of the system. The proposition

𝜑𝑄(𝑞) associated with a given query 𝑄 can be converted to an equation �̌�𝑄(𝑞). Queries that

are satisfiable specify a set.

{𝑞|𝜑𝑄(𝑞) ⟵ 𝑇}

(6.10-1)

Similarly, a satisfied query represented as an equation is also a set

{𝑞|�̌�𝑄(𝑞) = 1}.

(6.10-2)

Relaxing the values that �̌�𝑄(⋅) can take to include the unit interval so that soft rules are

incorporated yields the following constrained optimization expression. Let 𝐽(𝑞) =

 (�̌�𝑄(𝑞) − 1)
2

 be the quadratic criterion that favors a value close to one (representing

truth). Then the optimization problem is specified as,

min
𝑞

𝐽(𝑞)

 (6.10-3)

subject to:

1. �̌�𝑄(𝑞) ≤ 1

2. �̌�𝑄(𝑞) ≥ 0

3. A knowledge base on the set {�̌�1(𝑞),… , �̌�𝑛(𝑞),… , �̌�𝑛+𝑠(𝑞)} ⊆ �̌�(𝑘) which represents

a further set of active constraints specific to the problem:

a. �̌�𝑖(𝑞) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛,

b. �̌�𝑖(𝑞) ≤ 1 or, equivalently −(�̌�𝑖(𝑞) − 1) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛,

35

Veritone Corporation

c. and, in the case of absolute and hard rules,

 �̌�𝑙(𝑞)(1 − �̌�𝑙(𝑞)) = 0 for 𝑛 < 𝑙 ≤ 𝑛 + 𝑠.

Introduce the indicator functions

𝑉�̌�𝑖

− = {
0 �̌�𝑖(𝑞) ≥ 0

∞ �̌�𝑖(𝑞) < 0

(6.10-4)

and

𝑉�̌�𝑖

+ = {
0 1 − �̌�𝑖(𝑞) ≥ 0

∞ 1 − �̌�𝑖(𝑞) < 0

(6.10-5)

which yields the two logarithmic barrier functions

�̌��̌�𝑖

− = − log(�̌�𝑖(𝑞))

(6.10-6)

and

�̌��̌�𝑖

+ = − log(1 − �̌�𝑖(𝑞)).

(6.10-7)

According to the method of Lagrange multipliers, combine this with the equality

constraints to form the static Lagrangian function

ℒ (𝑞; �̌�𝑄 , �̌�(𝑘), 𝜔1
(+)

, … , 𝜔𝑛
(+)

, 𝜔𝑛+1
(−)

, … , 𝜔2𝑛
(−)

, 𝜔2𝑛+1
(𝜆)

, … , 𝜔2𝑛+𝑠
(𝜆)

, 𝜔2𝑛+𝑠+1
(𝑄)

, 𝜔2𝑛+𝑠+2
(𝑄)

)

= �̌�𝑄(𝑞) + ∑[𝜔𝑖
(+)

�̌��̌�𝑖

+ + 𝜔𝑛+𝑖
(−)

�̌��̌�𝑖

−]

𝑛

𝑖=1

+ ∑𝜔2𝑛+𝑙
(𝜆)

�̌�𝑙(𝑞)(1 − �̌�𝑙(𝑞))

𝑠

𝑙=1

− 𝜔2𝑛+𝑠+1
(𝑄)

log (�̌�𝑄(𝑞)) − 𝜔2𝑛+𝑠+2
(𝑄)

log (1 − �̌�𝑄(𝑞)),

(6.10-8)

the roots of which can be found using a formulation of Newton-Raphson. Since ℒ here

includes absolute, hard and soft rules we may call it the total static Lagrangian for 𝐷𝐸𝑘 and

refer to it as ℒ𝑘
(𝑇)

.

36

Veritone Corporation

6.11 Construct equations of motion

In a separate document

6.12 Query Response Engine (QRE) which includes Process for Constructing Differential

Equations

6.12.1 Application of Newton-Raphson

Consider a continuous analog of the independent variables of ℒ(∙)

𝑞 = 𝑞(𝑡) =
𝑞(1)(𝑡)

⋮
𝑞(𝑣)(𝑡)

(6.12-1)

where each of the 𝑣 total independent variables of ℒ(∙) is mapped to its corresponding

position in 𝑞(𝑡), the column vector that is represented with a lower-case 𝑞. To reiterate, the

independent variable 𝑡 refers 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑡𝑖𝑚𝑒 as opposed to physical time which may

also be represented in the system. The corresponding unconstrained optimization goal can

be written as

min
𝑞1,…,𝑞𝑣

ℒ (𝑞(1)(𝑡), … , 𝑞(𝑣)(𝑡))

 (6.12-2)

so that ∇𝐿(𝑞)

∇ℒ(𝑞(𝑡)) =

[

𝜕ℒ

𝜕𝑞(1)

⋮
𝜕ℒ

𝜕𝑞(𝑣)]

= [
∇ℒ1

⋮
∇ℒ𝑣

] = 0,

(6.12-3)

with positive definite Hessian matrix

∇2ℒ(𝑞(𝑡)) =

[

𝜕ℒ

𝜕𝑞(1)𝜕𝑞(1)
⋯

𝜕ℒ

𝜕𝑞(1)𝜕𝑞(𝑣)

⋮ ⋱ ⋮
𝜕ℒ

𝜕𝑞(𝑣)𝜕𝑞(1)
⋯

𝜕ℒ

𝜕𝑞(𝑣)𝜕𝑞(𝑣)]

= [
∇ℒ11 ⋯ ∇ℒ1𝑣

⋮ ⋱ ⋮
∇ℒ𝑣1 ⋯ ∇ℒ𝑣𝑣

] => 0.

(6.12-4)

Write the recursion for Newton’s method

37

Veritone Corporation

𝑞(𝑘+1)(𝑡) = 𝑞(𝑘)(𝑡) − (∇2ℒ (𝑞(𝑘)(𝑡)))
−1

∇ℒ (𝑞(𝑘)(𝑡)).

(6.12-5)

This is equivalently rewritten

𝑞(𝑘+1)(𝑡) − 𝑞(𝑘)(𝑡)

𝛿
= −

1

𝛿
(∇2ℒ (𝑞(𝑘)(𝑡)))

−1

∇ℒ (𝑞(𝑘)(𝑡)).

(6.12-6)

Via continualization we approximate the derivative

�̇�(𝑡) =
𝑑𝑞(𝑡)

𝑑𝑡
= −(∇2ℒ(𝑞(𝑡)))

−1

∇ℒ(𝑞(𝑡)).

(6.12-7)

6.12.2 Translation of inverted matrix

Consider 𝑀, an invertible and positive definite matrix. Then we make the following

provable assertions.

1. 𝐴𝑇𝐴 is symmetric.

2. −ATA has negative eigenvalues.

Define

𝑑𝑀(𝑡)

𝑑𝑡
= −𝐴𝑇𝐴𝑀(𝑡) + 𝐴𝑇

(6.12-8)

Then as 𝑡 → ∞, 𝑀(𝑡) → 𝐴−1 = ∇2ℒ (𝑞(𝑘)(𝑡))
−1

. Using (6.12-3) and (6.12-4) approximate

�̇�(𝑡) by rewriting the derivative in the context of 𝑀(𝑡). This yields the following two

equations.

�̇�(𝑡) = −𝑀(𝑡)∇𝐿(𝑞(𝑡)) = [

𝑚11 ⋯ 𝑚1𝑣

⋮ ⋱ ⋮
𝑚𝑣1 ⋯ 𝑚𝑣𝑣

] [
∇ℒ1

⋮
∇ℒ𝑣

] = [
𝑚11∇ℒ1 + ⋯+ 𝑚1𝑣∇ℒ𝑣

⋮
𝑚𝑣1∇ℒ1 + ⋯+ 𝑚𝑣𝑣∇ℒ𝑣

]

(6.12-9)

𝑑𝑀(𝑡)

𝑑𝑡
= −(∇2ℒ(𝑞(𝑡)))

𝑇

(∇2ℒ(𝑞(𝑡)))𝑀(𝑡) + (∇2ℒ(𝑞(𝑡)))
𝑇

= − [
∇ℒ11 ⋯ ∇ℒ𝑣1

⋮ ⋱ ⋮
∇ℒ1𝑣 ⋯ ∇ℒ𝑣𝑣

] [
∇ℒ11 ⋯ ∇ℒ1𝑣

⋮ ⋱ ⋮
∇ℒ𝑣1 ⋯ ∇ℒ𝑣𝑣

] [

𝑚11 ⋯ 𝑚1𝑣

⋮ ⋱ ⋮
𝑚𝑣1 ⋯ 𝑚𝑣𝑣

] + [
∇ℒ11 ⋯ ∇ℒ𝑣1

⋮ ⋱ ⋮
∇ℒ1𝑣 ⋯ ∇ℒ𝑣𝑣

]

38

Veritone Corporation

= −
∇ℒ11

2 + ⋯+ ∇ℒ𝑣1
2 ⋯ ∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣

⋮ ⋱ ⋮
∇ℒ11∇ℒ1𝑣 + ⋯ + ∇ℒ𝑣1∇ℒ𝑣𝑣 ⋯ ∇ℒ1𝑣

2 + ⋯+ ∇ℒ𝑣𝑣
2

 [

𝑚11 ⋯ 𝑚1𝑣

⋮ ⋱ ⋮
𝑚𝑣1 ⋯ 𝑚𝑣𝑣

]

+ [
∇ℒ11 ⋯ ∇ℒ𝑣1

⋮ ⋱ ⋮
∇ℒ1𝑣 ⋯ ∇ℒ𝑣𝑣

]

= −

[

(∇ℒ11
2 + ⋯+ ∇ℒ𝑣1

2)𝑚11 + ⋯ (∇ℒ11
2 + ⋯+ ∇ℒ𝑣1

2)𝑚1𝑣 + ⋯

 +(∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚𝑣1 ⋯ +(∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚𝑣𝑣

+∇ℒ11 +∇ℒ𝑣1

⋮ ⋱ ⋮
(∇ℒ11∇ℒ1𝑣 + ⋯+ ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚11 + ⋯ (∇ℒ11∇ℒ1𝑣 + ⋯ + ∇ℒ𝑣1∇ℒ𝑣𝑣)𝑚1𝑣 + ⋯

+(∇ℒ1𝑣
2 + ⋯+ ∇ℒ𝑣𝑣

2)𝑚𝑣1 ⋯ +(∇ℒ1𝑣
2 + ⋯+ ∇ℒ𝑣𝑣

2)𝑚𝑣𝑣

+∇ℒ1𝑣 +∇ℒ𝑣𝑣]

= [
∇𝑚11 ⋯ ∇𝑚1𝑣

⋮ ⋱ ⋮
∇𝑚𝑣1 ⋯ ∇𝑚𝑣𝑣

]

(6.12-10)

The approximation proceeds as follows:

1. Fix 𝑀(0) = ∇2ℒ(𝑞(0)) and = ∇2ℒ(𝑞(𝑡)).

2. Use the variation of constants formula to solve

𝑀(𝑇) = 𝑒−[∇2ℒ(𝑞(𝑇))]
2
𝑡𝑀(0) + [∫ 𝑒−[∇2ℒ(𝑞(𝜏))]

2
(𝑇−𝜏)

𝑇

0

𝑑𝜏] ∇2ℒ(𝑞(𝑇))

applying the Magnus expansion to compute the integral.

The following figure documents the flow of computation.

Initialize 𝑞0, 𝑘 = 0 and express the Hessian 𝐴(𝑞) =

∇2ℒ symbolically.

Evaluate the Hessian at 𝑞𝑘: 𝐴𝑘 = 𝐴(𝑞𝑘) = ∇2ℒ(𝑞𝑘).

If ‖𝐴𝑘 − 𝐴𝑘−1‖ ≥ 𝜖, solve �̇�(𝑡) = −(𝐴𝑘)
2𝑀(𝑡) + 𝐴𝑘

for large 𝑡 = 𝑇. 𝑀(𝑡) ≈ 𝐴𝑘
−1.

𝑡𝑘+1 ← 𝑡𝑘 + 𝜏

𝑘 ← 𝑘 + 1

39

Veritone Corporation

6.12.3 Process for determining dynamic Lagrangian via Hemholtz equations

Given

𝐺𝑖(�̈�, �̇�, 𝑞) = ∑𝑊𝑖,𝑗(�̇�, 𝑞)

𝑛

𝑗=1

(�̇�, 𝑞)�̈�(𝑗) + 𝐾𝑖(�̇�, 𝑞) = 0 𝑗 = 1,… , 𝑛

(6.12-11)

If the three conditions

𝜕𝐺𝑖

𝜕�̈�(𝑗)
=

𝜕𝐺𝑗

𝜕�̈�(𝑖)
,

𝜕𝐺𝑖

𝜕�̇�(𝑗)
+

𝜕𝐺𝑗

𝜕�̇�(𝑖)
=

𝑑

𝑑𝑡
(

𝜕𝐺𝑖

𝜕�̈�(𝑗)
+

𝜕𝐺𝑗

𝜕�̈�(𝑖)
) ,

𝜕𝐺𝑖

𝜕𝑞(𝑗)
−

𝜕𝐺𝑗

𝜕𝑞(𝑖)
=

1

2

𝑑

𝑑𝑡
(

𝜕𝐺𝑖

𝜕�̇�(𝑗)
−

𝜕𝐺𝑗

𝜕�̇�(𝑖)
),

(6.12-12)

with 𝑖, 𝑗 = 1,… , 𝑛 hold, then

∑
𝜕2𝐿

𝜕�̇�(𝑖)𝜕�̇�(𝑗)
�̈�(𝑗) +

𝜕2𝐿

𝜕𝑞(𝑗)𝜕�̇�(𝑖)

𝑛

𝑗=1

−
𝜕𝐿

𝜕𝑞(𝑖)
= 𝐺𝑖, 𝑖 = 1,… , 𝑛

(6.12-13)

This is a second order, linear hyperbolic differential equation on the Lagrangian 𝐿. It can be

solved efficiently by the method of characteristics.

Let

Integrate �̇�(𝑡) = −𝐺𝑎𝑖𝑛 ∙ 𝑀(𝑇)∇ℒ(𝑞(𝑡)) from 𝑡𝑘 to

𝑡𝑘 + 𝜏 with initial condition 𝑞𝑘. Set 𝑞𝑘+1 = 𝑞(𝑡𝑘 + 𝜏)

Continue?

Stop

40

Veritone Corporation

𝐺(�̈�, �̇�, 𝑞) =

𝑞(𝑡)

�̇�(𝑡)

�̇�(𝑡)

=

[

𝑞(1)

⋮
𝑞(𝑣)

𝑚11∇ℒ1 + ⋯+ 𝑚1𝑣∇ℒ𝑣

⋮
𝑚𝑣1∇ℒ1 + ⋯+ 𝑚𝑣𝑣∇ℒ𝑣

∇𝑚11

⋮
∇𝑚𝑣1

⋮
∇𝑚1𝑣

⋮
∇𝑚𝑣𝑣]

(6.12-14)

6.12.4 Process for determining Hessian rank of dynamic Lagrangian

TBD

6.12.5 Converting the Lagrangian to the Hamiltonian via the Legendre transformation.

In our formulation the Lagrangian, 𝐿𝑘
(𝑇)(𝑞, �̇�; 𝜔), may be converted to the Hamiltonian using

the Legendre transformation, so that

𝐻𝑘
(𝑇)(𝑞, 𝑝; 𝜔) =

𝜕𝐿𝑘
(𝑇)

𝜕�̇�
�̇� − 𝐿𝑘

(𝑇)(𝑞, �̇�; 𝜔)

= 𝑝𝑇�̇� − 𝐿𝑘
(𝑇)(𝑞, �̇�; 𝜔)

(6.12-15)

6.13 Pareto Multi-Criteria Optimization Engine (PMOE)

Consider the problem of determining the relaxed Pareto optimal solution to a given system

query at a given time step. There are 𝑁 decision elements, 𝑘 = 1,… ,𝑁. A given decision

element, 𝐷𝐸𝑘, has the following associated parameters which are constituent to the ARB:

• A generalized set of coordinates relevant to 𝐷𝐸𝑘, 𝑞.

• A generalized set of linearly independent momenta {𝑝𝑎} where the index 𝑎 refers the

linearly independent momenta selected from the canonical set 𝑝.

• A set of control parameters 𝜔 for hard a soft rules of the system, where 0 ≤ 𝜔𝑖 ≤ 1.

The ARB has the following components which determine the constraints of 𝐷𝐸𝑘:

41

Veritone Corporation

• The Hamiltonian which identifies the fundamental dynamics of the system of the

system for the 𝑘’th decision element denoted

𝐻𝑘
(𝑜)(𝑞, {𝑝𝑎}).

(6.13-1)

• The summation of the first class constraints of the system, which is

∑𝜔𝑖𝑓𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

(6.13-2)

• The summation of the second class constraints of the system which is

∑𝑔𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

(6.13-3)

• The Tellegen agent which is a function of the Hamiltonians of the absolute rules of the

other 𝑁 − 1 decision elements in the system

𝐻𝑘
(𝐴)

= 𝐹𝑘
(𝐴)

(𝐻1
(𝑇)

, … , 𝐻𝑘−1
(𝑇)

, 𝐻𝑘+1
(𝑇)

, … , 𝐻𝐾
(𝑇)

)

(6.13-4)

• The total Hamiltonian of the system is denoted 𝐻(𝑇).

• Approximations to the various Hamiltonian’s are denoted�̂�𝑘
(𝐴)

, �̂�(𝑇) and �̂�𝑘
(𝑜)

 for the

Tellegen, total, and DE-level Hamiltonians respectively.

6.13.1 System initialization

Determining the relaxed Pareto optimal point of the system is a process which includes:

1. Initialization of 𝑁 decision elements.

2. Synchronization through companionship of each of the 𝑁 decision elements with its

respective Tellegen agent.

42

Veritone Corporation

Fig. 6.13-1 shows the information components of the DE that are constituent to updating

and being updated by the network at initialization.

Decision element 𝑘

𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎};𝜔)

Active rule buffer

Primary Hamiltonian

𝐻𝑘
(𝑜)(𝑞, {𝑝𝑎})

First class constraints

∑𝜔𝑖𝑓𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

Second class constraints

∑𝑔𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

Aggregator

Receive 𝐻𝑖
(𝑇)(𝑞, {𝑝𝑎};𝜔),

 𝑖 = 1,… , 𝐾, 𝑖 ≠ 𝑘

Compute 𝐻𝑘
(𝐴)(𝑞, {𝑝𝑎};𝜔)

Broadcaster

Distribute 𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎}; 𝜔)

Network

43

Veritone Corporation

Fig. 6.13-1

6.13.2 System operation

Fig. 6.13-2 shows how decision elements interact with the network, receive queries, and

return results. In this example, the distributed system effectively implements an abstract

classifier that has no real implementation. The DE’s receive sensor data from the network

which includes new available information which may benefit classification. The user

submits a query that is received by a DE which then returns a result.

Decision element 𝑘

𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎};𝜔)

Active rule buffer

Primary Hamiltonian

𝐻𝑘
(𝑜)(𝑞, {𝑝𝑎})

First class constraints

∑𝜔𝑖𝑓𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

Second class constraints

∑𝑔𝑖(𝑞
(𝑖), 𝜔𝑖)

𝑖

Aggregator

Receive 𝐻𝑖
(𝑇)(𝑞, {𝑝𝑎};𝜔),

 𝑖 = 1,… , 𝐾, 𝑖 ≠ 𝑘

Compute 𝐻𝑘
(𝐴)(𝑞, {𝑝𝑎};𝜔)

Broadcaster

Distribute 𝐻𝑘
(𝑇)(𝑞, {𝑝𝑎}; 𝜔)

Network

44

Veritone Corporation

Fig. 6.13-2

Fig. 6.13-3 represents the iterative process of updating the Hamiltonian associated with

𝐷𝐸𝑘.

Network

Abstract

classifier
Aggregate rules

database

User

Obtain Result

Submit Query

Knowledge

component,

𝐾𝐶1

Companion

element,

�̂�1
(𝐴)

Decision

element,

𝐷𝐸1, �̂�1
(𝑇)

Sensor Data
Submit Query

Query
 Result

Knowledge

component,

𝐾𝐶2

Companion

element,

�̂�2
(𝐴)

Decision

element,

𝐷𝐸2, �̂�2
(𝑇)

Sensor Data
Submit Query

Query
 Result

…

…

…
Knowledge

component,

𝐾𝐶𝐾

Companion

element,

�̂�𝐾
(𝐴)

Decision

element,

𝐷𝐸𝐾 , �̂�𝐾
(𝑇)

Sensor Data
Submit Query

Query
 Result

45

Veritone Corporation

Decision Element k

Aggregator formulates

Tellegen agent

()
 ()upqH

a

Ao

tk
,,ˆ ,

,

Update k’th agent

() () () () ()kk

a

ko

k
upqH ,,ˆ

Decision Element k receives

arguments from network

 upq
a

,,

Broadcast updated

parameters for k’th agent

() () () kk

a

k
upq ,,

Repeat

Wait

Fig. 6.13-3

6.14 Gauge Systems in a Hamiltonian Domain

The time integral of the Lagrangian 𝐿(𝑞, �̇�) is the action 𝑆𝐿 defined as

𝑆𝐿 = ∫ 𝐿(𝑞, �̇�)𝑑𝑡
𝑡2

𝑡1

where �̇� =
𝑑𝑞(𝑡)

𝑑𝑡
. The Lagrangian conditions for stationarity are first that

𝑑

𝑑𝑡
𝐿�̇�(𝑛) − 𝐿𝑞(𝑛) = 0

(6.14-1)

46

Veritone Corporation

where 𝑛 = 1, … , 𝑁, 𝐿�̇�(𝑛) =
𝜕𝐿

𝜕�̇�(𝑛), and 𝐿𝑞(𝑛) =
𝜕𝐿

𝜕𝑞(𝑛). And, secondarily

[∑ �̈�(𝑛′)

𝑁

𝑛′=1

] 𝐿�̇�(𝑛)�̇�(𝑛) = 𝐿𝑞(𝑛) − �̇�(𝑛)𝐿�̇�(𝑛)𝑞(𝑛)

(6.14-2)

where �̈�(𝑛′) =
𝑑2𝑞(𝑛′)

𝑑𝑡2 and 𝐿�̇�(𝑛)𝑞(𝑛) =
𝜕2𝐿

𝜕(�̇�(𝑛))
2. The generalized accelerations �̈�(𝑛) are

immediately determined if 𝐿�̇�(𝑛)�̇�(𝑛) is invertible, or equivalently

det (𝐿�̇�(𝑛)�̇�(𝑛)) ≠ 0

(6.14-3)

for 𝑖 = 1, … , 𝑁. If for some 𝑛, det (𝐿�̇�(𝑛)�̇�(𝑛)) = 0, the acceleration vector �̈�(𝑛) will not be

uniquely determined.

The departing point for the Hamiltonian approach is the definition of conjugate momentum

𝑝𝑛 = 𝐿�̇�(𝑛)

(6.14-4)

where 𝑛 = 1, … , 𝑁. We will see that (6.14-3) is the condition of non-invertibility of

𝐿�̇��̇� =

𝐿�̇�(1)�̇�(1) ⋯ 𝐿�̇�(1)�̇�(𝑁)

⋮ ⋰ ⋮
𝐿�̇�(𝑁)�̇�(1) ⋯ 𝐿�̇�(𝑁)�̇�(𝑁)

of the velocities of the functions of the coordinates 𝑞 and momenta 𝑝. In other words, in

this case, the momenta defined in (6.14-4) are not all independent. Define the relations

that follow from (6.14-4) as

𝜙𝑚(𝑞, 𝑝)

(6.14-5)

where 𝑚 = 1,… ,𝑀. Write (6.14-4) in vector notation as

𝑝 = 𝐿�̇�(𝑞, �̇�).

Then compatibility demands

𝜙𝑚 (𝑞, 𝐿�̇�(𝑞, �̇�)) = 0

47

Veritone Corporation

is an identity with 𝑚 = 1,… ,𝑀.

Relations specified in (6.14-5) are called primary constraints. For simplicity let’s assume

that 𝑟𝑎𝑛𝑘(𝐿�̇��̇�) is constant throughout the phase space, (𝑞, �̇�), so that (6.14-5) defines a

submanifold smoothly embedded in the phase space. This manifold is known as the

primary constraint surface.

Let

𝑟𝑎𝑛𝑘(𝐿�̇��̇�) = 𝑁 − 𝑀′

(6.14-6)

Then there are 𝑀′ independent constraints among (6.14-5) and the primary constraint

surface is a phase space submanifold of dimension 2𝑁 − 𝑀′.

We do not assume that all the constraints are linearly independent so that

𝑀′ ≤ 𝑀.

(6.14-7)

It follows from (6.14-5) that the inverse transformation from the 𝑝’s to the 𝑞’s is

multivalued. That is, given 𝑞, 𝑝 that satisfies (6.14-5), the inverse image (𝑞, �̇�) that

satisfies

𝑝 = (
𝜕𝐿

𝜕�̇�
)

𝑇

(6.14-8)

is not unique, since (6.14-8) defines a map from a 2𝑁-dimensional manifold (𝑞, �̇�) to the

smaller (2𝑁 − 𝑀′)-dimensional manifold. Thus the inverse image of the points of (6.14-5)

form a manifold of dimension 𝑀′.

6.14.1 Conditions on the Constraint Function

There exist many equivalent ways to represent a given surface by means of equations of the

form of (6.14-5). For example the surface 𝑝1 = 0 can be represented equivalently by 𝑝1
2 = 0,

√|𝑝1| = 0, or redundantly by 𝑝1 = 0 and 𝑝1
2 = 0. To use the Hamiltonian formalism, it is

necessary to impose some restrictions which the regularity conditions for the constraints.

6.14.1.1 Regularity Conditions

1. The (2𝑁 − 𝑀′)-dimensional constraint surface 𝜙𝑚(𝑞, 𝑝) should be covered of open

region: in each region the constraints can be split into independent constraints

{𝜙𝑚′|𝑚′ = 1,… ,𝑀′} .

48

Veritone Corporation

Their Jacobian matrix

{
𝜕𝜙𝑚′

𝜕𝑝𝑛, 𝑞(𝑛)
} =

[

𝜕𝜙1

𝜕𝑝1, 𝑞
(1)

⋯
𝜕𝜙1

𝜕𝑝𝑛, 𝑞(𝑛)

⋮ ⋱ ⋮
𝜕𝜙𝑚′

𝜕𝑝1, 𝑞
(1)

⋯
𝜕𝜙𝑚′

𝜕𝑝𝑛, 𝑞(𝑛)]

with 𝑚′ = 1,… ,𝑀′ and 𝑛 = 1,… ,𝑁, is of rank 𝑀′.

The dependent constraints 𝜙𝑚, 𝑚 = 𝑀′ + 1,… ,𝑀 of the other 𝜙𝑚′ = 0 ⟹ 𝜙𝑚 = 0.

Alternatively the condition on the Jacobian.

2. The function 𝜙𝑚′ can be taken locally as the first 𝑀′ coordinates of a new regular

system in the vicinity of the constraint surface or the differentials 𝑑𝜙1, … , 𝑑𝜙𝑀′ are

locally linearly independent:

𝑑𝜙1 ∧ … ∧ 𝑑𝜙𝑀′ ≠ 0

(6.14-9)

3. The variations 𝛿𝜙𝑚′ are of order 𝜖 for arbitrary variations 𝛿𝑞(𝑖), 𝛿𝑝𝑖 of order 𝜖 (Dirac’s

approach).

Theorem 6.14.1. If a smooth, phase space function 𝐺 vanishes on {𝜙𝑚 = 0} then

𝐺 = ∑ 𝑔(𝑚)𝜙𝑚

𝑀

𝑚=1

(6.14-10)

Proof: (local proof). Set 𝜙𝑚′ , 𝑚′ = 1,… ,𝑀′ as coordinates (𝑦𝑚′ , 𝑥𝛼) with 𝑦𝑚′ = 𝜙𝑚′ . In

these coordinates 𝐺(0, 𝑥) = 0 and

𝐺(𝑦, 𝑥) = ∫
𝑑

𝑑𝑡

1

0

𝐺(𝑡𝑦, 𝑥)𝑑𝑡

= ∑ 𝑦𝑚′ ∫
𝜕

𝜕𝑦𝑚′

1

0

𝐺(𝑡𝑦, 𝑥)𝑑𝑡

𝑀′

𝑚′=1

= ∑ 𝑔(𝑚′)(𝑦, 𝑥)𝜙𝑚′(𝑦, 𝑥)

𝑀′

𝑚′=1

with

49

Veritone Corporation

𝑔(𝑚′)(𝑦, 𝑥) = ∫
𝜕

𝜕𝑦𝑚′

1

0

𝐺(𝑡𝑦, 𝑥)𝑑𝑡.

(6.14-11)

Theorem 6.14.2. If the sum ∑(𝜆(𝑛)𝛿𝑞(𝑛) + 𝜇𝑛𝛿𝑝𝑛) = 0 for arbitrary variations 𝛿𝑞(𝑖), 𝛿𝑝𝑖

tangent to the constraint surface {𝜙𝑚(𝑞, 𝑝) = 0|𝑚 = 1,… ,𝑀}, then

𝜆(𝑛) = ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑛)

𝑀

𝑚=1

(6.14-12)

𝜇𝑛 = ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

(6.14-13)

Proof. The dimension of {𝜙𝑚} is 2𝑁 − 𝑀′. Thus the variations at a point (𝑝, 𝑞) forms a

2𝑁 − 𝑀′ dimensional space

∑(𝜆(𝑛)𝛿𝑞(𝑛) + 𝜇𝑛𝛿𝑝𝑛) = 0

𝑁

𝑛=1

(6.14-14)

By the singularity assumption, there exists exactly 𝑀′ solutions to (6.14-14). Clearly, the

gradients {
𝜕𝜙

𝑚′

𝜕𝑞(𝑛)} and {
𝜕𝜙

𝑚′

𝜕𝑝𝑛
} are linearly independent. They are the basis for solutions to (

6.14-14).

Note that in the presence of redundant constraints, the functions 𝑢(𝑚) exist but are not

unique.

6.14.1.2 Canonical Hamiltonian

The Hamiltonian in canonical coordinates is

𝐻(𝑞, 𝑝) = ∑ �̇�(𝑛)𝑝𝑛

𝑁

𝑛=1

− 𝐿(𝑞, �̇�)

(6.14-15)

The rate �̇� enters through the combination through conjugate momenta defined for each

coordinate

50

Veritone Corporation

𝑝𝑛(𝑞, �̇�) = 𝐿�̇�(𝑛)(𝑞, �̇�)

(6.14-16)

This remarkable property is essential for the Hamiltonian approach. It is verified by

evaluating the change 𝛿𝐻 involved by arbitrary independent variations of position and

velocities.

𝛿𝐻 = ∑(�̇�(𝑛)𝛿𝑝𝑛 + 𝛿�̇�(𝑛)𝑝𝑛) −

𝑁

𝑛=1

𝛿𝐿

= ∑(�̇�(𝑛)𝛿𝑝𝑛 + 𝛿�̇�(𝑛)𝑝𝑛) −

𝑁

𝑛=1

∑ (𝐿𝑞(𝑛)𝛿𝑞(𝑛) + 𝐿�̇�(𝑛)𝛿�̇�(𝑛))

𝑁

𝑛=1

(6.14-17)

Utilizing (6.14-16) in (6.14-17) yields

𝛿𝐻 = ∑ (�̇�(𝑛)𝛿𝑝𝑛 − 𝐿𝑞(𝑛)𝛿𝑞(𝑛))

𝑁

𝑛=1

(6.14-18)

The Hamiltonian defined by (6.14-15) is not unique as a function of 𝑝, 𝑞. This can be

inferred from (6.14-18) by noticing that {𝛿𝑝𝑛|𝑛 = 1,… ,𝑁} are not all independent. They

are restricted to preserve the primary constraints 𝜙𝑚 ≈ 0 which are identities when the 𝑝’s

are expressed as functions of 𝑞’s via (6.14-16).

Using the definition of the differential in several variables applied to 𝛿𝐻 = 𝛿𝐻({𝑞(𝑛)}, {𝑝𝑛}),

(6.14-18) can be rewritten

∑ (
𝜕𝐻

𝜕𝑞(𝑛)
𝛿𝑞(𝑛) +

𝜕𝐻

𝜕𝑝𝑛
𝛿𝑝𝑛)

𝑁

𝑛=1

= ∑ (�̇�(𝑛)𝛿𝑝𝑛 − 𝛿𝑞(𝑛) 𝜕𝐿

𝜕𝑞(𝑛)
)

𝑁

𝑛=1

or

∑ (
𝜕𝐻

𝜕𝑞(𝑛)
+

𝜕𝐿

𝜕𝑞(𝑛)
)𝛿𝑞(𝑛)

𝑁

𝑛=1

+ ∑ (
𝜕𝐻

𝜕𝑝𝑛
− �̇�(𝑛)) 𝛿𝑝𝑛

𝑁

𝑛=1

= 0

(6.14-19)

From theorem 2 we then conclude for each 𝑛 that.

51

Veritone Corporation

𝜕𝐻

𝜕𝑞(𝑛)
+

𝜕𝐿

𝜕𝑞(𝑛)
= ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑛)

𝑀

𝑚=1

and

𝜕𝐻

𝜕𝑝𝑛
− �̇�(𝑛) = ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛
.

𝑀

𝑚=1

(6.14-20)

So for each 𝑛:

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

, 𝑛 = 1,… ,𝑁

(6.14-21)

and

−
𝜕𝐿

𝜕𝑞(𝑛)
=

𝜕𝐻

𝜕𝑞(𝑛)
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑛)

𝑀

𝑚=1

, 𝑛 = 1,… ,𝑁.

 (6.14-22)

Note that if the constraints are independent, the vectors ∑
𝜕𝜙𝑚

𝜕𝑝𝑛

𝑁
𝑛=1 , 𝑚 = 1, … ,𝑀 are also

independent because of the regularity conditions (this is proved later). Hence no two sets

of {𝑢(𝑚)|𝑚 = 1,… ,𝑀} can yield the same velocities via (6.14-21).

Thus, using

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚)(𝑞, �̇�)

𝜕𝜙𝑚

𝜕𝑝𝑛
(𝑞, 𝑝(𝑞, �̇�))

𝑀

𝑚=1

we can find 𝑢(𝑚)(𝑝, �̇�). If we define the transformation from (𝑞, �̇�) to the manifold

{𝜙𝑚(𝑞, 𝑝) = 0|𝑚 = 1,… ,𝑀}, from 𝑞, �̇�, 𝑢 → 𝑞, 𝑝, 𝑢 by

𝑞 = 𝑞, 𝑛 = 1,… ,𝑁

𝑝𝑛 = 𝐿𝑞(𝑛)(𝑞, �̇�), 𝑛 = 1,… ,𝑁 − 𝑀′

𝑢(𝑚) = 𝑢(𝑚)(𝑞, �̇�), 𝑚 = 1,… ,𝑀′

We see that this transformation is invertible since one has from 𝑞, 𝑝, 𝑢 → 𝑞, �̇�, 𝑢

𝑞 = 𝑞

52

Veritone Corporation

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

𝜙𝑚(𝑞, 𝑝) = 0

Thus invertibility of the Legendre transformation when

det(𝐿�̇��̇�) = 0

 can be regained at the prices of adding extra variables.

6.14.2 Action Principle of the Hamiltonian Form

With (6.14-21) and (6.14-22) we can rewrite (6.14-1) in the equivalent Hamiltonian

form

�̇�(𝑛) =
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

�̇�𝑛 = −
𝜕𝐻

𝜕𝑝𝑛
− ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

𝜙𝑚(𝑞, 𝑝) = 0, 𝑚 = 1,… ,𝑀′

(6.14-23)

The Hamiltonian Equations (6.14-23) can be derived from the following variational

principle:

𝛿 ∫ [∑ 𝑞(𝑛)𝑝𝑛

𝑁

𝑛=1

− 𝐻 − ∑ 𝑢(𝑚)𝜙𝑚

𝑀

𝑚=1

]
𝑡2

𝑡1

= 0

(6.14-24)

for arbitrary variations of 𝛿𝑞(𝑛), 𝛿𝑝𝑛, and 𝛿𝑢(𝑚) subject to

𝛿𝑞(𝑡1) = 𝛿𝑞(𝑡2) = 0

where the 𝑢(𝑚) appear now as Lagrange multipliers enforcing the primary constraints

𝜙𝑚(𝑞, 𝑝) = 0, 𝑚 = 1, … ,𝑀.

Let 𝐹(𝑝, 𝑞) be an arbitrary function of the canonical variables, then

𝑑𝐹

𝑑𝑡
= ∑

𝜕𝐹

𝜕𝑞(𝑛)

𝑁

𝑛=1

�̇�𝑛 + ∑
𝜕𝐹

𝜕𝑝𝑛
�̇�𝑛

𝑁

𝑛=1

53

Veritone Corporation

= ∑
𝜕𝐹

𝜕𝑞(𝑛)

𝑁

𝑛=1

[
𝜕𝐻

𝜕𝑝𝑛
+ ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

] + ∑
𝜕𝐹

𝜕𝑝𝑛
[−

𝜕𝐻

𝜕𝑝𝑛
− ∑ 𝑢(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑛

𝑀

𝑚=1

]

𝑁

𝑛=1

= [𝐹, 𝐻] + ∑ 𝑢(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

(6.14-25)

The equation (6.14-25) introduces the new binary operator [∙,∙] which is the Poisson

bracket and has the form

[𝐹, 𝐺] = ∑ [
𝜕𝐹

𝜕𝑞(𝑛)

𝜕𝐺

𝜕𝑝𝑛
+

𝜕𝐹

𝜕𝑝𝑛

𝜕𝐺

𝜕𝑞(𝑛)
]

𝑁

𝑛=1

= ∑ [𝐹𝑞(𝑛)𝐺𝑝𝑛
+ 𝐹𝑝𝑛

𝐺𝑞(𝑛)]

𝑁

𝑛=1

(6.14-26)

6.14.3 Secondary Constraints

The basic consistency condition is that the primary constraints be preserved in time. So for

𝐹(𝑝, 𝑞) = 𝜙𝑚(𝑞, 𝑝)

we should have that �̇�𝑚 = 0. {𝜙𝑚(𝑞, 𝑝) = 0}. So this means

[𝜙𝑚, 𝐻] + ∑ 𝑢(𝑚′)[𝜙𝑚, 𝜙𝑚′]

𝑀′

𝑚′=1

= 0

(6.14-27)

This equation can either reduce to a relation independent of the 𝑢(𝑚′), or, it may impose a

restriction on the 𝑢’s.

𝑢 = −{[𝜙𝑚, 𝜙𝑚′]}[𝜙𝑚, 𝐻](𝑞, 𝑝)

(6.14-28)

In the case (6.14-27) is independent of the 𝑢’s (6.14-27) is called a secondary constraint.

The fundamental difference of secondary constraints with respect to primary constraints is

that primary constraints is that primary constraints are the consequence of the definition (

6.14-8) while secondary constraints depend on the dynamics.

If 𝑋(𝑞, 𝑝) = 0 is an external constraint, we most impose a compatibility condition

54

Veritone Corporation

[𝑋, 𝐻] + ∑ 𝑢(𝑚)[𝑋, 𝜙𝑚] = 0

𝑀′

𝑚=1

(6.14-29)

Next we need to test whether this constraint:

Φ(𝑝, 𝑞) = [𝑋,𝐻] + ∑ 𝑢(𝑚)[𝑋, 𝜙𝑚] = 0

𝑀′

𝑚=1

(6.14-30)

(6.14-31)

Implies new secondary constraints or whether it only restricts the 𝑢’s. After the process is

finished we are left with a number of secondary constraints which will be denoted by

𝜙𝑘 = 0, 𝑘 = 𝑀 + 1,… ,𝑀 + 𝐾

where 𝐾 is the total number of secondary constraints. In general, it will be useful to denote

all the constraints (primary and secondary) in a uniform way as

𝜙𝑗(𝑞, 𝑝) = 0, 𝑗 = 1,… ,𝑀 + 𝐾 = 𝐽

(6.14-32)

We make the same regularity assumptions on the full set of constraints.

6.14.4 Weak and Strong Equations

Equation (6.14-32) can be written as

𝜙𝑗(∙) ≈ 0

(6.14-33)

To emphasize, the quantity 𝜙𝑗 is numerically restricted to be zero but does not vanish

throughout the space. What this is means is that 𝜙𝑗 has non-zero Poisson brackets with the

canonical variables.

Let 𝐹, 𝐺 be functions that coincide on the manifold {𝜙𝑗 ≈ 0|𝑗 = 1,… , 𝐽} are said the be

weakly equal and denoted by 𝐹 ≈ 𝐺. On the other hand, an equation that holds throughout

the entire phase space and not just on the submanifold {𝜙𝑗 ≈ 0} is called strong. Hence, by

theorem 1

55

Veritone Corporation

𝐹 ≈ 𝐺 ⟺ 𝐹 − 𝐺 = ∑𝑐(𝑗)(𝑝, 𝑞)𝜙𝑗

𝐽

𝑗=1

(6.14-34)

6.14.5 Restrictions on the Lagrange Multipliers

Assume that we have found a complete set of constraints

{𝜙𝑗 ≈ 0|𝑗 = 1,… , 𝐽}

(6.14-35)

[𝜙𝑗 , 𝐻] + ∑ 𝑢(𝑚)[𝜙𝑗, 𝜙𝑚]

𝑀

𝑚=1

≈ 0

(6.14-36)

We consider (6.14-36) as a set of non-homogeneous linear equations with 𝑀 ≤ 𝐽

unknowns with coefficients that are functions of the 𝑞’s and 𝑝’s.

The general solution of (6.14-36) for each 𝑗 is of the form

𝑢(𝑚) = 𝑈(𝑚) + 𝑉(𝑚), 𝑚 = 1,… ,𝑀

(6.14-37)

with 𝑉(𝑚) the solution of the homogeneous equation

∑ 𝑉(𝑚)[𝜙𝑗, 𝜙𝑚]

𝑀

𝑚=1

≈ 0

(6.14-38)

The most general solution of (6.14-38) is a linear combination of linearly independent

solutions of 𝑉𝛼
(𝑚)

 where 𝛼 = 1,… , 𝐴 with 𝐴 ≤ 𝑀. Under the assumption that the matrix

[𝜙1, 𝜙1] ⋯ [𝜙1, 𝜙𝑀]
⋮ ⋰ ⋮

[𝜙𝐽, 𝜙1] ⋯ [𝜙𝐽, 𝜙𝑀]

(6.14-39)

is of constant rank, the number of independent solutions 𝐴 is the same for all 𝑝, 𝑞. Thus the

general solution to (6.14-36) can be written as

56

Veritone Corporation

𝑢(𝑚) ≈ 𝑈(𝑚) + ∑ 𝑣(𝛼)𝑉𝛼
(𝑚)

𝐴

𝛼=1

, 𝑚 = 1,… ,𝑀

(6.14-40)

6.14.6 Irreducible and Reducible Cases

If the equations {𝜙𝑗 = 0|𝑗 = 1,… , 𝐽} are not independent, one says that the constraints are

reducible. The system is irreducible when the constraints are independent. However the

separation of constraints into dependent and independent ones might be difficult to

perform. It also may disturb invariance properties under some important symmetry. In

some cases it may be impossible to separate irreducible from irreducible contexts.

Reducible cases arise for example when the dynamical coordinates include p-form gauge

fields.

Any irreducible set of constraints can always be replaced by a reducible set by introducing

constraints ??? of the ones already at hand. The formalism should be invariant under such

replacements.

6.14.7 Total Hamiltonian

We now discuss details of the dynamic equation (6.14-25)

�̇� ≈ [𝐹, 𝐻′ + ∑ 𝑣(𝛼)𝜙𝛼

𝐴

𝛼=1

]

(6.14-41)

where from (6.14-40)

𝐻′ = 𝐻 + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

and

𝜙𝛼 = ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

, 𝛼 = 1,… , 𝐴

(6.14-42)

This is the result of theorem 3 (see below).

Theorem 3.

57

Veritone Corporation

[𝐹, ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

] ≃ ∑ 𝑈(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

(6.14-43)

[𝐹, ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝐴

𝛼=1

] ≃ ∑ 𝑉𝛼
(𝑚)[𝐹, 𝜙𝑚]

𝐴

𝛼=1

(6.14-44)

Proof.

[𝐹, ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

] = ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕

𝜕𝑝𝑖
∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

−
𝜕𝐹

𝜕𝑝𝑖

𝜕

𝜕𝑞(𝑖)
∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

}

𝑁

𝑖=1

= ∑{
𝜕𝐹

𝜕𝑞(𝑖)
[∑

𝜕𝑈(𝑚)

𝜕𝑝𝑖
𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑈(𝑚) 𝜕𝜙𝑚

𝜕𝑝𝑖

𝑀

𝑚=1

]}

𝑁

𝑖=1

− ∑{
𝜕𝐹

𝜕𝑝𝑖
[∑

𝜕𝑈(𝑚)

𝜕𝑞(𝑖)
𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑈(𝑚) 𝜕𝜙𝑚

𝜕𝑞(𝑖)

𝑀

𝑚=1

]}

𝑁

𝑖=1

= ∑{[𝐹, 𝑈(𝑚)]𝜙𝑚 + 𝑈(𝑚)[𝐹, 𝜙𝑚]}

𝑀

𝑚=1

So

[𝐹, ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

] − ∑ 𝑈(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

= ∑[𝐹,𝑈(𝑚)]𝜙𝑚

𝑀

𝑚=1

(6.14-45)

and from (6.14-34) in (6.14-45), (6.14-43) follows. By a similar process we show (

6.14-44). We now prove the validity of (6.14-41).

Theorem 4. Let 𝐹(𝑞, 𝑝) be a regular function, then 𝐹(𝑝, 𝑞) propagates in time according to

the approximate equation (6.14-41).

Proof. From (6.14-25),

𝑑𝐹

𝑑𝑡
= [𝐹,𝐻] + ∑ 𝑢(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

.

(6.14-46)

58

Veritone Corporation

From (6.14-40) into (6.14-46) we obtain,

𝑑𝐹

𝑑𝑡
≈ [𝐹, 𝐻] + ∑ {𝑈(𝑚) + ∑ 𝑣(𝛼)𝑉𝛼

(𝑚)

𝐴

𝛼=1

} [𝐹, 𝜙𝑚]

𝑀

𝑚=1

or

𝑑𝐹

𝑑𝑡
≈ [𝐹,𝐻] + ∑ 𝑈(𝑚)[𝐹, 𝜙𝑚]

𝑀

𝑚=1

+ ∑ ∑ 𝑣(𝛼)𝑉𝛼
(𝑚)[𝐹, 𝜙𝑚]

𝐴

𝛼=1

𝑀

𝑚=1

(6.14-47)

Thus from (6.14-43) and (6.14-44) of theorem 3, we get

𝑑𝐹

𝑑𝑡
≈ [𝐹, 𝐻] + ∑[𝐹,𝑈(𝑚)𝜙𝑚]

𝑀

𝑚=1

+ ∑ 𝑣(𝛼) [𝐹, ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

]

𝐴

𝛼=1

≈ [𝐹, 𝐻 + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑣(𝛼) ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

𝐴

𝛼=1

]

≈ [𝐹, 𝐻′ + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

+ ∑ 𝑣(𝛼)𝜙𝛼

𝐴

𝛼=1

]

(6.14-48)

with

𝐻′ = 𝐻 + ∑ 𝑈(𝑚)𝜙𝑚

𝑀

𝑚=1

(6.14-49)

𝜙𝛼 = ∑ 𝑉𝛼
(𝑚)

𝜙𝑚

𝑀

𝑚=1

(6.14-50)

Now define

𝐻𝑇 = 𝐻′ + ∑ 𝑣(𝛼)𝜙𝛼

𝐴

𝛼=1

.

(6.14-51)

So we obtain

59

Veritone Corporation

𝑑𝐹

𝑑𝑡
≈ [𝐹,𝐻𝑇]

(6.14-52)

6.14.8 First and Second Class Functions

The distinction between primary and secondary constraints is of little importance. We now

consider a fundamental classification. It depends on the concept of first class and second

class functions.

Definition 1. A function 𝐹(𝑞, 𝑝) is said to be first class if its Poisson bracket with every

constraint vanishes weakly, [𝐹, 𝜙𝑗] ≈ 0, 𝑗 = 1,… , 𝐽. A function of the canonical variables

that is not first class is called second class. Thus 𝐹 is second class if [𝐹, 𝜙𝑘] ≉ 0 for at least

one 𝑘, 𝑘 = 1,… ,𝑀.

Theorem 5. If F and G are first class functions, then their Poisson bracket is also a first

class function.

Proof: By Hypothesis,

[𝐹, 𝜙𝑗] = ∑ 𝑓𝑗
(𝑘)

𝜙𝑘

𝑀

𝑘=1

(6.14-53)

[𝐺, 𝜙𝑗] = ∑𝑔𝑗
(𝑙)𝜙𝑙

𝑀

𝑙=1

(6.14-54)

Applying the Jacobi identity, we get

[[𝐹, 𝐺], 𝜙𝑗] = [𝐹, [𝐺, 𝜙𝑗]] − [𝐺, [𝐹, 𝜙𝑗]]

= [𝐹,∑𝑔𝑗
(𝑙)𝜙𝑙

𝑀

𝑙=1

] − [𝐺, ∑ 𝑓𝑗
(𝑘)

𝜙𝑘

𝑀

𝑘=1

]

= ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕

𝜕𝑝𝑖
∑𝑔𝑗

(𝑙)𝜙𝑙

𝑀

𝑙=1

−
𝜕𝐹

𝜕𝑝𝑖

𝜕

𝜕𝑞(𝑖)
∑𝑔𝑗

(𝑙)𝜙𝑙

𝑀

𝑙=1

}

𝑖

−∑{
𝜕𝐺

𝜕𝑞(𝑛)

𝜕

𝜕𝑝𝑛
∑ 𝑓𝑗

(𝑘)
𝜙𝑘

𝑀

𝑘=1

−
𝜕𝐺

𝜕𝑝𝑛

𝜕

𝜕𝑞(𝑛)
∑ 𝑓𝑗

(𝑘)
𝜙𝑘

𝑀

𝑘=1

}

𝑛

60

Veritone Corporation

= ∑{
𝜕𝐹

𝜕𝑞(𝑖)
∑{

𝜕𝑔𝑗
(𝑙)

𝜕𝑝𝑖
𝜙𝑙 + 𝑔𝑗

(𝑙) 𝜕𝜙𝑙

𝜕𝑝𝑖
}

𝑀

𝑙=1

−
𝜕𝐹

𝜕𝑝𝑖
∑{

𝜕𝑔𝑗
(𝑙)

𝜕𝑞(𝑖)
𝜙𝑙 + 𝑔𝑗

(𝑙) 𝜕𝜙𝑙

𝜕𝑞(𝑖)
}

𝑀

𝑙=1

}

𝑖

−∑{
𝜕𝐺

𝜕𝑞(𝑛)
∑ {

𝜕𝑓𝑗
(𝑘)

𝜕𝑝𝑛
𝜙𝑘 + 𝑓𝑗

(𝑘) 𝜕𝜙𝑘

𝜕𝑝𝑛
}

𝑀

𝑘=1

−
𝜕𝐺

𝜕𝑝𝑛
∑ {

𝜕𝑓𝑗
(𝑘)

𝜕𝑞(𝑛)
𝜙𝑘 + 𝑓𝑗

(𝑘) 𝜕𝜙𝑘

𝜕𝑞(𝑛)
}

𝑀

𝑘=1

}

𝑛

= ∑{𝜙𝑙 ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕𝑔𝑗
(𝑙)

𝜕𝑝𝑖
−

𝜕𝐹

𝜕𝑝𝑖

𝜕𝑔𝑗
(𝑙)

𝜕𝑞(𝑖)
} + 𝑔𝑗

(𝑙) ∑{
𝜕𝐹

𝜕𝑞(𝑖)

𝜕𝜙𝑙

𝜕𝑞(𝑖)
−

𝜕𝐹

𝜕𝑝𝑖

𝜕𝜙𝑙

𝜕𝑝𝑖
}

𝑖𝑖

}

𝑀

𝑙=1

− ∑ {𝜙𝑘 ∑{
𝜕𝐺

𝜕𝑞(𝑛)

𝜕𝑓𝑗
(𝑘)

𝜕𝑝𝑛
−

𝜕𝐺

𝜕𝑝𝑛

𝜕𝑓𝑗
(𝑘)

𝜕𝑞(𝑛)
}

𝑛

+ 𝑓𝑗
(𝑘)

∑{
𝜕𝐺

𝜕𝑞(𝑛)

𝜕𝜙𝑘

𝜕𝑝𝑛
−

𝜕𝐺

𝜕𝑝𝑛

𝜕𝜙𝑘

𝜕𝑞(𝑛)
}

𝑛

}

𝑀

𝑘=1

= ∑{𝜙𝑙[𝐹, 𝑔𝑗
(𝑙)] + 𝑔𝑗

(𝑙)[𝐹, 𝜙𝑙]} −

𝑀

𝑙=1

∑ {𝜙𝑘[𝐺, 𝑓𝑗
(𝑘)

] + 𝑓𝑗
(𝑘)[𝐺, 𝜙𝑘]}

𝑀

𝑘=1

= ∑[𝐹, 𝑔𝑗
(𝑙)]𝜙𝑙 − ∑[𝐺, 𝑓𝑗

(𝑘)
]𝜙𝑘

𝑀

𝑘=1

+ ∑ {∑𝑔𝑗
(𝑙)𝑓𝑙

(𝑙′)
𝑀

𝑙=1

} 𝜙𝑙′

𝑀

𝑙′=1

𝑀

𝑙=1

− ∑ {∑ 𝑓𝑗
(𝑘)

𝑔𝑘′
𝑘

𝑀

𝑘=1

} 𝜙𝑘′

𝑀

𝑘′=1

≈ 0

We now use theorem 5 to show the following.

Theorem 6. 𝐻′ defined by (6.14-49) and 𝜙𝛼 defined by (6.14-50) are first class

functions.

Proof: This follows directly from (6.14-36) and (6.14-38).

We learn from theorem 6 that the total Hamiltonian defined by (6.14-51) is the sum of the

first class Hamiltonian 𝐻′ and the first class primary constraints 𝜙𝛼 multiplied by arbitrary

coefficients.

6.14.9 First Class Constraints as Generators of Gauge Transformations

Gauge transformations are transformations that do not change the physical state.

The presence of arbitrary functions of time 𝑣(𝛼), 𝛼 = 1,… , 𝐴 in the total Hamiltonian, 𝐻𝑇

(see (6.14-51)) imply that not all the 𝑞’s and 𝑝’s are observable given a set of 𝑞’s and 𝑝’s

where the state of the physical system is uniquely determined. However the converse is

not true: there is more than one set of values of the canonical variables that defines a state.

To illustrate this, we see that if we give an initial set of values of physical state at time 𝑡, we

expect the equations of motion to fully determine the state at other times. Thus any

ambiguity in the value of the canonical variables at 𝑡2 ≠ 𝑡1 should be irrelevant from the

physical point of view.

61

Veritone Corporation

6.15 A Derivation Example

We propose here an alternate formulation of Dirac’s formalism.

6.15.1 Primary Constraints

Recall that the momenta, canonically conjugate to the generalized “coordinates” 𝑞(𝑗), 𝑗 =

1, … , 𝑁 is given by

𝑝𝑗 =
𝜕𝐿(𝑞, �̇�)

𝜕�̇�(𝑗)
, 𝑗 = 1, … , 𝑁.

(E -- 1)

For non-singular systems the equations in allows us to express �̇�(𝑗), 𝑗 = 1,… ,𝑁 in terms of

the canonical variables,

�̇�(𝑖) = 𝑓𝑖(𝑞, 𝑝), 𝑖 = 1,… ,𝑁

(E -- 2)

By performing a Legendre transformation

𝐻𝑐(𝑝, 𝑞) = ∑𝑝𝑖𝑓(𝑞, 𝑝)

𝑁

𝑖=1

+ 𝐿(𝑞, 𝑓(𝑝, 𝑞))

We obtain the Hamiltonian of the system 𝐻𝑐. And from this function we obtain the

standard equations of motion of the system.

�̇� =
𝜕𝐻𝑐

𝜕𝑝

�̇� = −
𝜕𝐻𝑐

𝜕𝑞

(E -- 3)

For (E -- 2) to be well-defined we need to have the Hessian W of satisfy

det 𝑊 ≠ 0

(E -- 4)

In this case the accelerations �̈�(𝑖) are uniquely determined by the 𝑞(𝑗) and �̇�(𝑖).

When det𝑊 ≠ 0, the Hamiltonian equations of motion do not take the standard form, and

we speak of a singular Lagrangian. For illustration purposes, consider a Lagrangian of the

form

62

Veritone Corporation

𝐿(𝑞, �̇�) =
1

2
∑∑𝑊𝑖𝑗(𝑞)�̇�(𝑖)�̇�(𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+ ∑𝜂𝑖(𝑞)�̇�(𝑖)

𝑁

𝑖=1

− 𝑉(𝑞)

(E -- 5)

with 𝑊 a symmetric matrix. From (E -- 1), the canonical momentum for (E -- 5) is given

by

𝑝𝑖 =
1

2
∑𝑊𝑖𝑗(𝑞)�̇�(𝑗)

𝑁

𝑗=1

+ 𝜂𝑖(𝑞), 𝑖 = 1,… , 𝑛.

(E -- 6)

If 𝑊 is singular of rank 𝑅𝑊, then it possesses 𝑁 − 𝑅𝑊 eigenvectors with corresponding zero

eigenvalues. Then for eigenvectors 𝑣𝑗
(𝛼)

∑𝑊𝑖𝑗(𝑞)𝑣𝑗
(𝛼)(𝑞)

𝑁

𝑗=1

= 0, 𝛼 = 1, … , 𝑁 − 𝑅𝑊

So pre-multiplying (E -- 6) by 𝑣𝑗
(𝛼)

 and summing over 𝑖 we get

∑𝑣𝑖
(𝛼)(𝑞)

𝑁

𝑖=1

𝑝𝑖 = ∑∑(𝑣𝑖
(𝛼)(𝑞)𝑊𝑖𝑗(𝑞)�̇�(𝑗))

𝑁

𝑗=1

+ 𝑣𝑖
(𝛼)(𝑞)𝜂𝑖(𝑞)

𝑁

𝑖=1

= ∑𝑣𝑖
(𝛼)(𝑞)𝜂𝑖(𝑞)

𝑁

𝑖=1

, 𝛼 = 1,… ,𝑁 − 𝑅𝑊

So

∑𝑣𝑖
(𝛼)(𝑞)

𝑁

𝑖=1

(𝑝𝑖 − 𝜂𝑖(𝑞)) = 0, 𝛼 = 1,… ,𝑁 − 𝑅𝑊.

(E -- 7)

Let {𝑝𝛼}, 𝛼 = 1,… ,𝑁 − 𝑅𝑊 , denote the linearly dependent elements of 𝑝. Let {𝑝𝛼}, 𝑎 =

1, … , 𝑅𝑎 be the momenta satisfying (E -- 1). Then the constraint equations are of the form

∑ 𝑀𝛼𝛽(𝑞)𝑝𝛽

𝑁−𝑅𝑊

𝛽=1

− 𝐹𝛼(𝑞, {𝑝𝑎}) = 0, 𝛼 = 1,… ,𝑁 − 𝑅𝑊

(E -- 8)

63

Veritone Corporation

𝑀𝛼𝛽(𝑞) = 𝑣𝛽
(𝛼)

and

𝐹𝛼(𝑞, {𝑝𝛽}) = ∑𝑣𝑖
(𝛼)(𝑞)𝜂𝑖(𝑞)

𝑁

𝑖=1

+ ∑ 𝑣𝑏
(𝛼)(𝑞)𝑝𝑏

𝑅𝑊

𝑏=1

(E -- 9)

The matrix {𝑀𝛼𝛽} is necessarily invertible because otherwise M would possess

eigenvectors with zero eigenvalues, implying existence of additional constraints.

Note that (E -- 8) can be written as

𝑝𝛼 − 𝑔𝛼(𝑞, {𝑝𝑎}) = 0, 𝛼 = 1, … , 𝑁 − 𝑅𝑊

with

𝑔𝛼(𝑞, {𝑝𝑎}) = ∑ 𝑀𝛼𝛽
−1𝐹𝛽(𝑞, {𝑝𝑎})

𝑁−𝑅𝑊

𝛽=1

 (E -- 10)

with dim{𝑝𝑎} = 𝑅𝑊. So we can define,

𝜙𝛼(𝑞, 𝑝) = 𝑝𝛼 − 𝑔𝛼(𝑞, {𝑝𝑎}) = 0, 𝛼 = 1,… ,𝑁 − 𝑅𝑊

 (E -- 11)

In Dirac’s terminology, constraints of the form of (E -- 11) are referred to as primary

constraints. Although the derivation above is based on a Lagrangian, quadratic in the

velocity terms, it is generally valid for Lagrangians which depend on 𝑞 and �̇� but not on

higher derivatives.

Note: Primary constraints follow exclusively from the definition of canonical momenta.

The derivation above is valid for general Lagrangians and their Hessian. Let’s assume

{𝑊𝑖𝑗(𝑞, �̇�)} is the Hessian of a given Lagrangian 𝐿. Let {𝑊𝑎𝑏|𝑎, 𝑏 = 1,… , 𝑅𝑊} be the largest

sub-matrix of {𝑊𝑖𝑗} with suitable rearrangement if necessary. We then solve (E -- 1) for

𝑅𝑊 velocities �̇�(𝑎) in terms of {𝑞(𝑖)|𝑖 = 1,… , 𝑛}, {𝑝𝑎|𝑎 = 1,… , 𝑅𝑊} and

{𝑞(𝛼)|𝛼 = 1,… ,𝑁 − 𝑅𝑊}. That is

�̇�(𝑎) = 𝑓𝑎(𝑞, {𝑝𝑏}, {�̇�
(𝛽)})

(E -- 12)

64

Veritone Corporation

with 𝑎, 𝑏 = 1,… , 𝑅𝑊 and 𝛽 = 𝑅𝑊 + 1,… ,𝑁.

Inserting these relations into (E -- 1), we get relations of the form

𝑝𝑗 = ℎ𝑗(𝑞, {𝑝𝑎}, {�̇�(𝛼)})

(E -- 13)

with 𝑎, 𝑗 = 1,… , 𝑅𝑊 and 𝛼 = 𝑅𝑊 + 1,… ,𝑁. This relation reduces to an identity by

construction. The remaining equations are of the form

𝑝𝛼 = ℎ𝛼(𝑞, {𝑝𝑎}, {�̇�(𝛽)})

(E -- 14)

with 𝛼 = 1,… ,𝑁 − 𝑅𝑊. However, the right hand side cannot depend on {�̇�(𝛽)} since

otherwise we could express more velocities in terms of the momenta of the coordinates of

the momenta and the remaining velocities.

6.16 Hamiltonian Equations of Motion for Constrained Systems

Theorem 6.16.1. In the space Γ𝑝 define by Γ𝑝 = {𝜙𝛼(𝑝, 𝑞)|𝛼 = 1,… ,𝑁 − 𝑅𝑊} where 𝜙𝛼 is

defined as (E -- 11). The Hamiltonian is only a function of {𝑞(𝑖)|𝑖 = 1,… ,𝑁} and momenta

{𝑝𝑎|𝑎 = 1,… , 𝑅𝑊} and does not depend on {�̇�(𝛼)|𝛼 = 1,… ,𝑁 − 𝑅𝑊}

Proof. On Γ𝑝 the Hamiltonian is given by

𝐻𝑜 = 𝐻𝑐|Γ𝑝
= ∑ 𝑝𝑎𝑓𝑎

𝑅𝑊

𝑎=1

− ∑ 𝑔𝛼�̇�(𝛼)

𝑁−𝑅𝑊

𝛼=1

− 𝐿(𝑞, {𝑓𝑏}, {�̇�
(𝛽)})

(E -- 15)

where 𝑓𝑎 , 𝑎 = 1, … , 𝑁 − 𝑅𝑊 is given by (E -- 12) and 𝑔𝛼, 𝛼 = 1,… , 𝑅𝑊 is given by (E -- 10).

We want to show that 𝐻𝑜 does not depend on �̇�(𝛽), 𝛽 = 1,… ,𝑁 − 𝑅𝑊. We compute

𝜕𝐻𝑜

𝜕�̇�(𝛽)
= ∑ 𝑝𝑎

𝜕𝑓𝑎

𝜕�̇�(𝛽)

𝑅𝑊

𝑎=1

− 𝑔𝛽 − ∑
𝜕𝐿

𝜕�̇�(𝑎)
|
�̇�(𝑎)=𝑓𝑎

𝜕𝑓𝑎

𝜕�̇�(𝛽)
−

𝜕𝐿

𝜕�̇�(𝛽)
|
�̇�(𝑎)=𝑓𝑎

𝑅𝑊

𝑎=1

= ∑ (𝑝𝑎 −
𝜕𝐿

𝜕�̇�(𝑎)
|
�̇�(𝑎)=𝑓𝑎

)
𝜕𝑓𝑎

𝜕�̇�(𝛽)

𝑅𝑊

𝑎=1

− 𝑔𝛽 −
𝜕𝐿

𝜕�̇�(𝛽)
|
�̇�(𝑎)=𝑓𝑎

(E -- 16)

Since by definition

65

Veritone Corporation

𝑝𝑎 =
𝜕𝐿

𝜕�̇�(𝑎)
, 𝑎 = 1,… , 𝑅𝑊

And from (E -- 11)

𝑔𝛽 = 𝑝𝛽 =
𝜕𝐿

𝜕�̇�(𝛽)
|
�̇�𝑎=𝑓𝑎

.

So

𝜕𝐻𝑜

𝜕�̇�(𝛽)
= 0, 𝛽 = 1,… ,𝑁 − 𝑅𝑊.

(E -- 17)

and therefore

𝐻𝑜(𝑞, {𝑝𝑎}, {�̇�(𝑎)}) = 𝐻𝑜(𝑞, {𝑝𝑎}).

Theorem 6.16.2. In the presence of primary constraints (E -- 11), the Hamilton equations

of motion are given by

�̇�(𝑖) =
𝜕𝐻𝑜

𝜕𝑝𝑖
+ ∑ �̇�(𝛽)

𝜕𝜙𝛽

𝜕𝑝𝑖

𝑁

𝛽=1

, 𝑖 = 1,… ,𝑁

�̇�𝑖 = −
𝜕𝐻𝑜

𝜕𝑞(𝑖)
+ ∑ �̇�(𝛽)

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝑛

𝛽=1

, 𝑖 = 1, … , 𝑁

𝜙𝛼(𝑝, 𝑞) = 0, 𝛼 = 1,… ,𝑁 − 𝑅𝑊

(E -- 18)

where �̇�(𝛽) are a priori underdetermined velocities.

Proof: From (E -- 15) we obtain and the application of Theorem 6.16.1

𝜕𝐻𝑜

𝜕𝑝𝑎
= 𝑓𝑎 + ∑ 𝑝𝑏

𝜕𝑓𝑏
𝜕𝑝𝑎

𝑅𝑊

𝑏=1

+ ∑
𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

− ∑
𝜕𝐿

𝜕�̇�(𝑏)

𝜕𝑓𝑏
𝜕𝑝𝑎

𝑅𝑊

𝑏=1

= �̇�(𝑎) + ∑ (𝑝𝑏 −
𝜕𝐿

𝜕�̇�(𝑏)
)

𝜕𝑓𝑏
𝜕𝑝𝑎

𝑅𝑊

𝑏=1

+ ∑
𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

= �̇�(𝑎) + ∑
𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

(E -- 19)

66

Veritone Corporation

with 𝑎 = 1,… , 𝑛 − 𝑅𝑊. Further

𝜕𝐻𝑜

𝜕𝑞(𝑖)
= ∑ 𝑝𝑏

𝜕𝑓𝑏

𝜕𝑞(𝑖)

𝑅𝑊

𝑏=1

+ ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝜕𝐿

𝜕𝑞(𝑖)
|
�̇�𝑎=𝑓𝑎

− ∑
𝜕𝐿

𝜕�̇�𝑏
|
�̇�𝑏=𝑓𝑏

𝜕𝑓𝑏

𝜕𝑞(𝑖)

𝑅𝑊

𝑏=1

= ∑ (𝑝𝑏 −
𝜕𝐿

𝜕�̇�(𝑏)
|
�̇�(𝑏)=𝑓𝑏

)
𝜕𝑓𝑏

𝜕𝑞(𝑖)

𝑅𝑊

𝑏=1

+ ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝜕𝐿

𝜕𝑞(𝑖)
|
�̇�(𝑎)=𝑓𝑎

= ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝜕𝐿

𝜕𝑞(𝑖)
|
�̇�(𝑎)=𝑓𝑎

= ∑ �̇�(𝛽)
𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

−
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�(𝑖)
)|

�̇�(𝑎)=𝑓𝑎

(E -- 20)

from (add reference).

𝜕𝐻𝑜

𝜕𝑞(𝑖)
= −�̇�𝑖 + ∑ �̇�(𝛽)

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

(E -- 21)

From (E -- 19) and (E -- 20) we get:

�̇�(𝑎) =
𝜕𝐻𝑜

𝜕𝑝𝑎
− ∑

𝜕𝑔𝛽

𝜕𝑝𝑎
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

, 𝑎 = 1,… , 𝑅𝑊

�̇�𝑖 = −
𝜕𝐻𝑜

𝜕𝑞(𝑖)
+ ∑ �̇�(𝛽)

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑛−𝑅𝑊

𝛽=1

, 𝑖 = 1, … , 𝑁

(E -- 22)

Since
𝜕𝐻𝑜

𝜕𝑝𝛼
= 0 and

𝜕𝜙𝛽

𝜕𝑝𝑎
= 𝛿𝛽𝛼 we can supplement these equations with

�̇�(𝛼) =
𝜕𝐻𝑜

𝜕𝑝𝛼
− ∑

𝜕𝑔𝛽

𝜕𝑝𝛼
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

, 𝛼 = 1,… ,𝑁 − 𝑅𝑊

(E -- 23)

So we can write

67

Veritone Corporation

�̇�(𝑖) =
𝜕𝐻𝑜

𝜕𝑝𝑖
+ ∑

𝜕𝑔𝛽

𝜕𝑝𝑖
�̇�(𝛽)

𝑁−𝑅𝑊

𝛽=1

, 𝑖 = 1,… ,𝑁

�̇�𝑖 = −
𝜕𝐻𝑜

𝜕𝑞(𝑖)
− ∑ �̇�(𝛽)

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝑁−𝑅𝑊

𝛽=1

, 𝑖 = 1,… , 𝑁

(E -- 24)

For consistency with (E -- 11) we should write

�̇�(𝛼) =
𝑑

𝑑𝑡
− 𝑔𝛼(𝑞, {𝑝𝑎}), 𝛼 = 1,… ,𝑁 − 𝑅𝑊

(E -- 25)

where �̇�𝛼 is given by the right hand side of (E -- 22).

6.16.1 Streamlining the Hamiltonian equation of motion (EOM)

Definition 6.16-1. A function 𝑓 is weakly equal to 𝑔 denoted by 𝑓 ≈ 𝑔, if 𝑓 and 𝑔 are equal

on the subspace defined by the primary constraints,

𝜙𝛽 = 0 when 𝑓|Γ𝑝
= 𝑔|Γ𝑝

and

𝑓(𝑞, 𝑝) ≈ 𝑔(𝑞, 𝑝) ⟺ 𝑓(𝑞, 𝑝) = 𝑔(𝑞, 𝑝) when {𝜙𝛼(𝑞, 𝑝) = 0}

Theorem 6.16.3. Assume 𝑓, 𝑔 are defined over the entire space spanned by {𝑞(𝑖)}, {𝑝𝑖}.

Then if

𝑓(𝑞, 𝑝)|Γ𝑝
= 𝑔(𝑞, 𝑝)|Γ𝑝

(E -- 26)

Then

𝜕

𝜕𝑞(𝑖)
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑞(𝑖)
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

)

and

𝜕

𝜕𝑝𝑖
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑝
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

)

68

Veritone Corporation

(E -- 27)

for 𝑖 = 1,…𝑁.

Proof: Consider the two functions 𝑓(𝑞, {𝑝𝑎}, {𝑝𝛽}) and ℎ(𝑞, {𝑝𝑎}, {𝑝𝛽}). Using (E -- 11) and

from the hypothesis of the theorem,

𝑓(𝑞, {𝑝𝑎}, {𝑔𝛼}) = ℎ(𝑞, {𝑝𝑎}, {𝑔𝛼})

(E -- 28)

Thus is follows

(
𝜕𝑓

𝜕𝑞(𝑖)
+ ∑

𝜕𝑓

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑞(𝑖)

𝑎

+ ∑
𝜕𝑓

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝑝

= (
𝜕ℎ

𝜕𝑞(𝑖)
+ ∑

𝜕ℎ

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑞(𝑖)

𝑎

+ ∑
𝜕ℎ

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝑝

(E -- 29)

and

(
𝜕𝑓

𝜕𝑝𝑖
+ ∑

𝜕𝑓

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑝𝑖
𝑎≠𝑖

+ ∑
𝜕𝑓

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑝𝑖
𝛽

)

Γ𝛽

= (
𝜕ℎ

𝜕𝑝𝑖
+ ∑

𝜕ℎ

𝜕𝑝𝑎

𝜕𝑝𝑎

𝜕𝑝𝑖
𝑎≠𝑖

+ ∑
𝜕ℎ

𝜕𝑝𝛽

𝜕𝑔𝛽

𝜕𝑝𝑖
𝛽

)

Γ𝛽

(E -- 30)

Note since 𝜙𝛼(𝑞, 𝑝) = 𝑝𝛼 − 𝑔𝛼(𝑞, {𝑝𝑎}), we have

𝜕𝑔𝛽

𝜕𝑞(𝑖)
= −

𝜕𝜙𝛽(𝑞, 𝑝)

𝜕𝑞(𝑖)

and

𝜕𝑔𝛽

𝜕𝑝𝑖
= −

𝜕𝜙𝛽(𝑞, 𝑝)

𝜕𝑝𝑖

and

𝜕𝜙𝛼(𝑞, 𝑝) = 0

for 𝛼 = 1, … , 𝑁 − 𝑅𝑊 . We have

(
𝜕𝑓

𝜕𝑞(𝑖)
− ∑

𝜕𝑓

𝜕𝑝𝛽

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝑝

= (
𝜕ℎ

𝜕𝑞(𝑖)
− ∑

𝜕ℎ

𝜕𝑝𝛽

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

)

Γ𝛽

which can be written as

69

Veritone Corporation

𝜕

𝜕𝑞(𝑖)
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑞(𝑖)
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

)

since 𝜙𝛽
𝜕2𝑓

𝜕𝑝𝛽
2⁄ = 0 because 𝜙𝛽 = 0. Similarly,

𝜕

𝜕𝑝𝑖
(𝑓 − ∑𝜙𝛽

𝜕𝑓

𝜕𝑝𝛽
𝛽

) ≃
𝜕

𝜕𝑝𝑖
(ℎ − ∑𝜙𝛽

𝜕ℎ

𝜕𝑝𝛽
𝛽

)

Corrolary 6.16-1.

�̇�(𝑖) =
𝜕𝐻

𝜕𝑝𝑖
+ ∑𝑣(𝛽)

𝜕𝜙𝛽

𝜕𝑝𝑖
𝛽

�̇�𝑖 = −
𝜕𝐻

𝜕𝑞(𝑖)
− ∑𝑣(𝛽)

𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

for 𝑖 = 1,… ,𝑁.

Proof. We consider two Hamiltonians 𝐻({𝑞(𝑖)}, {𝑝𝑖}) and 𝐻𝑜({𝑞
(𝑖)}, {𝑝𝑎}). Define

𝐻({𝑞(𝑖)}, {𝑝𝑖}) as follows

𝐻({𝑞(𝑖)}, {𝑝𝑖}) ≈ 𝐻𝑜({𝑞
(𝑖)}, {𝑝𝑎}).

Then using the result of Theorem 6.16.1, from (E -- 29) with 𝑓 = 𝐻 and ℎ = 𝐻𝑜

𝜕𝐻𝑜

𝜕𝑞(𝑖)
≈

𝜕

𝜕𝑞(𝑖)
(𝐻 − ∑ 𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽

𝑁−𝑅𝑊

𝛽=1

)

(E -- 31)

𝜕𝐻𝑜

𝜕𝑝𝑖
≈

𝜕

𝜕𝑝𝑖
(𝐻 − ∑ 𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽

𝑁−𝑅𝑊

𝛽=1

)

(E -- 32)

Using (E -- 31) and (E -- 32) in (E -- 24), we get

70

Veritone Corporation

�̇�(𝑖) ≈
𝜕

𝜕𝑝𝑖
(𝐻 − ∑ 𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽
𝛽

) + ∑�̇�(𝛽)
𝜕𝜙𝛽

𝜕𝑝𝑖
𝛽

and

�̇�𝑖 ≈ −
𝜕

𝜕𝑞(𝑖)
(𝐻 − ∑𝜙𝛽

𝜕𝐻

𝜕𝑝𝛽
𝛽

) − ∑�̇�(𝛽)
𝜕𝜙𝛽

𝜕𝑞(𝑖)

𝛽

or

�̇�(𝑖) ≈
𝜕

𝜕𝑝𝑖
(𝐻 − ∑𝜙𝛽 (

𝜕𝐻

𝜕𝑝𝛽
− �̇�(𝛽))

𝛽

)

and

�̇�𝑖 ≈ −
𝜕

𝜕𝑞(𝑖)
(𝐻 − ∑𝜙𝛽 (

𝜕𝐻

𝜕𝑝𝛽
− �̇�(𝛽))

𝛽

)

(E -- 33)

Define

𝑣𝛽 ≡ �̇�(𝛽) −
𝜕𝐻

𝜕𝑝𝛽

𝐻𝑇 ≡ 𝐻 + ∑𝑣(𝛽)

𝛽

𝜙𝛽

So (E -- 33) becomes

�̇�(𝑖) ≈
𝜕𝐻𝑇

𝜕𝑝𝑖

�̇�𝑖 ≈ −
𝜕𝐻𝑇

𝜕𝑞(𝑖)

(E -- 34)

71

Veritone Corporation

6.17 Constrained Hamiltonian Systems

Local symmetries on a Lagrangian based model. Consider

𝑞(𝑖) ⟶ 𝑞(𝑖)(𝑡) + 𝛿𝑞(𝑖)(𝑡)

�̇�(𝑖) ⟶ �̇�(𝑖)(𝑡) + 𝛿�̇�(𝑖)(𝑡)

with 𝑖 = 1,… ,𝑁. The action of the system is given by

𝑆(𝑞, �̇�) = ∫𝐿(𝑞, �̇�)𝑑𝑡

where 𝑞 and �̇� are 𝑛-dimensional column vectors. The action differential

𝛿𝑆 = ∫𝐿(𝑞 + 𝛿𝑞, �̇� + 𝛿�̇�)𝑑𝑡 − ∫𝐿(𝑞, �̇�)𝑑𝑡

= ∫𝐿(𝑞 + 𝛿𝑞, �̇� + 𝛿�̇�)𝑑𝑡 − ∫𝐿(𝑞, �̇�)𝑑𝑡

= ∫[∑
𝜕𝐿

𝜕𝑞(𝑖)
𝛿𝑞(𝑖)

𝑖

+ ∑
𝜕𝐿

𝜕�̇�(𝑖)
𝛿�̇�(𝑖)

𝑖

] 𝑑𝑡

= −∫∑[
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�(𝑖)
−

𝜕𝐿

𝜕𝑞(𝑖)
]

𝑖

𝛿𝑞(𝑖)𝑑𝑡

= −∑𝑑𝑡 ∑𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�)

𝑖

𝛿𝑞(𝑖)

where we define the Euler-Lagrange differential operator

𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�) =

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�(𝑖)
−

𝜕𝐿

𝜕𝑞(𝑖)
.

Note that

∫∑𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�)𝛿𝑞(𝑖)𝑑𝑡

𝑁

𝑖=1

≡ 0

(6.17-1)

on shell. Expanding 𝐸𝑖
(𝑜)

𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�) = ∑[

𝜕2𝐿(𝑞, �̇�)

𝜕�̇�(𝑖)𝜕�̈�(𝑗)
�̈�(𝑗) +

𝜕2𝐿(𝑞, �̇�)

𝜕�̇�(𝑖)𝜕𝑞(𝑗)
�̇�(𝑖)]

𝑗

−
𝜕𝐿(𝑞, �̇�)

𝜕𝑞(𝑖)

= ∑𝑊𝑖𝑗(𝑞, �̇�)�̈�(𝑗) +

𝑗

∑
𝜕2𝐿(𝑞, �̇�)

𝜕�̇�(𝑖)𝜕𝑞(𝑗)
�̇�(𝑖)

𝑗

−
𝜕𝐿(𝑞, �̇�)

𝜕𝑞(𝑖)

72

Veritone Corporation

= ∑𝑊𝑖𝑗(𝑞, �̇�)�̈�(𝑗) +

𝑗

𝑘𝑖(𝑞, �̇�)

If 𝐿 is singular, 𝑊(𝑁×𝑁) is not invertible so (6.17-1) cannot be solved for �̈�𝑖, 𝑖 = 1,… ,𝑁. If

Rank(𝑊(𝑞, �̇�)) = 𝑅𝑊 on shell, then there exist 𝑁 − 𝑅𝑊 in the theory. There exist 𝑁 − 𝑅𝑊

independent left (or right) zero mode eigenvectors 𝑤𝑖
(𝑜,𝑘)

, 𝑖 = 1, … , 𝑁 − 𝑅𝑊 such that

∑𝑤𝑖
(𝑜,𝑘)(𝑞, �̇�)𝑊𝑖𝑗(𝑞, �̇�)

𝑖

= 0, 𝑘 = 1,… ,𝑁 − 𝑅𝑊

(6.17-2)

Thus

𝜙(𝑜,𝑘) = ∑𝑤𝑖
(𝑜,𝑘)(𝑞, �̇�)𝐸𝑖

(𝑜)(𝑞, �̇�, �̈�)

𝑁

𝑖=1

depend on 𝑞 and �̇� only. The 𝜙(𝑜,𝑘) also vanish on shell:

𝜙(𝑜,𝑘)(𝑞, �̇�) = 0, 𝑘 = 1,… ,𝑁 − 𝑅𝑊

The set {𝜙(𝑜,𝑘)|𝑘 = 1,… ,𝑁 − 𝑅𝑊} are the zero generation constraints. It is possible that not

all the {𝜙(𝑜,𝑘)} are linearly independent. So we may find linear combinations of the zero

mode eigenvectors

𝑣𝑖
(𝑜,𝑛𝑜)

= ∑𝑐𝑘
(𝑛𝑜)

𝑤𝑖
(𝑜,𝑘)

𝑘

such that we have

𝐺(𝑜,𝑛𝑜) = 𝑣(𝑜,𝑛𝑜)𝐸(𝑜) ≡ 0, 𝑛𝑜 , … , 𝑁𝑜

(6.17-3)

These are called gauge identities.

Any variation 𝛿𝑞𝑖, 𝑖 = 1,… ,𝑁, of the form

𝛿𝑞𝑖 = ∑𝜀𝑛𝑜
𝑣𝑖

(𝑜,𝑛𝑜)

𝑛𝑜

Is action invariant by (6.17-1). Given this definition of 𝛿𝑞𝑖 and (6.17-3), we conclude

73

Veritone Corporation

𝛿𝑆 = ∫𝑑𝑡 ∑𝐸𝑖
(𝑜)(𝑞, �̇�, �̈�)∑𝜀𝑛𝑜

(𝑡)𝑣𝑖
(𝑜,𝑛𝑜)

𝑛𝑜

𝑁

𝑖=1

= ∫𝑑𝑡 ∑𝜀𝑛𝑜
∑𝐸𝑖

(𝑜)(𝑞, �̇�, �̈�)𝑣𝑖
(𝑜,𝑛𝑜)

(𝑞, �̇�)

𝑛𝑜

𝑁

𝑖=1

= ∫𝑑𝑡 ∑𝜀𝑛𝑜
𝐺(𝑜,𝑛𝑜)

𝑁

𝑖=1

≡ 0

everywhere. The remaining zero generating modes which we denote by 𝑢(𝑜,𝑛𝑜) lead to

genuine constraints. They are of the form 𝜙(𝑜,𝑛𝑜)(𝑞, �̇�) = 0 on shell, where

𝜙(𝑜,𝑛𝑜) = 𝑢(𝑜,𝑛𝑜)𝐸(𝑜).

(6.17-4)

The algorithm now proceeds as follows. We separate the gauge identities (6.17-3) from

the nontrivial constraints (6.17-4) and will list them separately. They will be used for

determining local symmetry transformations.

Next we want to search for additional constraints. We do this by searching for further

functions of the coordinates and velocities which vanish in the space of physical

trajectories. To this effect consider the following 𝑁 + 𝑁𝑜 vector constructed from 𝐸(𝑜) and

the time derivative of the constraints (6.17-4)

[𝐸(1)] =

[

𝐸(𝑜)

𝑑

𝑑𝑡
(𝑢(𝑜,1)𝐸(𝑜))

⋮
𝑑

𝑑𝑡
(𝑢(𝑜,𝑛𝑜)𝐸(𝑜))]

= [
𝐸(𝑜)

𝑑

𝑑𝑡
𝜙(𝑜)]

(6.17-5)

by construction. The constraint 𝜙(𝑜) is valid for all time and therefore
𝑑

𝑑𝑡
𝜙(𝑜) = 0 on shell,

but

𝑑𝜙(𝑜,𝑖)

𝑑𝑡
= ∇�̇�(𝑢(𝑜,𝑖)𝐸(𝑜))�̈� + ∇𝑞(𝑢(𝑜,𝑖)𝐸(𝑜))�̇�

(6.17-6)

74

Veritone Corporation

So

[𝐸𝑖1

(1)
] = ∑𝑊𝑖1𝑗

(1)(𝑞, �̇�)�̇�(𝑗)

𝑛

𝑗=1

+ 𝑘𝑖1

(1)(𝑞, �̇�)

where 𝑖1 = 1,… ,𝑁 + 𝑁𝑜 , and

[𝑊𝑖1𝑖
(1)

] =

[

𝑊(𝑜)

∇�̇�(𝑢(𝑜,𝑖)𝐸(𝑜))

⋮
∇�̇�(𝑢(𝑜,𝑁𝑜)𝐸(𝑜))]

[𝑘𝑖1

(1)
] =

[

𝑘(𝑜)

∑
𝜕

𝜕𝑞(𝑗)
(𝑢(𝑜,𝑖)𝐸(𝑜))�̇�(𝑗)

𝑗

⋮

∑
𝜕

𝜕𝑞(𝑗)
(𝑢(𝑜,𝑁𝑜)𝐸(𝑜))�̇�(𝑗)

𝑗]

(6.17-7)

We next look for the zero modes of 𝑊(1). By construction, these zero modes include the o

modes of the previous level. The gauge identities at level 1 are.

𝐺(1,𝑛1) = 𝑣(1,𝑛1)𝐸1 − ∑ 𝑀𝑛1𝑛𝑜

(1,0)

𝑁𝑜

𝑛𝑜=1

(𝑢(𝑜,𝑛𝑜)𝐸(𝑜)) ≡ 0

(6.17-8)

where 𝑛1 = 1,… , 𝑁1 and the genuine constraints are of the form

𝜙(1,𝑛1) = 𝜙(1,𝑛1)𝐸1 = 0

(6.17-9)

with 𝑛1 = 1,… ,𝑁1 on shell.

We next adjoin the new identities (6.17-8) to the ones determined earlier (6.17-3) with

the remaining constraints (6.17-9) we proceed as before, adjoining their time derivatives

to (6.17-5) and construct 𝑊𝑖1𝑖
(1)

 and 𝑘𝑖1

(1)
.

75

Veritone Corporation

The iterative process will terminate at some level M if either i) there is not further zero

modes, or ii) the new constraints can be expressed as linear combinations of previous

constraints.

6.17.1 The maximal set of linearly independent gauge identities generated by the algorithm
Note that the algorithm steps are of the form

𝐺(𝑜,𝑛𝑜) = 𝑢(𝑜,𝑛𝑜)𝐸(𝑜) ≡ 0

(6.17-10)

𝐺(𝑙,𝑛𝑙) = 𝑢(𝑙,𝑛𝑙)𝐸(𝑙) − ∑ ∑ 𝑀𝑛𝑙𝑛𝑙′

(𝑙,𝑙′)
𝜙(𝑙′,𝑛

𝑙′
)

𝑁
𝑙′

𝑛𝑙′=0

𝑙−1

𝑙′=0

(6.17-11)

with 𝐿 = 1,… ,𝑁𝑙 . The 𝑀𝑛𝑙𝑛𝑙′

(𝑙,𝑙′)
 are only functions of 𝑞 and �̇�. And

𝜙(𝑙,𝑛𝑙) = 𝑢(𝑙,𝑛𝑙)𝐸(𝑙), 𝑛𝑙 = 1,… ,𝑁𝑙,

(6.17-12)

𝐸(𝑙) =

[

𝐸(𝑜)

𝑑𝜙(𝑜)

𝑑𝑡
⋮

𝑑𝜙(𝑙−1)

𝑑𝑡]

(6.17-13)

where 𝜙(𝑙) is a column vector with 𝑁𝑙 components 𝜙(𝑙,𝑛𝑙). Thus we conclude from (6.17-13

) and (6.17-11) that the general form of the gauge identity given by (6.17-11) is of the

form

𝐺(𝑙,𝑛𝑙) = ∑∑ ∑ 𝜍𝑚𝑖
(𝑙,𝑚𝑙)

𝑑𝑚

𝑑𝑡𝑚
𝐸𝑖

(𝑜)

𝑙

𝑚=1

𝑀

𝑙=1

𝑁𝑙

𝑖=1

≡ 0

(6.17-14)

where 𝜍𝑚𝑖
(𝑙,𝑚𝑙)(𝑞, �̇�) and 𝑁𝑙 < 𝑀. From (6.17-14) it also follows that

∑ ∑ 𝜀(𝑙,𝑛𝑙)𝐺(𝑙,𝑛𝑙)

𝑙

𝑛𝑙=1

𝑀

𝑙=1

≡ 0

76

Veritone Corporation

(6.17-15)

This identity can also be written as

∑𝛿𝑞(𝑖)𝐸𝑖
(𝑜)

−
𝑑

𝑑𝑡
𝐹

where

𝛿𝑞(𝑖) = ∑ ∑ ∑(−1)𝑚
𝑑𝑚

𝑑𝑡𝑚

𝑙

𝑚=𝑞

𝑁𝑙

𝑛𝑙=1

𝑀

𝑙=1

𝜍𝑚
(𝑙,𝑛𝑙)𝜀(𝑙,𝑚𝑙)(𝑡)

(6.17-16)

and 𝐹 is a complicated function of 𝑞 and �̇�. By collecting indices 𝑙, 𝑛𝑙 together

𝛿𝑞𝑖 = ∑ ∑ ∑(−1)𝑚

𝑙

𝑚=𝑞

𝑁𝑙

𝑛𝑙=1

𝑀

𝑙=1

𝜍𝑚𝑖

(𝑎)
𝜀(𝑎)(𝑡)

6.17.2 Example of constrained Hamiltonian system in Lagrangian form

Let

𝐿(𝑞, �̇�) =
1

2
�̇�2(1) + �̇�(1)𝑞(2) +

1

2
(𝑞(1) − 𝑞(2))

2

(6.17-17)

𝐸(𝑜) =

[

𝑑

𝑑𝑡

𝜕

𝜕�̇�(1)
−

𝜕𝐿

𝜕𝑞(1)

𝑑

𝑑𝑡

𝜕

𝜕�̇�(2)
−

𝜕𝐿

𝜕𝑞(2)]

= [
�̈�(1) + 2𝑞(2) − 𝑞(1)

𝑞(1) − 𝑞(2)
]

(6.17-18)

𝑊 = [
1 0
0 0

]

(6.17-19)

𝑘 = [
�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)
]

(6.17-20)

The only 𝑜 mode is

𝑢(𝑜) = [0,1]

77

Veritone Corporation

Then

𝐸(𝑜) = 𝑊(𝑜)�̈� + 𝑘(𝑜)

= [
1 0
0 0

] [
�̈�(1)

�̈�(2)
] + [

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)
]

Then

𝑢(𝑜)𝐸(𝑜) = [0 1] [[
1 0
0 0

] [
�̈�(1)

�̈�(2)
] + [

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)
]]

= −�̇�(1) − 𝑞(2) + 𝑞(1)

= 0

(6.17-21)

on shell. Then there are no gauge identities for 𝐸(𝑜). Now construct 𝐸(1).

𝐸(1) = [
𝐸(𝑜)

𝑡

𝑑𝑡
𝑢(𝑜)𝐸(𝑜)] =

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)

−�̈�(1) − �̇�(2) + �̇�(1)

which can be written

𝐸(1) = 𝑊(1)�̈� + 𝑘(1)

= [
0 0
0 0

−1 0
] [

�̈�(1)

�̈�(2)
] +

�̇�(2) − 𝑞(1) + 𝑞(2)

−�̇�(1) − 𝑞(2) + 𝑞(1)

−�̇�(2) + �̇�(1)

There zero modes of 𝑊(1) are

𝑊(1) {
[0 1 0]

[1 0 1]

The first zero mode is the previous one augmented by one dimension and reproduces the

previous constraint. The second mode reproduces the negative of the constraint (6.17-21

). That is,

𝑣(1)𝐸(1) = −𝑢(𝑜)𝐸(𝑜)

with 𝑣(1) = [1 0 1]. This leads to the gauge identity

𝐺(1) = 𝑣(1)𝐸(1) + 𝑢(𝑜)𝐸(𝑜) ≡ 0

78

Veritone Corporation

6.18 Companionship: Reconciling agents in the network.

The outline of the companionship process is as follows for a system of 𝑁 agents.

1. Determine the state action space of the system for 𝑁 − 1 agents to create a Tellegen

decision element.

2. Update the remaining agent with the Tellegen DE so that the ?? is minimized.

3. Repeat process so that all 𝑁 agents are updated with respect to their Tellegen DEs.

Local DE:

Local Decision Space

Tellegen DE:

State Action Space

79

Veritone Corporation

7 Limitations

7.1 Response time

TBD

80

Veritone Corporation

8 Architectural flow

This section show diagrams of various key aspects of the architecture.

8.1 Deployment Architecture

In a separate document

8.1.1 General description of architecture

In a separate document

8.1.1.1 Points of scalability

Points of scalability are the architectural aspects of the system that are required to scale.

These include:

• The number of DE’s that can contribute to query resolution.

• The number of variables that can contribute the query resolution.

• The number of rules that can contribute to query resolution.

8.1.1.2 Single points of failure

TBD

8.2 High-level Flows

8.2.1 The Distributed Architecture (DA)

Show flows for the main things that happen in the DA.:

8.2.1.1 Flow for query resolution.

The following diagram provides an overview of query resolution for a particular decision

element.

81

Veritone Corporation

Fig. 8.2-1

Select active rules of
the system including
all absolute and hard

and soft rules
according to query

Convert active rules
to equations via
continualization

Create static
Lagrangian

Create total
Hamiltonian via

Legendre
transformation

Generate combined
Hamiltonian via
Nambu bracket

Generate
Goal

Generate equations
of motion from

combined
Hamiltonian

Solve for query by
determining the

optimal trajectory
through the phase

space

Return query result

Search for gauges in
total Lagrangian

Gauges
found?

Eliminate gauge
related rules from

active rule set

Use inverse
variational method

of Hemholtz to
compute total

Lagrangian

Construct equations
of motion

Construct differential
equations

Determine rank of
Hessian for dynamic

Lagrangian

Internal
heterogeneous

database (IHDB)

Adaptation

Compute Error

Yes

No

Failure potential

Submit
query

Inference controller

Correction potential

Output

Sensor data
Inference rules
Equation rules
Optimizer rules

Search rules
Adaptation rules

Pattern rules
Network rules

Hybridization rules

82

Veritone Corporation

• User submits query.

• System used KB to establish equations of motion for system in Lagrangian or

Hamiltonian form.

• System determines optimal trajectory via optimization algorithm of the equations of

motion that conform to the principle of least action.

• System returns solution which is a point in the phase space and also serves as an

answer to the query.

CDI API

Query DE Team
Post Query to QLI

Broadcast Query to

Network
Wait for response

Return Query

response

8.2.1.2 Flow for updating DE’s with new external repositories.

CDI API

Update DE LER
Submit request to DE

Update DE LER with

new EKB

Return Update

Response

8.2.1.3 Flow for updating DE’s with new sensor data.

83

Veritone Corporation

CDI API

Update DE with New

Sensor Data

Submit Request to DE

(or DE Team)

Index Appropriate

EKB in LER

Translate Data Using

Translation Grammar

Update IHDB with

Translated Data

Return Update

Tesponse

8.2.1.4 Flow for updating DE’s with new rules.

CDI API

Update DE with New

Rule

Submit Request to DE

(or DE Team)

Validate rule

correctness

Validate rule

consistency with other

rules in the IHDB

Update IHDB with new

rule

Return Update

Tesponse

8.2.2 The Internal Heterogeneous Database (IHDB)

Show flows for the main things that happen with the IHDB:

• Flow for adding new rule to the IHDB.

• Flow for updating an existing rule to the IHDB.

• Flow for deleting rule from the IHDB.

• Flow for consistency check for the IHDB.

84

Veritone Corporation

8.2.3 The Rule Entry Interface (REI)

Show flows for the main things that happen with the REI:

• Flow for submitting rule to the REI. This should include a validity check and error

handling.

8.2.4 The Rule Editor (RE)

Show flows for the main things that happen with the RE:

• Flow for creating rule within the RE including variable selection, syntax checking,

and test evaluation.

8.2.5 The External Knowledge Base (EKB)

Show flows that happen with the EKB:

• Flow for updating the EKB schema.

• Flow for updating the EKB with new sensor data. This may include some

synchronization if there are to be multiple EKB’s.

• Flow for notifying DE’s that new sensor data is available.

8.2.6 The Sensor Ingestion Interface (SII)

Show flows that happen with the SII:

• Flow for adding a new sensor to the network.

• Flow for polling a sensor.

• Flow for submitting data to the network.

• Flow for deleting a sensor from the network.

8.2.7 The Rule Conversion Engine (RCE)

Show flows that happen with the RCE:

• Flow for identifying rule sets.

• Flow for compiling rule sets into equational form.

8.2.8 The Decision Element (DE)

Show flows that happen with the DE:

• Flow for updating the LER.

• Flow for submitting a query to the DE.

• Flow for returning response to a query from the DE.

• Flow for operating the programmable search engine.

85

Veritone Corporation

8.2.9 The Query Language Interface (QLI)

Show flows that happen with the DE:

• Flow for formulating a query and submitting to the DA.

• Flow for receiving a response to a query from the DA.

8.2.10 The Minimization Function Generator (MFG)

Show flows that happen with the MFG:

• Flow for formulating translating a query to a minimization function.

8.2.11 The Query Response Engine (QRE)

Show flows that happen with the QRE:

• Flow for finding minimum of the minimization function.

8.2.12 The Pareto Multi-Criteria Optimization Engine (PMOE)

Show flows that happen with the QRE:

• Flow for companionship.

8.3 Complex Use Cases

These are flows for use cases that utilize the various aspects of the architecture:

• Commitment planning

• Nonlinear feedback system

• Distributed sensor network with local and aggregate prediction for weather based

attributes

86

Veritone Corporation

87

Veritone Corporation

9 Software realization of the architecture

This section describes key software packages and their corresponding roles in the

architecture. An example would be to define Lucene and discuss its role in indexing and

search. The purpose is to provide clarity around what software we are using and what it

does to support the architecture.

9.1 Production

9.1.1 Language requirements

9.1.1.1 Java

All production code will typically use Java for implementation. Cases when other languages

are used are when existing libraries are required for operation based on other languages.

9.1.2 Persistence requirements

9.1.3 Messaging and request queuing requirements

9.1.4 Mathematical algorithm requirements

9.1.5 API requirements

9.1.6 Agent related requirements

9.2 Tools

9.2.1 Eclipse IDE for Java

Eclipse is a multi-language software development environment comprising an integrated

development environment (IDE) and an extensible plug-in system. [Wikipedia]

Eclipse is the default Java development environment for Veritone.

9.2.2 Prolog

Prolog is used for system prototyping.

9.2.3 Python

In a separate document

http://en.wikipedia.org/wiki/Eclipse_%28software%29

88

Veritone Corporation

10 Data exchange protocols

The system will have needs around the exchange of data in and out of the system and

among the various subcomponents. For example, SOAP defines an interface for web

services. Thrift and Avro are lighter weight data exchange protocols that enable more

rapid development cycles and may be appropriate for subcomponents that are tightly

coupled.

What is the default case?

The default communication protocol for our components should be lightweight, fast, easy

to debug and easy to develop; a good choice is to develop component APIs using Jersey and

hosting them in Tomcat.

10.1 Veritone API

REST HTTP (GET, POST, PUT, DELETE)

11 Environment

11.1 Development Environment

Defines the development configuration environment. (Needs to be updated.)

Component Version Notes

Linux

Python 1.6.0_23 (i.e. Java 6

Update 23)

11.2 Deployment Environment

Defines the deployment configuration environment.

Component Version Notes

Linux

7

Python 1.6.0_23 (i.e. Java 6

Update 23)

89

Veritone Corporation

11.3 Infrastructure Design

This section discusses the infrastructure design which includes the following.

• Hardware components that define a deployment.

• Types of servers and the expected provisioning for a server.

• Deployment configuration given the server types.

• Startup processes for servers.

• Sample diagram for active deployment.

• Cost analysis of various deployment configurations given environments.

• Sensor networks.

90

Veritone Corporation

12 Data

The software is designed to handle certain types of data. It is important to highlight key

requirements and limitations around the type of data the system is expected to process.

Additionally, the system will produce data for users of the system. This is also defined.

Frequently, there will be a standard data specification document which discusses system

requirements and expectations around data. This is summarized here.

12.1 Inputs

Inputs to the system are provided administratively through use of the API and by users

who submit queries and add preferences to their profiles.

91

Veritone Corporation

