
SOLUTION BRIEF

Python applications can use dependencies not declared in manifest files.   
What happens when those "phantom dependencies"  

are vulnerable and you can't see them?

Gain visibility into your hidden Python dependencies 
and prioritize reachable, exploitable risks.

Open Source Security for 
Python and AI Apps

Python is the language of choice for creating AI models, but because  
of this popularity, it’s likely to be targeted by malicious parties. 

Unfortunately, detecting vulnerable dependencies is difficult because many Python 
dependencies aren’t in the manifest so they aren’t caught by traditional SCA tools.

When Log4j happened, every organization scrambled to figure  
out if it was in their code. Finding vulnerable Python 
dependencies is substantially harder. Are you ready?

DID YOU  KNOW?

Setting up an AI/ML tech stack with Python requires manually setting up dependencies such as TensorFlow, Torch, PyTorch and 
sklearn in the environment (think compatibility with the OS and CUDA drivers) where model training is going to take place. This 
can lead to these dependencies being provided that aren’t declared in a manifest. Discrepancies between what the project uses 
and what is declared in the manifest can happen when you: 

 


 Add a dependency to the virtual environment
 Allow the platform to provide packages and their versions


 Remove packages that are no longer used
 Allow direct usage of transitive dependencies

Higher Risk of Breaches



Cause: False Negatives

The SCA tool fails to identify artifacts that contain 
vulnerable code because it can’t find dependencies that 
aren’t in the manifest.



This limits the utility of the SCA tool while simultaneously 
providing your organization with a false sense of security.
 


Problem #1 Problem #2
        Wasted Engineering Cycles



Cause: Noise

The SCA tool wrongly thinks an artifact contains 
vulnerable code because it surfaces unused 
dependencies based on the manifest.



The engineering team is stuck with tracking down 
whether a package is used and justifying the findings.

 


!
!


www.endorlabs.com   l   All rights reserved to Endor Labs Inc.

Traditional SCA Tools - Like Snyk - Can’t Find All Python Dependencies



1. Source Code as a Ground Truth 

3. Correlate with the File System


As the primary "source of truth", Endor Labs uses the 
source code offers the clearest insight into which 
dependencies are called upon and used. 
 


By comparing dependencies declared by package 
management manifests with those used in the code 
and those available in the file system, you get a 
complete picture of the dependencies used. 

2. Correlate with Package Manager Data 

4. Highlight Discrepancies 

After establishing dependencies, the data is cross-
referenced with package manager information,  
identifying phantom and unused dependencies. 
 


Any variations between the actual code and package 
manager definitions are clearly marked, alerting 
developers to potential issues like missed vulnerabilities 
or unnecessary packages.  


Developers quickly 
understand and 
remediate this Python 
dependency risk.

To demonstrate the difference between traditional 
SCA tools and Endor Labs, we’ll look at OpenAI 
Baselines (a set of implementations of reinforcement 
learning algorithms).



Endor Labs’ proprietary dependency resolution finds 
47 dependencies for this package, while traditional 
tools find just the 11 that are defined in the package’s 
manifest file. Note that these tools do not discover 
TensorFlow in the manifest as it is a provided 
dependency. 



Endor Labs discovered 129 vulnerabilities, as opposed 
to the 1 that manifest-based scanners tools find. 128 
of these affect TensorFlow (the package no one else 
can find). When reachability analysis is applied, that 
list is reduced by almost 90%, down to 14 reachable 
dependencies with all critical vulnerabilities marked as 
unreachable. In this example, we show how we find all 
relevant vulnerabilities (limit false negatives) that 
impact a project and then help prioritize the findings 
to cut the noise to a manageable number of 
actionable findings.

www.endorlabs.com   l   All rights reserved to Endor Labs Inc.

Traditional SCA tools (like Snyk) miss this risk because  
the vulnerable dependency is not declared on the manifest!

OpenAI Baselines Case Study

Endor Labs scans Python source code to find hidden dependencies and uses reachability 
analysis to prioritize just the risks that can actually impact your application.

 What is the vulnerability? A code injection in s̀aved_model_cli ̀in TensorFlo
 How was the vulnerability introduced? It was pulled in by TensorFlow 2.8.
 Is the vulnerability exposed to users? Yes, there is a call path through tensorflow@2.8.
 Is there a fix? The vulnerability was fixed in TensorFlow 2.8.
 How can I remediate? Upgrade to TensorFlow 2.8.1 or newer


