

 1

Live Application Design (LAD) – From Evolution to
Revolution

January 23, 2024

By: Chet Hall and Lance Kerwin

Curious Learners Enhance Problem Solving Techniques

For as long as I can remember I have been mired in how

things work while trying to understand how to make

processes more efficient. You can say it is my constant

state, to make everything I experience more efficient. My

first remembrance of thinking about process efficiency

was when I was about 11 or 12; I was cutting our lawn

and since it was taking away from my play time, I started

thinking about how I could be more efficient at cutting

the grass and cutting it properly so my Dad wouldn’t

make me recut it.

As I mowed, I thought – should I cut from the edges first,

make as many straight lines as possible, cut in rectangles

or circles, start in the center and work my way outwards,

are 180 or 90 degree turns more efficient? What about

hills, do you mow top to bottom or side to side, if there

are dirt areas, do you mow over them are go around

them. Yes, it is an obsession that I still have to this day; I

still mow my lawn every week and think critically about

the path, turns, hills, edges, shapes, and the time it takes

me to do it. A few weeks ago, as I was mowing the grass,

I contemplated finally testing some of my long-studied

theories and hypothesis but figured if I built a

spreadsheet to complete the analysis and then tested

the results, my wife would call the authorities.

Learning at a Faster Rate through Communication

Over the years my processing efficiency obsession has

served me well – most of the time. It led me to the

strategic planning world about 20 years ago and I have

developed many models from it, where I have practiced

the theories on small businesses and non-profits. The

models I have developed have allowed me to turn a

typical 3-month strategy process into a successful 8-hour

process for many happy clients.

When I started working with a small company named

Intact Partners to help bring their ReAccess solution to

market, I never dreamed it would lead to the efficiency

breakthrough it has. ReAccess was developed to help

support the sunsetting of MS Access as Windows 7 was

phased out by Microsoft. These two software products

are now considered non-compliant with Federal and

State security laws.

I knew right away ReAccess was going to be more

efficient than standard development processes, just not

to the extent it is now. The speed of LAD/D with ReAccess

for “idea to operations” is still hard to comprehend,

especially for the software development industry. In case

you are not familiar with the typical software

development lifecycle (SDLC) it is: Planning, Analysis,

Design, Development, Integration, Testing,

Implementation, Operations.

Building Systems the “Old Way” is Broken

To better explain the SDLC I will use the analogy of

building a house. Building a house or building software

applications has pretty much been done the same way

for the past 30 years. There has been an influx of new

tools to build houses (and software), however, the

process has been the same; and what is important, the

time to build a house or software still takes about the

same amount of time – considering size – as it did 30

years ago. I know what you’re thinking, how can this be

true given all the advances we have seen in software

technology? Yes, you are correct, we are lightyears

ahead of where we were 30 years ago; however, we are

only building more modern solutions, the premise is still

the same – applications take some input, process it, and

provide some output. Yes, the systems were more basic

30 years ago, but the development process was the same

and the time to build a software system is still just as

long.

One reason for the consistent time to build a system over

the years, is the number of resources has been reduced

in both building processes. These building processes are

straight forward - need, imagine, analyze, design,

document, construct, inspect/test, complete,

acceptance. The tools for building have evolved over the

past 30 years. For home building we now have

computers & Virtual Reality to help with imagine,

analyze, design, and documentation. We have new

power tools for construction. For software, we have the

exact same thing; and still the process and time to

complete a project has not changed much. Until now.

 2

New Rapid Prototyping Tools Leads the Way

With the new Azure cloud tools and services Microsoft

(MS) has developed over the past five+ years, Intact

Partner, Inc (Intact) has been able to create a SaaS tool

(ReAccess) which provides the business user (as

Microsoft calls it – Citizen Developer) with the capability

to build a large house (I mean application) themselves,

with built-in security, room for everyone, ability to easily

add or change rooms, and an emergency preparedness

plan.

These tools have been around for some time now,

ReAccess is the new tool on the block. ReAccess is the old

MS Access database app - moved to the cloud, without

the limitations MS Access had. The combination of this

new tool (ReAccess) and a new process created by Intact

named LAD/D (Live Application Design/DevelopmentSM)

has revolutionized software development. Before we

discuss the details, let me tell you of a recent actual event

of ReAccess and LAD/D in action.

Rapid Building in Action

On Friday at 2:59 PM I received a phone call from a long-

time friend and colleague, Lance. We spoke for about an

hour to catchup. Lance mentioned some work he was

discussing with a local university. After he told me what

the work was about, I suggested he use our ReAccess tool

to do a proof-of-concept. He wanted to know more since

he thought it could be a good fit for the data collecting

and analysis he needed. I told him all we needed was two

hours to design, develop, and deploy the app, he said he

would let me know; I could feel the skepticism. Later that

evening, at 6:55 PM, to my surprise Lance sent me a text

and said he had some free time on Saturday (the next

day), and he could meet at 12:30. Since the solution we

discussed needed heavy data analytics, I called our

Power BI analyst, Jaron to ask him if we could join us for

the LAD/D session.

We met at our LAD/D room which has 3 tables, 2 large

whiteboards, and several large monitors. We all three

arrive around the same time, exchange pleasantries, and

briefly discuss the app Lance was hoping to create. Then

for about 30 minutes I showed him a demo of the

ReAccess app and some apps we have built for clients;

and then two apps we built using the LAD/D process.

Lance asked a lot of questions about ReAccess and

LAD/D. We discussed the Azure Cosmos database and

how ReAccess does not create typical relational database

tables like we were custom to developing in the past.

Cosmos is technology where we can “flatten” the files

which makes it easier to support the citizen developer.

We discussed that with ReAccess and the LAD/D process,

where we use Entities as our menu items, create Static

DDL’s (drop down lists) for common lists/types, identify

Relationships between the Entities, and finally how using

Relationships and Entities we can configure Dynamic

DDL’s. These items are the foundation for LAD/D.

After the 30-minute demo and discussion, we dug into

the LAD/D solutioning. On the whiteboard where we had

previously laid out the four components of LAD/D –

Entities, Static DDL’s, Relationships, and Dynamic DDL’s

– we begin to build the list for each.

This is where a good facilitator asks the right questions

to guide the app owner through the LAD/D process. It’s

not going to be perfect, it just the start. My experience

with facilitation is to get the app owner(s) to think

through the solution outcome they want to

design/develop and let’s get the four LAD/D components

filled out as much as possible.

As mentioned previously, we are creating an app for local

university Sports Athlete analysis. We determined the

Entities for this app will be Sports Teams (Organizations),

Athletes, Coaches, and Performance Profile. We came up

with two Static DDL’s of Coach Type and Sports Teams.

We determined the Relationships will be Athlete-Team,

Athlete-Coach, Athlete-Performance Profile, and Coach-

Team. We then decided we will need Dynamic DDL’s for

Athlete’s Name and Coach’s Name. This initial step of

creating these components took about 20 minutes. The

key here is to not over think it. Get these items on the

board the best you can, and understand it is going to

change/evolve as you proceed. One thing you may have

noticed is we have not discussed Entity Attributes (data

fields) yet. There will be plenty of opportunities to add

the Attributes once we get to the next step of formatting

the configuration file. For the solution Attribute

configuration, Lance already knew the performance data

that is currently being collected on the Athlete; this will

allow us to easily add to the Configuration file which will

support the data feed into the app.

As we discussed the LAD/D concept and how it fits into

the ReAccess solution, we discussed the basic concept of

Apps – collect data (input), process the data, then

produce a formatted output. Since we do not know the

 3

specs on these data feeds, we will have to get this info

later in order to configure the import feature.

Maximizing Human Intellect to Design Solutions

Before we move on to discussing the formatting of the

configuration file for the ReAccess app, we need to take

a step back and discuss the most important and most

difficult component for LAD/D; the human element.

Several years ago, I wrote a book called “VIGOACRE” and

I constantly refer to the human element area as “Chapter

8” - the Effort-Value Model. Here are some excerpts from

Chapter 8 to give you an understanding of the

foundational development of LAD/D.

The Effort-Value ModelSM (EVM) chart below is a concept

we created which reflects the effort vs. value of an

individual or organization which is results driven. The

model's result is based on the exponential amount of

effort needed to drive the value of the results. If you

view this from a student’s perspective, then there is little

difference in effort between a failing grade (F) and an

average grade (C), and a huge difference between an

above average grade (B) and a top grade (A).

This concept is based on many factors, including how we

perceive results. Most of us think the school grading

process is linear, meaning the amount of effort to get

from a “D” to a “C” is the same effort to get from a “B”

to an “A”. My observations over many years provide a

different conclusion. What does this have to do with

communication and LAD/D? Wait a minute and you will

get there.

Why is EVM an exponential model and not linear? Well,

let's look at the model as a numerical value. Zero to 59

is an F and then each grade level after are divided into

equal values of 10, 90 to 100 would be an “A”. We are

conditioned to view the value from 0 to 59 as no effort

and this is not true. Our perception in life is we all start

somewhere in the 50's with no effort, and to get to the

“D” or “C” level all we have to do is show up and put in a

small amount of effort. Just showing up and putting just

a little effort may get you an average “C” in school, and

it will get you average in life. I believe the reason for this

misconception is we don’t clearly understand the effort

vs. the value we receive.

My experience with this EVM is if you make the effort

needed to be an A performer you will not be as efficient

and effective as you can be as a “B” performer, this is the

“Diminishing Returns” represented in the above graphic.

Diminishing Returns is where you can exert a

tremendous amount of effort with very little increase in

value.

Success Defined in a New Lens

In my experience, success is not about getting an A;

success is about the sustainability of above average work

and how far we can take it by continuing to improve. The

Japanese call this Kaizen - a Japanese business

philosophy of continuous improvement of working

practices, personal efficiency. Kaizen was first

implemented in Japanese businesses after the Second

World War, influenced in part by American business and

quality management teachers. Kaizen has been credited

for the high quality and efficiency of rebuilding Japan

after the war. This kind of improvement and

sustainability will make you awesome!

In business, this is where a lot of effort is spent to drive

perfection, when there is little or no chance of getting to

perfection, and usually there is little need to obtain

perfection. Why, because the need for perfection only

lasts for a very, very short period of time; the business

changes and perfection then becomes a point of

diminishing returns.

Why can’t a well-planned and managed project be

completed to perfection? The answer is simple: a perfect

solution does not exist. You may believe you always

complete your projects on time, on budget, and they are

exactly what the project owner wants. Sorry, you are in

fantasy land, and here’s why. By definition if you have

 4

more than one person involved in the project, no matter

what stage, two people will never have the same vision

or expectation of what, how, when, and why about the

project. Therefore, there are no perfect projects.

Secondly, if there is only one person working on the

project and they always agree with themselves, then

there is still a problem with the perfect project; and it’s

because when the vision for the project is first

established and planned, things will change. The world

is not static. The world as well as business is fluid, very

dynamic; it is constantly changing. You can only be

perfect for an instant. With every rule, there is an

exception; there are times in an organization when

perfection may be necessary such as the airline industry,

medical industry, etc.

Look at Henry Ford and the Model T. It was seen at the

time as the only car you would need, and you could get

it in any color, as long as it was black. This lasted from

1908 to 1927 and Ford sold more than 16 million Model

T’s. Then, in the 1930’s, less than 10 years after the

Model T was last built, we had a completely new type of

car; luxury cars with radios, heaters, large fast powerful

engines and automatic transmissions.

Designing and Solving for Big Problems is the Way

If the product is not changing with the world, then you

are developing an obsolete product. How do you solve

this problem? The same way you solve most problems,

by communicating and being ready to update your

solutions as driven by the demand. Team

communication is about compromising and getting to

the best solution as fast as possible. If you wait until you

have a perfect solution, you will never get out of the

starting gate.

My solution for this challenge is to use the 80/20 rule.

Try to get 80% of what you want and keep building on

the 20% you did not get. This is easy if you can get your

team to understand that there is never a perfect

solution. If you keep inventing, keep improving on the

20% left over at 80% each time, you will never get to

100%. However, after three iterations, you will get to

over 99%, which is a solid solution. Perfection is only

obtainable if you have only one stakeholder, the

stakeholder never changes their mind, and the world

around us never changes. We know this state is not

obtainable. So, put perfection on the shelf and support

your team to drive an awesome solution using the LAD/D

hyper-agile process.

I wrote my first line of code in high school in 1976. The

program I wrote was to add, subtract, multiply, or divide

two numbers. Not sure exactly how many lines of code I

wrote to make this app work, but it was probably around

20 lines. It took several hours to design, code, and test

the app until it worked correctly; I was the Citizen

Developer.

Let’s just say for a minute I was not the Citizen Developer

for this calculator app, but instead I was the person with

the business problem, and I needed a team to develop

the calculator. First I would need a budget, a steering

committee to approve, assign a project manager, create

a project plan, assemble a team of business analyst and

system designers, create a use case, develop test

plans/scripts, create app specs, schedule a software

development team, ready the server for development,

get a Database Architect to create the DB, setup security,

perform system testing, perform user testing, log the

errors, developer makes the updates, retest, rinse,

repeat, approve the app for production, have the system

admin launch the app, and implement change

management. Abracadabra! Now you have a useable

app. So, tell me again why is it so expensive to develop

software apps? I guess you can say this has been a

question of mine since I was introduced to this formal

software development process many years ago.

Our hyper-agile process of LAD/D and the integration

with ReAccess (with the PowerLine middleware API) give

us the tools and services we need to streamline this

solutioning. The ReAccess Azure cloud services that give

us this opportunity include: Microsoft’s Modern Security

management, Cosmos Database configuration,

Import/Export services, built in analytics using Power BI,

Release Management, Backup, Data Encryption at Rest,

Client Server Configuration & Management, Audit

Transaction Logs, and Updates to New Releases from

Microsoft & ReAccess.

Confirm Expectations as Early as Possible

I can remember my very first tech training conference at

my first job out of college. I was a COBOL developer and

attended a one-day analysis and design training hosted

by IBM. In one of the sessions, the speaker handed out

the following diagram.

 5

When I saw this diagram, it was eye opening. Ever since

this day I have pursued the ability to understand how this

process can be more efficient and effective. Now with

the creation of LAD/D and ReAccess rapid prototyping,

we can communicate directly with the user, build the

prototype app with them in real time, allow the user to

“touch and feel” the app, then update it with the user to

get it operational. With ReAccess rapid prototyping and

our hyper-agile LAD/D process, this can be done in days,

not months as with traditional development practices.

Imagine building a tire swing prototype for the user as

the user worked with you to describe the idea, watch you

attach the rope to the tree and tire, then test the swing

– that would be efficient!

Solution Configuration becomes Natural to the Business

Now that we understand the philosophy behind the

EVM, we can move to the configuration stage. ReAccess

is a SaaS platform that brings an app to life through our

solution configuration module. The ReAccess

configurator is simply a group of tables that capture the

business rules and formatting for the application solution

(Isn’t that all apps are anyways, just a lot of formatted

business rules imbedded in software code?).

When configuring the local university Sports Athlete

Performance solution with ReAccess, it allowed us to

quickly take the information we gathered in the LAD/D

session and move it directly to formatting the

configuration tables. There are two types of

configuration tables – one for Entities and one for Static

DDL’s. There is also a Dynamic DDL creator table which

allows us to use the Entity Attributes (fields) to create

them. The Dynamic DDL’s are key in creating the

relationships within the app.

We open the configuration tables file on a large monitor

so we can all see the formatting process. ReAccess is then

set up to create the Entity tables, add the static DDL

tables, and load the Attributes. When we finish this

process, we can create the Dynamic DDL’s based on the

required relationships.

As we enter the Attributes, we establish business/edit

rules for each field. You can set some of these rules on

the database side and some at the field level. Some

options for Attribute rules are Numeric, Alphanumeric,

Email, Phone Number, Required, Search, Editable, and

others.

We finished all configuration formatting and saved the

tables. Once we had the file saved, we launched

ReAccess and from the Home screen we selected the

new configuration file to load into ReAccess. This

triggered ReAccess to connect to our PowerLine API

which connected to Azure and created the Cosmos DB

along with setting up security through Azure Active

Directory, and setup the app on the cloud server.

The app came alive on the screen (all from about two

hours of work), we had a working Azure cloud application

where we could add data, search on the data, select and

edit the data, add multiple users, and connect Power BI

in order to perform the analytics required for the app

owner.

Lance turned to me and said, “that would have taken a

team about 6-months to do on a typical development

platform.” I just looked at him and smiled.

Join the Rapid Design and Solution Movement

For more information on ReAccess Rapid Prototyping or

LAD/D you can contact us at:

