Data as a Service(Daa$S) Syntax Documentation

This document serves the purpose of explaining the syntax of DaaS Query Language (DQL)
used to write queries for DaaS APIs. Different aspects of DQL are documented below :

Filter Syntax Description

1.

Operation Expression (Clause)
An operation is a basic comparison operation. These can also be wrapped in
parenthesis (). It is of the following form :

<key> <op_string> <value>

<key> <op_array> <value>

Example : name starts_with "man"; (x eq "1");x in ["a","b","c"] areall
clauses.

Key
A key is a string of alpha-numeric characters. If key = all, then the corresponding
action of key will be applied to all fields. It can be a nested field as well.

In terms of regular expression, the key can be : [a-zA-70-9_.]+

Example: x eq "a", xis the key or attribute who's value we are trying to match
with “a”.

Example : x.nested eq "a", x.nested is the key,

Op_string
These are sets of operation which take a single key and value as arguments. These
are case insensitive. There are 10 operations which are as follows :

- EQ: Equality operator (=). Matches the key’s value for a given document with
given value.
Example:x eq "3"=>x=3

- NE: Non-equality operator (!=). Matches all documents that don’t have the
key’s value equal to given value.
Example:x ne "3"=>x=...245...

- GTE: Greater than and Equal To operator (>=). Matches all values for a given
key that are greater or equal to the given value.
Example: x gte "3"=>x=34,5...

- GT : Greater than operator (>). Matches all values for a given key that are
greater but not equal to the given value.

Example:x gt "3"=>x=45,6...

LTE : Lower than and Equal To operator (<=). Matches all values for a given
key that are lower or equal to the given value.

Example: x lte "3"=>x=...1,2,3

LT : Lower than operator (<). Matches all values for a given key that are lower
but not equal to the given value.

Example:x 1t "3"=>x=...0,1,2

EXISTS : Checks for existence of the key. Value can be “true” or “false”.

Example : x exists "true"
STARTS_WITH : Checks if the value of the key starts with the given value.

Example : x starts_with "y

WORD_STARTS_WITH : Checks if any word in the value of the key starts with
the given value.

Example : x word_starts_with "y

LIKE : Pattern matching of key’s value with the given regex.

Example : x like "*y"

4. Op_array
These are sets of operations that take a single key and an array of values as
arguments. These are case insensitive. The operations are as follows :

5. Value

IN : Checks if the key’s value matches any one of the given value in the array.
Syntax : <key> IN [<valuel>,<value2>...]

Example:x in ["1","2","3"]=>x=1,2,3

GEO : This operator is used to fetch documents that are within the given
radius of a location.

Syntax : <key> GEO [<longitude>,<latitude>,<radius>]
where <radius> is of the type <float>unit where unit =m, mi, km

<latitude> and <longitude> are floating point numbers representing
coordinates of the location.

Example : x geo [82.7,42.4,23.2km]

A value is a string of characters inside double-quotes. Any double quotes inside this
string should have an escape character as prefix.

Example: "1", "true", "lung \"disease\

Note : Value can also be an array of strings, if an array operator is used to create the
clause.

Example: ["1", "2, "3"] or ["cat", "dog"]

Field Properties
There are three kinds of field properties. These are case insensitive. These
properties describe how relevant the matching should be.

- EXACT : Asserts that the key’s value should match the given value exactly.

Example: x eq "hello" using exact =>x=hello

- SYNONYMS : Asserts that key’s value can match any synonym of the given
value.
Example: x eq "hello" using synonyms =>x = hello, hi, hey...

- SUMMARY : Asserts that key’s value can match any synonym, which is at
least 3 character long, of the given value.
Example : x eq "hello" using summary =>x = hello, hey...

Note : Applying more than 1 field-properties will result in application of the
property most closer to the clause, i.e, x eq "hello" using exact using summary
is equivalent to x eq "hello" using exact

Clause Operations
Operations that can be performed on / between clauses.

- AND: To perform AND operation between two clauses. Use in infix notation.

Syntax : <clause> AND <clause>

Example:x eq "a" and y eq "b"

The above example will fetch documents that have x = a and y = b value both.
- OR: To perform OR operation between two clauses. Use in infix notation.

Syntax : <clause> OR <clause>

Example: (x eq "a") or (y eq "b")
The above example will fetch documents that either have x = a or y = b value.
- NOT : To perform NOT operation of a clause. Use in prefix notation
Syntax : NOT <clause>

Example : not x starts_with "a

BOOST : This operator is used to increase the relevance of the clause by a
certain factor (floating point number), i.e, the boost of a clause indicates how
it will affect the overall score when matched.

Syntax : <clause> BOOST <float>

Example: (y in ["b"]) or (x in ["a"] boost 3.0)

INNER_PROJECTION : This operator is used to project nested fields that
match the clause.

Syntax : <clause> INNER_PROJECTION

Example: x.y eq "hello" inner_projection

Aggregation Syntax Description

An aggregation query can be formed for some APIs. An aggregation pipeline can be created
using by appending another aggregation query after the first one. A simple aggregation
query looks like :

Syntax :

Group_by <aggregation_type> <aggregation_field> <operations>

Example : Group_by term data_source filter data_source eq “Greetings”;
group_by histogram phase 1limit "5" group_by avg some_field

e Aggregation Type
Aggregation types in DaaS fall under one of the two categories:

Bucket Aggregation : These are used to aggregate data points based on their
value.

e term

e significant_term
e histogram

e date_histogram

Metric Aggregation : These are used to compute metrics based on values
extracted from aggregation field.

e sum
e avg
o min
e max

e Aggregation Field
[t is the same as <key> in a filter clause, denotes the field which is to be aggregated.
In terms of regex it is of the form : [a-zA-Z0-9_.]+

Example : group_by term x, here x is the aggregation field.

Operations
It is a space separated list of aggregation operations. Following operators are
supported.

WITH : This operator is used to set some special restricted parameters.
Syntax : WITH <restricted_parameter> EQ <value>
Following parameters are considered restricted :

 min_doc_count (integer)
e interval (string)

o format (string)

e chi_square (boolean)

Example : min_doc_count eq "2; interval eq "yyyy"

HAVING : This operator aggregates those data points that have aggregation
field’s value equal to any one of the items in the given array.

Syntax : HAVING [<valuel>,<value2>...]

Example : group_by term x having ["hello", "hey", "hi"]

NOT_HAVING : This operator aggregates those data-points that don’t have
the aggregation field’s value equal any of items in the given array.

Syntax : NOT_HAVING [<valuel>,<value2>...]

Example : group_by term x not_having ["hello", "hey", "hi"]
LIMIT : This operator limits the size of the aggregated bucket.

Note : Value must be an integer.
Syntax : LIMIT <value>

Example : group_by term x limit "5"
ORDER_BY : This operator sorts the bucket in a given order.

Syntax : ORDER_BY <key> <sort_order>
<sort_order> can have the following values :

e asc: Sorts the bucket in ascending order.

e desc (Default) : Sorts the bucket in descending order.
Example : group_by term x order_by date asc
MISSING : This operator provides a stub value for the data-points that don’t
have the aggregation field and aggregates them.

Syntax : MISSING <value>

Example : group_by term x missing "hello"

- USING : This operator applies the above mentioned field_properties (exact,
synonyms, summary) to the aggregation field.

Syntax : USING <field_property>

Example : group_by term x using synonyms, this will aggregate on all
synonyms of x.

- FILTER: This operator filters the aggregated documents based on the clause
provided.

Syntax : FILTER <clause>

Note : Filter can only be applied to properties that have the same root as the
aggregation field, i.e, if aggregation field is of type a.b. c then filter must have
keys that start with a. * and not any other.

Example : group_by term x filter x.greet eq "Hello"

- AS: This operator provides a name for the aggregation bucket.
Syntax : AS <name>
Note : <name> is any string which is syntactically same as <key>.

Example : group_by term x as x_bucket

Sorting Syntax Description

There are some query parameters that allow for sorting options. The syntax for those are as
follows :

Order_by

List of attributes by which documents should be ordered in the response. A comma
separated list of attributes with order ASC or DESC. It is case insensitive.

Syntax : <key> <sort_order>,
<sort_order> can have the following values :

e asc: Sorts the bucket in ascending order.
e desc: Sorts the bucket in descending order.

Example : created_at desc, phase asc
Sort Geo Distance

To sort the documents based on given coordinates and defined radius.

Syntax : <longitude>,<latitude>,<radius>

where <radius> is of the type <float>unit where unit =m, mi, km

<latitude> and <longitude> are floating point numbers representing coordinates of the
location.

Example : 82.7,42.4,23.2km

KOL Scoring Library Syntax Description

APIs for KOL Scoring have three query parameters (string) that follow a certain syntax.

Filters
This is a list of clauses acting on specific asset classes.

Syntax : <clause> ON <asset_class> ...

Note : <asset_class> is the name of the asset class on which the clause will act.
Syntactically same as <key>.

Example:x in ["hello","hi"] on greets;x eq "hello" on greets y eq
"hey" on greetings

Weightages
This is a list of weights for <asset_class> separated by AND, which impacts the
computation of KOL score.

Syntax : <asset_class> EQ <value> ...
Note : <value> should be an integer. The sum of all weights should be 100.
Example : greetings eq “50” and greets eq “25” and neglect eq "25"

Factors
This is a list of normalizing factors for <asset_class> separated by AND, which
normalize the score of that asset class.

Syntax : <asset _class> EQ <value> ...
Note : <value> should be a floating point number.

Example : greetings eq “1.5” and greets eq “0.5”

