

Battery Health Monitoring for Enhanced Electrical Vehicle Performance

Accelerate your battery development

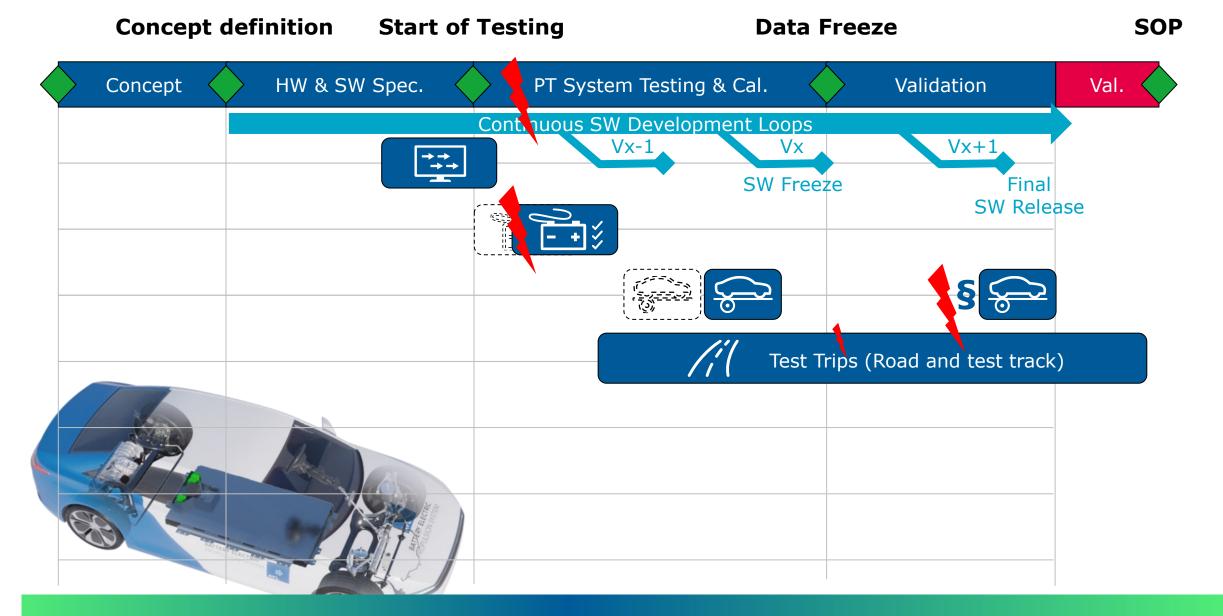
Dr. Nikolaus Keuth

AVL List GmbH (Headquarters) Public

What is driving the automotive industry?

Challenges

TRADITIONAL APPROACH



ISSUES WITH TRADITIONAL APPROACH

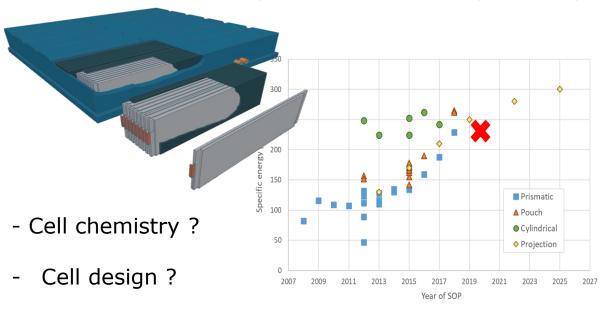
WHAT? Remaining Useful LIFETIME of a Battery

Can I How to develop an energy & sell my battery performance rich, safe and for reuse? long-life battery? Recycle or Reuse? Health **Begin of Life** Can I buy a used What is the remaining battery? value of my battery? How much is it worth? of What is my State **End of Life** current SoH? When is my battery End of 1st Life What is the dead? Battery best operation strategy? 2nd LIFE 1st LIFE **FAILURE Time** How does my driving style affect battery health? driving, charging, parking

Challenges at Cell Selection

"The battery pack is only as performant as its weakest cell!"

It defines the main characteristics of the vehicle!



- Capacity performance?
- Capacity degradation?
- Predicted Cell life time?

Driving Range

Energy storage capability of the cells reflects the driving range of the vehicle.

Driving Performance

Cell provides power to accelerate the vehicle.

Charging Time

Quick charging relies on the cell current-rate capability.

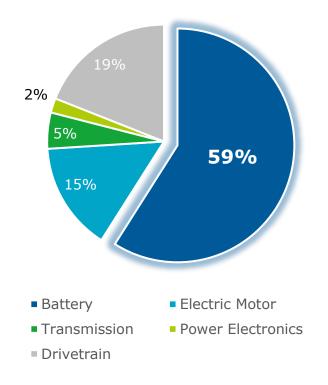
Vehicle Lifetime

Cell aging reduces powertrain performance over time.

Why – Battery as Most Expensive Component

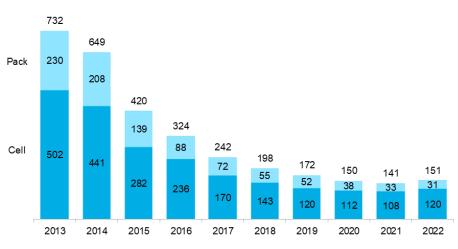
The battery is the most expensive component of a BEV

BEV Powertrain Cost Breakdown



Sources: Valuewalk; Barcleys Research

Battery Pack Cost Breakdown



Source: BloombergNEF. All values in real 2022 dollars. Weighted average survey value includes 178 data points from passenger cars, buses, commercial vehicles and stationary storage.

Motivation: SAFETY - Reduce Warranty Claims

Largest EV recalls due to risk of fire in the US

https://interestingengineering.com/lists/biggest-ev-recalls

A single vehicle recall action can lead to costs of up to \$1.8 billion.

The damage to brand reputation is hard to recover.

2018 - 200,000 vehicles

2019 - 100.000 vehicles

2021 - 75.000 vehicles

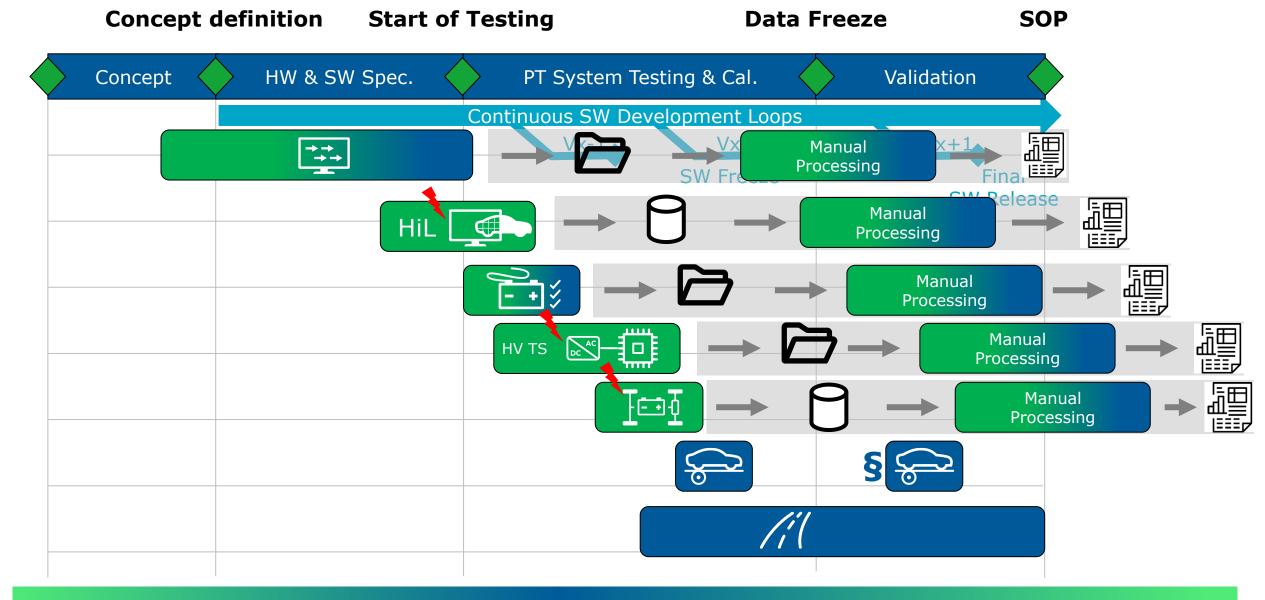
Warranty claims in the automotive industry have a huge potential for cost savings.

Key to save costs: accurate failure prediction

TRADITIONAL APPROACH WITH EARLY TESTBED USE **ENSURES EARLY ISSUE DETECTION & SOLVING!**

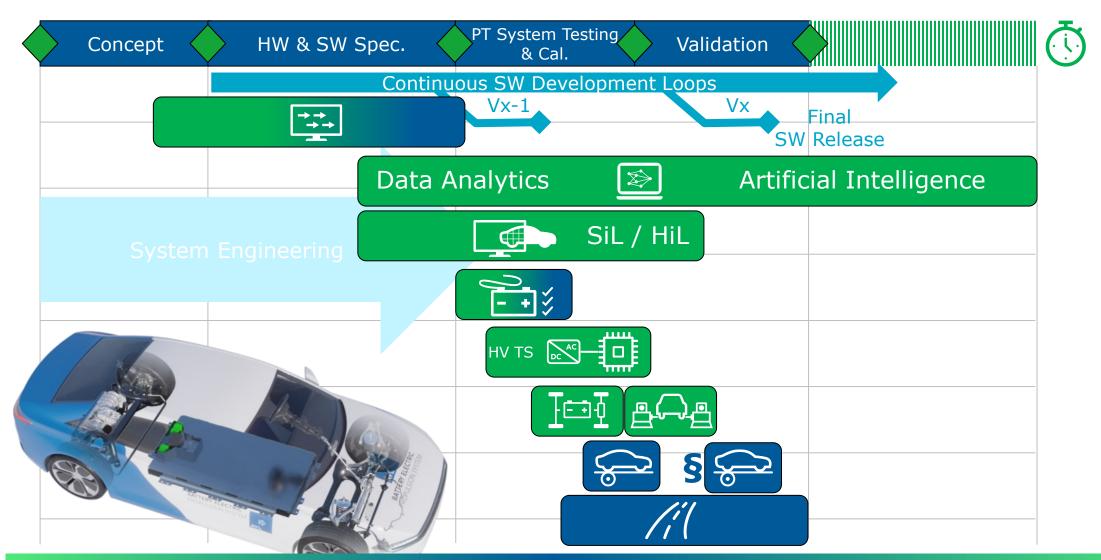
Data Freeze

SOP



INCOMPARABLE TEST CASE, UNTRACEABLE STORAGE AND INEFFICIENT PROCESSING

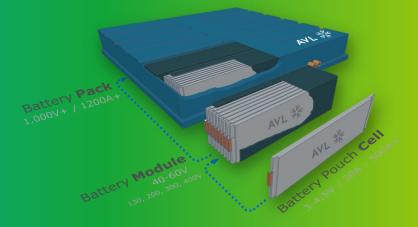
Concept definition Start of Testing Data Freeze SOP



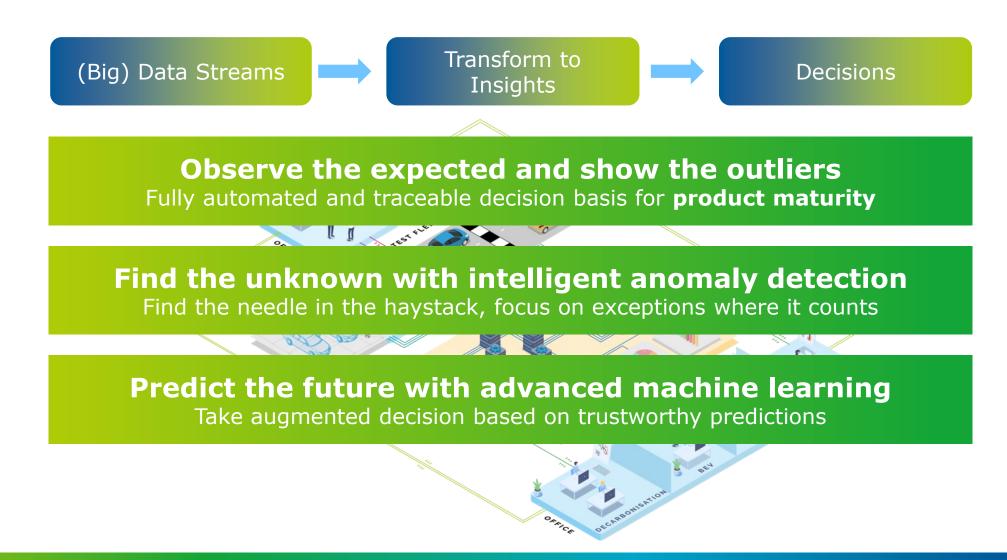
INNOVATIVE APPROACH IN POWERTRAIN DEVELOPMENT!

Accelerate your development cycles and set new standards

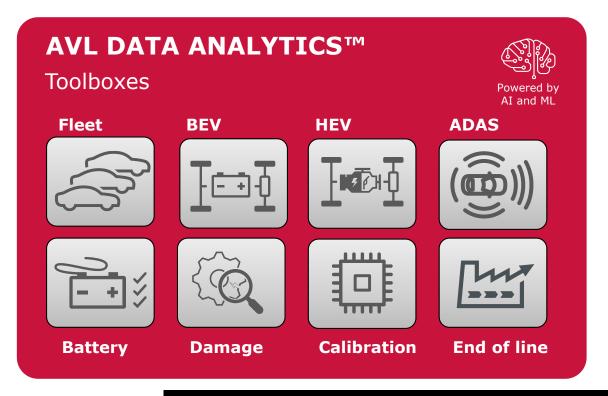
Data Analytics and Processing for Battery



Boosting Engineering Efficiency



Transform Data Streams to Application Specific Insights



Software as a Service powered by

Event-Based AnalyticsFocus On Aggregated Information

Meta Standardized Time series Aggregated Interactive Data data analytics insights Analytics Analytics **Analytics** Result Engine (events and aggregates) Vehicle Identification Engineering Vehicle Velocity Vehicle net mass **Know-How** Power demand (driving) Nominal power ratings Power demand (auxiliary) Microsoft (E-drive, battery) HV battery parameters (U, I, T) Azure BMS parameters (SoC, SoH) Environmental conditions (T) Software as a Service GPS

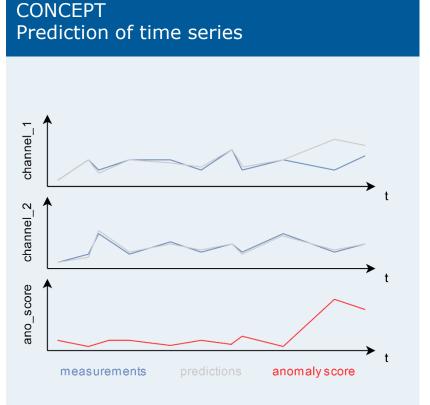
How Are Test Conducted in the Lab on Cell, Module and Pack Level

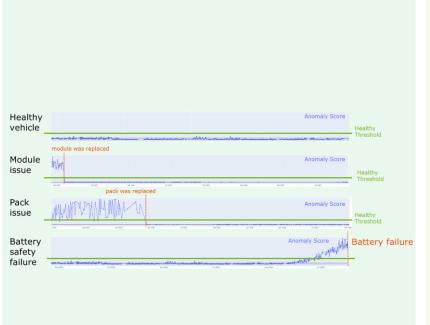
Combination of different cycles

- Combination of different test cycles specific to customers
- Conducted with different C-rates and under different temperature
- Depending on the Design Verification plan
- Trying to mimic real world behavior in the vehicle
- For cell selection 4000 5000 cells are tested at the same time
- For module and pack verification 10 to 20 units are tested

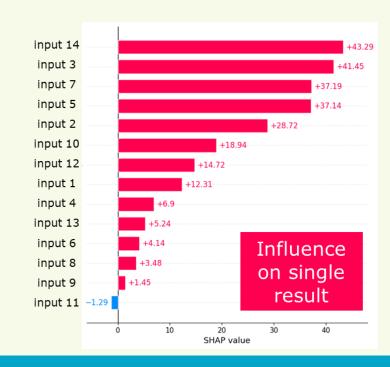
Tests running for weeks, months or

AI Predictive Anomaly Detection to save testing time





RESULTS AI-based root cause analysis (e.g. GNN)



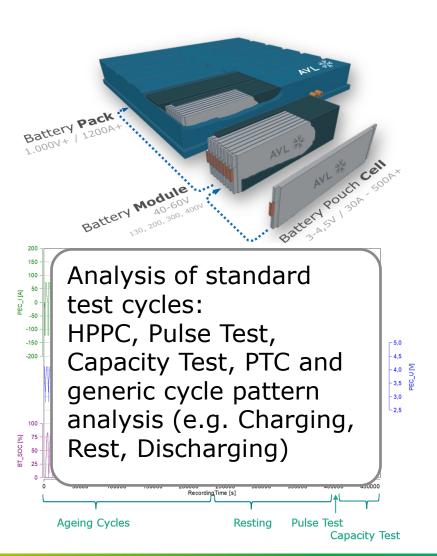
BENEFITS

Public

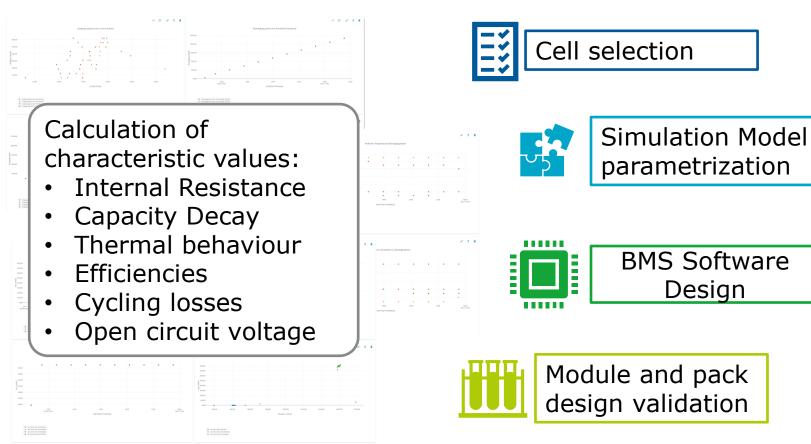
- Early identification of issues
- Finding unknown failures
- Understanding root causes with explainable AI

Improve testing efficiency Improve field monitoring (e.g.: (Pre)-SOP status in field)

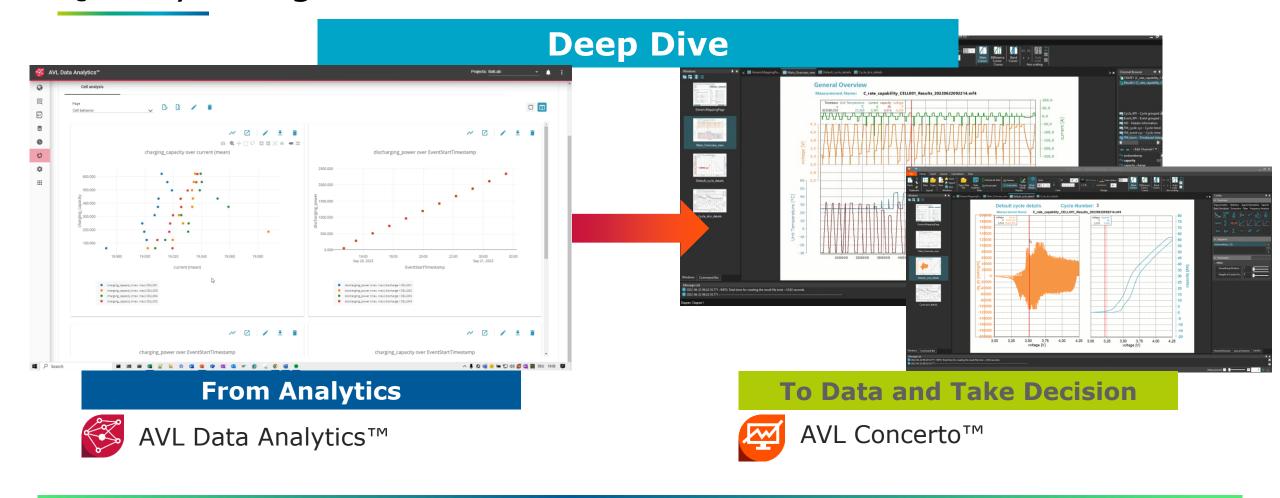
Cell / Module / Pack



Aging behaviors analysis independent cross components based on standardized analytics



Quickly Navigate the Data to Find the Root Cause



Benefits: Save time in analyzing only the data that is needed.

Navigate directly to the root cause in a view clicks.

Use Case: Battery Health Monitoring

Time Series data

- Power demand (Torque, Speed)
- HV battery parameters
- BMS parameters (SoC, SoH)
- Environmental conditions (T)
- Cell Temperatures

 Extract key characteristics based on cycles or single charging and discharging events Battery State of Health – SOH – prediction based on real usage profile and external boundary conditions

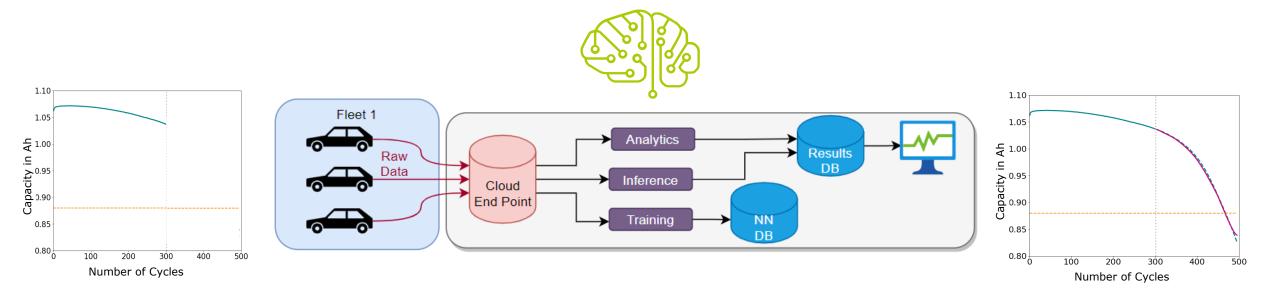
Benefits: Prediction of battery lifetime and main influence parameters on it Recommendation for 1st & 2nd life usage & warranty costs

Cycle Numbe

Data-Driven Battery Degradation Prediction

Model Approach

Neural network based on a Long Short-Term Memory (LSTM) Encoder-Decoder architecture¹



¹ The architecture was chosen similar to [Li].

Battery SOH Estimation and Forecasting

Transfer Knowledge from Lab- to Field-Data

Data:

- Lifetime cell measurements from lab
- Field data from vehicles in use

Target:

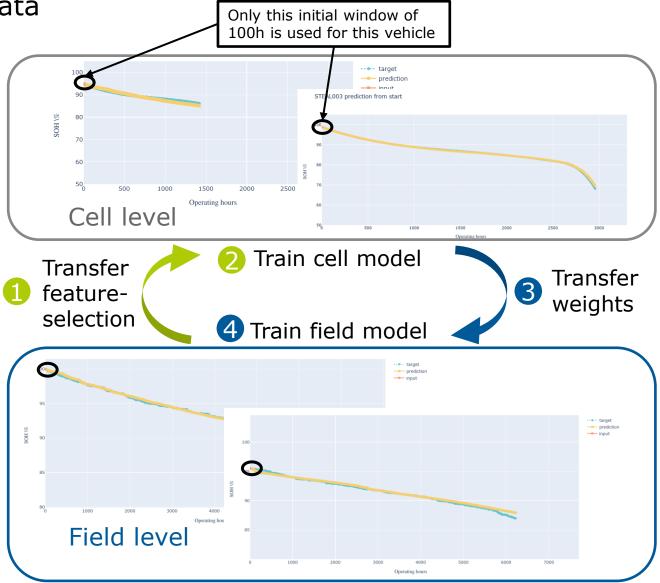
Predict delta-SOH

Method:

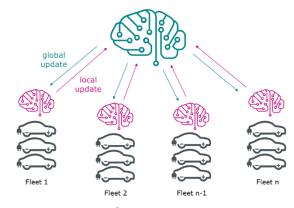
- Train model on lab data and transfer to field data + feature selection
- Use just the initial as input for SOH prediction for vehicles in the field

Benefits:

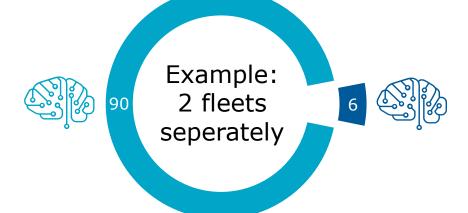
- Reduced testing requirements
- Minimize data requirements
- Early prediction of SOH in the field

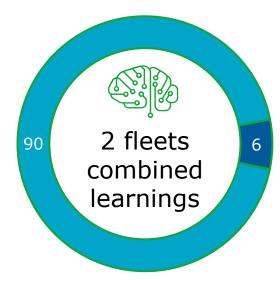


Cross-Fleet Training of a Battery Degradation Prediction Model



Different settings for model training based on 96 battery cells lead to the following prediction errors:





Machine Learning approach based on 1 fleet with 96 batteries: 0.7% MAPE

Machine Learning approach seperately on 2 fleets
90 batteries: 1.0% MAPE
6 batteries: 4.9% MAPE

Federated Learning based on 2 fleets
90 resp. 6 batteries:
0.8% MAPE

Reduce costs and enhance the quality of your products.

Warranty Cost Reduction with AI Failure Prediction

AI-powered Failure Prediction for specific components

Healthy & Faulty Consumer fleet

- DTCs
- **Telematics**

Workshops / **Dealers**

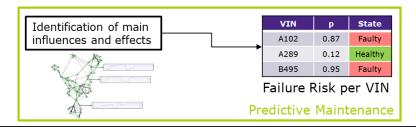
- Services
- Part replacements
- Warranty claims
- Diagnosis

Ambient Conditions

Weather

Public

- Traffic situation
- Road infrastructure



AVL Data Intelligence

- 1. Feature Selection
- 2. Machine Learning
- 3. Prediction

Deliverable 1:

Failure prediction model

Benefits:

- Predicting known issues on currently healthy ve
- Prediction long before issue occurs

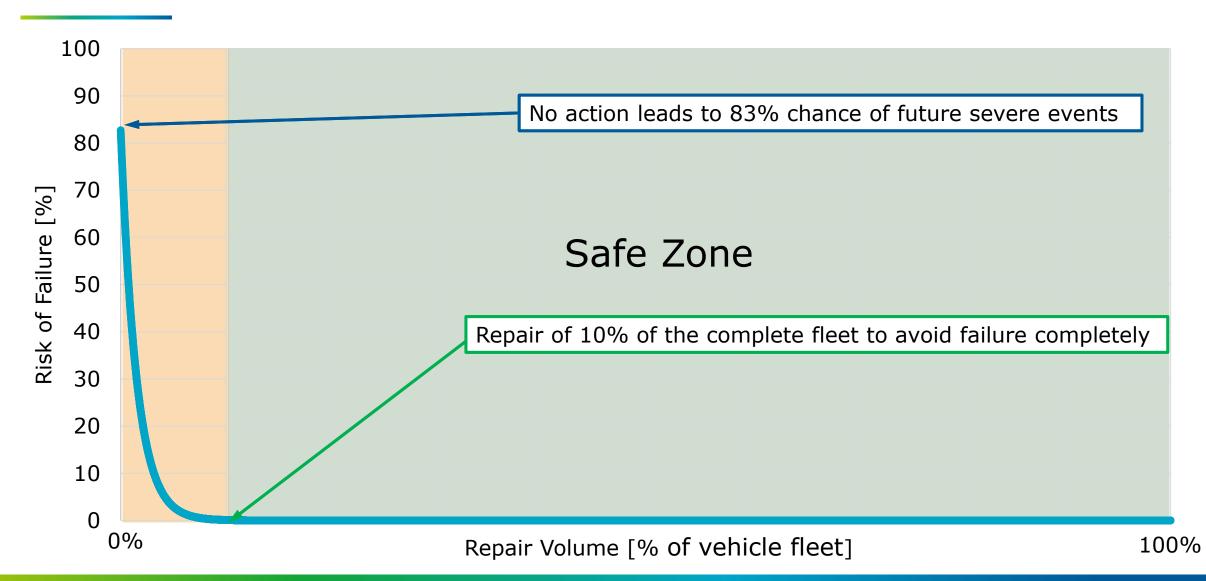
Deliverable 2:

Risk of failure for every VIN

	Risk
3F403461	87,6%
CD661292	82,7%
XZ363384	79,3%
474TC49530	74,1%
24S650563	68,9%
7EH008533	64,1%
63Z275910	60,7%
V1059733	54,1%
5Y9322458	52,7%
KBMV00832	46,0%
DG353356	43,6%
RH142129	43,4%
3CN554692	42,5%
(24151104	42,2%
6JU400773	36,2%
DC028494	30,8%
4F199207	28,1%
5003571	26,5%
177991	23,5%
40235007	19,2%
5000036	16,2%
₹FL14401	11,0%
	\177991 \0235007

VINs are generic and not from actual vehicles

Step 2 Result: Risk Score for every single Vehicle to decide on Preventive Maintenance Actions



Prooven to increase your engineering efficency

References & Benefits

AVL Battery Analytics References

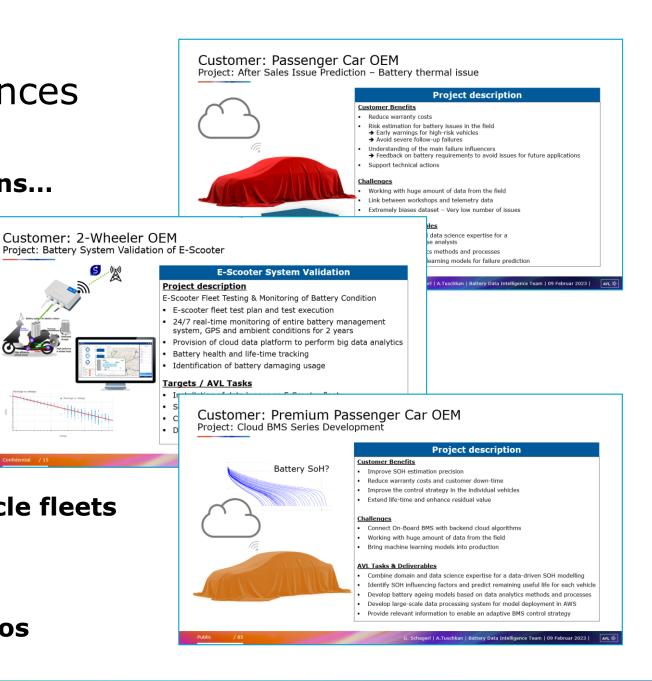
Analytics applied to various applications...

- Passenger Cars, Trucks
- 2-wheelers and stationary systems

For system validation and **Series development**

Deployed and operated on global vehicle fleets

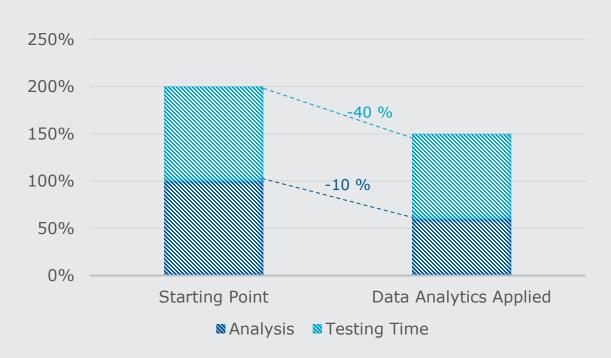
Realized savings worth millions of Euros



ROI of AVL Data Analytics & Processing

Efficiency Increase with AVL Data Analytics

Typical project: Cell characterisation



Potential savings: Analytics Manpower Due to automation and focused root cause analysis **-10**% Testing time Due early anomaly detection and AI prediction

Basis: Characterisation projects over 2 years testing time

Reduce Development Cost and Time

Benefits

Improve Quality

Tailored Toolboxes

Base for Al and Machine Learning

Product

AVL Data Analytics™

Data Sources

