
cPacket cCloud Azure Quick Start Guide
This document will guide the operator through the basic cCloud virtual appliance setup process.
This is usually done with the assistance of cPacket technical staff and can be expected to take 30-
60 minutes. More complicated routing setups could take on the order of a day to configure and to
verify traffic flows. Pre-deployment discussions with cPacket technical staff are helpful to ensure
timely cCloud integration into your network topology and achieve desired visibility.

Table of contents
• Audience
• Network topologies
• Prerequisites and setup
• cCloud Images
• Installation notes
• Deploying cCloud
• Verifying Deployment
• Appendix

o Azure sign-in
o Account email
o Updating cVu-V TLS certificates
o Integrating 3rd party firewalls
o Deploying individual appliances
o User data files
o cCloud CLI on MacOS

Audience
Deployment to Microsoft Azure requires technical users who:

• have experience with the Azure console, virtual machines, load balancers, and Azure
network traffic routing

• are familiar with Bash shell scripting
• are comfortable using SSH

Network topologies

Traffic flow for a monitoring subnet configuration:

Prerequisites and setup
• Azure CLI
• cCloud CLI

• Network security group
• cClear Managed Identity and Role Assignment

Azure CLI

The Azure CLI must be installed on a host running a modern version of Bash, namely Ubuntu
LTS. Alternatively, you may use the Azure Cloud Shell, in which the Azure CLI is already
installed.

See the Appendix for assistance logging into Microsoft Azure.

cCloud CLI

The cCloud CLI, while not strictly necessary to deploy cCloud, is handy and saves time with
common deployment tasks. The script was written in Bash, with a modern Linux distribution as a
target platform. As a baseline environment, we assume the software and utilities available in the
Microsoft Azure Cloud Shell. Upload the script to the Azure Cloud Shell and ensure the script is
executable.

chmod 755 ccloud
Examine all Azure subcommands and configuration options with:
./ccloud az --help

The current production version of the cCloud CLI is 0.42.3.

./ccloud --version
0.42.3

Network security group

It is strongly recommended to use a network security group to limit access to the cCloud
deployment, especially from the Internet.

The ccloud az inline sub-command will create a network security group for you if you
supply the --nsg-cidrs repeatable flag with CIDR ranges that are allowed access into the
network.

./ccloud az inline \
 --nsg-cidr="65.132.110.218/32" \
 --nsg-cidr="$another_cidr"
 --resource-group "$resource_group"

However, network security groups are often highly customized per installation. They may be
created by another organization and supplied to the team that performs cCloud deployment prior
to installation.

If deploying cCloud to pre-existing subnets within a vnet, ensure they are correctly
protected via a network security group. The ccloud CLI will not create a network security
group if cCloud is deployed to an existing subnet: it assumes the subnet has been protected
appropriately.

If you are manually configuring a network security group, the additional inbound rules should be
as follows:

port (service) source destination notes

tcp 22 (ssh) source
networks VirtualNetwork shell access to appliances

tcp 443 (https) source
networks VirtualNetwork cCloud appliance web UIs

tcp 3389 (rdp) source
networks VirtualNetwork RDP to Windows hosts

udp 4789 (vxlan) source
networks VirtualNetwork Traffic frorm cVu-V to cStor-V

and 3rd party tools

icmp 22,443,3389,4789
(ping)

source
networks Any Debugging and diagnostics

cClear-V Managed Identity and Reader Role

cClear-V actively queries information about deployed cCloud resources in its subscription. In
order to achieve this:

1. It must have a managed identity.
2. The managed identity must be assigned the Reader builtin role.
3. The role assignment must be scoped to the subscription.

The cCloud CLI will request a managed identity (1.) when it provisions cClear-V and attempt to
assign the Reader role (2.). It will output a warning if it does not succeed.

Note: cClear-V will be operational even if the role assignment fails.

If it is necessary to assign the Reader role manually, edit the Identity settings for the cClear-V
virtual machine.

Then assign the Reader role scoped to the subscription.

cCloud images
cCloud is distributed as URLs with Shared Access Secrets, which are then used to generate
images.

Accessing shared .vhd images

This method requires cPacket to share URLs with Shared Access Signatures (SAS) for each of
the three cCloud appliances.

1. cPacket provides the SAS URLs to cCloud .vhd files. They will look similar to the
following:

2. cclearv_sas_url="https://ccloudvhds.blob.core.windows.net/vhds/cclearv-
21.1.1.vhd?se=2021-11-13T01%3A05%3A24Z&sp=r&sv=2018-11-
09&sr=b&sig=o3HgynXf9GEk2lSYLS1D790vwkVlLFjVO3e5r03xQPA%3D"

3. cstorv_sas_url="https://ccloudvhds.blob.core.windows.net/vhds/cstorv-
21.1.1.vhd?se=2021-11-13T01%3A05%3A27Z&sp=r&sv=2018-11-
09&sr=b&sig=G9CP%2BLD3TcP7ejwFLy2Rpm8d0CFY7tyPnFeWE3x2KqA%3D"

4. cvuv_sas_url="https://ccloudvhds.blob.core.windows.net/vhds/cvuv-
21.1.1.vhd?se=2021-11-13T01%3A05%3A28Z&sp=r&sv=2018-11-
09&sr=b&sig=HNt1BR%2BG5s2wzL1QEKph%2Bi4Mmu4ZVrfUfbIuGZpXXpk%3D"

5. Running the following commands, and using the URLs supplied by cPacket from
step 1., customers or solution engineers create images in the appropriate Azure
subscription.

6. subscription_id="<your subscription ID>"
7. resource_group="<your resource group>"
8.
9. # Note: a storage account will be created if it doesn't exist.
10. storage_account="ccloudimages"
11.
12. cclearv_sas_url="https://ccloudvhds.blob.core.windows.net/vhds/cclearv

-21.1.1.vhd?se=2022-01-18T17%3A41%3A27Z&sp=r&sv=2018-11-
09&sr=b&sig=ggG1VcpC%2BTvAmLKmcQlaAHV%2Fsd4TVvnrDwa1KzOxyCE%3D"

13. cstorv_sas_url="https://ccloudvhds.blob.core.windows.net/vhds/cstorv-
21.1.1.vhd?se=2022-01-18T17%3A41%3A38Z&sp=r&sv=2018-11-
09&sr=b&sig=GLEGWvrxSe6UJmYxYJNeCJ7%2FrRrnGWdH4i02v1nHiVg%3D"

14. cvuv_sas_url="https://ccloudvhds.blob.core.windows.net/vhds/cvuv-
21.1.1.vhd?se=2022-01-18T17%3A41%3A43Z&sp=r&sv=2018-11-
09&sr=b&sig=IIadhU0Xe486AP%2FxD2JLibqosKg7RPvzWs1%2BLOwjBns%3D"

15.

16. ./ccloud az image create -g "$resource_group" -a "$storage_account" --
subscription "$subscription_id" "$cclearv_sas_url"

17. ./ccloud az image create -g "$resource_group" -a "$storage_account" --
subscription "$subscription_id" "$cstorv_sas_url"

18. ./ccloud az image create -g "$resource_group" -a "$storage_account" --
subscription "$subscription_id" "$cvuv_sas_url"

19.

After step 2., cCloud images should be available in the subscription.

Installation notes

Load balancers

An Azure standard load balancer is typical for use with cVu-V. We recommend that at least 3
instances of cVu-V be included in the backend pool for a high availability configuration. This
should be an “internal standard” load balancer SKU. See the Azure load balancer overview
document for more details.

By default, ccloud az inline command creates a load balancer and 3 cVu-Vs as part of its
deployment. The number of cVu-Vs can be customized.

./ccloud az inline \

 --cvuv-count 5 \
 --resource-group "$resource_group"

Deploying cCloud

Provisioning

Test/Development

We recommend the DSv5 series of VMs as they provide a variety of network bandwidth options
suitable for high throughput packet processing. This is the default VM type used by
the ccloud CLI.

It’s very useful to test different network traffic and storage capacity scenarios in a development
environment. Varying the number of cVu-V instances or disks attached to cStor-V instances can
enable increased throughput.

Production

A sizing/provisioning exercise must be performed to select the correct VMs depending on
bandwidth and storage requirements.

Note: Ensure that accelerated networking is used for all network interfaces.

To enable the desired capture rates, the number and type of disks and virtual machines must be
selected appropriately.

Please consult the following Microsoft documents to assist in your sizing exercise:

• DSv5 VM type
• Expected throughput

Inline configuration

It is typical to deploy cStor-V, cClear-V, and cVu-V to a monitoring subnet and make traffic
flow through the appliances via User Defined Routes (UDR). You can create this configuration
via the following command, first creating a ‘ccloud-settings.ini’ that will contain the resource
IDs from the images generated above:

#!/bin/bash
set -e

cat >ccloud-settings.ini <<EOF
cclearv_image_rid = /subscriptions/a2fb1277-0845-49e9-8af7-
b7f6d59a70a5/resourceGroups/CLOUD-
BUILDS/providers/Microsoft.Compute/galleries/qa_builds/images/cclear-
v/versions/21.4.29

cstorv_image_rid = /subscriptions/a2fb1277-0845-49e9-8af7-
b7f6d59a70a5/resourceGroups/CLOUD-
BUILDS/providers/Microsoft.Compute/galleries/qa_builds/images/cstor-
v/versions/21.4.74
cvuv_image_rid = /subscriptions/a2fb1277-0845-49e9-8af7-
b7f6d59a70a5/resourceGroups/CLOUD-
BUILDS/providers/Microsoft.Compute/galleries/qa_builds/images/cvu-
v/versions/21.4.89
EOF

./ccloud az inline --ssh-public-key="$HOME/.ssh/ccloud.pub"

This will create the monitoring network (“capture” in the diagram below). The operator must
then create the appropriate User Defined Routes.

Traffic coming from the 10.0.2.0/24 subnet on the bottom left destined for the 10.0.3.0/24 subnet
on the top left is going through a User Defined Route (UDR). That route sets the “Next Hop” to
be the load balancer 10.0.1.101.

(Similarly, traffic coming from the 10.0.3.0/24 subnet destined for the 10.0.2.0/24 subnet will
flow through a UDR that also sets the Next Hop to 10.0.1.101.)

The monitoring subnet (10.0.1.0/24) does not have any user defined routes associated with it.

User Defined Routes

A user defined route configuration from the Azure console will look similar to the following.

Downstream Tools

Traffic is tapped/mirrored from cVu-V on a VXLAN interface to downstream tools that
capture/store/analyze packet data. With the ccloud az inline command, the downstream tool
is cStor-V. However, the downstream tool VM can be any IP address that is accessible from the
cVu-V. The downstream tool VM and related network security groups must be configured to
allow VXLAN traffic (UDP port 4789).

If the IP addresses of the downstream tools are known at deploy time, they can be configured in
cVu-V on the command line via the cCloud CLI:

./ccloud az inline \
 --resource-group "$resource_group" \
 --additional-tool "10.15.20.3" \
 --additional-tool "10.15.20.4"

To learn more about security tools that cPacket works with, please contact your cPacket sales
representative.

Verifying Deployment
Once your cVu-V appliance is up and running, you can access the management interface through
a web browser:

https://YOUR_VM_APPLIANCE_IP

Note that a security notice will appear in the browser. This is due to the default TLS certificate
packaged in the appliance being self-signed by cPacket.

The login screen will prompt you for a user name and password which is provided to you by
your cPacket technical representative. It is strongly advised to change the default password
after first login.

The cVu-V virtual machine should already be handling traffic and tapping/mirroring packets to
downstream tools.

Verifying traffic through cVu-V

To get a quick sense of activity flowing through the cVu-V, review the “Runtime Information”
screen.

Verifying network configuration

If you don’t see any TX traffic on the vxlan0 interface, check the Admin screen to verify
configuration.

Verifying traffic is received at the downstream tool

The simplest way to verify that traffic is being received at the downstream tool is to run a packet
sniffer on that machine, looking at UDP port 4789. The UDP packets being received on port
4789 are VxLan encapsulated and are arriving from the cVu-V appliance.

Note that downstream tools must understand how to strip away the VxLan part of the packet to
get to the original packet data that was directed to the cVu-V.

On Linux, tcpdump can be used on the downstream tool to verify VxLan packets are being
received from the cVu-V appliance:

sudo tcpdump -n -i eth0 port 4789

Verifying traffic to cStor-V

cStor-V is configured downstream from cVu-V. It starts to process traffic on startup, and
indicates the rate of capture at the bottom of each page in its web management interface.

Accessing logs for troubleshooting

If technical problems arise, cPacket technical staff will request the logs be downloaded from the
cVu-V.

The Utility subtab on the Admin screen contains provides the operator with the ability to
download log files.

Synthetic traffic and Demo mode

It is possible to deploy a cCloud monitoring network that accepts synthetic traffic via User
Defined Routes. The synthetic traffic is generated in a virtual network created by the following
command:

./ccloud az inline \
 --deployment-id "$deployment_id" \
 --resource-group "$resource_group" \
 --public-ip-addresses \
 --synthetic-traffic

Caution: This deployment creates public IP addresses for the machines that generate synthetic
traffic to be reachable via SSH.

Appendix

Microsoft Azure sign-in

On a machine with the Azure CLI installed, you can sign in using the Azure CLI. This may force
you to verify your credentials by going to a URL in a web browser with a code that the CLI will
provide you. Once you’ve verified your credentials, the CLI will return and you can continue
with the next step.

When you return to the shell, the ‘az login’ command will return and list the Azure Subscriptions
you are connected to. You may see several subscriptions, including your own, and also the
cPacket subscription.

Account email

When logged into the Azure console, you can find your account email as indicated in the screen
shot below:

Updating cVu-V appliance TLS certificates

Currently, updating the TLS certificates can not be performed from the web management
interface: it must be done via the command line.

In the procedure below, 10.1.2.3 is the private IP address of the cVu-V appliance.

1. Copy the trusted CA signed certificates to the cVu-V instance.

rsync -e "ssh -i $HOME/.ssh/ccloud-key" TrustedCASigned.{crt,key}
ubuntu@10.1.2.3

2. SSH to the cVu-V instance.

ssh -i $HOME/.ssh/ccloud-key ubuntu@10.1.2.3

3. Become the root user.

sudo su -l

4. Locate the nginx configuration and self-signed certificates.

cd /home/cpacket/packages/cstordep/conf/nginx

5. Backup the self-signed certificate and key.
6. cp spifee_ssl.crt spifee_ssl.crt.1

cp spifee_ssl.key spifee_ssl.key.1

7. Copy the new key and cert on top of the old ones.
8. cp /home/ubuntu/TrustedCASigned.key spifee_ssl.key
9. cp /home/ubuntu/TrustedCASigned.crt spifee_ssl.crt

chown root:root spifee_ssl.*

10. Reload nginx.

systemctl reload nginx

11. Verify that the new certificate is being served. This can be done from another machine.
12. curl -L https://10.1.2.3 # This should return a web page, not an error

echo | openssl s_client -showcerts -servername 10.12.5.6 -connect
10.12.5.6:443 2>/dev/null | openssl x509 -inform pem -noout -text | tee
/tmp/new-cert-details.txt

Integrating 3rd party firewalls

Some configurations with user defined routes might include firewall subnets.

Deploying individual appliances

The following ccloud CLI examples deploy the appliances individually into a specified vnet and
subnet.

It is practical to deploy cStor-V and any security and/or 3rd party tools before cVu-V so that the
cStor-V private IP can be supplied to the cVu-V configuration. (Traffic flows from cVu-V into
cStor-V).

cStor-V

The following snippet deploys cStor-V to a specified subnet within an existing vnet. If the subnet
doesn't exist, an attempt is made to create it.

As a result of the command, a timestamped userdata-cstorv.sh file is created in the current
directory. This is supplied to the VM as a custom init script file.

#!/usr/bin/env bash
set -e
set -o pipefail

cstorv_name="cstorv-standalone"
cstorv_image_rid="/subscriptions/93004638-8c6b-4e33-ba58-
946afd57efdf/resourceGroups/cloud-
builds/providers/Microsoft.Compute/galleries/dev_builds/images/cstor-
v/versions/21.4.74"
resource_group="smoke-monitor-3f0a23"
nic="cstorv-standalone"

./ccloud az cstorv \
 --name "$cstorv_name" \
 --image "$cstorv_image_rid" \
 --resource-group "$resource_group" \
 --nic "$nic" \
 -k "smoke-monitor-3f0a23.pub"

It is possible to supply a hand crafted userdata-cstorv.sh file with --user-data-file flag.

Security appliances

Similarly to cStor-V, if you’re using a third party security appliance or other downstream tool,
you should install it before cVu-V, in order to supply its IP address to cVu-V.

Additional tools are specified via the --additional-tools flag to the ccloud az cvuv command.

cVu-V

The following snippet deploys cVu-V.

In this example, the private IP of the cStor-V appliance is supplied so that traffic from cVu-V is
directed to cStor-V. Additional downstream tools are also specified by IP address.

#!/usr/bin/env bash
set -e

Deploy a single cVu-V appliance to an existing vnet and subnet
cvuv_image_rid="/subscriptions/93004638-8c6b-4e33-ba58-
946afd57efdf/resourceGroups/cloud-
builds/providers/Microsoft.Compute/galleries/dev_builds/images/cvu-
v/versions/21.4.137"

./ccloud az cvuv \
 --name 'cvuv-standalone' \
 --vnet consumer-net \
 --subnet capture \
 --image "$cvuv_image_rid" \
 --vm-type "Standard_D8s_v3" \
 --resource-group "smoke-monitor-3f0a23" \
 -k "smoke-monitor-3f0a23.pub"

cClear-V

The following snippet deploys cClear-V using a specific NIC.

#!/bin/bash

azure_cclearv_resource_id="/subscriptions/93004638-8c6b-4e33-ba58-
946afd57efdf/resourceGroups/cloud-
builds/providers/Microsoft.Compute/galleries/dev_builds/images/cclear-
v/versions/21.4.37"
nic="cclearv-standalone"
resource_group="smoke-monitor-3f0a23"
cclear_name="cclearv-standalone"

./ccloud az cclearv \
 --nic "$nic" \
 --ssh-public-key "smoke-monitor-3f0a23.pub" \
 --image "$azure_cclearv_resource_id" \
 --name "$cclear_name" \
 -g "$resource_group"

User data files

It’s possible to provide custom initialization scripts to the cCloud appliance. By default, these are
created by the cCloud CLI and supplied to the Azure vm creation commands. It’s possible to
override them with customized versions which can be saved to version control.

Default cStor-V user data file

#!/bin/bash

chmod ug+w /home/cpacket/boot_config.txt

cVu-V-k inline boot config settings
cat >/home/cpacket/boot_config.txt <<EOF_BOOTCFG

{
 'vm_type': 'azure',
 'capture_mode': 'libpcap',
 'decap_mode': 'vxlan',
 'num_pcap_bufs': 2,
 'capture_nic_index': 0,
 'pci_whitelist': '0001:00:02.0',
 'eth_dev' : 'eth0',
 'core_mask': '0x3',
 'burnside_mode': False,
 'cstor_lite_mode': False,
 'ssh': {'enabled': True},
 'cleanup_threshold' : 50,
 'use_compression' : False,
 'tiered_stor_en': False
}
EOF_BOOTCFG

echo "cloud-init ran user-data at: $(date)" >>/home/cpacket/prebootmsg.txt

Example cVu-V user data file

#!/bin/bash

cvuv_nat_loc_ip, cvuv_nat_dst_ip : emptry strings ('') will disable that
nat port

for cvuv_vxlan_srcip, cvuv_vxlan_remoteip : empty strings ('') will disable
the vxlan output port.

Make writable so that next boot can overwrite if need be
chmod ug+w /home/cpacket/boot_config.txt

cat >/home/cpacket/boot_config.txt <<EOF_BOOTCFG
{
 'vm_type': 'azure',
 'capture_mode': 'cvuv',
 'cvuv_mode': 'inline',
 'cvuv_inline_mode': 'tctap',
 'cvuv_mirror_eth_0': 'eth0',
 'cvuv_vxlan_id_0': '1337',
 'cvuv_vxlan_srcip_0': '10.0.1.6',
 'cvuv_vxlan_remoteip_0': '10.0.1.4',
 'cvuv_nat_loc_proto_0': 'tcp',
 'cvuv_nat_loc_ip_0': '',
 'cvuv_nat_loc_port_0': '',
 'cvuv_nat_dst_ip_0': '',
 'cvuv_nat_dst_port_0': '',
 'burnside_mode': False,
 'cstor_lite_mode': False,
 'ssh': {'enabled': True},
 'capture_nic_eth': 'eth0',
 'capture_nic_ip': '',
 'management_nic_eth': '',
 'management_nic_ip': '',
 'management_nic_gw': '',

 'management_dest': '',
 'management_dest_netmask': ''
}
EOF_BOOTCFG

echo "cloud-init ran user-data at: $(date)" >>/home/cpacket/prebootmsg.txt

cCloud CLI on MacOS

Using the cCloud CLI on MacOS requires installing some dependencies. These are conveniently
retrieved with Homebrew.

• An updated version of Bash.
• The GNU version of the date utility.

brew install bash
brew install coreutils # This installs GNU date

