PostgreSQL Backup and Restore on Microsoft
Azure using Kasten K10

1
op
Il

K10

il
il
Il

PLATFORM

AAzu re

In this post, we will walk through how to use Kasten K10 to backup and
restore PostgreSQL databases operating in a Kubernetes environment on
Microsoft Azure. There are two primary options for running Kubernetes on
Azure: Azure Kubernetes Service (AKS), and Azure Red Hat OpenShift. This
post is based on AKS.

The fully managed AKS makes deploying and managing containerized
applications easy and offers serverless Kubernetes, an integrated continuous
integration and continuous delivery (CI/CD) experience, and enterprise-grade
security and governance.

PostgreSQL (often referred to as Postgres), is an Open Source relational
database, popular in the cloud-native community.

Kasten’s K10 data management platform, it is a secure software-only
product that has been purpose-built for Kubernetes and provides operations
teams an easy-to-use, scalable, and secure system for backup/restore,
disaster recovery, and mobility of Kubernetes applications.

Cloud-Native
APIs

Application-Centric K 1 o Backups and Disaster
: Recovery Exports

L uonesyddy

Backup and Recovery
PLATFORM |«

O @@

4
I

>
§ Discovery and Appllcatlon m
S Orchestration ‘
K 3 (Snap hots] |
| S . Azure Blob Storage
master ;
Kubernetes @
Kubernetes cluster API Server :
(p0p
Azure Kubernetes
Service (AKS) UEEEE. OPENSHIFT

Top level reference diagram of Kasten K10 on Azure

This assumes that you already have an AKS cluster set up. If not, you can
follow instructions here to deploy an AKS cluster using the Azure portal.
The instructions in this post are organized in three sections:

1. Installing Kasten K10 on your AKS cluster
2. Installing PostgreSQL
3. Backup and restore workflow using Kasten K10

1. Installing Kasten K10 on Your AKS Cluster

Detailed instructions for installing K10 are available in the K10
documentation. In this example a “happy path” install is used for demo
purposes. Before proceeding with the install, the install prerequisites (Helm
package manager and Kasten Helm charts repository) need to be satisfied.
The Helm commands use Helm v3, but using Helm v2 is also straightforward.

Add the Kasten Helm charts repository and create the namespace
where K10 will be installed using the commands below.

$ helm repo add kasten https://charts.kasten.io/

$ kubectl create namespace kasten-io

Use the command below to install K10. You will need to specify your
Azure tenant, service principal client ID, and service principal client
secret.

$ helm install k1@ kasten/k1l@® —--namespace=kasten-io \
——set secrets.azureTenantId=<tenantID> \

——set secrets.azureClientId=<azureclient_id> \
——set secrets.azureClientSecret=<azureclientsecret>

To validate K10 install, use the command below in K10’s namespace
(kasten-io, by default) to confirm that all K10 pods display a status of
Running within a couple of minutes.

$ kubectl get pods —-—namespace kasten-io ——watch

You can now access the K10 dashboard
at http://127.0.0.1:8080/k10/#/ after running the command below.

$ kubectl ——namespace kasten.io port-forward service/gateway 8080:8000

2. Installing PostgreSQL

Use the commands below to create a namespace called postgresql and
install PostgreSQL into your AKS cluster.

$ helm repo add bitnami https://charts.bitnami.com/bitnami
$ helm repo update

$ kubectl create namespace postgresql
$ helm install my-release bitnami/postgresql

To validate the PostgreSQL install, use the command below in the
postgresql namespace to confirm that all PostgreSQL pods display a
status of Running within a couple of minutes.

$ kubectl get pods -—-namespace postgresql

K10 automatically discovers the instance of PostgreSQL. Following the
successful install of PostgreSQL, click on the Applications card on the K10
dashboard to see the discovered PostgreSQL instance.

Applications

View details or perform actions on applications.

74f Filter by status 2 applications

| default (oo postgresql

Create a Policy > Create a Policy

3. Backup and Restore Workflow using Kasten K10

In this example, we will use K10’s default backup mechanism which relies on
taking volume snapshots. Click on the Applications card in the K10
dashboard and either create a backup policy, or for experimentation,
simply create a restore point to do a full manual backup.

o= | postgresql

Create a Policy >

Manually create a restore point for this
application

Check the progress of the backup action in the main K10 dashboard.

Activity

Job Durations @

Completion of the backup action will result in the creation of a restore point
(a set of configuration and data artifacts) which can be used to restore from.
To restore from the restore point, go to the Applications card and click on
‘restore’ button for the ‘postgresql application. Here you should see all
the available restore points.

postgresql

Create a Policy >

8 GB

View restore points for this application. Restore
to the same or different namespace.

O] o) B =

</
snapshot restore export details

Click on the restore point. This will open the Restore panel where you can
view and modify the restore parameters. Click on the Restore button to
restore the associated data and specs.

Restore application postgresq/

Restore an application to a previous state. Restore points are shown and ordered based on scheduled
execution time which may be different from the actual creation time. During a restore, the existing
application is deleted and then recreated with the data artifacts restored from backups.

Select a restore point for details.

Past day

Today, 6:30pm

% Manual Protect

Restore Point

Mar 11, 2020 6:30 pm -07:00 Mar 11, 2020 6:30 pm -07:00

hours, 5 mins ago

Manual Protect

en.lo/vialphal/restorepointcontents/postgre

Application Name

An existing application with the same name will be replaced with the restored application.

@ Restore as “postgresql” Restore using a different name

Optional Restore Settings

Data-Only Restore @

3) Restore Cancel

Check the progress of the restore action in the main K10 dashboard.

Activity

Job Durations @

total jobs completed jobs sk on ve artifacts retired artifacts

2 0

Jobs

v Restore

v Backup

The data and application configuration have been successfully restored.
Using Backup Policies

Note that the workflow demonstrated above used a manual backup. You can
also create policies to execute backups on a scheduled basis. Policies are
extremely configurable. You can set the backup schedule and snapshot
retention schedule independently for fine-grained control over how often
backups are performed and how much total storage they consume.

To try this out click on Create New Policy on the application card on the
dashboard.

New Policy

@® Snapshot) Import

Action Frequency

@® Hourly) Daily Weekly O Monthly

Sub-hourly Frequencies (optional)

Once an hour

Snapshot Retention

24 hourly snapshots 4 weekly snapshots yearly snapshots

7 daily snapshots 12 monthly snapshots

O Enable Backups via Snapshot Exports

When a policy that applies to an application successfully executes a backup,
the application’s compliance with the policy is reported in the application
card. In the screenshot below, we can see that our postgresqgl application is
now compliant with all policies.

postgresql

8 GB

Latest restore point Today, 10:07pm

9 oo b

snapshot restore export details

Advanced Use Cases: Disaster Recovery (DR) and Mobility

The workflow in this blog covers snapshot, backup, and restore in a single
AKS cluster. K10 can be used to export the entire application stack and its
data from production clusters and restore them to a geographically separate
DR cluster. You can also mask data, store it in an object store, and then read
it from your local development cluster. Such use cases are described in

the K10 documentation.

Conclusion

This post has shared steps for backing up and restoring PostgreSQL running
on Microsoft AKS using snapshots as the backup mechanism. You can also
explore the more advanced backup and restore approaches (based on
logical dumps and database quiescing) discussed here: PostgreSQL Disaster
Recovery and Data Mobility on Microsoft Azure using Kasten K10.

In addition to backups and restores for PostgreSQL, K10 also supports
backups and restores for a range of other relational databases (e.g., MySQL)
and NoSQL systems (e.g., MongoDB or Elastic).

