
1© Appvia Ltd.

DevOps Initiatives
Will Fail Without
Developer Self-Service

2© Appvia Ltd.

Content Page

DevOps Initiatives Will Fail Without Developer Self-Service

DevOps By Developers

What is Self-Service?

Why Self-Service?

Self-Service Security

Cloud Environments

The Future of Self-Service

Conclusion

3

4

5

5

7

8

10

11

2© Appvia Ltd.

3© Appvia Ltd.

DevOps Initiatives Will Fail

Without Developer Self-Service

DevOps is a constantly evolving and
advancing field. While the goal of delivering
high-quality applications and services at
high velocity has remained the same, how
that’s done is always in flux. With nearly
80 percent of organizations still in the
middle phase of their DevOps journey, the
tech industry has seen a mass increase in
products and processes to help organizations
implement a DevOps culture.

This DevOps movement has driven software
vendors to release new tools and find new
ways of delivering software in the shortest
possible time with the ultimate goal of
complete seamless continuous integration
and continuous delivery (CI/CD).

In their 2023 State of DevOps Report,
Puppet found that automation alone doesn’t
make you a high-performing DevOps
team. Around two-thirds of middle-phase
organizations have high automation, but cite
organizational siloed code deployments as
holding them back. This means developers
still rely on other team members for many
tasks, like provisioning cloud environments
or accessing computing resources for
testing. Each of these delays decreases the
speed at which code can be written and
deployed, bringing you further away from the
continuous goal.

This migration to the cloud means that the tools developers and DevOps engineers use are
more distributed and interconnected than ever before. This means a broader disparity of
resources, programs, and processes, which can lead to further delays and bottlenecks when
managing infrastructure and deploying code.

Google’s 2022 State of DevOps Report

the percentage of people reporting the use of
public cloud, including multiple clouds, is now 76

percent, up from 56 percent since last year.

https://www.puppet.com/resources/state-of-platform-engineering
https://www.puppet.com/resources/state-of-platform-engineering
https://www.puppet.com/resources/state-of-platform-engineering
https://cloud.google.com/devops/state-of-devops

4© Appvia Ltd.

As DevOps has adapted to this fast-paced,
interconnected environment, one thing has
become obvious: Developer self-service is

essential, with 93 percent of respondents to the
Puppet State of DevOps 2023 Report declaring

“that platform engineering adoption
is a step in the right direction.”

Developers must be able to complete DevOps tasks independently to achieve the speed,
accuracy, and security demanded by the market. Empowering, guiding, and protecting
developers is necessary for success, and this whitepaper explains why.

In this paper, we’ll thoroughly explain what self-service is and examine why it is vital moving
forward. We’ll also discuss how you can ensure proper security with self-service, even in full
cloud environments. And finally, we’ll discuss how developer self-service will likely evolve and
how Appvia can help ensure you’re set up for success.

DevOps By Developers

The objective of DevOps is to integrate
both development and operations into a
single culture. Siloed DevOps teams don’t
fully promote this culture, so the industry
has turned to self-service. 60 percent of
developers acknowledged self-service
DevOps platforms as a key enabler to
faster code releases. Developer self-
service involves creating automated and
reliable processes that allow developers to
accomplish traditional DevOps tasks without
involving DevOps engineers. Essentially,
we want to shift the ability of DevOps to
developers — but without the burden of
DevOps knowledge.

In an ideal world, developers can quickly
spin up infrastructure for development

and testing. Environments can be created,
controlled, and destroyed without needing
to understand the complexity of how
those tasks were automated. Everything a
developer needs is available to them with
little outside help, only focusing energy on
the support for more complex tasks. In this
perfect world, the developer experience is
smooth and frictionless.

Enabling developers to perform necessary,
complex DevOps tasks without requiring the
related DevOps knowledge allows them to
perform their necessary tests with built-in
security, scalability, and flexibility. In turn,
this speeds up application development and
deployment, which is the goal of developer
self-service.

4© Appvia Ltd.

01

Normalize the
technology stack

02

Standardize and
reduce variability

05

Provide self-service
capabilities

03

Expand
DevOps

practices

04

Automate
infrastructure

delivery

The DevOps Evolutionary Model

https://www.puppet.com/resources/state-of-platform-engineering
https://about.gitlab.com/developer-survey/
https://about.gitlab.com/developer-survey/

5© Appvia Ltd.

Why Self-Service?

The Puppet State of DevOps 2023 Report highlighted several business benefits from
embracing developer self-service, including “improvement in system reliability to greater
productivity/efficiency to better workflow standards.” By making things a commodity,
we can make the developer experience as simple and efficient as possible. Developers
with the information and support needed to make informed decisions can facilitate a
smoother deployment. This saves time on deployment and testing and builds scalability
into the process.

What is Self-Service?

The guiding principle behind developer
self-service is that everything is more
efficient if developers do not need
direct help from operations to get things
done. The goal is to allow developers
seamless development and deployment
without outside interference, with the
understanding that developers will know
what they need when needed. This is done
by giving developers tools and processes
that guide them through the setup process,
allowing them to perform complex tasks
autonomously. This can be anything from
allocating server space, access to GPU/
CPU, automated deployment, and anything
else required for developers to function
at a high level.

The concept is simple enough, but in
practice, developers need a safe and
reliable environment in which they

can operate in a self-service manner.
Considerations need to be made for
security and code quality, as well as
the provisioning of resources. As such,
developers need to be limited in the scope
of their power and ability, ensuring they
can do what they need to do but without
adding undue risk.

This requires that the platform team curate
an environment that guides developers
through self-service. Guardrails must be
in place to ensure that the developers
can’t do potentially risky activities and that
their resources are limited and controlled.
This takes substantial infrastructure
and technology and must be constantly
maintained. But the result is a system in
which the developers are free to build and
deploy with little concern for standards.

What capabilities does the self-service platform offer?

43% 43% 42% 42%
37% 35% 32%

Deployment Operation of
infrastructure

Project planningMonitoring
production

applications

Compiling and
building code

Built-in security
and compliance

Testing of
codebases

https://www.puppet.com/resources/state-of-platform-engineering

6© Appvia Ltd.

The same report notes that, when
asked about speed increases due to the
introduction of developer self-service,

By constructing reliable, efficient
processes using automated tools,
guardrails can be put in place around
teams, allowing them to deliver without
feeling the need to perform extra tasks
to guarantee a secure outcome.

Developer self-service for DevOps
is scalable. Because it relies on the
automation of tools and products, it can
function on larger, more complex projects
without additional team resources or
human interference, which allows for this
scalability. We can see this exemplified
in the historical changes to DevOps that
we’ve already outlined.

Take containerization, for example. A
containerized approach simplifies the
deployment through tooling. It allows the
application to be deployed in a secure and
repeatable way, reducing the overhead
for deployment. Before containers, the
whole operating system would need to be
managed, and the dependencies for the
application would need to be constantly
updated. With containers, developers
can now be in charge of building and
distributing their software from CI to
development environments.

In addition, the infrastructure that the
application was deployed to — both the
operating system and hardware — had to
be considered. This work fell under the
domain of the DevOps platform team. As
the application grew in size and users, the

platform team had to scale up to continue
monitoring, troubleshooting, and properly
facilitating deployment and upkeep.

Containerization, however, makes
developers responsible for this
function, giving them a scalable, insular
approach to deploying applications.
Containers allow developers to build
self-contained, deployable applications
that are guaranteed to have the
proper dependencies and can function
independently from the host system.

This insulated approach means that the
infrastructure and maintenance work of
the platform team is greatly reduced, as
everything needed to run the application
is bundled together. Each containerized
deployment is designed to work
independently so that any number can
be deployed without needing additional
personnel. This shift away from traditional
configuration management tools reduces
complexity for the platform team as
cloud machine images are baked into
systems like Kubernetes, putting into place
lightweight operating systems that can run
everything as containers.

This is just one example of how developer
self-service saves time and resources,
giving developers complete control over
a DevOps operation.

68%

(of respondents) [were] already
experiencing an increase in

development velocity.

https://www.puppet.com/resources/state-of-platform-engineering

7© Appvia Ltd.

Self-Service Security

At first glance, it may seem that the shift
toward developer self-service can reduce
application security even as it increases
deployment efficiency. However, this isn’t
the case. Google’s 2022 State of DevOps
Report found that “participants anticipate
a lower chance of security breaches,
service outages, and performance
degradation as companies increase [the]
establishment of supply chain security
practices.” This is because security best
practices can be built directly into the
self-service tools.

If you have a defined way of working
for developers — from application
deployment to infrastructure provisioning
and orchestration — then placing the right
security checks in the process becomes
easier. For self-service to work properly for
the business, it’s essential to put guardrails
in place to ensure that developers can get
what they need within the constraints of
the business security policies.

The secret lies in the tools now available
to developers and DevOps engineers.
Modern techniques ensure testing and
feedback are implemented as early as
possible in the development process. In
essence, security is not external to the
process — it’s an intrinsic part. Building

a security framework that ensures
every step of the process is secure
will lead to fewer issues arising after
the application is constructed.

Automated tests can be orchestrated
to facilitate continuous testing. Every
change sets off a series of interrelated
tests, ensuring that configuration and
application code are secure and those
components are secured when assembled.
Automation and orchestration are the
keys to project security at every point in
the life cycle. The Google’s 2022 State of
DevOps Report states, “[T]he presence of
CI in an organization was a predictor of the
maturity of its security practices.”

7© Appvia Ltd.

https://cloud.google.com/devops/state-of-devops
https://cloud.google.com/devops/state-of-devops

8© Appvia Ltd.

The same process can be applied to
security-related settings in deployment.
By automating the declaration and testing
of deployment settings, self-service
tools can ensure accurate and consistent
enforcement of security policies across
the whole infrastructure. This chore fell
to the DevOps team in the past, but
controlling cloud deployments at scale
requires a platform engineering approach
to delivering in the cloud. By enabling
platform engineering, you can centralize
the policies in one place and distribute
them across your estate. Security
teams support this as “a consistent

platform promises a smaller surface
area to secure.”

This process places security configuration
parameters and policies around what is
being self-served and layers them over the
top of what developers provide to deliver
outcomes. This means that security is
automatically embedded at deployment
time, regardless of the developer’s action.
Runtime checks are also required, ensuring
security when the cloud automation is
running. These approaches are layered,
helping to provide consistent and reliable
security over the long term.

Cloud Environments

GitLab’s 2022 DevSecOps Survey found that cloud computing was high on the list in
investment areas, coming second only to security. This investment and migration to the
cloud provides more self-service tools for developers, especially since the introduction
of serverless. However, it also brings some challenges. Building cloud applications in the
business — especially when you have multiple teams or applications — requires a lot of
infrastructure, security investment, time, and knowledge.

https://learn.gitlab.com/dev-survey-22/2022-devsecops-report
https://www.appvia.io/blog/intro-to-serverless-computing/

9© Appvia Ltd.

Additional storage is likely needed and must be provisioned and installed. The
operating software must be chosen, installed, and configured. Networking is another
hurdle, as systems and users must all be able to communicate. And all of this must
be done securely.

As if that wasn’t daunting enough, an isolated cloud account for every team
is required, which must be replicated multiple times. If both production and non-
production teams share cloud infrastructure, unintended changes to code,
settings, or policies could be pushed at any time, jeopardizing the security of the
whole application.

Unfortunately, sharing infrastructure is too common in modern DevOps, as
cloud resources can be expensive. Creating multiple environments can also
duplicate security risks, as any risks present in one environment are likely to be
copied to another.

It’s also difficult for a platform team to ensure conformity in settings, resources, and
security across multiple instances. The current state of DevOps means that you must
manually address a long list of cloud deployment concerns, and it’s easier to manage
fewer shared resources, which encourages sharing infrastructure.

9© Appvia Ltd.

The shift toward self-service options
for DevOps has alleviated many issues
with manual cloud management.
Google’s research found “that cloud
computing enables teams to excel
at things like software supply chain
security and reliability, which leads
to organizational performance”.
Containerization and the other
technologies discussed above have
aided the security and administration
of deployments. However, most
things like resource provisioning
and application management still
fall under the domain of a DevOps
platform team.

Only 40%
of companies use

self-service platforms

Only 40 percent of companies at
the lower end of their DevOps
journey use self-service platforms.
This indicates there is still work to be
done for many companies to increase
their self-service adoption.

https://services.google.com/fh/files/misc/2022_state_of_devops_report.pdf
https://www.puppet.com/resources/state-of-platform-engineering

10© Appvia Ltd.

The Future of Self-Service

Platform engineering with developer
self-service is becoming the catalyst for
efficient application delivery. 94 percent
of Puppet’s 2023 State of DevOps
Report respondents agreed that platform
engineering and self-service improve
their DevOps culture. The most impactful
advances in the platform engineering
space have been tools that give
developers more power and responsibility.
This sentiment is echoed in GitLab’s 2022
Developer Survey, which found that
the “group most likely to use a DevOps
platform is devs.”

It’s vital to understand an application’s
requirements in order to scale successfully
and provision cloud resources. Naturally,
developers will understand their

application more than anyone else, so
moving the power into their hands makes
sense. A successful self-service approach
allows for the automatic provisioning
of cloud environments and accounts
so that developers can get isolated
environments as a by-product of needing
an environment for their workload.
Teams already automating infrastructure
provisioning through a self-service
DevOps platform report that the “use
of a DevOps platform was the number
one reason for the increased pace of
code release.” This is because teams can
handle their provisioning requests while
spending less time managing and securing
resources, as this has been built into the
self-service platform.

Containers have been a massive boost to developer-led DevOps, but container management
principles rely on methodologies like GitOps and tooling like FluxCD or ArgoCD. However,
these methodologies don’t scale well with the needed consistency and commoditized
approach to the cloud. Careful orchestration by a DevOps team is usually required to
ensure balance and efficiency across a scaled container approach. Similarly, infrastructure
management has traditionally been removed from the reach of developers. A modern self-
service approach must rectify this and shift responsibility to the developers via automated
management tools.

One day, all barriers between developer and deployment will be removed. Self-service tools
will be the vehicle that gets them there.

10© Appvia Ltd.

https://www.puppet.com/resources/state-of-platform-engineering
https://www.puppet.com/resources/state-of-platform-engineering
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report#page=1
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report#page=1
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report
https://learn.gitlab.com/dev-survey-22/2022-devsecops-report

11© Appvia Ltd.

Conclusion

Developers are the crucial drivers behind any software product. Empowering them with the
necessary tools to execute DevOps tasks swiftly, effectively, and independently marks the
future of software delivery.

Scaling poses significant challenges for all companies, notably those dealing with intricate
cloud ecosystems. The risks and responsibilities associated with the manual creation and
maintenance of cloud environments by DevOps teams are far too great to ignore. The
aspiration of a seamlessly integrated and continuously delivered application can only be
fulfilled by entrusting developers with meticulously regulated and automated tools.

Several solutions, such as Appvia Wayfinder, in the market focus on making this vision
a reality. They offer a wide array of self-service tools capable of transforming your
development team into a formidable DevOps force that can manage an application from its
inception to delivery. These solutions position the tools for cloud operations squarely in your
developers’ hands, effectively eradicating the obstacles between the developer and delivery.
This approach signifies the route to software efficiency.

Regardless of whether you’re preparing for cloud migration or have already embarked on
the journey, these innovative solutions offer self-service tools to streamline your cloud
experience and ensure it’s productive and rewarding.

https://www.appvia.io/product/

