
Integrating Hardware and
Software Development in
Digital Product Delivery

https://www.b-h-c.de/

2

Table of Contents

Introduction 3

Software opening up new perspectives for the manufacturing business 4

Interdisciplinary teams 5

System validation 5

Tooling questions of managing software-driven product lifecycles 6

Common approaches to developing software-driven products 7

The advantages and disadvantages to both approaches 8

Rethinking PLM and ALM: getting to grips with increasing complexity 8

The methodological foundation 9

Using an appropriate procedural model 10

Describing what your product should be able to do 10

Designing your systems in a way that makes sense 10

Creating a synchronization mechanism 11

Closing thoughts 12

Summary 12

About BHC 13

About Codebeamer 13

This white paper was originally published by PLM and ALM experts BHC GmbH.
It was edited and published by Intland Software.

3

Introduction

Every day, software becomes more crucial to the way our world works – and the more we incorporate
it into our daily lives and the things we use, the more complex it becomes. To put that into perspective,
the Apollo 11 moonshot required approximately 145,000 lines of code back in 1969. Today, it can
take up to 100 million lines of code to get a modern car out of the driveway.

The more software that products contain, the more complex it becomes to develop them – and the
more room there is for error. Meanwhile, the pressure to innovate and bring complex quality products
to market faster is on more than ever. Add to that the challenge of efficiently managing the parallel
development streams of hardware, software, and service innovation, ensuring transparency, and
integrating all of these in a single product.

Manufacturers who don’t want to get left behind in the race to optimize complex product development
need to significantly evolve their processes, systems, and team mindsets, or be replaced by
competitors who have designed their businesses with complex products in mind from the ground up.

The key to this evolution:

Read on to learn more about the methodological fundamentals behind developing software-driven
products, and how to create organizational willingness to change along with this huge disruption.

Establishing a methodical
view of the overall system

Opening up the organization to
interdisciplinary thinking

Using methods from
systems engineering

Leveraging the right
PLM/ALM tools

4

Software opening up new perspectives for the
manufacturing business

Over 100 years after Henry Ford disrupted the automotive sector by introducing moving assembly
lines, the manufacturing industry is facing radical disruption again. But this time, rather than a single
innovation, this change is due to a combination of evolving business models, technological innovation,
and supply chain changes.

The driver and enabler of this development is software. The functionality of a product is no longer down
to its electromechanical qualities alone, but rather, it comes from an increasingly closer symbiosis
between software and hardware, whether it’s in cars, medical technology, in mechanical and plant
engineering – or even in bicycles.

From a business perspective, these developments represent both an opportunity and a challenge. An
opportunity because, given increased competition as well as pressure to innovate, software-driven
products make it possible to speed up development times as well as pave the way for completely
new business models.

Take e-bikes, for example. Sensors already control pedal assist and the display is already connected
to your mobile phone via Bluetooth. As a result, it’s just a short step from the status quo to imagining
a cloud-based performance measurement system that tracks your training efforts and offers
personalized training advice. Or even a handy power boost if a hill gets a little too steep – for a small
charge you can pay for by mobile, of course.

So what makes it a challenge?

5

Interdisciplinary teams

Well, from the product developer’s perspective, this type of change is anything but straightforward.
Even if variance decreases on the mechanical side, the complexity of the overall system increases
because of all that software, and the tight interrelation between these components. And on top of
that, there are often different development teams behind the software itself (or at least interdisciplinary
groups of people with different ways of thinking) that all manage innovation cycles in their own way
and at their own speed. Orchestrating their work and integrating these parallel development streams
is a challenge.

System validation

Manufacturers must also consider how the overall system can be validated, especially in the context
of safety-critical products. Depending on the industry and product in question, standards require
every development step and change to be traceable back to the original requirements.

That being said, although the overall product complexity will increase in the future, a large part of
that complexity will shift from the electromechanical side to software. Although it doesn’t exactly
make things easier, removing the constraints imposed by the physical world makes it possible to
apply other methods of mastering complexity, with a disproportionately higher level of efficiency and
scalability.

This means that those who go the extra mile to master this discipline will be able to boost their
performance to a far greater degree than the effort required to master complexity.

Of course, this is easier said than done, so let’s explore the kind of tooling that will support these
change management efforts!

6

Tooling questions of managing
software-driven product lifecycles

The functional symbiosis between mechanical engineering, electronics, and increasingly complex
software is made possible by ever-growing computing power. However, this also has a downside.
Whenever a large number of elements interact, there is also, statistically speaking, an increased
probability that errors will occur.

By way of comparison: a Linux kernel from 1994 required just under 200,000 lines of code. By 2018,
that figure had risen to over 25 million. To make matters worse, a lack of structure reduces the efficiency
of troubleshooting. Over time,
the toolkits used for software
development evolved into what
we know today as Application
Lifecycle Management (ALM),
and its process model has
been incorporated into modern
Systems Engineering.

In many companies, the focus
was and still is on managing the
many individual components.
Ensuring consistency from the requirements specification through to the finished product is not
usually supported by a Product Lifecycle Management (PLM) concept (method & tooling) that has
been established consistently throughout the company.

In a world dominated by electromechanical elements,
the main challenges are as follows:

● The need to support the design process
● Managing the technical data for various components
● The ability to work together effectively as a team.

7

Common approaches to developing
software-driven products

We can observe the following tendencies when it comes to integrating growing amounts of software
in companies that grew up focusing mainly on mechanical and electromechanical products:

A

Treating software as a
hardware appendage

This is when the software is seen as an
extension of or addition to hardware
(something along the lines of “that
little bit of software is just another part
number”).

Software components are equated
with electromechanical components
and are assigned a part number.

While you may still be able to identify
at least the ECU in a product structure,
it will ultimately be impossible to
identify all the mutual dependencies in
a flat BOM.

B

ALM and PLM living
side by side

In some cases, an independent parallel
ALM world is set up alongside the
PLM world. This presents a situation
best described as “I don’t know what
they’re doing over there, but I’m not
interested either”.

Freed from the constraints of
electromechanical development, the
software developers can fully embrace
their dynamic capabilities in the ALM
world. Software is optimized to meet
current customer requirements in short
iterations and in a very agile manner.

However, what is usually overlooked
in a scenario of complete separation
is mutual synchronization between
the worlds of PLM and ALM.
Unfortunately, this becomes an
inconsistency that is carried over into
production and the finished product.

8

The advantages and disadvantages to both approaches

Neither scenario outlined above is ideal.

Treating software as an “add-on” to hardware can work if the level of functional integration is not
particularly high, or alternatively if the product doesn’t experience high rates of change. In other
words, if the software is there to solve specific, clearly outlined, and localized tasks, then its impact
on the overall system is not significant. In addition, there should be no great expectations in terms of
the agility of software development.

The second approach can work from the software perspective, but not in terms of creating a holistic
view of the product and its value creation processes. Ensuring efficient collaboration and validation
across various tools and departments, in this case, continues to be a problem.

Depending on the complexity of the product variance and the relative size of the company, both
strategies can work for a little while. Motivated employees often compensate for methodological and
procedural shortcomings, and companies quickly develop a remarkable level of tolerance of systemic
issues. This can escalate into an increased willingness to take risks which results in inadequately
validated products being brought to market. Customers will also accept a certain level of imperfection
in the product (at least for a while) until they can no longer see a reason not to go with a competitor
instead.

Rethinking PLM and ALM: getting to
grips with increasing complexity

The “fine art” of optimizing software-driven product development lies in establishing processes,
methods, and tools that give all involved parties transparency, an efficient hub to collaborate, and all
the tools they need to flourish.

That being said, all the separate domains still have to be coordinated to ensure that the end product
meets all the requirements and functions as a single unit. However, this is not just a question of tooling
and methodology. It also requires a wide-spreading and deep organizational change, the willingness
for which is crucial. It is recommended to assign someone to take an active role in overseeing the
changes and provide strong guidelines for coordination in your organization.

9

The methodological foundation

Once there is an organizational willingness to accept new ways of thinking and working, the next
step is to establish a joint procedural model for developing solutions. Impromptu planning and
coordination (with sporadic and haphazard interactions between different disciplines) just won’t cut
it. The collaborative development process needs to be actively controlled in the complex environment
of technology development.

Methods used in systems engineering provide a suitable foundation. These already include
extremely useful toolkits that can be used to tweak all the components of a product or system to the
shared requirements.

Whether this involves implementing one of the systems engineering standards exactly as specified or
merely using it as a guideline is almost a matter of preference – unless, of course, you have to provide
proof of compliance with specified standards to your customers or other stakeholders (as required in
some industries), in which case, it becomes highly important.

10

Using an appropriate procedural model

What is crucial is that your company chooses an appropriate procedural model (such as the V-model,
for example) and uses it much as you would a compass.

What does this mean in the context of a software-driven product? It is vital that at the very beginning,
you think about what the product should be able to do and what other requirements (e.g. standards) it
has to meet. This should be done as impartially as possible and without a specific approach in mind.
Let’s explore the specific steps which follow.

Describing what your product should be able to do

Once the requirements pertaining to your product are clear, the next step is to determine the
functionality that each individual sub-discipline (mechanics, electronics, software) will contribute.
You are still in the phase in which all participants need to work together closely. Do not, however,
succumb to the temptation of wanting to specify everything down to the last detail. Take an e-bike as
an example: In order to satisfy a requirement regarding an “electronic bike lock” function, all you need
to specify at this stage is that there has to be some kind of mechanical locking mechanism that can
be operated via software using the display on the bike. How this is actually implemented is, however,
not yet relevant.

Designing your systems in a way that makes sense

There are two important aspects to the architecture phase: first, to divide the system up sensibly,
and second, to provide an initial abstract definition of the interdependencies between the system
elements. In this context, “sensible” means that the dependencies between the subsystems should
be kept to a minimum because all coordination between the individual development teams in your
company will from this point on revolve around these dependencies. As the project progresses, it is
important to describe the interfaces in ever greater detail until the product is completely defined (or
defined as an MVP).

Beyond initial development, the way in which the system is divided up and the description of the
dependencies are also important for ongoing product maintenance. This approach allows the
individual disciplines to flourish and drive innovations agilely at their own pace, provided that none of
the limits imposed by the dependencies of the subsystems are exceeded. As far as a software-driven
product is concerned, this means that the possibilities on the software side are boundless, provided
that the hardware and mechanics do not impose any constraints.

11

Creating a synchronization mechanism

If more comprehensive, further developments are involved, multiple subsystems and disciplines almost
always have to be taken into account because software alone can no longer be used to implement
every new requirement. In other words, changes will also have to be made to the hardware. That
is why your activities should include a development roadmap that indicates which major functional
innovations and which extensions to the interfaces of the subsystems are planned.

The overall system sets the pace and all the subsystems involved have to follow. For example, an
e-bike manufacturer could bring an updated model to market every year. The development teams
have to implement the main features planned for these annual updates in good time, which of course
means that the interfaces between the subsystems also need to be defined in the context of the
architecture. The electronic bicycle lock function, for example, could look like this.

Otherwise, the two subsystems would develop independently of each other at different paces. This
means, for example, that a basic variant and a revamp of the mechanics/electronics could be planned
for each model year, while new software versions can be released monthly in an agile manner, or at
even shorter intervals.

12

Closing thoughts

Summary

Dividing the system into the subsystems mechanics/electronics and software is of course only an
example. More complex products may involve many other subsystems and possibly even several
parallel subsystems of the same type (e.g. several software subsystems).

It is important to keep in mind that despite every effort to keep things simple, the interdependencies
between these subsystems can quickly become very diverse and complex. It is therefore essential
that your IT landscape helps you keep track of all these interdependencies as best possible.

Establishing this type of method model lays a foundation that will enable you to meet the challenge of
developing software-driven products reliably throughout the development process.

In the future, many products will be driven by software to a far greater degree than today.

Although this means that product complexity will inevitably increase, methods exist that allow this
complexity to be managed reliably. End-to-end systems engineering, in particular, provides
crucial support.

But this presumes that companies establish a culture of change, are open to interdisciplinary thinking,
and are prepared to throw out old habits. Hardly anyone need be afraid of the unknown as most
companies today are already putting much of these concepts into practice in one way or another.
There is often simply a lack of optimized and more target-oriented coordination, which can be solved
with the right mindset shift, by putting someone specific in charge, and by using adequate tooling to
support your effort.

13

About BHC

About PTC’s Codebeamer
technology

The BHC GmbH, as part of PROSTEP AG is specialized in IT-related
consulting for product- and application lifecycle management in the
automotive industry, mechanical engineering and plant engineering. The
focus of our competence lies in the consulting of consistent process,
method and IT-system development for companies in the fields of
mechatronics and software development. To learn more, follow BHC
GmbH on Linkedin.

Codebeamer is an Application Lifecycle Management (ALM) platform
with unique configurability and product line configuration capabilities.

Codebeamer X is an integrated Engineering Lifecycle Management
(ELM) platform for life sciences companies with regulatory process &
compliance support.

To learn more, visit us at https://intland.com/. Follow @intland on
Linkedin and Facebook.

About PTC (NASDAQ: PTC)

PTC® enables global manufacturers to realize double-digit impact with
software solutions that enable them to accelerate product and service
innovation, improve operational efficiency, and increase workforce
productivity. In combination with an extensive partner network, PTC
provides customers flexibility in how its technology can be deployed to
drive digital transformation—on premises, in the cloud, or via its pure
SaaS platform. At PTC, we don’t just imagine a better world,
we enable it.

PTC.com @PTC Blogs

https://www.b-h-c.de/
https://www.linkedin.com/company/b-h-c-gmbh/
https://intland.com/
https://twitter.com/intland
https://www.linkedin.com/company/intland-software/
https://www.facebook.com/intlandsoftware
https://www.ptc.com/en
https://twitter.com/PTC
https://www.ptc.com/en/blogs

https://www.ptc.com/

