
Last updated by | Philipp Losbichler | 31. Jan. 2024 at 08:54 MEZ
Dynamic Resizer (Standalone)

Agravity ImageEdit

Description

Two methods of editing images:
GET Request: Using the GET- Endpoint a fixed subset of Imagemagick functions can be used. Most
suitable for basic operations like resizing, changing format, etc. Instructions on how to use this Endpoint
can be found in OpenAPI Docs.
POST Request: Using the POST- Endpoint sophisticated image manipulation requests can be crafted.
Everything that's possible in the Imagemagick C# SDK is also possible via this Endpoint. Usage
instructions can be found in the next chapter.

Usage of dynamic imageedit

Sample request body

[
 {
 "operation": "resize",
 "params": [200, 400] //also posible to provide percentage values like "30%"
 },
 {
 "operation": "format",
 "params": ["svg"]
 }
]

Supported operations

Usage of params and supported types

This is the standalone version of the image edit endpoint leveraging the Imagemagick API. Due to the use of
reflection, custom image edit requests can be crafted resulting in various different images where pretty
much everything can be controlled. In addition, basic operations can be performed using a simplified API.

NOTE: Operations are executed top to bottom, meaning the order of the operations can drastically impact
the resulting image.

NOTE: Operations are not case sensitive

Every method or property(only set of course) including all overloads that is available in the C# Magick.NET
SDK on the MagickImage Type can be used as operation.

Link to IMagickImage interface on GitHub containing every possible operation

NOTE: Only methods with void return type should be used. Or in other words: Only methods/properties
that modify the image instance, have effect on the output. Therefore every other operation is omitted.

Params have to be provided in the order that they can be found in the C# SDK. When dealing with a
property operation only a single param can be provided (obviously).

https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=agravity-imageedit
https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=description
https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=two-methods-of-editing-images%3A
https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=usage-of-dynamic-imageedit
https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=sample-request-body
https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=supported-operations
https://dev.azure.com/Agravity/agravity/_wiki/wikis/agravity.wiki/368/Dynamic-Resizer-(Standalone)?anchor=usage-of-params-and-supported-types
https://github.com/dlemstra/Magick.NET
https://github.com/dlemstra/Magick.NET/blob/main/src/Magick.NET.Core/IMagickImage.cs

Type Required string format in param

ImageMagick.Percentage "90%"

ImageMagick.MagickColor "#FFF0" //RGBA

ImageMagick.IColorProfile "AppleRGB" //also custom ones through uploaded icc profiles

Generally, every primitive type + enums are supported. Every other type has to be implemented if needed.

Currently supported custom types:

HINT: Look for overloads that only need primitive types to achieve the same result without having to
implement a custom type resolving.

