
Observability for
Architects:
A Contrarian
Approach to
Proactive Application
Modernization

EBOOK

2© vFunction 2023

Does Architecture Still Matter?

A very controversial question - does architecture
still matter? It’s one that Enterprise Architects,
CTOs, and Software Architects alike are
struggling with everyday. Some are even
asking whether the role of the architect is
relevant anymore. As the majority of software
development lifecycles (SDLCs) have shifted to
Agile methodologies, even the Agile Manifesto
poses this as a key principle:

“The best architectures, requirements, and
designs emerge from self-organizing teams.”

Thus, architects and their broader teams are
struggling to keep up with the increasing
engineering velocity as the actual state of the
architecture of these apps drifts from their
original desired state, taking on more and

more architectural technical debt every sprint.
In the absence of architectural direction and
oversight, technical debt and architectural drift
have worsened as the role of architecture and
architects has been subsumed and overrun by
pace, velocity, inattention, and dilution.

The result? Technical debt disasters are escalating
- from Southwest Airlines to the FAA to Twitter -
and their impact is being felt in boardrooms, stock
prices, and lost customer confidence.

RELATED: Q&A with Bob Quillin - Technical
Debt Risk: A Look into SWA, the FAA, and
Twitter Outages

https://agilemanifesto.org/principles.html
https://vfunction.com/blog/technical-debt-risk-a-look-into-swa-the-faa-and-twitter-outages/
https://vfunction.com/blog/technical-debt-risk-a-look-into-swa-the-faa-and-twitter-outages/
https://vfunction.com/blog/technical-debt-risk-a-look-into-swa-the-faa-and-twitter-outages/

3© vFunction 2023

What Is Architectural Technical Debt?
Technical debt, or more specifically, architectural technical
debt, is the accumulation of development shortcuts to meet
increasingly complex system requirements and deadlines
resulting in “big ball of mud” applications, diminishing innovation,
and causing eventual downstream disasters. Gartner says that by
2026, 80% of technical debt will be architectural technical debt.1
Not unlike financial debt, architectural technical debt continues
to grow until it’s finally paid in full. But you can fix architectural
anomalies the right way instead of adding more debt and
increasing the odds of catastrophic system failure.

Technical debt doesn’t happen suddenly; it develops over
time and is the accumulation of ongoing architectural drift
which creates complexity and entanglement of the application
domains. Until somewhat recently, technical debt hasn’t been
a common business term outside of IT walls. Engineers and
application owners typically know it’s growing in the shadows,
but it hasn’t been something often discussed with the business

for a variety of reasons. Most notably, the debt becomes such
a tangled ball of yarn with so many contributors over time, no
one knows where to start or even has the resources in skill, time,
and budget to even try. And if they do, they’re often terrified of
making a mistake. And there’s no one to help decipher the mess.
Those who took the shortcuts over the years have long gone.

Architectural technical debt isn’t just a headache. It can and does
reveal itself in devastating ways, often at the worst times when
there is increased system demand. You can avoid such risk by
learning from others’ mistakes and taking a proactive approach
to establishing a standard protocol for managing architectural
technical debt.

“Often when a particular symptom in a system is described
as technical debt, it’s not just the code quality that’s bad,
but it’s also accumulating problems that happen in terms
of architectural changes that have occurred throughout the
systems development.” - Carnegie Melon

https://vfunction.com/
https://vfunction.com/
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=509492

4© vFunction 2023

How Most Enterprises Manage
Architecture Drift

There is a cost to technical debt. As technical debt increases,
innovation decreases, engineering velocity slows to a crawl,
and agility goes out the window. The product team is working
with one hand tied behind their back, unable to execute key
initiatives because the application is too slow, too hard to
change, and costs too much to run. The only way to speed
up innovation is to add more shortcut “fixes” — bandaids that
are only patching things temporarily and yes, adding more
technical debt that someone at some point will have to deal
with but “not now because we simply don’t have time.”

For most organizations, it’s next to impossible to tackle
technical debt while simultaneously focusing on innovation.
Because technical debt doesn’t always sound the alarm bells
until it’s really bad, many organizations opt to dedicate limited
resources to sexier innovation that brings high fives and
sometimes, a nice bump to revenue.

You can leave technical debt to fester or leave it for the next
leadership team to tackle, but make no mistake, it doesn’t
go away on its own. It has to be dealt with at some point,
preferably when the business isn’t in full crisis mode. We can
look at at least three prominent organizations that hadn’t
yet dealt with their technical debt to see how ignorance and
deferral can lead to a corporate, customer, and PR nightmare.

Modernization
Zone

Technical Debt
 - Complexity
 - Risk
 - Cost

Innovation
 - Business Value
 - Velocity
 - Agility

vs

Time

5© vFunction 2023

Case Study: Southwest Airlines

Southwest Airlines’ network was hit hard by an architectural
technical debt issue, only to be gut punched shortly after
with yet another similar debacle. The first issue came during
the airline’s busiest season — Christmas. A legacy software
problem led to nearly 17,000 flight cancellations for two million
passengers at a cost of more than $1 billion.

The second was due to a firewall failure that prevented
thousands of flights from taking off. The network outage
lasted only an hour, but, as often happens with technical debt,
an issue in one part of the system had a cascading effect on
multiple other systems because of the interdependencies.

Both failures led the vice president of the Southwest Airlines
Pilots Association to admit the airline problems were due to
“chronic under-investment in tech infrastructure.” The New York
Times called it “shameful” and said, “This problem — relying on
older or deficient software that needs updating — is known as
incurring technical debt, meaning there is a gap between what
the software needs to be and what it is. While aging code is a
common cause of technical debt in older companies — such as
with airlines, which started automating early — it can also be
found in newer systems, because software can be written in a
rapid and shoddy way, rather than in a more resilient manner
that makes it more dependable and easier to fix as you expand.
As you might expect, quicker is cheaper.”

https://www.reuters.com/business/aerospace-defense/southwest-network-failure-raises-concerns-over-systems-strength-2023-04-19/
https://www.nytimes.com/2022/12/31/opinion/southwest-airlines-computers.html
https://www.nytimes.com/2022/12/31/opinion/southwest-airlines-computers.html

6© vFunction 2023

Southwest knew they had technical debt problems for years, with
various employee groups writing open letters, picketing, sending
emails to head honchos, and going to the media. Those pleas were
ignored or at least shelved.

The airline is finally taking technical debt seriously, saying they are
addressing it, but it isn’t an easy fix at this point. The problem is
so extensive, there is no telling how long it will take to modernize
properly. And beyond the system upgrade costs, there has been
immeasurable damage to the brand, with some swearing they will
never fly the airline again. Only time will tell whether Southwest will
regain its favor and market share, but it could have avoided much of
these catastrophes had it addressed its technical debt risk years ago.

https://www.southwest.com/travel-disruption-action-plan/
https://www.southwest.com/travel-disruption-action-plan/

7© vFunction 2023

Case Study: FAA

The FAA suffered a computer failure just weeks after the Southwest Airlines fiasco, canceling
1,200 flights and delaying 7,800 flights. This time, the issue was due to contractors introducing
errors in the core data used in a key system. As soon as technicians detected a problem, they
were able to move to a redundant system, but that system was trying to access the same
corrupted data, so they couldn’t immediately recover.

How does a coding error point to technical debt? In this case, the FAA system was an older
monolithic system, where code changes cannot be decoupled from other code. One change
can result in a system crash. Had the system been modernized into microservices, they could
have made a single change to a single microservice that wouldn’t have caused issues elsewhere.

https://fortune.com/2023/01/13/faa-computer-failure-grounded-thousands-flights-caused-2-contractors-introduced-data-errors-notam-system/
https://fortune.com/2023/01/13/faa-computer-failure-grounded-thousands-flights-caused-2-contractors-introduced-data-errors-notam-system/

8© vFunction 2023

A similar situation occurred at Twitter, where a single coding
error broke the social media platform for a couple of hours.
Twitter had been offering free access to its API but sought
to eliminate that privilege and tasked a single engineer to
change the code. And that they did, but the change had what
the Verge calls “cascading consequences inside the company,
bringing down much of Twitter’s internal tools along with the
public-facing APIs.” Elon Musk tweeted later that “The code
stack is extremely brittle for no good reason. Will ultimately
need a complete rewrite.”

For Twitter, technical debt was making the entire architecture
vulnerable to breakage. With new management came code
change requests, as often happens with leadership changes.
And instead of fixing the architectural technical debt, they

Case Study: Twitter

focused on adding requested capabilities, or in this case,
removing one. Again, interdependencies in a monolithic
architecture caused unforeseen downstream effects. If we
know anything about Musk, it’s that he’s an innovator. But if
Twitter’s applications are old monoliths, code can’t change
quickly for the cloud, impeding innovation.

https://www.theverge.com/2023/3/6/23627875/twitter-outage-how-it-happened-engineer-api-shut-down

9© vFunction 2023

Do These Red Flags Sounds Familiar?

Highlighting these case studies illustrates how different system
problems can be traced back to unchecked technical debt. There
were early risk signs in each case, plenty of them, but they were
either ignored, pushed off to a rainy day, or completely missed
because no one was paying attention or had the historical technical
know-how to fix them properly.

These are obviously large entities with publicized incidents, but
organizations of all sizes are at risk because of their dependence
on ever-evolving software, shifting to the cloud, and the constant
pressure to innovate. These driving factors require incremental
changes to code within monoliths, which lead to architectural debt.

10© vFunction 2023

The warning signs vary, but some of the biggest red flags you
might see are:

● Key requested features are consistently delayed or stalled

● Your feature backlog continues to grow while modernization
updates are deferred

● You’re losing market share to more agile competitors

● Your operational costs continue to spiral up

● You are slow to respond to change — your engineering agility
and velocity are slow and frustrating

Another red flag is architectural drift and erosion, where there
is a significant difference between the desired architectural
state and the actual architecture itself. When increasingly more
features are added, for example, the code and app become
brittle. Issues can arise because of the lack of good processes.
Developers come and go, constantly adding, tweaking, or
trying to fix something without much forethought as to how
their partial work impacts the whole.

All of these scenarios are common and tied to your inability to
innovate to keep up with innovation and competitors. Instead,
there should be a cultural shift that prioritizes transforming
certain monoliths into microservices that are much easier to
manage and manipulate without causing collateral damage.
With microservices, you can isolate issues and minimize the
cascading effects of changes.

11© vFunction 2023

Observability for Architects:
A Contrarian Approach
Most monoliths are struggling to keep up in today’s high-
velocity, agile environments. They’re too brittle, their features
are too interdependent, and the infrastructure required to
run them is expensive and can’t keep up with the constant
elasticity requirements, all of which further drives up costs and
slows delivery. The typical approach is to defer modernization
by lifting and shifting to the cloud or continue to muddle
through with a monolith, crossing your fingers and hoping you
can outlive it.

Architecture observability is a contrarian approach. It
challenges the assumption that technical debt is unmanageable
and just a fact of life. Instead of letting your software portfolio
drift along without any oversight or control, observability for

architects measures your baseline architectures, detects drift,
and alerts you to major changes that can prevent the technical
debt disasters described above.

12© vFunction 2023

Observability for Architects: Puts the Architect
Back into the SDLC
With Observability for Architects, architects can detect specific
drift issues when they happen and proactively address them.
This approaches the modernization problem incrementally by
decomposing the process into stories or work items that can be
placed into sprints and backlogs. Architects can then actively
engage in the agile SDLC process, detecting architectural drift
early and addressing it as they go.

The first step is to actually measure your technical debt risk by
analyzing each app across your application estate.

● How complex is your architecture and how long are the
dependency chains?

● What is the risk associated with making a change?

● Which applications do you need to modernize first?

● How close are you to a tech debt disaster?

● What is the most effective way to modernize?

● How much will modernization cost?

● What are the costs and risks of NOT modernizing?

To answer these questions, architects need visibility and data,
both of which will be required to incrementally fix architecture
drift issues early and gradually build better modernization
business cases. Eliminating technical debt and modernizing
your architecture takes time, money, and people, so you must
justify the investment. But building a business case is often the
biggest roadblock to reducing your technical debt backlog. It
can be tremendously time-consuming and frustrating without
the right tools.

Fortunately, vFunction offers the automation, visualization,
and data that architects need to finally shed light on the
risks and opportunities in terms the rest of the business can
understand — how such an investment will fuel innovation,
agility, and resilience.

13© vFunction 2023

vFunction: Observability for Architects

Baselining Technical Debt Across Your
Software Portfolio
The vFunction Continuous Modernization Platform automatically analyzes
your technical debt risk among your monolithic applications, providing you
with its source and its impact on innovation, engineering velocity, and agility.
You’ll finally understand your application estate complexity and the technical
debt that’s hamstringing growth and profitability, plus a prioritized list of what
to modernize.

With vFunction, you can build a modernization plan and a complete
modernization strategy that is built on data-driven measurements and realistic
time estimates. Depending on the number and complexity of your apps, you
can get the visibility you need in less than an hour or just a few weeks so you
can move on to fixing issues.

The beauty of vFunction is we go beyond analysis to provide the platform to
take the next step: converting those high-risk monoliths into microservices.

14© vFunction 2023

Architectural Observability to Proactively
Detect Drift
Adopting a culture of continuous modernization is key to
incrementally identifying architectural technical drift from
sprint to sprint, release to release.

The vFunction Architectural Observability Manager is a
powerful observability solution for architects to manage
debt, providing visibility into anomalies before they cause
more serious consequences. As the first shift-left solution for
architects, it is ideal for monitoring, finding, and quickly fixing
application modernization and architectural drift issues yourself
or with the vFunction Refactoring Engine as they arise.

Incremental and progressive modernization can be an effective
tool in the battle against architectural drift and stagnant
modernization initiatives. By using architectural observability
to chip away at the problem, agile modernization can become a
reality versus an oxymoron.

15© vFunction 2023

Transforming the Architecture
Once it’s time to refactor, vFunction Refactoring Engine
helps you re-architect and break down the monolith into
microservices.

Instead of the common lift-and-shift approach that fails to
leverage the true value of cloud-native architectures and
doesn’t fix any problems, our platform offers the ability to
refactor, re-architect, or rewrite your complex monolithic
applications into cloud-native architectures built for the cloud.
The Refactoring Engine is comprehensive, providing invaluable
intelligence and AI to speed transformation while reducing the
risk of errors that can cause downstream problems.

Finally, architects can iteratively design and deploy
architectural improvements by untangling dependencies at the
business logic level. Applications are now flexible instead of
brittle. The ultimate result? Increased engineering velocity to
keep innovation humming.

1 Gartner, Measure and Monitor Technical Debt With 5 Types of Tools, Tigran Egiazarov, Thomas Murphy, 27 February 2023

vFunction is the first and only AI-driven Continuous Modernization Platform for architects that
provides Architectural Observability and Automation to manage technical debt and enable
iterative application modernization, from basic refactoring to full rewriting and microservices
extraction. vFunction is headquartered in Palo Alto, CA, with offices in Israel, Austin, TX, and
London, UK. To learn more, visit vFunction.com.

GETTING STARTED

The old way of just playing defense is stressful and tests
agility. With the rapid pace of application evolution, taking
a contrarian approach to managing technical debt through
continuous modernization efforts is a more proactive approach
that directly attacks the problem let alone a better use of
resources. Easier said than done. But with a solution like
vFunction, you finally have what you need to fully understand
the situation, incrementally chip away at technical debt
and modernization, build a strong business case for apps
needing modernization, and transform your organization from
vulnerable to safeguarded.

If you are ready to take the first step, we invite you to try our
AO Manager Express. With this rapid, cloud-based solution,
you can assess up to three Java monolithic applications for
free to calculate their complexity and your technical debt risk
and modernization opportunities. Technical debt is there. The
question is, will it stop with you? Architects have a unique
opportunity to engage more actively in an agile SDLC, make
architecture matter again, and in turn provide significant value
to the business. Contact us for more information or request a
demo today.

https://vfunction.com
https://vfunction.com/request-demo/
https://app.vfunction.com:9013/oauth2/register?client_id=bdb9a712-bdc3-428c-8abb-bcb84041f21b&response_type=code&redirect_uri=https%3A%2F%2Fapp.vfunction.com%2F
https://app.vfunction.com:9013/oauth2/register?client_id=bdb9a712-bdc3-428c-8abb-bcb84041f21b&response_type=code&redirect_uri=https%3A%2F%2Fapp.vfunction.com%2F
https://vfunction.com/contact/
https://vfunction.com/request-demo/
https://vfunction.com/request-demo/

