
WHITEPAPER

Technical Debt
A Guide for Frustrated Software
Architects and CIOs

● As of 2022, application modernization has become a top priority for CIOs in the enterprise.
Executives rank “investing more in application innovation” as their top goal for
modernization efforts, while software architects list “improving engineering velocity” as
their primary objective.

● Yet, according to a recent survey of 250 senior IT professionals, the majority of Application
Modernization initiatives end in failure, at a cost of $1.5 million and 16 months of work
hours on average.

● Among those who had started app modernization projects and failed, the top reason was a
“failure to accurately set expectations,” followed by factors like a “lack of intelligent tools”
and “organizational pushback.”

● Innovation is a necessity to meet business objectives, but the biggest obstacle to
innovation is technical debt—a major impediment to engineering velocity.

● Technical debt accumulates when decision makers go for a short-term solution to a
software development problem—instead of a more exhaustive, long-term solution—and this
comes with substantial, hidden costs that organizations must pay later.

● The symptoms of technical debt ripple across your entire organization, adding complexity
to your enterprise applications, delaying business goals, and frustrating your valuable
engineering staff.

● Long test and release cycles make it difficult to reliably meet business requirements,
ultimately leading to a poor customer experience. Technical debt also makes it harder to
quickly onboard new engineering staff and has a negative impact on team morale.

● To combat the problem of technical debt, vFunction devised and validated a method to
measure technical debt of an application, similarly based on an award-winning academic
paper. This paper describes how an organization should plan development cycles while
taking into account the effect of accumulated technical debt has on future development
and releases.

● The results of these efforts are now available to architects and developers in vFunction
Assessment Hub, which combines static analysis with AI to create a lightweight assessment
tool for calculating the ongoing technical debt of your monolithic applications. Ultimately,
you’re given tools to prioritize application modernization efforts and build a business case
for removing architectural technical debt from your applications.

Executive Summary

© vFunction 2022 2

https://info.vfunction.com/hubfs/Download%20Assets/Wakefield-Report-2022-Why-App-Modernization-Projects-Fail.pdf
https://vfunction.com/products/assessment-hub/
https://vfunction.com/products/assessment-hub/
https://info.vfunction.com/hubfs/Download%20Assets/Wakefield-Report-2022-Why-App-Modernization-Projects-Fail.pdf

3© vFunction 2022

Application modernization is a stated priority for CIOs
in the enterprise—a top-three initiative, according
to CIO magazine’s State of the CIO 2022, in both
effort and resources. Between 2021 and 2022,
industry analyst IDG witnessed the category of
“Application Modernization” skyrocket from the
#8 to the #3 top priority for CIOs. Additionally,
IDG predicts that by 2024, the majority of legacy
applications will be getting an update.

Furthermore, Gartner predicts that by 2025, 90% of
applications currently used today will still be in use, and
lagging due to the lack of funding for modernization
initiatives an d that 40 % of IT budgets wi ll be spent
simply maintaining technical debt.

It’s clear that application modernization is critical
to business success, but at the same time we are
confronted with some disturbing realities: according
to 250 senior IT professionals, the majority of
Application Modernization initiatives end in failure, at
a cost of $1.5 million and 16 months of work hours on
average.

To understand why this is happening, let’s take a look
behind the motivation for application modernization
projects, and how the reasons they fail are connected
back to the motivation in the first place.

Why Application Modernization?
Goals, Challenges and Failures

79%
of app modernization projects fail

$1.5M
average cost of a Modernization Project

16mo
average time of a modernization ptoject

The impact of Application Modernization failures
Source: Why App Modernization Projects Fail (2022)

https://info.vfunction.com/hubfs/Download%20Assets/Wakefield-Report-2022-Why-App-Modernization-Projects-Fail.pdf
https://www.cio.com/article/306384/state-of-the-cio-2022-focus-turns-to-it-fundamentals.html
https://www.gartner.com/en/documents/3956295
https://vfunction.com/resources/wakefield-report-why-app-modernization-projects-fail/
https://vfunction.com/resources/wakefield-report-why-app-modernization-projects-fail/

4© vFunction 2022

Growing your enterprise and keeping your customers
happy is a continuous battle in light of competitive
pressures from fast-moving digital natives—not
to mention major global events like the Covid-19
pandemic.

As a result, aging system architectures are forced into
the spotlight as IT teams struggle with engineering
velocity and application scalability. This in turn
has driven board members and executive teams to
initiate a mandate to modernize applications and
infrastructure to reduce costs and improve application

Modernization Goals: 				
Engineering Velocity and Innovation

scalability. Many organizations look to cloud platforms
like AWS, Azure, Google Cloud, Red Hat OpenShift,
and others to achieve these benefits.

Executives rank investing more in application
“innovation” as their top priority, while app architects
list “improving engineering velocity” as their main
goal. This speaks directly to the unique pressures each
of these IT stakeholders may feel.

Top Goals of App Modernization Projects

Keeping Up with Business
Requirements

Finding Time to
Add New Features

Finding Developers Who
Can Maintain it

& Ramping Them Up

Keeping Up with Business
Requirements

Keeping Up with Growing
Technical Debt

Finding Developers Who
Can Maintain It & Ramping

Them Up

Keeping Up with Growing
Technical Debt

Top Goals of Application Modernization
Source: Why App Modernization Projects Fail (2022)

This difference also speaks to different sides of the same coin in terms of overall organizational goals: innovation
is a necessity to meet business objectives, but the biggest obstacle to innovation is technical debt—a major
impediment to engineering velocity. Related to engineering velocity is the “ramp time for new developers,”
another concern mentioned by architects that directly connects to application modernization.

https://info.vfunction.com/hubfs/Download%20Assets/Wakefield-Report-2022-Why-App-Modernization-Projects-Fail.pdf
https://vfunction.com/resources/wakefield-report-why-app-modernization-projects-fail/

5© vFunction 2022

Factors like technical debt (in the form of app
complexity and risk) and overall cost have caused
the majority of modernization projects to fail. Yet
before that even happens, internal struggles put app
modernization efforts in peril: 97% predict someone
in their organization would push back on a proposed
project before it even starts. This difference also
speaks to different sides of the same coin in terms of
overall organizational goals: innovation is a necessity
to meet business objectives, but the biggest obstacle
to innovation is technical debt—a major impediment to
engineering velocity. Related to engineering velocity is
the “ramp time for new developers,” another concern
mentioned by architects that directly connects to
application modernization

Why Modernization Efforts Fail So Often

Top Reasons for Pushback

Risk The Case for ROI
is Lacking

Risk Stakeholders Fear
Losing Their Role

Too Costly

Stakeholders Fear
Large Scale Change

Reasons for Organizational Pushback
Source: Why App Modernization Projects Fail (2022)

97%
predict someone in their organization
would push back on a proposed project

https://info.vfunction.com/hubfs/Download%20Assets/Wakefield-Report-2022-Why-App-Modernization-Projects-Fail.pdf

6© vFunction 2022

In terms of organizational pushback, “risk” is the
number one reason for both Executives and Architects.
Other concerns include cost, fear of change, and the
lack of clear ROI.

In looking at what causes failed modernization efforts,
there are some noteworthy differences between what
executives and architects call out as top reasons for
failure, which point to the intertwined—but sometimes
opposing—pressures that leaders and architects
experience.

Among those who had started app modernization
projects and failed, the top reason cited across
all stakeholders was “failure to accurately set
expectations.” Yet in looking at architects alone, they
note a “lack of intelligent tools” as the number one
reason for failure.

Failure to Accurately Set Expectations

Everyone can agree on one thing: if you haven’t set and
confirmed expectations and goals for a modernization
initiative, things are likely to go wrong from the start.
No one can confidently execute a project that hasn’t
quantified the expected business outcome, project
scope and timeline, and the various costs associated
with modernization.

To do this right, we need a combination of executive
sponsorship, strong project management, and tools
and technologies to accurately assess and quantify
the ROI of the effort.

Lack of Intelligent Tooling

Among architects, the need for tooling ranked high
when asked why modernization projects fail, with
responses to the survey such as: “We still lack the
tools to do it properly.” “Having more automation tools
means faster release times and better modernization
processes.”

Failure to Accurately
Set Expectations

Lack of
Intelligent Tools

Reasons for Organizational Pushback
Source: Why App Modernization Projects Fail (2022)

This points to a lack of intelligent tools to help
architects and engineers reduce the time and risk of
these modernization projects, with many architects
using static analysis tools and/or application
performance management tools—neither of which
analyze each application for architectural complexity,
technical debt, and identifying aging frameworks, nor
assist in the transformation to microservices.

The combination of poorly set expectations and
the lack of tooling are that the primary goals of
application modernization cannot be met: no increase
in engineering velocity, and slow innovation cycles.

Technical Debt Is a Major Blocker to Application
Modernization Goals

As we stated earlier: innovation is a necessity to
meet business objectives, but the biggest obstacle to
innovation is technical debt—a major impediment to
engineering velocity.

Let’s see what technical debt is really made up of,
how it accumulates, and why it’s so detrimental to
engineering velocity and the ability to innovate.

https://info.vfunction.com/hubfs/Download%20Assets/Wakefield-Report-2022-Why-App-Modernization-Projects-Fail.pdf

7© vFunction 2022

Technical Debt: The Silent Killer of
Engineering Velocity and Innovation

What is Technical Debt?

Splunk describes Technical Debt in the following way:

Tech debt, also known as technical debt or code debt, suggests that a simplistic,
poorly understood, or “quick and dirty” solution to a software development problem
(instead of a more thorough, robust solution) comes with substantial, hidden costs
that organizations must pay later. Programmer Ward Cunningham originated the
definition of technical debt as we know it in a 1992 article articulating that while
the enterprise may save money in the short term by coding in this fashion, in the
long run, “interest” from the tech debt, as with monetary debt, will accumulate,
making the initial problem increasingly costly to fix as time goes on.

Technical debt, in plain words, is an accumulation over
time of lots of little compromises that consequently
hamper your coding efforts. Sometimes, you (or your
manager) choose to handle these challenges “next
time” because of the urgency of the current release.

This is a cycle that continues for many organizations
until a true breaking point or crisis occurs. If software
teams decide to confront technical debt head-on,
these software engineers may discover that the
situation has become so complex that they do not
know where to start.

The difficult part is that any decision we make needs
to strike a balance between short-term benefits (e.g.
releasing a version faster) and long-term costs of
technical debt (e.g. paying that debt later on). This
emphasizes the need to properly assess and address
it when planning development cycles.

How Technical Debt Affects Your Applications,
Business, and Engineers

Your monolithic application is hindering innovation
due to its compounding technical debt, which is

stifling engineering velocity and leading to the inability
to rapidly innovate. The symptoms of technical debt
make their way across your entire organization,
including your enterprise applications, business goals,
and valued engineering staff.

Technical Debt Leads to Slow Test and Release
Cycles

Monolithic applications—which may have millions
of lines of code and thousands of classes—that have
accumulated technical debt are extremely difficult to
update because a change to any part of the code can
ripple through the application, causing unintended
operational changes or failures in seemingly unrelated
parts of the codebase.

Because monoliths are a single entity with
functionalities and dependencies interwoven
throughout, they are inflexible, brittle, and difficult
to update with new features or functions. This makes
testing cycles long, manually driven, and unpredictable,
which naturally leads to slower release cycles.

https://www.splunk.com/en_us/data-insider/what-is-tech-debt.html

8© vFunction 2022

Technical Debt Leads to the Inability to Meet
Business Goals

If your test and release cycles are slow and prone to
delays, then it becomes significantly more difficult to
meet deadlines and business requirements. If it takes
weeks to successfully build and deploy a new version
of your product—namely for bug fixes—then you’re
likely not meeting modern customer expectations for
software services.

When delayed releases and bug fixes impact the user
experience, then customer satisfaction and retention
are at risk–two fairly critical business metrics.

Technical Debt Impacts Team Onboarding and
Morale

It may not be at the top of mind for some executives,
but battling with difficult, brittle, and unpredictable
monolithic systems can—and often does—negatively
impact team morale.

A monolithic system often parallels a monolithic
engineering organization. The lack of autonomy,
clearly defined business domains, and the chance to
make a personal impact on the success of the company
are frequent anecdotal complaints by architects and
developers.

Additionally, it is becoming increasingly difficult to find,
hire, and onboard developers who pursue maintaining
monoliths as a career path. Onboarding new staff
members to the point where they understand what
the overall system looks like can take 3-6 months.

Clearly, technical debt is a major liability for your ability
to raise development velocity and increase speed on
innovation. In order to tackle this problem, the first
step is to understand and quantify it.

Can Technical Debt Be Measured?

In their seminal article from 2012, “In Search of a
Metric for Managing Architectural Technical
Debt”, authors Robert L. Nord, Ipek Ozkaya,
Philippe Kruchten, and Marco Gonzalez-Rojas offer
a metric to measure technical debt based on
dependencies between architectural elements.

This method shows how an organization should plan
development cycles while taking into account the
effect that accumulating technical debt will have on
the overall resources required for each subsequent
version released.

Though this article was published nearly 10 years
ago, its relevance today is hard to overstate–in
March 2022, it was awarded the “Most Influential
Paper” Award at the 19th IEEE International
Conference on Software Architecture (ICSA 2022).

Image source: Twitter

The scope of this paper does not include, however,
what constitutes an architectural element or how
architects and developers working with monolithic
applications can actually calculate technical debt
proactively.

What is needed are technologies purpose-built for
application modernization to help organizations
understand technical debt and make informed
decisions about prioritizing projects to refactor critical
monolithic services into decoupled, independent
microservices in the cloud. In the next section, we
describe how we’ve taken these academic concepts
and applied them to build a technology platform for
architects and developers to assess and measure
technical debt.

https://twitter.com/ICSAconf/status/1499633253724360707
https://resources.sei.cmu.edu/asset_files/conferencepaper/2012_021_001_88045.pdf
https://resources.sei.cmu.edu/asset_files/conferencepaper/2012_021_001_88045.pdf
https://twitter.com/ICSAconf/status/1499633253724360707
https://twitter.com/ICSAconf/status/1499633253724360707

9© vFunction 2022

Using Data Science and Machine Learning to
Determine Technical Debt

Determining technical debt is key to making decisions
regarding any specific application and prioritizing
modernization initiatives between multiple
applications. As such, vFunction has created a method
that can be used to not only compare the performance
of different design paths for a single application, but
also compare the technical debt levels of multiple
applications at an arbitrary point in their development
life cycle.

Our technology platform measures the technical debt
of an application based on the dependency graph
between its classes. Next, the platform performs multi-
faceted analysis on the graph to determine a score
that describes the technical debt of the application.
Here are some of the metrics extracted from the raw
graph:

1. Average/median outdegree of the vertices on
the graph

2. Top N outdegree of any node in the graph

3. Longest paths between classes

Tackling Technical Debt with Math, Machine
Learning, and Data-driven Business Cases:
The vFunction Method

Using standard clustering algorithms on the graph, our
platform identifies communities of classes within the
graph and measures additional metrics on them, such
as the average outdegree of the identified communities
and the longest paths between communities.

By using these generic metrics on the dependency
graphs, our platform uncovers architectural issues
which represent real technical debt in the original
code base. Moreover, by analyzing dependencies on
these two levels, class and community, we give a broad
interpretation of what an architectural element is in
the real world–helping to better quantify technical
debt and prioritize which applications should be
modernized first.

This is an intelligent approach to identifying technical
debt and building a data-driven business case for
prioritizing specific applications for modernization.
With this approach, the top reasons for organizational
pushback (i.e. risk, cost, fear of change) can be directly
addressed based on real numbers, removing the
opportunity for biases or political decisions to hobble
modernization initiatives before they even start.

10© vFunction 2022

To test this method, we created a data set of over
fifty real-world applications from a variety of domains
(financial services, eCommerce, automotive, and
others and extracted the aforementioned metrics
from them. We used this data set in two ways.

Firstly, we correlated specific instances of high-
ranking occurrences of outdegrees and long paths
with local issues in the code. For example, identifying
god classes by their high outdegree. This proved
efficient and increased our confidence level that this
approach is valid in identifying local technical debt
issues.

Secondly, we attempted to provide a high-level score
that can be used not only to identify technical
debt in a single application but also be able to
compare technical debt between applications and to
use it to help prioritize which should be addressed
and how. To do that we introduced three indexes:

Identify and Assess Technical
Debt in Real World

1. Complexity - represents the effort required to add
new features to the application

2. Risk - represents the potential risk that adding new
features will have downstream impacts on other
parts of the application.

3. Overall Debt - represents the overall amount of
extra work required when attempting to add new
features

The graph depicts a sample of applications
demonstrating the relationship between the
aforementioned metrics.

To train the ML model, we manually analyzed the
applications in our data set, employing expert
knowledge of the individual architects and developers
in charge of product development. From there, we
then scored each application’s complexity, risk, and

Source: vFunction, Inc. 2022

https://en.wikipedia.org/wiki/God_object

11© vFunction 2022

overall debt on a scale of 1-5 (where a score of 1
represents little effort required and 5 represents high
effort). We used these benchmarks to train a machine
learning model which correlates the values of the
extracted metrics with the indexes and normalizes
them to a score of 0-100.

This allows us to use this ML model to issue a score
per index for any new application we encounter,
enabling us to analyze entire portfolios of applications
and compare them to one another and to our pre-
calculated benchmarks.

vFunction Assessment Hub: Calculate Technical
Debt

To increase innovation velocity and scalability, you
must directly address accumulated technical debt
across your application estate. Current manual
assessment approaches are slow, complex, costly,
and prone to failure—this makes building an accurate,
data-driven application modernization plan extremely
difficult.

Without the proper AI-driven assessment tools, it’s
nearly impossible for decision-makers to prioritize
application modernization projects based on real data.
To build a business case that reduces risk, improves
project efficiency, and reduced cost, an analysis of the
technical debt of monolithic applications, the accurate
identification of the source of that debt, and a way to
measure its negative impact on innovation are critical
elements.

vFunction Assessment Hub leverages the data
science and machine learning mentioned in the
previous section and turns them into a lightweight
assessment tool for calculating the technical debt
of your monolithic applications. The goal is to help
your organization build a business case and share a
downloadable assessment report that offers concrete
data needed to remove architectural technical debt
from your applications.

1. Calculate

AI-trained algorithms calculate the
technical debt of your monolithic
applications, accurately identify
the source of that debt, and
measure its negative impact on
innovation.

https://vfunction.com/products/assessment-hub/

12© vFunction 2022

2. Prioritize

Clearly assess the benefits of
modernization by understanding
the cost of technical debt versus
innovation, identifying the top 10
debt classes, and stack-ranking
which apps to modernize first.

3. Analyze

Analyze and download key
metrics that provide ROI and
TCO measurements critical for
more effective and compelling
application modernization
business cases.

4. Modernize Immediately

Once your application
modernization priorities have been
determined, you can directly move
to refactoring, rearchitecting, and
rewriting applications with the
vFunction Modernization Hub.

https://vfunction.com/products/modernization-hub/

13© vFunction 2022

Technical debt is a major barrier to achieving engineering velocity and a high pace of innovation,
the primary goals of both executives and architects for application modernization. As we’ve
seen, 79% of modernization projects fail at high cost and extended timelines due to a lack of
data for accurately setting expectations and intelligent tooling.

Using data science and machine learning, vFunction offers a data-driven solution to
eliminating technical debt that includes the ability to identify, quantify, prioritize, and make a
clear business case with ROI for a modernization initiative.

Conclusion

About vFunction
vFunction is the first and only AI-driven platform for developers and architects that intelligently and
automatically transforms complex monolithic Java applications into microservices, restoring engineering
velocity and optimizing the benefits of the cloud. Designed to eliminate the time, risk and cost constraints of
manually modernizing business applications, vFunction delivers a scalable, repeatable factory model purpose-
built for cloud native modernization. With vFunction, leading companies around the world are accelerating
the journey to cloud-native architecture and gaining a competitive edge. vFunction is headquartered in Palo
Alto, CA, with offices in Israel. To learn more, visit vFunction.com.

http://www.vfunction.com/
https://vfunction.com/request-demo/

