
Copyright © 2019 Alachisoft

NCache 5.0
Performance Benchmarks

by

The NCache Team

August 26, 2019

Whitepaper

NCache Performance Benchmarks 1 Copyright © 2019 Alachisoft

1 Executive Summary

NCache can help you linearly scale and enhance performance easily and cost-efficiently. Fortune

500 companies across the world have trusted NCache for over 13 years to remove performance
bottlenecks related to data storage and databases and to scale .NET applications to extreme

transaction processing (XTP).

This document will use NCache 5.0 with modern APIs and some new features to demonstrate the
linear scalability and extreme performance you can get achieve for your .NET applications. In this

experiment, we bundled a modem NCache API with a partitioned cache topology with pipelining

enabled. Data is fully distributed on all caching servers and clients connect to all servers for read
and write requests.

In this benchmark, we demonstrate that the NCache cluster can linearly scale and that we achieved

2 Million Transactions per second using only 5 cache server nodes. We will also
demonstrate that NCache can deliver sub-microsecond latency even in a large cluster. In this

whitepaper, we will be covering benchmark settings, steps for performing benchmarks, testing
configurations, load configurations and results. You can see the benchmark experiment in action in

this video.

2 Benchmark Setup Overview

Let’s review our benchmark setup. We are going to use AWS m4.10xlarge servers for this test. We
have five of these NCache servers on which we will configure our cache cluster. We will have 15

client servers, from where we will run applications to connect to this cache cluster.

We are going to use Windows Server 2016 as the operation system – Data Center Edition, 64-bit.
The NCache version being used is 5.0 Enterprise. In this benchmark setup, we will be using a

Partitioned Cache Topology. In a Partitioned Cache Topology, all the data will be fully distributed in
partitions on all caching servers. And all clients will be connected to all servers for read and write

requests to utilize all servers at the same time. We don't have replication turned on for this

topology but there are other topologies such as the Partitioned-Replica Topology which comes
equipped with replication support.

Figure 1- NCache Benchmark Setup

https://alachisoft.com/resources/videos/ncache-performance-benchmarks.php

NCache Performance Benchmarks 2 Copyright © 2019 Alachisoft

We will have Pipelining enabled which is a new feature in NCache 5.0. It works in such a way that

on the client side it accumulates all requests which are happening at runtime and it applies those
requests at once on the server-side. Accumulation is done in micro-seconds so it is very optimized

and it is the recommended configuration when you have high transactional load requirements.

Here is a quick overview of our benchmark setup including hardware, software, and load
configurations.

2.1- Hardware Configuration:

Client & Server Details

(Virtual Machine)

AWS m4.10xlarge: 40 Cores, 160 GB Memory, Network - 10

Gbps Ethernet

Number of Server Nodes 5

Number of Client Nodes 15

2.2- Software Configuration:

Operating System Windows Server 2016
Data Center Edition – x64

NCache Version 5.0

Cluster Topology Partitioned Cache Configuration

2.3- Load Configuration:

Cache Size 4 GB

Data Size Byte array of size 100

Total Items 1,000,000

Pipelining Enabled

Get/Update Ratio 80:20

Threads 1280

Applications Instances 2 Instances per Client Machine , Total 30 Instances

3 Data Population

After our benchmark environment setup, we will start with a data population of 1 Million items in
the cache cluster. We will run the Client application (Cache Item Loader) which is going to connect

and add 1 Million items in the cache. One client will connect with all caching servers and will add 1
million items in the cache cluster, after which we can get started with read and write requests.

You can use this Nuget package – NCache SDK to install SDK on the client machine and configure

pipelining between the client-server and deploy the Load Generation Application (GitHub) to
populate 1 million cache items on the cache cluster.

4 Build Transaction Load

We will now run the application to build some transactional load on this cache cluster with 80%
read and 20% write operations. You can monitor all activity using Perfmon counters. Initially, we

will connect 10 clients instances to each NCache server with activity on fetches as well as on
updates per second.

https://www.nuget.org/packages/Alachisoft.NCache.SDK/

NCache Performance Benchmarks 3 Copyright © 2019 Alachisoft

Stage 1- 1 Million Ops/Sec Transaction Load

Figure 2- Actual Snapshot Taken During Benchmarks - 5 Nodes, 10 Client Instances

You can see in the screenshot that with 10 client instances connecting to a 5-node cluster we have

requests per second numbering between 180,000 to 190,000. And since we have 5 NCache servers
which are working in parallel, accumulating these requests brings us to 1 Million requests per

second by this cache cluster.

We have efficient Memory and CPU usage and the average microsecond/cache operation is a little

less than 10 microseconds per operation. Our stage one is completed where we have achieved 1
Million Operations per second from our cache cluster.

Stage 1 – Summary Data Sheet

Total Cache Servers in Cluster 5

Total Client Instances Connected 10

Requests Per Second / Node 180,0000 ~ 190,000

Total Requests - Cache Cluster 950,000 ~ 1,000,000

% Processor Time (Max) 20%

System Memory 4.2 GB

Latency (Microsecond/Cache Operation) 10 microsecond/operation

Stage 2- 1.5 Million Ops/Sec Transaction Load

Now that we have achieved the 1 Million TPS, it’s time to bump up the load in the form of more

application instances to increase the transactional load. And as soon as these applications would
run, you would see an increase in requests per second counter. We are going to increase the

number of clients to be 20. With this configuration you can see in the screenshot below that we are
now showing 300,000 requests per second per instance. We have successfully achieved 1.5 Million

requests per second from this cache cluster.

NCache Performance Benchmarks 4 Copyright © 2019 Alachisoft

Figure 3- Actual Snapshot Taken During Benchmarks - 5 Nodes, 20 Client Instances

You can see the count of requests per second by each server is 300,000. Fetches are little more

200,000 per second and updates are between 50,000 - 100,000 and you can see the average

microsecond per cache operation is less than 4 microseconds; that’s amazing because we have
very low latency along with the impact of pipelining. When you have a high transactional load from

the client end, pipelining really helps and reduces latency and increases throughput. This is why we
recommend this to be turned on. Furthermore, we have the average microsecond per cache

operation now somewhere around 3-4 Microseconds per cache operation.

Stage 2 – Summary Data Sheet

Total Cache Servers in Cluster 5

Total Client Instances Connected 20

Avg. Requests Per Second / Node 300,0000

Total Requests - Cache Cluster 1,500,000

% Processor Time (Max) 30%

System Memory 6 GB

Latency (Microsecond/Cache Operation) 3 ~ 4 microsecond/operation

Stage 3- 2 Million Ops/Sec Transaction Load

Let’s further bump up the load by running some more application instances which will also show a

further increase in requests per second. We are now going to connect 30 clients’ instances to all
NCache servers

As per the screenshot below you can now see we have successfully touched 400,000 requests per
second which we are getting by each NCache server; we have 5 NCache servers so that makes the

number up to two million transactions per second by this NCache cache cluster. And we have the
average microseconds per cache operation numbering less than 3 microseconds. We also have the

system memory and processor time well under limits with 40 - 50 % utilization on both fronts.

NCache Performance Benchmarks 5 Copyright © 2019 Alachisoft

Figure 4- Actual Snapshot Taken During Benchmarks - 5 Nodes, 30 Client Instances

We now have 2 ~ 3 us/operation latency, an improvement from the previous result. You can once

again see a mix of fetches, updates, and an efficient utilization of the CPU and memory resources.
We can conclude here that NCache is linearly scalable. Now let’s review our scalability numbers.

Stage 3 – Summary Data Sheet

Total Cache Servers in Cluster 5

Total Client Instances Connected 30

Requests Per Second / Node 180,0000 ~ 190,000

Total Requests - Cache Cluster 2,000,000

% Processor Time (Max) 60%

System Memory 6 GB

Latency (Microsecond/Cache Operation) 2 ~ 3 microsecond/operation

NCache Performance Benchmarks 6 Copyright © 2019 Alachisoft

5 Benchmark Results

We were able to demonstrate that NCache is linearly scalable and we were able to achieve the
following results after running the benchmarks:

Figure 5- NCache 5.0 Throughput (Transactions Per Second) – 5 Node Cluster

Figure 6 - Throughput per Node - 5 Node Cluster

-

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0 1 2 3 4 5 6

OF NODES

Throughput Ops/Sec

Ops/Sec Linear (Ops/Sec)

350000

360000

370000

380000

390000

400000

410000

420000

430000

440000

0 1 2 3 4 5 6

Throughtput Per Node

Max Avg Min

NCache Performance Benchmarks 7 Copyright © 2019 Alachisoft

Figure 7 – Average Latency Micro-second per Cache Operation

Figure 8 – Total Ops/Sec - 5 Node Cluster

0

1

2

3

4

5

6

21:36.0 21:53.3 22:10.6 22:27.8 22:45.1 23:02.4 23:19.7 23:37.0 23:54.2 24:11.5 24:28.8

Latency u-Sec/cache operation

0

500000

1000000

1500000

2000000

2500000

20:52.8 21:36.0 22:19.2 23:02.4 23:45.6 24:28.8

Ops/Sec (5 Nodes Cluster)

NCache Performance Benchmarks 8 Copyright © 2019 Alachisoft

Conclusions:

1- Linear Scalability: With 5 NCache servers we were able to achieve 2 Million requests per

second. Adding more and more servers means more request handling capabilities from
NCache.

2- Low Latency & High Throughput: NCache delivers sub-microsecond (2.5 ~ 3 micro-

second) latency even with a large cluster size. NCache helps meet low latency and high

throughput requirements even at scale. We have a very low latency, an impact derived from

pipelining. When you have high transactional loads from the client end, pipelining really

helps and reduces latency and increases throughput.

 NCache Details Edition Comparison Download NCache

http://www.alachisoft.com/ncache/
http://www.alachisoft.com/ncache/edition-comparison.html
http://www.alachisoft.com/download.html

	1 Executive Summary
	2 Benchmark Setup Overview
	3 Data Population
	4 Build Transaction Load
	5 Benchmark Results

