
1Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

Palantir
—Apollo

PALANTIR
TECHNOLOGIES

PALANTIR.COM

COPYRIGHT © 2022

SOLUTION OVERVIEW

—WHITEPAPER

Introduction 03

Problem Statement 03

Why Apollo? 05

Components of the Apollo Platform 06

Security and Governance 14

Interoperability 16

Apollo in Action 17

Palantir Apollo
—Solution Overview

2Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

3

Introduction

From on-premise data centers to edge hardware and across clouds, Apollo
enables the secure, autonomous delivery of your software to any
environment, anywhere on Earth.

With Apollo, teams have a single pane of glass to monitor deployment health,
coordinate the delivery of new features, customize platform configurations,
and rapidly remediate issues.

Each layer of the Apollo platform serves to ease and expedite the journey of
code from keyboard to operations; engineers write code once that works for
all environments. This way, developers can focus on building new
capabilities, not the nuance of deployment and management.

Maximize the reach of your software infrastructure with the flexibility of
Apollo.

An Operating System
for Continuous
Deployment à

Problem Statement

An Exponential
Expansion of
Deployment
Environments à

Historically, enterprise software was designed for and deployed to a single
environment – on-premise data centers. Every organization had one (or a
few) and it represented the totality of their computing footprint. Once software
was installed, upgrades were infrequent because of the manual work and
support burden required.

By 2016, the rise of cloud computing had changed this deployment paradigm
dramatically. Companies rapidly embraced the SaaS model and micro-
service architecture for the ease of only having to operate and deploy
updates to a single production environment — powered by hyper-scale
commercial cloud providers. “The Cloud” was discussed as a singular entity,
with a singular grip on enterprise software.

However, six years later, and there is no single cloud. Instead, organizations
are looking up and seeing a sky full of clouds: some public, some private and
many that are hybridized. Several macro-level trends are combining to drive
this expansion of delivery environments and change how software is
deployed.

Here are some of those macro-level changes à

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

4

Problem Statement

DESCRIPTION

As organizations transitioned their software infrastructure to a cloud-first
paradigm, they were met with ballooning fees from hyper-scalers. As the cloud
infrastructure market becomes more saturated and competitive, customers are
resisting vendor lock-in and opting for software that supports a multi-cloud
paradigm.

MACRO-LEVEL TREND

Commercial Cloud Fragmentation

Increasingly, government customers are requiring their software to run in purpose-
built government-only or classified clouds that live separately from standard public
cloud infrastructure; France, Germany, Canada, Australia, UK, U.S., and others
are creating unique rules around how to deploy software for these environments.
In some cases, these have been formalized into rigorous accreditations, such as
the FedRAMP and DoD IL programs in the U.S. and Protected B in Canada.

Sovereign Clouds

In response to stringent data residency legislation, such as GDPR, CCPA, and
GxP, companies are requiring data to be hosted in-country – whether in physical
data centers, private clouds, or region-specific public clouds – to assure
regulatory compliance.

Data Residency Restrictions

An increasing number of companies are adopting cloud principles but need to
stay on-premise for security, privacy, or financial reasons – but they still want the
advantages of cloud speed delivery.

Need for On-Premise

Distributed computing is still in its infancy, but already organizations are having
to adapt their deployment models to account for the unique challenges of
delivering software to disaggregated, low-connectivity environments. This boom
in physical infrastructure and hardware must be met with sophisticated solutions
for software management.

Rise of the Edge & IoT

Taken together, this expansion of
delivery environments has narrowed the
opportunities available to companies
relying on traditional SaaS architectures.
Organizations need flexible deployment
capabilities to capture emergent
opportunities, enabling them to evolve
alongside their customers and support
robust product growth — all while
maintaining the speed and convenience
customers have come to expect from the
SaaS model.

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

PALANTIR APOLLOREQUIREMENTS FOR CD AT SCALE

5

Why Apollo?

To keep up with expanding delivery environments, some organizations build
continuous integration/continuous delivery (CI/CD) capabilities in-house. While
this is altogether possible, doing so pulls valuable resources away from
innovation and continued feature development, as time is spent stitching
together a set of open-source CI/CD tools that were designed for a singular
cloud world.

Instead, organizations need an integrated, end-to-end solution that can evolve in
tandem with their business strategy. This is Apollo: capable of deploying your
software wherever it’s needed, whenever you need it.

Requirements to do
CD at Scale à

An end-to-end CD platform

A change movement engine

An OS that aligns incentives

No matter how remote, how many separate environments you have, or how
complex your fleet is, Apollo will ensure all your latest features can get to any
and all environments.

An end-to-end Continuous
Deployment (CD) platform
for centrally managing
heterogenous versions of
software across independent
environments, regardless of
what and where those
environments are

Apollo allows you to translate operational needs into specifications codified in the
platform, and then does the hard work for you of figuring out what, where, and
how everything across your fleet should be safely upgraded. It allows you to
deploy with speed and stability, giving your customers both the newest features
and 24/7 reliability, and giving your engineers rapid feedback loops.

A change management engine
for orchestrating software
upgrades and changes safely
across connected &
disconnected environments

Apollo gives you a 360° visibility into what is deployed where and a toolkit to
rapidly respond to issues, and aligns incentives and practices across
developers, operators, and security professionals.

An operating system for your
engineers and operators to
manage your software platforms
across your fleet

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

01

02

03

6

So — how does it all work? Apollo is made up of a few key components.

— The Apollo Platform consists of an Apollo Hub deployed centrally and the
Apollo Deployment Platform deployed per managed environment.

— The Apollo Hub is the central environment that maintains the status and
unique requirements of each deployment environment and proposes plans to
Apollo Deployment Platform for each of the environments it manages.

— The Main Apollo Hub is the SaaS hub which manages all of your
connected environments.

— Remote Apollo hubs are Apollo Hubs that are designed for usage
within remote or isolated networks to manage remote environments.
Remote Hubs are kept in sync with the Main Hub using the Apollo
bundle.

— The Apollo Deployment Platform runs alongside managed software in each
environment and sits on top of Kubernetes (but also supports a container-less
world). The Deployment Platform’s primary function is to deploy and manage
your software in the environment you would like to manage. To do that, it
communicates with an Apollo hub to report the current state of managed
software and receives work plans from it to execute.

— The Apollo SDK defines a standard framework to communicate metadata
about each piece of software you want to manage. No code changes are
required. The metadata provided via this framework is one of several ways
that developers interact with and are able to customize the Apollo Platform to
fit your business needs.

FIGURE 01
The Apollo Ecosystem at a glance.

Components of the
Apollo Platform

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

01—
The Building Blocks
of the Apollo CD
Platform à

Apollo Platform

Apollo Hub

Apollo Deployment Platform

Apollo SDK

Apollo Catalog

02—
The Apollo
Orchestration
Platform

Safe, granular coordination
of upgrades across all
environments à

7

Components of the
Apollo Platform

01—
The Building Blocks
of the Apollo CD
Platform [Cont.] à

— The Apollo Catalog is a metadata layer that bridges the gap between what’s
contained in your artifact store and your managed environments, connected
or otherwise. The Catalog acts as a source of truth for all available software
packages, so that it knows when new versions/patches are available and
where to find them within your artifact store. This model gives your
organization the comfort and security of knowing that your code and
software always stays within your existing source control and artifact
repositories.

— This is where Apollo seamlessly integrates to your existing build
systems / CI tooling. Developers simply merge changes into a given
product repository and your CI build runs as usual, building a
distribution containing the contents of the artifact and sending it to
your existing artifact repository.

— For example, you might use Github Enterprise as your
version control system. A user merges a change into a Git
repository, your CircleCI build runs, builds the distribution,
and sends the artifact to Artifactory.

— To start managing a product with Apollo, all you need to do is add a
step to build process that pushes the release metadata to a service
running in the Apollo Hub. Your code and software always stay
within your existing source control and artifact repositories; the
Apollo Catalog simply gets the maven coordinates of the new
release and other metadata defined in the Apollo SDK.

Apollo Platform

Apollo Hub

Apollo Deployment Platform

Apollo SDK

Apollo Catalog

The Apollo Orchestration Engine is at the heart of the Apollo platform, residing
in the main Apollo Hub, and is what allows for autonomous orchestration and
central management of change across heterogenous environments. It does the
hard work for you of figuring out what, where, and how everything across your
fleet should safely upgrade, and allows you to deploy with speed and stability.

— Thanks to the Apollo Catalog, the Orchestration Engine knows as soon as
new versions and configuration changes are available. It computes what
upgrades and actions should be performed based on the observed state
reported by the Deployment Platform Services, available versions,
preconfigured environment and service constraints, and any commands
issued by the environment owners. It does so by evaluating where the target
and observed state disagree and recommending change to converge the
current state with the target state.

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

8

Components of the
Apollo Platform

02—
The Apollo
Orchestration
Platform

Safe, granular coordination
of upgrades across all
environments [Cont.] à

— Changes are proposed in the form of an Apollo Plan, consisting of a Plan
Type and the necessary information for the plan to be actuated (such as the
configuration change being made or the version of software an environment
needs to upgrade to). Before the plan is executed, both the product
constraints (such as the appropriate dependencies installed) or environment
constraints (such as specific downtime windows) must be met.

— Once all of these conditions are met, the orchestration platform
autonomously instructs an environment's deployment platform services to
execute a given Apollo Plan.

— This happens autonomously, after desired constraints and
specifications are configured.

Apollo’s Orchestration Platform is especially powerful because it enables you to
encode business and operational needs into the way it performs changes. The
customizations and features give you unmatched flexibility in managing your
software. The features of the Apollo Orchestration Platform include:

DESCRIPTION

Developers can benefit from dramatically shortened feedback loops by releasing
new features to canary environments directly from the develop branch, which
can be defined and customized to fit the target environment. Customers benefit
from increased testing and rapid, safe feature releases.

FEATURE

Canary Analysis

Apollo automatically adjudicates releases by observing performance metrics and
error states; then, gradually rolls out passing releases to the fleet, starting with
internal installations and eventually reaching more conservative, mission-critical
environments.

For certain services and environments, it’s pertinent to optimize for the latest
features as soon as they’re available, while others cannot risk de-bugging or
downtime. With Apollo, each environment can be assigned an individual risk
tolerance level to account for this balance.

Adjudication

Developers can specify the dependencies and compatible version range for
each service they deploy in the Apollo SDK. Apollo orchestrates upgrades in
accordance with these compatibilities. Apollo also understands which releases
require database migrations and chooses upgrade paths compatible with such
constraints, instead of simply fast-tracking to the latest release which would
leave the database in an incompatible state.

— This means that even complex upgrades and migrations are hands-off for
developers: they merely indicate the presence of a service or database
migration in their release metadata and Apollo takes care of rolling out the
release in a safe way.

Dependency Resolution

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

9

Components of the
Apollo Platform
DESCRIPTIONFEATURE

Apollo employs a zero-downtime upgrade strategy by deploying a second
instance of an application and slowly shifting traffic from the old instance to the
new one. Apollo’s release adjudication mechanism starts collecting performance
and error signal as soon as the first node has been upgraded, yielding early
indicators for the quality of a release. In this sense, blue/green deployment is not
only a zero-downtime rollout mechanic, but also an extra safety net that allows
Apollo to further accelerate the feedback loop for developers.

Blue/Green Deployment

Environment owners can subscribe to a specific ‘release channel’ in accordance
with their individual risk tolerance and appetite for new features. For example,
environments subscribed to the ‘develop’ release channel might get new
features the moment they’re available. As Apollo gathers data on the
deployment of this feature to 'develop' environments, it adjudicates whether a
release is ready for promotion to the next release channel, e.g., ‘stable.’ Apollo
comes with a set of predefined release channels and automated adjudication
sequence between them, but it also allows you to create release channels and
define the adjudication sequence according to your needs.

Release Channels

Developers and operators can specify when their products and environments
should and should not take upgrades.

— Developers and operators can define these windows at both the product and
the environment level to encode certain operational constraints. They establish
when changes should actually roll out to the fleet. For example, developers
may want changes to a risky product to rollout only when there are people
online and available to field any issues. On the other hand, environment
owners may want to ensure that large upgrades only happen after hours on a
critical production environment so users aren’t affected.

— To improve release safety, Apollo also automatically creates suppression
windows when customized failure thresholds are met, such as surprisingly high
disk space or memory usage by several services in an environment.

Maintenance & Suppression Windows

If a particular release of an application has been identified as buggy, unstable, or
slow, Apollo can recall the release and force the upgrade or downgrade to a
known good version across all environments.

— Recalls can be done by administrators and developers, or by Apollo itself:
Apollo adjudication system monitors the health of each component over time
(for instance by observing error logs and performance metrics) and
automatically recalls releases that appear unhealthy.

Recalling

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

10

Components of the
Apollo Platform

03 —
The Apollo Control
Panel

Understand and manage
software deployment
across all services and
environments à

The Apollo Control Panel is the user interface of Apollo that developers and
operators interact with to perform workflows related to management,
configuration, operations, and remediation of their software.

It enables the evaluation of rollouts through a powerful suite of tools to help
operators and developers understand the risks associated with each rollout,
surface problems, and ship code better.

Here are common workflows developers and operators love using Apollo.

DESCRIPTION

Create and modify settings for:

— Teams: membership, contact information, product ownership, who is on call

— Products: ownership, adjudication configuration, soak time for blue/green
configuration, default canary environments, maintenance windows

— Environments: accreditation/compliance regime (affects how approvals and
change management works within the system), ownership, operational
responsibility (if ‘on’ then the responsible product teams will get paged for all
products installed in the environment), maintenance windows, default release
channel

FEATURE

Management

Manage service configurations on one or many environments

— Edit the deployability properties of your installations (set a separate release
channel, dependency overrides, update specific maintenance windows, etc.)

— Service configuration can either be changed at the product level (across all
installations), or at the environment level. At the per product level, developers
can bulk edit existing installation configurations by seeing where they are
deployed across the fleet, with what overrides, and edit multiple at once.

— Configuration changes go through adjudication just like new features. This
enables you to meet various audit requirements, quickly debug, and improve
the stability of your deployed software.

— The ability to compare, preview, and bulk edit installation configurations and
the adjudication of all configuration changes takes significant error and
overhead out of managing configuration.

Configuration

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

11

DESCRIPTIONFEATURE

Ensure actuation of configuration changes to individual environments and to the
entire fleet:

— Apollo will compute what changes should take place, try to perform them,
and then report back if they were successful or why not. It calculates this
based on information from health checks, metrics, logs, configuration, and its
catalog of releases. Sometimes, changes are not successful for good
reason; a human may need to take action to safely unblock an upgrade.

— If you need to investigate further, the Apollo Control Panel helps you remove
blockers to rollout to installations across fleet. Developers can check to
ensure progress being made. One way Apollo helps with this is by reporting
a ‘stale’ status in the UI. It indicates that a release is on a ‘stable’ release
channel but hasn’t rolled out in more than five days. Some examples of what
could cause this:

— A dependency isn’t on an acceptable version for this product to be
upgraded and its upgrade has also been blocked. The path forward
is to reach out to the given environment or product owners (whose
identity and contact information can be found in the UI) to get
dependency upgraded.

— There’s an active suppression window on the environment.
Environment owners should be contacted in order to determine if this
upgrade can be pushed through, or if the suppression window
should be honored.

Operations

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

Components of the
Apollo Platform

Respond to production issues by tracking monitors and recalling bad product
versions allowing your operators to take the appropriate actions to remediate.

— Handle potentially complex tasks with ease – Apollo’s visibility into how
your software is deployed enables your operators to easily take action either
across your fleet or a particular installation and quickly remediate issues in
your production environments. Some common remediation actions include:

— Graceful service restarts

— Upgrade to latest version of product – There might just be a known
bug for which there is already a fix

— Recalling configuration and software versions

— Recall – When you’ve found a bad product version, a recalled version will
never be installed. If an environment is running one, then it will be
transferred to a roll-off version defined by its roll-off strategy:

— Stay on current version – often the first step in a high priority
incident. Pauses all new installations and blue/green upgrades from
accepting this version but keeps current ones on it as we investigate
an issue.

— Stay on current version with exceptions – can define specific
environments that will get the newer than or equal to strategy.
Helpful when testing hypotheses, when only seeing issues in
specific environments. Usually, a temporary measure when
debugging.

— Any version newer than recalled version – often used in high priority
incidents when rolling back isn’t an option, and installations will stay
in place until that version is available.

— Any version equal to or newer than x.x version – roll back fleet to a
previously known safe version.

12

DESCRIPTIONFEATURE

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

Remediation

Components of the
Apollo Platform

13

04—
Apollo Observability
Platform

An optional observability
platform for logging,
metrics, monitoring and
alerting of production
services à

With Apollo’s integration with popular observability and DevOps services such
as Prometheus, DataDog, and PagerDuty, Apollo is able to seamlessly integrate
with your organization’s existing observability tooling and incident response
processes. In addition, Apollo also offers its own suite of observability tooling
that allows your organization to quickly bootstrap an observability platform if
needed.

— Break silos between Dev and DevOps – With Apollo Monitors, your
developers are able to codify what conditions should alert across all your
environments where a given product is deployed, breaking down a traditional
information silo that exists between Dev and DevOps teams.

— Customize your alerting framework – With Apollo’s concept of Teams and
Products, organizations are able to easily customize how alerts are triaged
and routed to the appropriate team in a central place. So even if you have
one team on PagerDuty and another one utilizing Slack or even JIRA, Apollo
meets those teams where they are and ensures that they’re able to receive
the alerts they need.

— Investigate using the Apollo Control Panel – When a monitor fires an
alert, users can go into the Monitors view for an environment to see what is
actively firing and follow it to the Events view to see events related to the
alert. Users can also view related logs and the latest results of queried health
checks. From here, developers or operators may want to dive deeper into
specific logs.

— Debug – Apollo has its own log exploration tool for analyzing product logs
shipped to Apollo. It allows you to view logs, build charts, explore traffic, and
diagnose.

— View request, service, and other log content and drill down by Trace
and Error IDs, types of logs, environments, and products

— Build charts from request or service logs based on fields of interest
with arbitrary filtering and grouping

— Visualize and explore aggregated traffic between services with
dependency graph views to trace issues across multiple services

Apollo can also enhance your existing observability platform. Industry standard
observability tools are pretty good for looking at trends from metrics across your
environments, and standard incident response platforms are good at notifying a
set of people and following a schedule. However, a great incident response
platform not only intelligently notifies the right people at the right time, but also
arms them with the right information during all stages of the response process.

The centralization that Apollo provides, allowing system changes to be viewed at
various levels alongside metrics and alerts, makes it far easier to answer
questions such as, “was a metric spike due to a configuration change, an
upgrade, or something environment-specific?” Intelligent, developer-defined
notification also optimizes and streamlines the incident response process.

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

Components of the
Apollo Platform

14

Apollo integrates best-in-class security and governance controls into the same
platform where software is delivered and managed.

This aligns incentives between developers, operators and security professionals
— enabling organizations to ship code safer and further and driving business
growth in the new disaggregated, digital risk-laden world.

Apollo is built with the intention to deploy software to mission critical
environments where privacy and security are of utmost concern, such as
government and regulatory-heavy environments. These environments require
strict controls which necessitate organizations to implement heavy processes
and incur far more operational overhead, and often necessitate parallel
engineering efforts which quickly start to lag behind public cloud offerings.

— Apollo enables you to unlock access to new business opportunities faster and
more efficiently than ever before. It does the hard work so you don’t have to
— with its compliance-aware change and operator access management,
your organization can auto-enforce the specific controls needed for any given
environment. It also has a fully auditable history.

— Apollo is key to Palantir’s ability to accredit and maintain Foundry & Gotham
SaaS for mission critical National Security Systems (IL5, IL6, and higher). To
earn these authorizations, organizations must comply with very strict change
management and security controls. Palantir uses Apollo to meet a large
subset of them.

Drive business growth
and fortify software
security à

Security and Governance

FIGURE 02
US Government Software Authorization
Levels. Palantir is authorized for Mission
Critical National Security Systems (IL6) by
the U.S. Department of Defense.

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

Compliance-aware
change management à

15

Apollo makes security and quality first-class concepts in continuous deployment,
turning InfoSec, Quality, and governance compliance into a DevOps problem
solved through Apollo. By encoding security and quality principals and controls
into the Apollo Platform, developers no longer have to break out of their flow to
rely on memory, emails, and runbooks to comply with InfoSec and Quality
policies, and InfoSec/Quality teams no longer have to worry about security or
quality being treated as an afterthought. As a result, they can focus on identifying
new ways of fortifying your organization from the next attack and raising the
quality bar, not enforcing established policies.

— An example of Apollo’s functionality as an integrated DevSecOps platform is
encoding InfoSec or compliance regime vulnerability remediation SLAs into
the platform. Apollo has an optional service that is deployed in the main
Apollo Hub which communicates with whichever industry standard scanner
you use to scan new container images added to your registry. This service
will be notified when containers fail scans, and it will automatically recall
products with known vulnerabilities in Apollo. If a developer’s product gets
recalled, they’ll be able to view this in the Apollo Control Panel and can click
on a link in the recall message to see the results of the scan.

— Your InfoSec organization can define SLAs for remediating these
vulnerabilities based on the severity of the CVE, e.g., 24 hours to patch an
emergency CVE vs. 60 days to patch a medium CVE. This clock starts when
a fix or mitigation is made available by the vendor, not when the issue
happens to be discovered. Developers can also file suppression requests
with InfoSec if they believe the failed scan is a false positive or the
vulnerability is reasonable to leave unremediated. These features are
valuable because they help you strike a balance between strict security
controls and agility; if there is no available fix yet or there is a valid reason
against it, engineering progress is not unreasonably blocked.

Apollo should also form an integral part of any Software Supply Chain Security
strategy. An important component of a Supply Chain Security strategy is a
comprehensive software bill of materials (SBOM). Since the Apollo Catalog
knows what you are deploying, and through the information provided via the
Apollo SDK framework knows the dependencies for a given piece of software,
the Apollo Catalog is a key enabler for quickly building out SBOMs. Supply
Chain Security is about more than just what’s in a package though — a critical
component is also about what has gone where. The Apollo Platform gives you
both: you have access to not only your entire SBOM, but you also know exactly
where every part of it is deployed.

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

Software Supply Chain
Security strategy à

Encode security
policies à

Security and Governance

16Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

FIGURE 03
Infrastructure-agnostic architecture: Apollo
connects with existing infrastructure and
tooling today, and enables a flexible future.

Apollo was built to be both end-to-end and extensible, connecting seamlessly
with existing version control, CI, and artifact repository tools in organizations’
technical landscapes. Organizations can plug-and-play, selecting whichever
platforms work best for pertinent workflows. For example, operators can use
GitHub for version control, CircleCI for CI builds, and Artifactory as their artifact
repository.

Apollo’s interoperability extends not only to existing technical infrastructure, but
also into the future as software transitions to a multi-cloud world. Apollo is cloud-
agnostic, liberating organizations from vendor lock-in and providing unparalleled
flexibility to meet changing needs and regulatory requirements.

Palantir Apollo can help organizations maximize the cost-efficiency of their cloud
investments, while maintaining optionality for the future.

Seamless integration
with existing version
control à

Interoperability

We can attest to the utility and efficacy of Apollo because we use it to deploy
instances of Foundry and Gotham worldwide, across a wide range of hosting
environments.

Each platform is made up of hundreds of individual services, each owned by a
development team that writes and releases product features continuously and
independently. This approach allows us to roll out updates across services
asynchronously, meaning we can meet our customers where they are, wherever
they are.

Apollo enables this concurrent development without adding significant overhead
or requiring specialized workflows: our software developers write code, Apollo
deploys it, and our centralized operations team monitor the whole fleet from a
single pane of glass.

17

Apollo in Action

The Platform Behind
our Platform à

Log4j Remediation à This level of visibility into fleet-wide deployment health and continuity is critical
for optimizing day-to-day operations, but it becomes existentially important
during times of crisis.

With a click, Apollo autonomously remediated log4j vulnerabilities for Palantir
and our customers – managing thousands of production service upgrades
across 200+ environments, including on-premise data centers, edge hardware
and classified networks.

All within hours.

While the severity and scope of log4j was unprecedented, such vulnerabilities
are becoming more norm than exception. Apollo provides a single pane of glass
for organizations to operate their infrastructure and strengthen their incident
response plans at scale and pace.

FIGURE 04
By the numbers: Apollo’s reach across
environments and services.

Copyright © 2022 Palantir Technologies Inc. and/or affiliates (“Palantir”). All rights reserved. The information in this document is proprietary and provided for informational purposes only and shall not create a warranty or
guarantee of any kind. Unless otherwise specified, all data contained herein is notional.

250+
engineering teams at Palantir
deploying with Apollo

300+
deployment environments, across
on-premise, public, and private
clouds

250+
services managed and shipped

