
AN ASSESSMENT OF
PIPELINE ORCHESTRATION
APPROACHES

Ascend.io

Table of Contents
Intro 1

The Emergence Of Workflow Automation 2

Partitioning Design 2

Storage Plan for Intermediate Results 3

Write and Connect Tasks via Dependency Graph 3

Monitor and Respond to Failure 4

Data Engineers as the Compilers 5

Dataflow Systems: Focus on Data, Not Tasks 6

Partitioning Design 6

Storage Plan for Intermediate Results 6

Write and Connect Tasks via Dependency Graph 7

Monitor and Respond to Failure 7

Comparing and Contrasting the Approaches 8

Workflow Automation Systems 8

Dataflow Automation Systems 10

Conclusion 11

Intro
The modern data architecture holds a lot of promise

for enterprises looking to tap into more data and fuel

more downstream consumers, all while operating

more efficiently and cost-effectively. However, for any

of us who have worked with data over the past few

years, we know that utopian state is often far from the

reality.

While there’s been no shortage of innovation - from

the cloud services processing your data, to the elastic

warehouses, all the way to the BI and data science

tools - connecting and orchestrating the movement of

data between these systems has been conspicuously

absent from these advancements.

The current state of the art in orchestration are

workflow automation systems. Using these systems,

you are responsible for designing the tasks, connecting

them together via dependency relations, and passing

them to a workflow automation system that manages

the execution. This model puts the manual burden on

you to manage the enumerable details within (and

between) each task and ensure data is correct, often

resulting in brittle pipelines that are expensive to run

and maintain.

There is an alternative: dataflow automation systems.

This approach leverages algorithms to translate

high-level specs into tasks and to schedule and

execute those tasks. You’re responsible for creating

and curating the high-level spec and now the dataflow

automation system manages the legion of tasks

required to implement your spec.

In advancing orchestration, Ascend took the dataflow

automation approach. We’ve seen this approach lower

the design and maintenance costs while also

improving the quality and reliability of resulting data

pipelines, just as moving from assembly language to

higher-level development languages has done for

software. We’ll explore why we opted for this route by

looking at more of the challenges and limitations

within workflow automation systems, as well as

compare and contrast both approaches overall.

 1

What is Workflow Automation?

Workflow automation systems schedule and

execute a directed acyclic graph (DAG) of tasks.

The system guarantees that tasks are only

executed when their upstream tasks have

successfully completed.

In addition to this entirely asynchronous

scheduling, a set of tasks—those having no

upstream dependencies—are often scheduled to

run on a fixed, static schedule, such as once an

hour or once a day.

Today, a large part of a data engineer's job is to

design tasks that a workflow automation

system can run. The engineer then designs a

dependency graph such that these tasks run in

an acceptable order. Finally, the engineer is

responsible for configuring this automation

system so that it runs periodically scheduled

tasks when data should be available. In some

cases, they may also have to manually trigger

execution of tasks and graphs on historical data

(ie backfills).

The Emergence Of Workflow

Automation

Coinciding with the ubiquity of technologies that

handle virtually unlimited volumes of data - such as

scalable compute engines like Apache Spark and

Apache Presto and flexible object storage like AWS S3

and Google Cloud Store - came more complexity with

how you work with all this data. For instance, when

you query against distributed data, you need to

manually partition data and then simplify your queries

based on this partitioning (again, manually). Workflow

automation systems gained popularity to help restitch

these partitions. You can configure these systems to

schedule the simplified queries to reflect your manual

partitioning and your understanding of when new data

drops. However, there remains a strong reliance on

what can be defined and executed manually. Let’s

break down the steps needed for pipeline

development using workflow automation systems to

better understand how this manual effort gets more

intractable over time.

Partitioning Design

When working with data against these scalable

technologies, the first step is to partition data so new

and updated data is separated from older, unchanging

or rarely changing data. The default here is usually

date-based partitioning.

Partitioning considerations start at raw ingestion. You

need to know where the data will land, how events are

separated into files, and the pattern used to name

those files. Tradeoffs can arise here based on

downstream usage requirements. For instance, if some

data consumers require low latency insights, your

ingest pipeline may create many small files. This,

however, is often an anti-pattern for aggregation jobs

and means you have to manually implement

additional tasks to aggregate sets of small files before

further processing.

Additionally, events are typically stored in files based

on the time the event was received by an ingestion

pipeline. Since it takes time to transfer and land data,

event timestamps and files do not line up. It’s virtually

always the case that data for the end of the day (e.g.,

11:59PM on December 31st) will end up in a file for

the next day (e.g., the midnight hour bucket for

January 1st). You are responsible for anticipating this

and designing for it, which typically means writing

tasks that read wider windows of data and filter out

events not relevant for a particular aggregation. This is

always a heuristic: it implicitly embeds your

assumptions based on expected patterns and

schedules for worst case latency, even if typical actual

latency is far less.

You also need to anticipate how downstream

dependent tasks will consume the results of upstream

 2

tasks when designing partitioning. Let's take a simple

example: an internet commerce provider that wants to

track total transaction value per customer on a daily

basis as well as rolling week-over-week total

transaction value per customer. In this example, you’ll

want to run two jobs: one for the daily aggregation

and one for the week-over-week difference. That

means when designing the daily job, you need to

consider how the weekly job will read that data and

the irregularity of the calendar (different months with

different numbers of days, different numbers of days

in different years). Some path layouts make this easier

than others.

Foreseeing and accommodating downstream task

requirements gets progressively more difficult as data

use grows and diversifies.

Storage Plan for Intermediate Results

For a pipeline, the location of the raw input data and

location of resulting output data are both provided.

But allocating and managing the location of

intermediate data falls on you and is handled as part

of the task and DAG design.

In the prior example, you’ll need to run daily

aggregations, store them temporarily, and then run

week-over-week aggregations. Because of the

running-week requirement, this data must be

computed every day on the basis of multiple days of

input.

In practice, intermediate storage is often not well

documented and can be difficult to manage, debug,

etc. It’s not uncommon to have large amounts of data

where dependencies are not easily identifiable, which

can make it difficult to determine when data can be

safely removed and more complex when future

backfills must be accomodated.

Write and Connect Tasks via Dependency

Graph

Once the above partitioning and storage are designed,

you write the task templates and configure the

workflow automation system to run them in the

correct order.

This effort entails:

1. Reducing the high-level specification to a task

template that produces a single output

partition based on a subset of the input set.

This can take several steps to select only the

necessary partitions and simplify it down so

only a particular task runs.

2. Connecting the tasks with the parameters

necessary to pass data from input to output

locations

3. Configuring the triggers that will cause the

task to be scheduled, either

a. Configuring the dependencies on

upstream tasks so that the task is run

when the upstreams complete

successfully

b. Defining a time-based execution so

the task is run at regular intervals

4. Creating the code necessary to send the task

to the compute cluster, e.g., submit to a Spark

cluster

Scheduling is often subtly complicated. In the case of

the daily aggregation task, you need to decide when to

trigger the task based on the expected time that data

should be available (remember all those ingest

assumptions made at the start?). If data is dropped at

the end of every hour, you might schedule the daily

aggregation task to start at 2AM every day to account

for:

● Late data arriving in at midnight of the

following day

● The midnight hour data not being finalized

until just before 01:00 that day

● Some delay for finalization after the 01:00

hour starts

 3

The weekly rollup example has similar scheduling

requirements plus it must wait until the daily rollup for

each day is available. Again, this is based on an

assumption of when the daily data will be available,

often with an additional check that the data has, in

fact, been completed with a retry mechanism if the

data is not ready.

The weekly rollup has the additional complication that

it depends on the daily results for seven days, not just

the most recent day. This dependency is often difficult

to express in workflow automation systems, so it’s

often just left out. This creates an implicit assumption

that if yesterday’s data is available, all the previous

days’ data is available. In normal operation, this is

expected to be true. When anomalies occur, this may

not be the case. Because the implicit assumption is

not exposed through the workflow system, the system

cannot enforce correct task execution order and

incorrect data may be produced.

Moreso, even normal operations do not fulfill this

assumption, in particular, backfills. When backfilling

historical data, it would be very common to compute

daily aggregations in reverse chronological order - with

the most valuable data likely to be the most recent.

However, this is completely backwards of what the

implicit dependency requires. This makes backfills

laborious and brittle with the result that, though the

data would be valuable, most of us choose not to do it.

Monitor and Respond to Failure

Once everything is deployed and running, both the

entire workflow automation process as well as the

individual tasks must be monitored, and alerts are

created if things go awry. It's a fact of life in big data

systems that failures happen. "It is possible to fail in

many ways…while to succeed is possible only in one

way" rings true in workflow systems:

• Data sometimes arrives late

• Previously provided data gets restated

• An external service necessary for task execution

becomes unavailable

• Input data organization changes

• Input data schemas change

• One or more more task definitions change and

downstream tasks subsequently fail

Anyone that has worked in scalable data systems has

experienced at least one of these. Many of us have

experienced all of them. Multiple times.

In the simple case of an ephemeral error (e.g., a

required external service is briefly unavailable),

corrective action can just be retrying a task. Many

workflow systems can retry failed tasks, though

without the context of the specific error, they will retry

persistent errors (e.g., bad SQL) just as they do

ephemeral errors. For persistent errors, it’s up to you

to determine root cause and implement the task or

dependency graph changes necessary to correct the

failure.

On its own, correcting for a single task failure can be

laborious but is generally tractable. The complexity

increases vastly as the size and number of workflows

increases.

Restated data (data that was incorrect on first access)

is particularly insidious. When first dropped, it is

considered valid data so all downstream tasks can run

to completion. When the incorrect data is detected

(which can take days or sometimes weeks), it's

necessary to identify and rerun tasks that have read

that data. It’s also necessary to identify the transitive

downstreams of these tasks and rerun them, as well,

while preserving the necessary dependencies. In

practice, this process is so laborious, if it’s done at all,

it is done only for a limited set of manually identified,

high-value results. This means the accuracy of the rest

of the data in the system remains unknown

indefinitely.

Writing dependencies that will hold correct under all

conditions is difficult. In response, we consider the

 4

most likely case (new data comes in accurately and on

time, upstream tasks are triggered and complete

successfully within an expected time window) and

write the dependencies necessary to get correct

results under these conditions. While this simplifies

immediate design tasks, it makes it difficult when

atypical situations arise. The resulting system can be

brittle in the face of these anomalies, requiring

increasing manual remediation over time.

Why Not Just Improve Workflow Automation

Systems?

Workflow automation systems only know that a

specific task can be run if and only if its

upstream tasks have run successfully. These

systems do not know why they must run the

tasks this way. They don't know why it's useful

to run these tasks. They don't even know what

the (side)effects of a single task are.

Formally, this workflow model is referentially

and semantically opaque .

Referentially opaque means the workflow

system does not know what a task reads as

inputs or what it writes as outputs.

Semantically opaque means the workflow

system does not know how the inputs of a task

are transformed into its outputs. As a result, it

cannot consider task optimization.

Opacity also exists between the system and the

individual tasks. Just as the workflow system

has no representation of what each task does,

the tasks have no representation of the

surrounding context in which they run. They

don’t know what tasks create the data they're

reading or what tasks will read the data they're

writing. This prevents the individual tasks from

optimizing themselves. For example, if an

upstream task uses a GROUP BY clause to create

a dataset, the values selected from that GROUP

BY must be unique. But any downstream tasks

don’t see those semantics and thus cannot

optimize its query plan based on this property.

Data Engineers as the

Compilers

Due to this opacity, the process of taking the high-level

description of the problem, reducing it to a number of

small steps, and scheduling those steps falls on you as

the data engineer. If this process sounds familiar, it’s

what compilers and query planners have been doing

for decades. In this workflow automation world, you

are actually acting as optimizing compilers.

But even the best of us make mistakes, especially

during anomalous conditions. This is no slam on

engineers. This whole development process is based

on hard-coded heuristics and assumptions, and

manual compilation is:

• Tedious

• Error-prone

• Difficult to do optimally

On the other hand, computers make great compilers.

They don't mind tedium. They don't mind considering

lots (and lots) of execution alternatives. Additionally,

when the problem specs change, the compiler can

easily be rerun. Whereas, with manual design, it’s up

to you to understand the current system and the

implications of the change in order to respond.

Writing less code and leaving more to compilers will

virtually always result in more correct code in a

shorter amount of time (and thus at a lower cost). It

doesn’t hurt that computers are way cheaper to scale

as well.

 5

Dataflow Systems: Focus on

Data, Not Tasks

Instead of leaning on engineers to act as task

compilers, dataflow automation systems leverage

algorithms to handle the translation of higher-level

specs into scheduled tasks. What’s compelling about

this approach is not only the manual relief it provides

to us, but also that these systems can view data as the

primary entity and, thus, only generate tasks as a

means to an end.

In contrast to the previous workflow systems, dataflow

automation systems are referentially and semantically

transparent , with the specification completely

describing the inputs, outputs, and transformations

that computation requires. All transformations are

seen as high-level representations of data and these

systems extract the semantics from the specifications

provided.

The transparent descriptions mean these systems have

awareness of the context regarding dependencies and

input data, so they can now optimally generate and

schedule tasks to materialize the correct result set.

Moreso, these systems can do this in the face of

changing inputs and transformations. Similar to what

we’ve seen with database query planners, these

systems will make conservative assumptions during

execution by default if the necessary semantics cannot

be extracted.

With this approach:

• The correctness of resulting task graphs is

(modulo bugs) guaranteed

• The optimality of generated task graphs is

dependent on the algorithms used. Generated

tasks graphs may not always match the

optimality of manually designed task graph just

as compiled code may not be as optimal as

hand-generated assembly language. While

algorithms will improve with time, the cost of

manual generation will not and will become an

increasing bottleneck.

Let’s now look at what pipeline development is like

when using dataflow automation systems.

Partitioning Design

Since a dataflow automation system models the

semantics of the transformation provided, it’s well

positioned to automatically choose the partitioning

scheme.

The dataflow automation system uses algorithms to

analyze the semantics of the query, determine the

execution plans to produce the correct results, and

select the lowest cost path. These systems can also

pull in available metadata to make these choices more

optimally based on a larger consideration set.

For example, based on known semantics, these

systems can choose to run a cheaper map operation

over a costlier full reduction operation when it’s

known that the map will also produce the correct

result. But when data volumes are small, the cost of

these two operations switches and these systems can

dynamically opt for a full reduction over the now

costlier map operation.

Storage Plan for Intermediate Results

Similar to how Spark is responsible for managing the

storage of intermediate results during the execution of

a Spark job, a dataflow automation system is now

responsible for managing storage of results between

tasks. Given broad configurations, such as buckets in

object stores, the dataflow system handles the actual

configuration of data location for each task. The

format of the locations or paths within a bucket have

no impact on your development, which frees you from

this complex and error-prone responsibility. You no

longer need to code where every task output should

materialize or configure dependent tasks to write/read

from these locations.

When the specs change, a dataflow system creates

new locations for the resulting transforms and handles

 6

purging the old data at a future point. This guarantees

the currently stored value is the desired value,

eliminating the need for manual tracking of which task

versions were most recently run to determine as

much.

Additionally, since dataflow automation systems are

semantically transparent and understand the context

of the transformations being performed, it’s possible

in these systems to trivially deduplicate redundant

operations. For example, if someone on your team

designs a transformation that you already built, these

systems can identify this, materialize the existing result

set, and not execute requests for the same

computation multiple times. This operation is

extremely useful during development cycles since you

can copy the transformation specs and make small

changes without triggering costly recomputation of

unaffected data. This is only possible when storage

planning is also automated.

Write and Connect Tasks via Dependency

Graph

Dataflow automation systems "compile" high-level

data transformation specifications into tasks that

implement them and produce the correct data results.

We’ve already described that, as part of that process,

they automatically perform the partitioning design.

Closely tied to this is automatically generating the

necessary task templates that then implement the

chosen partitioning.

More concretely, in a dataflow automation system

with SQL as the high-level specification language, the

system will examine the spec in order to create an

optimal query plan. Depending on the semantics of

the SQL, it will determine whether to run:

• A separate task for each individual input

partition/file as they are created or updated

(Map Operation)

• A single task whenever any input partition/file is

created or updated (Full Reduction)

• A task for affected output partitions when an

input that affects the result is created or updated

(Partial Reduction)

In workflow automation systems, the burden of

translating this into resulting task templates and

deciding optimal query plans based on the tasks at

hand falls on you. To give credit where credit’s due,

Spark is able to do this within a single task. However,

only dataflow automation systems are able to do the

same type of transformation between or across tasks,

because they are referentially transparent - making it

relatively trivial to extract the dependency relations

and optimally generate execution plans based on

inter-task relations.

Monitor and Respond to Failure

While you still need to monitor and mitigate errors

with dataflow automation systems, the automation of

task creation and execution means these systems can

offload a vast majority of the monitoring.

A dataflow automation system is responsible for

monitoring all the tasks it schedules for execution.

Through its semantic understanding of the transforms,

it is in a better position to actually interpret the cause

and impact of errors, and then respond to a range of

recoverable errors accordingly.

For example, if a task reports that a required input file

is not present, the dataflow automation system can

automatically schedule recomputation of the missing

element and, upon success, trigger re-execution of the

failed task. It doesn’t need to know the cause of the

missing input data; it just focuses on generating

correct data outputs for the high-level transform.

When task failures are detected that require manual

intervention, it is also the responsibility of these

systems to interpret the failures in the context of the

high-level specification provided and report them back

to you at that level, not the task level.

For example, if incorrect data is received, it can cause

a task to fail. With a workflow automation system, you

get informed of the task failure and then you examine

 7

the task to determine how it failed, the root cause of

the failure, and assess the impact of this failure to the

data and downstream dependencies. In a dataflow

automation system, a task failure is simply attributed

to the data it impacts and you are directly informed of

the inability to compute a dataset. Details on the task

failure are inconsequential here, so you get to focus

solely on the impact to the data. Moreover, since all

dataset dependencies are tracked by the dataflow

automation system, the impact of this failure on

downstream data computation can be immediately

provided for faster remediation.

Comparing and Contrasting the Approaches

Workflow Automation Systems

Pros Cons

1. Maturity

 These systems have been around for decades with
new ones arising regularly. This approach is well
understood and incremental improvements
continue to be developed.

2. Flexibility

 These systems can be configured to automate
virtually any task that can be expressed
programmatically. Since they do not require any
representation of the semantics, inputs, or outputs
of tasks, there is often no limitation on the
programming language, model, or tool used to
implement tasks.

3. Simplicity of Dependency Semantics

 Dependency representations in workflow
automation systems are simple and
straightforward to write. Many systems can render
dependency graphs as images to help you clearly
understand the relationships between tasks.

1. Task-Based State Management

 In these systems, graphs are expressed via the

state and dependencies of individual tasks. This

means the burden of matching that to the datasets

is left to you as the engineer. Since tasks are

continuously being created and executed, the

volume of this state information grows rapidly with

time. This also may require you to prune state data

regularly to avoid performance issues.

2. Data Provenance and Lineage Limitations

 Since workflow systems track task state only, the

state and lineage of data produced by these tasks

must be manually inferred from task state, raw

task logs, and task definitions. Determining data

state this way is time consuming, tedious, and

error prone. This is especially true as the size and

number of graphs grow. At larger scale, these

systems don't track the interdependence of all

tasks but instead track the dependencies between

entire graphs. Generally the dependency tracking

in these cases provides even less detail, making it

even more challenging to manually infer data

state.

3. No Task or Resource Optimizations

 8

 As all tasks are opaque to workflow automation

systems, there is no ability to implement

algorithms to optimize computation or execution.

For example, they cannot rewrite task

dependencies to pre-filter data before a

transformation. Since these systems don’t model

the computation a task is performing, it also has

very little ability to estimate the computational

resources required by a task and thus optimize

concurrent tasks. This means it’s up to you to

implement scheduling policies, which can result in

under-utilizing or over-committing resources.

4. High Supportability Costs

Failure is inevitable at scale. When errors do occur,

they can only be detected by observing failures

after individual tasks run. Diagnosis then requires

manual effort and intervention in locating and

reading task logs. Additionally, the hard-coded

assumptions made based on data at the

point-of-initial development will likely change over

time. This not only causes an increasing number of

failures but also becomes more difficult and costly

to track and resolve these errors in growing, legacy

codebase.

5. Extensibility Limitations

 Workflow systems do not model the semantics of

tasks, thus, they cannot provide any features that

validate the consistency and correctness of the

relationship between two tasks. Even with an open

model of the transforms and dependencies, the

precise semantics of the transforms are often not

reflected in the model in a consumable way, which

blocks the extensibility to more tools.

 9

Dataflow Automation Systems

Pros Cons

1. Data-Focused Management and Lineage

Dataflow systems reflect entire data sets as an
organized set of objects and manage the
relationships between the objects both within
individual tasks and across the overall dataset. This
means that you generally only need to consider
the overall dataset when designing and managing
specs and let the dataflow system manage the
lower level details, allowing you to design and
maintain far larger, more complex systems.

2. Automation Optimizations

With a transparent understanding of
transformations, dataflow automation systems can
algorithmically rewrite graphs to produce the
same results faster or at lower costs. Similarly,
since they automatically generate the individual
tasks necessary to implement the high-level
transforms, they can dynamically create cost
models to manage the execution of tasks based on
available compute resources to optimize utilization
and performance tradeoffs.

3. Reduced Supportability Costs

These systems are able to monitor task execution
and automatically remediate a large proportion of
task failures without requiring manual
intervention. With less code needed to create the
graphs, this also decreases brittleness and the
number of potential errors, and makes it more
manageable to maintain over time.

4. Rich, Extensible Metadata Model

To achieve much of the automation and
optimizations, these systems must maintain rich
sets of metadata representing both the high-level
system specifications as well as the low-level
storage objects and tasks. The richness of this
model allows these systems to do extensive
correctness and consistency checks. This metadata
is also available for other tools to tap into or
develop against.

1. Difficult Manual Optimizations

Similar to other high-level systems, it’s more

difficult to specify low-level optimizations that the

dataflow automation system cannot itself

generate. Often the abstraction layer provided by

these systems makes it challenging to express

lower level optimizations. In general, the quality of

optimization will vary across dataflow systems, just

as it does across databases and compilers. This can

be expected to improve over time but may not

presently match manual task design 100% of the

time.

2. Limited Flexibility

These systems are purpose-built to move data

through a graph, not run arbitrary tasks. While a

workflow automation system can be equally

capable of computing a set of data transformation

tasks or acting as a next gen cron, a dataflow

automation system is only well-tuned for the

former.

3. Effort to Represent High-Level Task Semantics

 Much of the power of dataflow automation

systems comes from the semantic transparency. In

many cases, such as with SQL, this is simple to

define in terms of inputs and semantics. For

arbitrary code, it can be more difficult to extract

semantics. To maintain the benefits of

transparency, it can be necessary to manually

provide a description of the I/O and behavior of

tasks, which can increase the resulting effort

required.

 10

Conclusion
At Ascend, we believe it’s the data that matters. Not

the tasks, or the scheduling, or the maintenance. This

is why we opted to develop a dataflow automation

system. This allows you to combine declarative

configurations with automation to build and run

pipelines with less code and less breaks. If you’re

interested in giving it a try, sign up for a free trial at

https://www.ascend.io/get-started/

About Ascend

Ascend provides the world’s first Autonomous

Dataflow Service, enabling data engineers to build,

scale, and operate continuously optimized, Apache

Spark-based pipelines with 85% less code. Running

natively in Microsoft Azure, Amazon Web Services, and

Google Cloud Platform, Ascend combines declarative

configurations and automation to manage the

underlying cloud infrastructure, optimize pipelines,

and eliminate maintenance across the entire data

lifecycle. For more information about Ascend, visit

www.ascend.io.

 11

