
DAGs:
The Definitive Guide
Everything you need to know about Airflow DAGs

Powered by Astronomer

REVISED EDITIO
N

http://astronomer.io
http://astronomer.io
http://astronomer.io

2

Editor’s Note

Welcome to the ultimate guide to Apache Airflow DAGs, brought to you

by the Astronomer team. This ebook covers everything you need to know

to work with DAGs, from the building blocks that make them up to best

practices for writing them, dynamically generating them, testing and

debugging them, and more. It’s a guide written by practitioners

for practitioners.

Follow us on Twitter and LinkedIn!

Table of Contents

DAGs: Where to Begin?
What Exactly is a DAG?
From Operators to DagRuns: Implementing DAGs in Airflow

DAG Building Blocks
Scheduling and Timetables in Airflow
Operators 101
Hooks 101
Sensors 101
Deferrable Operators

DAG Design
DAG Writing Best Practices in Apache Airflow
Passing Data Between Airflow Tasks
Using Tasks Group in Airflow
Cross-DAG Dependencies

Dynamically Generating DAGs

Testing Airflow DAGs

Debugging DAGs
7 Common Errors to Check when Debugging DAGs
Error Notifications in Airflow

04
04
11

14
14
36
46
53
55

62
62
74
87
96

114

132

144
144
158

https://twitter.com/intent/tweet?url=https://hubs.ly/H0VYfBl0&text=Our%20Definitive%20Guide%20to%20DAGs%20ebook%20has%20been%20revised%20and%20contains%20everything%20you%20need%20to%20know%20as%20a%20data%20engineer;%20140%20pages%20of%20code-rich%20walkthroughs%20and%20best%20practices.%20Check%20it%20out
https://www.linkedin.com/sharing/share-offsite/?url=https://hubs.ly/H0VYfBh0

4 5

DAGs
Where to Begin?

1.

What Exactly is a DAG?

A DAG is a Directed Acyclic Graph — a conceptual representation of a series
of activities, or, in other words, a mathematical abstraction of a data pipeline.
Although used in different circles, both terms, DAG and data pipeline,
represent an almost identical mechanism. In a nutshell, a DAG (or a pipe-
line) defines a sequence of execution stages in any non-recurring algorithm.

The DAG acronym stands for:

DIRECTED — In general, if multiple tasks exist, each must have at least one
Zdefined upstream (previous) or downstream (subsequent) task, or one or
more of both. (It’s important to note however, that there are also DAGs that
have multiple parallel tasks — meaning no dependencies.)

ACYCLIC — No task can create data that goes on to reference itself. That
could cause an infinite loop, which could give rise to a problem or two.
There are no cycles in DAGs.

GRAPH — In mathematics, a graph is a finite set of nodes, with vertices
connecting the nodes. In the context of data engineering, each node in a
graph represents a task. All tasks are laid out in a clear structure, with
discrete processes occurring at set points and transparent relationships with
other tasks.

When Are DAGs Useful?

Manually building workflow code challenges the productivity of engineers,
which is one reason there are a lot of helpful tools out there for automating
the process, such as Apache Airflow. A great first step to efficient automation
is to realize that DAGs can be an optimal solution for moving data in nearly
every computing-related area.

D I R E C T E D

A C Y C L I C

G R A P H

https://www.astronomer.io/blog/apache-airflow-at-astronomer-data-orchestration

6 7

This is the key quality of a directed graph: data can follow only in the direc-
tion of the vertex. In this example, data can go from A to B, but never B to A.
In the same way that water flows through pipes in one direction, data must
follow in the direction defined by the graph. Nodes from which a directed
vertex extends are considered upstream, while nodes at the receiving end of
a vertex are considered downstream.

In addition to data moving in one direction, nodes never become self-ref-
erential. That is, they can never inform themselves, as this could create an
infinite loop. So data can go from A to B to C/D/E, but once there, no sub-
sequent process can ever lead back to A/B/C/D/E as data moves down the
graph. Data coming from a new source, such as node G, can still lead to
nodes that are already connected, but no subsequent data can be passed
back into G. This is the defining quality of an acyclic graph.

Why must this be true for data pipelines? If F had a downstream process
in the form of D, we would see a graph where D informs E, which informs F,
which informs D, and so on. It creates a scenario where the pipeline could
run indefinitely without ever ending. Like water that never makes it to the
faucet, such a loop would be a waste of data flow.

To put this example in real-world terms, imagine the DAG above represents a
data engineering story:

• Node A could be the code for pulling data out of an API.
• Node B could be the code for anonymizing the data and dropping

any IP address.
• Node D could be the code for checking that no duplicate record

IDs exist.
• Node E could be putting that data into a database.
• Node F could be running a SQL query on the new tables to update

a dashboard.

“At Astronomer, we believe using a code-based data pipeline tool like
Airflow should be a standard,” says Kenten Danas, Lead Developer
Advocate at Astronomer. There are many reasons for this, but these
high-level concepts are crucial:

• Code-based pipelines are extremely dynamic. If you can write it in code,
then you can do it in your data pipeline.
Code-based pipelines are highly extensible. You can integrate with
basically every system out there, as long as it has an API.

• Code-based pipelines are more manageable: Since everything is in code,
it can integrate seamlessly into your source controls CI/CD and general
developer workflows. There’s no need to manage external things
differently.

An Example of a DAG

BA

C

D

G

E

F

Consider the directed acyclic graph above. In this DAG, each vertex (line)
has a specific direction (denoted by the arrow) connecting different nodes.

https://www.astronomer.io/blog/why-airflow
https://www.astronomer.io/blog/data-pipeline

8 9

DAGs in Airflow

In Airflow, a DAG is your data pipeline and represents a set of instructions
that must be completed in a specific order. This is beneficial to
data orchestration for a few reasons:

• DAG dependencies ensure that your data tasks are executed in the same
order every time, making them reliable for your everyday data infrastructure.
• The graphing component of DAGs allows you to visualize dependencies in
Airflow’s user interface.
• Because every path in a DAG is linear, it’s easy to develop and test your
data pipelines against expected outcomes.

An Airflow DAG starts with a task written in Python. You can think of tasks as
the nodes of your DAG: Each one represents a single action, and it can be
dependent on both upstream and downstream tasks.

Tasks are wrapped by operators, which are the building blocks of Airflow,
defining the behavior of their tasks. For example, a Python Operator task will
execute a Python function, while a task wrapped in a Sensor Operator will
wait for a signal before completing an action.

The following diagram shows how these concepts work in practice. As you
can see, by writing a single DAG file in Python, you can begin to define
complex relationships between data and actions.

DAG

Task

Operator

Task

Operator

You can see the flexibility of DAGs in the following real-world example:

https://www.astronomer.io/blog/what-is-data-orchestration

10 11

Using a single DAG (like the Customer Operations one shown in yellow), you
are able to:

• Extract data from a legacy data store and load it into an AWS S3 bucket.
• Either train a data model or complete a data transformation, depending

on the data you’re using.
• Store the results of the previous action in a database.
• Send information about the entire process to various metrics and

reporting systems.

Organizations use DAGs and pipelines that integrate with separate,
interface-driven tools to extract, load, and transform data. But without an
orchestration platform like Astro from Astronomer, these tools aren’t talking
to each other. If there’s an error during the loading, the other tools won’t
know about it. The transformation will be run on bad data, or yesterday’s
data, and deliver an inaccurate report. It’s easy to avoid this, though — a data
orchestration platform can sit on top of everything, tying the DAGs together,
orchestrating the dataflow, and alerting in case of failures. Overseeing the
end-to-end life cycle of data allows businesses to maintain interdependency
across all systems, which is vital for effective management of data.

From Operators to DagRuns:
Implementing DAGs in Airflow

While DAGs are simple structures, defining them in code requires some more
complex infrastructure and concepts beyond nodes and vertices. This is
especially true when you need to execute DAGs on a frequent,
reliable basis.

Airflow includes a number of structures that enable us to define DAGs in
code. While they have unique names, they roughly equate to various
concepts that we’ve discussed in the book thus far.

How Work Gets Executed in Airflow

• Operators are the building blocks of Airflow.
Operators contain the logic of how data is processed in a pipeline.
There are different operators for different types of work: some operators
execute general types of code, while others are designed to complete
very specific types of work. We’ll cover various types of operators in the
Operators 101 chapter.

• A task is an instance of an operator.
In order for an operator to complete work within the context of a DAG,
it must be instantiated through a task. Generally speaking, you can use
tasks to configure important context for your work, including when it runs
in your DAG.

https://www.astronomer.io/product/

12 13

• Tasks are nodes in a DAG.
In Airflow, a DAG is a group of tasks that have been configured to run in
a directed, acyclic manner. Airflow’s Scheduler parses DAGs to find tasks
which are ready for execution based on their dependencies. If a task is
ready for execution, the Scheduler sends it to an Executor.

A real-time run of a task is called a task instance (it’s also common to
call this a task run). Airflow logs information about task instances, includ-
ing their running time and status, in a metadata database.

• A DAG run is a single, specific execution of a DAG.
If a task instance is a run of a task, then a DAG run is simply an
instance of a complete DAG that has run or is currently running. At the
code level, a DAG becomes a DAG run once it has an execution_date.
Just like with task instances, information about each DAG run is
logged in Airflow’s metadata database.

Want to
know more?
Check out our comprehensive webinars, where

Airflow experts dive deeper into DAGs.

Best Practices for Writing DAGs in Airflow 2
SEE WEBINA R

Interative Data Quality in Airflow DAGs
SEE WEBINA R

Improve Your DAGs with Hidden Airflow Features
SEE WEBINA R

https://hubs.ly/Q01ccWBh0
https://hubs.ly/Q01ccWBh0
https://hubs.ly/Q01ccWx10
https://hubs.ly/Q01ccWx10
https://hubs.ly/Q01ccWBS0
https://hubs.ly/Q01ccWBS0
http://astronomer.io

14 15

DAG
Building Blocks

2.

Scheduling and Timetables
in Airflow

One of the fundamental features of Apache Airflow is the ability to sched-
ule jobs. Historically, Airflow users could schedule their DAGs by specifying
a schedule with a cron expression, a timedelta object, or a preset Airflow
schedule.

Timetables, released in Airflow 2.2, brought new flexibility to scheduling.
Timetables allow users to create their own custom schedules using Python,
effectively eliminating the limitations of cron. With timetables, you can now
schedule DAGs to run at any time for any use case.

Additionally, Airflow 2.4 introduced datasets and the ability to schedule your
DAGs on updates to a dataset rather than a time-based schedule. A more in-
depth explanation on these features can be found in the Datasets and Data
Driven Scheduling in Airflow guide.

In this guide, we’ll walk through Airflow scheduling concepts and the differ-
ent ways you can schedule a DAG with a focus on timetables. For additional
instructions check out our Scheduling in Airflow webinar.

Assumed knowledge

To get the most out of this guide, you should have knowledge of:

• Basic Airflow concepts. See Introduction to Apache Airflow.
• Configuring Airflow DAGs. See Introduction to Airflow DAGs.
• Date and time modules in Python3. See the Python documentation on

the datetime package.

Note: All code in this guide can be found in this repo.

https://www.astronomer.io/guides/scheduling-in-airflow/#:~:text=found%20in%20the-,Datasets%20and%20Data%20Driven%20Scheduling%20in%20Airflow,-guide.
https://www.astronomer.io/guides/scheduling-in-airflow/#:~:text=found%20in%20the-,Datasets%20and%20Data%20Driven%20Scheduling%20in%20Airflow,-guide.
https://www.astronomer.io/events/webinars/trigger-dags-any-schedule
https://www.astronomer.io/guides/intro-to-airflow
https://www.astronomer.io/guides/dags/
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://github.com/astronomer/airflow-scheduling-tutorial

16 17

Scheduling concepts

There are a couple of terms and parameters in Airflow that are important to
understand related to scheduling.

• Data Interval: The data interval is a property of each DAG run that rep-
resents the period of data that each task should operate on. For exam-
ple, for a DAG scheduled hourly each data interval will begin at the top
of the hour (minute 0) and end at the close of the hour (minute 59). The
DAG run is typically executed at the end of the data interval, depending
on whether your DAG’s schedule has “gaps” in it.

• Logical Date: The logical date of a DAG run is the same as the start of
the data interval. It does not represent when the DAG will actually be
executed. Prior to Airflow 2.2, this was referred to as the execution date.

• Timetable: The timetable is a property of a DAG that dictates the data
interval and logical date for each DAG run (i.e. it determines when a
DAG will be scheduled).

• Run After: The earliest time the DAG can be scheduled. This date is
shown in the Airflow UI, and may be the same as the end of the data
interval depending on your DAG’s timetable.

• Backfilling and Catchup: We won’t cover these concepts in depth here,
but they can be related to scheduling. We recommend reading the
Apache Airflow documentation on them to understand how they work
and whether they’re relevant for your use case.

Parameters
The following parameters are derived from the concepts described above
and are important for ensuring your DAG runs at the correct time.

• data_interval_start: A datetime object defining the start date and
time of the data interval. A DAG’s timetable will return this parameter for
each DAG run. This parameter is either created automatically by Airflow,
or can be specified by the user when implementing a custom timetable

• data_interval_end: A datetime object defining the end date and time
of the data interval. A DAG’s timetable will return this parameter for
each DAG run. This parameter is either created automatically by Airflow,
or can be specified by the user when implementing a custom timetable

• schedule: A parameter that can be set at the DAG level to define when
that DAG will be run. It accepts cron expressions, timedelta objects,
timetables, and lists of datasets.

• start_date: The first date your DAG will be executed. This parameter is
required for your DAG to be scheduled by Airflow.

• end_date: The last date your DAG will be executed. This parameter is
optional.

Note: In this guide we do not cover the execution_date concept,
which has been deprecated as of Airflow 2.2. If you are using older
versions of Airflow, review this doc for more on execution_date.

Note: Note In Airflow 2.3 or older, the schedule parameter is called
schedule_interval and only accepts cron expressions or timedelta
objects. Additionally, timetables have to be passed using the
timetable parameter, which is deprecated in Airflow 2.4+. In versions
of Airflow 2.2 and earlier, specifying schedule_interval is the only
way to define a DAG’s schedule.

https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html
https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html
https://airflow.apache.org/docs/apache-airflow/stable/faq.html#faq-what-does-execution-date-mean

18 19

Example

As a simple example of how these concepts work together, say we have a
DAG that is scheduled to run every 5 minutes. Looking at the most recent
DAG run, the logical date is 2022-08-28 22:37:33 (shown below Run next to
the DAG name in the UI), which is the same as the Data interval start shown
in the bottom right corner of in the screenshot below. The logical date is
also the timestamp that will be incorporated into the Run ID of the DAG run
which is how the DAG run is identified in the Airflow metadata database.
The Data interval end is 5 minutes later.

If we look at the next DAG run in the UI, the logical date is 2022-08-28
22:42:33, which is shown as the Next Run timestamp in the UI. This is 5 min-
utes after the previous logical date, and the same as the Data interval end
of the last DAG run because there are no gaps in the schedule. If we hover
over Next Run, we can see that Run After, which is the date and time that the
next DAG run will actually start, is also the same as the next DAG run’s Data
interval end:

In summary we’ve described 2 DAG runs:

• DAG run 1 with the Run ID scheduled__2022-08-
28T22:37:33.620191+00:00 has a logical date of 2022-08-28 22:37:33,
a Data interval start of 2022-08-28 22:37:33 and a Data interval end
of 2022-08-28 22:42:33. This DAG run will actually start at 2022-08-28
22:42:33.

• DAG run 2 with the Run ID scheduled__2022-08-
28T22:42:33.617231+00:00 has a logical date of 2022-08-28 22:42:33
(shown as Next Run in the UI in the second screenshot), a Data inter-
val start of 2022-08-28 22:42:33 and a Data interval end of 2022-08-
28 22:47:33. This DAG run will actually start at 2022-08-28 22:47:33
(shown as Run After in the UI in the second screenshot).

In the sections below, we’ll walk through how to use cron-based schedule,
timetables, or datasets to schedule your DAG.

Cron-based schedules
For pipelines with simple scheduling needs, you can define a schedule in
your DAG using:

• A cron expression.
• A cron preset.
• A timedelta object.

20 21

Setting a cron-based schedule

Cron expressions
You can pass any cron expression as a string to the schedule parameter in
your DAG. For example, if you want to schedule your DAG at 4:05 AM every
day, you would use schedule='5 4 * * *'.

If you need help creating the correct cron expression, crontab guru is a great
resource.

Cron presets
Airflow can utilize cron presets for common, basic schedules.

For example, schedule='@hourly' will schedule the DAG to run at the be-
ginning of every hour. For the full list of presets, check out the Airflow docu-
mentation. If your DAG does not need to run on a schedule and will only be
triggered manually or externally triggered by another process, you can set
schedule=None.

Timedelta objects
If you want to schedule your DAG on a particular cadence (hourly, every 5
minutes, etc.) rather than at a specific time, you can pass a timedelta object
imported from the datetime package to the schedule parameter. For exam-
ple, schedule=timedelta(minutes=30) will run the DAG every thirty minutes,
and schedule=timedelta(days=1) will run the DAG every day.

Note: Do not make your DAG’s schedule dynamic (e.g. datetime.
now())! This will cause an error in the Scheduler.

Cron-based schedules & the logical date

Airflow was originally developed for ETL under the expectation that data is
constantly flowing in from some source and then will be summarized on a
regular interval. If you want to summarize Monday’s data, you can only do
it after Monday is over (Tuesday at 12:01 AM). However, this assumption has
turned out to be ill-suited to the many other things Airflow is being used for
now. This discrepancy is what led to Timetables, which were introduced in
Airflow 2.2.

Each DAG run therefore has a logical_date that is separate from the time
that the DAG run is expected to begin (logical_date was called exection_
date before Airflow 2.2). A DAG run is not actually allowed to run until the
logical_date for the following DAG run has passed. So if you are running a
daily DAG, Monday’s DAG run will not actually execute until Tuesday. In this
example, the logical_date would be Monday 12:01 AM, even though the
DAG run will not actually begin until Tuesday 12:01 AM.

If you want to pass a timestamp to the DAG run that represents “the earliest
time at which this DAG run could have started”, use {{ next_ds }} from the
jinja templating macros.

Note: It is best practice to make each DAG run idempotent (able to
be re-run without changing the result) which precludes using
datetime.now().

https://crontab.guru/
https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html#cron-presets
https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html#cron-presets
https://docs.python.org/3/library/datetime.html
https://airflow.apache.org/docs/apache-airflow/stable/templates-ref.html

22 23

Limitations of cron-based schedules

The relationship between a DAG’s schedule and its logical_date leads to
particularly unintuitive results when the spacing between DAG runs is irreg-
ular. The most common example of irregular spacing is when DAGs run only
during business days (Mon-Fri). In this case, the DAG run with an logical_
date of Friday will not run until Monday, even though all of Friday’s data will
be available on Saturday. This means that a DAG whose desired behavior is
to summarize results at the end of each business day actually cannot be set
using only the schedule. In versions of Airflow prior to 2.2, one must instead
schedule the DAG to run every day (including the weekend) and include log-
ic in the DAG itself to skip all tasks for days on which the DAG doesn’t really
need to run.

In addition, it is difficult or impossible to implement situations like the follow-
ing using a traditional schedule:

• Schedule a DAG at different times on different days, like 2pm on Thurs-
days and 4pm on Saturdays.

• Schedule a DAG daily except for holidays.
• Schedule a DAG at multiple times daily with uneven intervals (e.g. 1pm

and 4:30pm).

In the next section, we’ll describe how these limitations were addressed in
Airflow 2.2 with the introduction of timetables.

Timetables
Timetables, introduced in Airflow 2.2, address the limitations of cron expres-
sions and timedelta objects by allowing users to define their own schedules in
Python code. All DAG schedules are ultimately determined by their internal
timetable and if a cron expression or timedelta object is not sufficient for
your use case, you can define your own.

Custom timetables can be registered as part of an Airflow plugin. They must
be a subclass of Timetable, and they should contain the following methods,
both of which return a DataInterval with a start and an end:

• next_dagrun_info: Returns the data interval for the DAG’s regular
schedule

• infer_manual_data_interval: Returns the data interval when the DAG is
manually triggered

Below we’ll show an example of implementing these methods in a custom
timetable.

Example custom timetable

For this implementation, let’s run our DAG at 6:00 and 16:30. Because this
schedule has run times with differing hours and minutes, it can’t be repre-
sented by a single cron expression. But we can easily implement this sched-
ule with a custom timetable!

To start, we need to define the next_dagrun_info and infer_manual_data_
interval methods. Before diving into the code, it’s helpful to think through
what the data intervals will be for the schedule we want. Remember that the
time the DAG runs (run_after) should be the end of the data interval since
our interval has no gaps. So in this case, for a DAG that we want to run at
6:00 and 16:30, we have two different alternating intervals:

• Run at 6:00: Data interval is from 16:30 on the previous day to 6:00 on
the current day

• Run at 16:30: Data interval is from 6:00 to 16:30 on the current day

With that in mind, first we’ll define next_dagrun_info. This method provides
Airflow with the logic to calculate the data interval for scheduled runs.
It also contains logic to handle the DAG’s start_date, end_date, and catch-
up parameters. To implement the logic in this method, we use the
Pendulum package, which makes dealing with dates and times simple.
The method looks like this:

https://airflow.apache.org/docs/apache-airflow/stable/concepts/timetable.html
https://pendulum.eustace.io/docs/

24 25

def next_dagrun_info(

 self,

 *,

 last_automated_data_interval: Optional[DataInterval],

 restriction: TimeRestriction,

) -> Optional[DagRunInfo]:

 if last_automated_data_interval is not None: # There

was a previous run on the regular schedule.

 last_start = last_automated_data_interval.start

 delta = timedelta(days=1)

 if last_start.hour == 6: # If previous period

started at 6:00, next period will start at 16:30 and end

at 6:00 following day

 next_start = last_start.set(hour=16, min-

ute=30).replace(tzinfo=UTC)

 next_end = (last_start+delta).replace(tzin-

fo=UTC)

 else: # If previous period started at 16:30, next

period will start at 6:00 next day and end at 16:30

 next_start = (last_start+delta).set(hour=6,

minute=0).replace(tzinfo=UTC)

 next_end = (last_start+delta).replace(tzin-

fo=UTC)

 else: # This is the first ever run on the regular

schedule. First data interval will always start at 6:00

and end at 16:30

 next_start = restriction.earliest

 if next_start is None: # No start_date. Don't

schedule.

 return None

 if not restriction.catchup: # If the DAG has

catchup=False, today is the earliest to consider.

 next_start = max(next_start, DateTime.com-

bine(Date.today(), Time.min).replace(tzinfo=UTC))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

Walking through the logic, this code is equivalent to:

• If there was a previous run for the DAG:
• If the previous DAG run started at 6:00, then the next DAG run

should start at 16:30 and end at 6:00 the next day.
• If the previous DAG run started at 16:30, then the DAG run should

start at 6:00 the next day and end at 16:30 the next day.

• If it is the first run of the DAG:
• Check for a start date. If there isn’t one, the DAG can’t be sched-

uled.
• Check if catchup=False. If so, the earliest date to consider should

be the current date. Otherwise it is the DAG’s start date.
• We’re mandating that the first DAG run should always start at 6:00,

so update the time of the interval start to 6:00 and the end to 16:30.

• If the DAG has an end date, do not schedule the DAG after that date
has passed.

Then we define the data interval for manually triggered DAG runs by defin-
ing the infer_manual_data_interval method. The code looks like this:

 next_start = next_start.set(hour=6, minute=0).re-

place(tzinfo=UTC)

 next_end = next_start.set(hour=16, minute=30).re-

place(tzinfo=UTC)

 if restriction.latest is not None and next_start > re-

striction.latest:

 return None # Over the DAG's scheduled end; don't

schedule.

 return DagRunInfo.interval(start=next_start, end=next_

end)

36

37

38

39

40

41

42

43

44

45

26 27

This method figures out what the most recent complete data interval is
based on the current time. There are three scenarios:

• The current time is between 6:00 and 16:30: In this case, the data inter-
val is from 16:30 the previous day to 6:00 the current day.

• The current time is after 16:30 but before midnight: In this case, the data
interval is from 6:00 to 16:30 the current day.

• The current time is after midnight but before 6:00: In this case, the data
interval is from 6:00 to 16:30 the previous day.

We need to account for time periods in the same timeframe (6:00 to 16:30)
on different days than the day that the DAG is triggered, which requires
three sets of logic. When defining custom timetables, always keep in mind
what the last complete data interval should be based on when the DAG
should run.

Now we can take those two methods and combine them into a Timetable
class which will make up our Airflow plugin. The full custom timetable plugin
is below:

def infer_manual_data_interval(self, run_after: Date-

Time) -> DataInterval:

 delta = timedelta(days=1)

 # If time is between 6:00 and 16:30, period ends at

6am and starts at 16:30 previous day

 if run_after >= run_after.set(hour=6, minute=0) and

run_after <= run_after.set(hour=16, minute=30):

 start = (run_after-delta).set(hour=16, min-

ute=30, second=0).replace(tzinfo=UTC)

 end = run_after.set(hour=6, minute=0, second=0).

replace(tzinfo=UTC)

 # If time is after 16:30 but before midnight, period

is between 6:00 and 16:30 the same day

 elif run_after >= run_after.set(hour=16, minute=30)

and run_after.hour <= 23:

 start = run_after.set(hour=6, minute=0, sec-

ond=0).replace(tzinfo=UTC)

 end = run_after.set(hour=16, minute=30, sec-

ond=0).replace(tzinfo=UTC)

 # If time is after midnight but before 6:00, period

is between 6:00 and 16:30 the previous day

 else:

 start = (run_after-delta).set(hour=6, minute=0).

replace(tzinfo=UTC)

 end = (run_after-delta).set(hour=16, minute=30).

replace(tzinfo=UTC)

 return DataInterval(start=start, end=end)

1

2

3

4

5

6

7

8

9

10

11

10

11

10

10

11

12

13

14

15

16

17

18

19

20

21

22

28 29

from datetime import timedelta

from typing import Optional

from pendulum import Date, DateTime, Time, timezone

from airflow.plugins_manager import AirflowPlugin

from airflow.timetables.base import DagRunInfo, DataInt-

erval, TimeRestriction, Timetable

UTC = timezone("UTC")

class UnevenIntervalsTimetable(Timetable):

 def infer_manual_data_interval(self, run_after: Da-

teTime) -> DataInterval:

 delta = timedelta(days=1)

 # If time is between 6:00 and 16:30, period ends

at 6am and starts at 16:30 previous day

 if run_after >= run_after.set(hour=6, minute=0)

and run_after <= run_after.set(hour=16, minute=30):

 start = (run_after-delta).set(hour=16, min-

ute=30, second=0).replace(tzinfo=UTC)

 end = run_after.set(hour=6, minute=0, sec-

ond=0).replace(tzinfo=UTC)

 # If time is after 16:30 but before midnight,

period is between 6:00 and 16:30 the same day

 elif run_after >= run_after.set(hour=16, min-

ute=30) and run_after.hour <= 23:

 start = run_after.set(hour=6, minute=0, sec-

ond=0).replace(tzinfo=UTC)

 end = run_after.set(hour=16, minute=30, sec-

ond=0).replace(tzinfo=UTC)

 # If time is after midnight but before 6:00, pe-

riod is between 6:00 and 16:30 the previous day

 else:

 start = (run_after-delta).set(hour=6, min-

1

2

3

4

5

6

7

8

9

10

11

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

ute=0).replace(tzinfo=UTC)

 end = (run_after-delta).set(hour=16, min-

ute=30).replace(tzinfo=UTC)

 return DataInterval(start=start, end=end)

 def next_dagrun_info(

 self,

 *,

 last_automated_data_interval: Optional[DataInt-

erval],

 restriction: TimeRestriction,

) -> Optional[DagRunInfo]:

 if last_automated_data_interval is not None: #

There was a previous run on the regular schedule.

 last_start = last_automated_data_interval.

start

 delta = timedelta(days=1)

 if last_start.hour == 6: # If previous peri-

od started at 6:00, next period will start at 16:30 and

end at 6:00 following day

 next_start = last_start.set(hour=16,

minute=30).replace(tzinfo=UTC)

 next_end = (last_start+delta).re-

place(tzinfo=UTC)

 else: # If previous period started at 14:30,

next period will start at 6:00 next day and end at 14:30

 next_start = (last_start+delta).

set(hour=6, minute=0).replace(tzinfo=UTC)

 next_end = (last_start+delta).re-

place(tzinfo=UTC)

 else: # This is the first ever run on the reg-

ular schedule. First data interval will always start at

6:00 and end at 16:30

 next_start = restriction.earliest

 if next_start is None: # No start_date.

30 31

Note that because timetables are plugins, you will need to restart the Airflow
Scheduler and Webserver after adding or updating them.

In the DAG, we can then import the custom timetable plugin and use it to
schedule the DAG by setting the timetable parameter:

Don't schedule.

 return None

 if not restriction.catchup: # If the DAG has

catchup=False, today is the earliest to consider.

 next_start = max(next_start, DateTime.

combine(Date.today(), Time.min).replace(tzinfo=UTC))

 next_start = next_start.set(hour=6, min-

ute=0).replace(tzinfo=UTC)

 next_end = next_start.set(hour=16, min-

ute=30).replace(tzinfo=UTC)

 if restriction.latest is not None and next_start

> restriction.latest:

 return None # Over the DAG's scheduled end;

don't schedule.

 return DagRunInfo.interval(start=next_start,

end=next_end)

class UnevenIntervalsTimetablePlugin(AirflowPlugin):

 name = "uneven_intervals_timetable_plugin"

 timetables = [UnevenIntervalsTimetable]

from uneven_intervals_timetable import UnevenIntervals-

Timetable

with DAG(

 dag_id="example_timetable_dag",

 start_date=datetime(2021, 10, 9),

 max_active_runs=1,

 timetable=UnevenIntervalsTimetable(),

 default_args={

 "retries": 1,

 "retry_delay": timedelta(minutes=3),

 },

 catchup=True

) as dag:

1

2

3

4

5

6

7

8

9

10

11

10

11

12

Looking at the Tree View in the UI, we can see that this DAG has run twice
per day at 6:00 and 16:30 since the start date of 2021-10-09.

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

57

58

59

60

61

62

63

64

65

66

67

68

32 33

The next scheduled run is for the interval starting on 2021-10-12 at 16:30 and
ending the following day at 6:00. This run will be triggered at the end of the
data interval, so after 2021-10-13 6:00.

If we run the DAG manually after 16:30 but before midnight, we can see the
data interval for the triggered run was between 6:00 and 16:30 that day as
expected.

Note: Be careful when implementing your timetable logic that your
next_dagrun_info method does not return a data_interval_start
that is earlier than your DAG’s start_date. This will result in tasks not
being executed for that DAG run.

Current Limitations

There are some limitations to keep in mind when implementing custom
timetables:

• Timetable methods should return the same result every time they are
called (e.g. avoid things like HTTP requests). They are not designed to
implement event-based triggering.

• Timetables are parsed by the scheduler when creating DAG runs, so
avoid slow or lengthy code that could impact Airflow performance.

Dataset driven scheduling

Airflow 2.4 introduced the concept of datasets and data-driven DAG depen-
dencies. You can now make Airflow detect when a task in a DAG updates a
data object. Using that awareness, other DAGs can be scheduled depending
on updates to these datasets. To create a dataset-based schedule, you sim-
ply pass the names of the datasets as a list to the schedule parameter.

This is a simple timetable that could easily be adjusted to suit other use cas-
es. In general, timetables are completely customizable as long as the meth-
ods above are implemented.

34 35

To learn more about datasets and data driven scheduling, check out the
Datasets and Data Driven Scheduling in Airflow guide.

Never miss an update
from us.
Sign up for the Astronomer newsletter.

Sign Up
This DAG runs only when both dataset1 and dataset2 have been updated.
These updates can occur by tasks in different DAGs as long as they are locat-
ed in the same Airflow environment.

In the Airflow UI, the DAG now has a schedule of Dataset and the Next Run
column shows how many datasets the DAG depends on and how many of
them have been updated.

dataset1 = Dataset(f"{DATASETS_PATH}/dataset_1.txt")

dataset2 = Dataset(f"{DATASETS_PATH}/dataset_2.txt")

with DAG(

 dag_id='dataset_dependent_example_dag',

 catchup=False,

 start_date=datetime(2022, 8, 1),

 schedule=[dataset1, dataset2],

 tags=['consumes', 'dataset-scheduled'],

) as dag:

1

2

3

4

5

6

7

8

9

10

https://www.astronomer.io/guides/airflow-datasets/
https://www.astronomer.io/contact/?utm_campaign=Marketing&utm_source=DAGsebook&utm_term=newsletter

36 37

Operators 101

Overview

Operators are the building blocks of Airflow DAGs. They contain the logic of
how data is processed in a pipeline. Each task in a DAG is defined by instanti-
ating an operator.

There are many different types of operators available in Airflow. Some opera-
tors execute general code provided by the user, like a Python function, while
other operators perform very specific actions such as transferring data from
one system to another.

In this guide, we’ll cover the basics of using operators in Airflow and show an
example of how to implement them in a DAG.

Operator Basics

Under the hood, operators are Python classes that encapsulate logic to do a
unit of work. They can be thought of as a wrapper around each unit of work
that defines the actions that will be completed and abstracts away a lot of
code you would otherwise have to write yourself. When you create an in-
stance of an operator in a DAG and provide it with its required parameters, it
becomes a task.

All operators inherit from the abstract BaseOperator class, which contains
the logic to execute the work of the operator within the context of a DAG.

The work each operator does varies widely. Some of the most frequently
used operators in Airflow are:

• PythonOperator: Executes a Python function.
• BashOperator: Executes a bash script.
• KubernetesPodOperator: Executes a task defined as a Docker image in a

Kubernetes Pod.
• SnowflakeOperator: Executes a query against a Snowflake database.

Operators are easy to use and typically only a few parameters are required.
There are a few details that every Airflow user should know about operators:

• The Astronomer Registry is the best place to go to learn about what op-
erators are out there and how to use them.

• The core Airflow package that contains basic operators such as the
PythonOperator and BashOperator. These operators are automatical-
ly available in your Airflow environment. All other operators are part of
provider packages, which must be installed separately. For example, the
SnowflakeOperator is part of the Snowflake provider.

• If an operator exists for your specific use case, you should always use it
over your own Python functions or hooks. This makes your DAGs easier to
read and maintain.

Note: To browse and search all of the available operators in Airflow,
visit the Astronomer Registry, the discovery and distribution hub for
Airflow integrations.

https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/models/baseoperator/index.html
https://registry.astronomer.io/providers/apache-airflow/modules/pythonoperator
https://registry.astronomer.io/providers/apache-airflow/modules/bashoperator
https://registry.astronomer.io/providers/kubernetes/modules/kubernetespodoperator
https://registry.astronomer.io/providers/snowflake/modules/snowflakeoperator
https://registry.astronomer.io/modules?types=operators
https://registry.astronomer.io/providers/snowflake
https://www.astronomer.io/guides/what-is-a-hook
https://registry.astronomer.io/modules?types=operators

38 39

• If an operator doesn’t exist for your use case, you can extend operator
to meet your needs. For more on how to customize operators, check out
our previous Anatomy of an Operator webinar.

• Sensors are a type of operator that wait for something to happen.
They can be used to make your DAGs more event-driven.

• Deferrable Operators are a type of operator that release their worker
slot while waiting for their work to be completed. This can result in cost
savings and greater scalability. Astronomer recommends using deferra-
ble operators whenever one exists for your use case and your task takes
longer than about a minute. Note that you must be using Airflow 2.2+ and
have a triggerer running to use deferrable operators.

• Any operator that interacts with a service external to Airflow will typical-
ly require a connection so that Airflow can authenticate to that external
system. More information on how to set up connections can be found in
our guide on managing connections or in the examples to follow.

Example Implementation

This example shows how to use several common operators in a DAG used to
transfer data from S3 to Redshift and perform data quality checks.

Note: The full code and repository for this example can be found on
the Astronomer Registry.

The following operators are used:

• EmptyOperator: This operator is part of core Airflow and does nothing.
It is used to organize the flow of tasks in the DAG.

• PythonDecoratedOperator: This operator is part of core Airflow and
executes a Python function. It is functionally the same as the PythonOp-
erator, but it instantiated using the @task decorator.

• LocalFilesystemToS3Operator: This operator is part of the AWS provider
and is used to upload a file from a local filesystem to S3.

• S3ToRedshiftOperator: This operator is part of the AWS provider and is
used to transfer data from S3 to Redshift.

• PostgresOperator: This operator is part of the Postgres provider and is
used to execute a query against a Postgres database.

• SQLCheckOperator: This operator is part of core Airflow and is used to
perform checks against a database using a SQL query.

The following code shows how each of those operators can be instantiated in
a DAG file to define the pipeline:

import hashlib

import json

from airflow import DAG, AirflowException

from airflow.decorators import task

from airflow.models import Variable

from airflow.models.baseoperator import chain

from airflow.operators.empty import EmptyOperator

from airflow.utils.dates import datetime

from airflow.providers.amazon.aws.hooks.s3 import S3Hook

from airflow.providers.amazon.aws.transfers.local_to_s3

import (

 LocalFilesystemToS3Operator

)

from airflow.providers.amazon.aws.transfers.s3_to_redshift

import (

 S3ToRedshiftOperator

)

from airflow.providers.postgres.operators.postgres import-

PostgresOperator

from airflow.operators.sql import SQLCheckOperator

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

https://www.astronomer.io/events/webinars/anatomy-of-an-operator
https://www.astronomer.io/guides/what-is-a-sensor
https://www.astronomer.io/guides/deferrable-operators
https://www.astronomer.io/guides/connections/
https://registry.astronomer.io/dags/simple-redshift-3
https://registry.astronomer.io/providers/apache-airflow/modules/dummyoperator
https://registry.astronomer.io/providers/apache-airflow/modules/pythonoperator
https://www.astronomer.io/guides/airflow-decorators/
https://registry.astronomer.io/providers/amazon/modules/localfilesystemtos3operator
https://registry.astronomer.io/providers/amazon/modules/s3toredshiftoperator
https://registry.astronomer.io/providers/postgres/modules/postgresoperator
https://registry.astronomer.io/providers/apache-airflow/modules/sqlcheckoperator

40 41

from airflow.operators.sql import SQLCheckOperator

from airflow.utils.task_group import TaskGroup

The file(s) to upload shouldn't be hardcoded in a pro-

duction setting,

this is just for demo purposes.

CSV_FILE_NAME = "forestfires.csv"

CSV_FILE_PATH = f"include/sample_data/forestfire_data/

{CSV_FILE_NAME}"

with DAG(

 "simple_redshift_3",

 start_date=datetime(2021, 7, 7),

 description="""A sample Airflow DAG to load data from

csv files to S3

 and then Redshift, with data integrity

and quality checks.""",

 schedule_interval=None,

 template_searchpath="/usr/local/airflow/include/sql/

redshift_examples/",

 catchup=False,

) as dag:

 """

 Before running the DAG, set the following in an Air-

flow

 or Environment Variable:

 - key: aws_configs

 - value: { "s3_bucket": [bucket_name], "s3_key_pre-

fix": [key_prefix],

 "redshift_table": [table_name]}

 Fully replacing [bucket_name], [key_prefix], and [ta-

ble_name].

 """

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

 upload_file = LocalFilesystemToS3Operator(

 task_id="upload_to_s3",

 filename=CSV_FILE_PATH,

 dest_key="{{ var.json.aws_configs.s3_key_prefix

}}/" + CSV_FILE_PATH,

 dest_bucket="{{ var.json.aws_configs.s3_bucket

}}",

 aws_conn_id="aws_default",

 replace=True,

)

 @task

 def validate_etag():

 """

 #### Validation task

 Check the destination ETag against the local MD5

hash to ensure

 the file was uploaded without errors.

 """

 s3 = S3Hook()

 aws_configs = Variable.get("aws_configs", deseri-

alize_json=True)

 obj = s3.get_key(

 key=f"{aws_configs.get('s3_key_prefix')}/{CSV_

FILE_PATH}",

 bucket_name=aws_configs.get("s3_bucket"),

)

 obj_etag = obj.e_tag.strip('"')

 # Change `CSV_FILE_PATH` to `CSV_CORRUPT_FILE_

PATH` for the "sad path".

 file_hash = hashlib.md5(

 open(CSV_FILE_PATH).read().encode("utf-8")).

hexdigest()

 if obj_etag != file_hash:

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

42 43

hexdigest()

 if obj_etag != file_hash:

 raise AirflowException(

 f"""Upload Error: Object ETag in S3 did

not match

 hash of local file."""

)

 # Tasks that were created using decorators have to be

called to be used

 validate_file = validate_etag()

 #### Create Redshift Table

 create_redshift_table = PostgresOperator(

 task_id="create_table",

 sql="create_redshift_forestfire_table.sql",

 postgres_conn_id="redshift_default",

)

 #### Second load task

 load_to_redshift = S3ToRedshiftOperator(

 task_id="load_to_redshift",

 s3_bucket="{{ var.json.aws_configs.s3_bucket }}",

 s3_key="{{ var.json.aws_configs.s3_key_prefix }}"

 + f"/{CSV_FILE_PATH}",

 schema="PUBLIC",

 table="{{ var.json.aws_configs.redshift_table }}",

 copy_options=["csv"],

)

 #### Redshift row validation task

 validate_redshift = SQLCheckOperator(

 task_id="validate_redshift",

 conn_id="redshift_default",

 sql="validate_redshift_forestfire_load.sql",

 params={"filename": CSV_FILE_NAME},

)

 #### Row-level data quality check

 with open("include/validation/forestfire_validation.

json") as ffv:

 with TaskGroup(group_id="row_quality_checks") as

quality_check_group:

 ffv_json = json.load(ffv)

 for id, values in ffv_json.items():

 values["id"] = id

 SQLCheckOperator(

 task_id=f"forestfire_row_quality_

check_{id}",

 conn_id="redshift_default",

 sql="row_quality_redshift_forestfire_

check.sql",

 params=values,

)

 #### Drop Redshift table

 drop_redshift_table = PostgresOperator(

 task_id="drop_table",

 sql="drop_redshift_forestfire_table.sql",

 postgres_conn_id="redshift_default",

)

 begin = EmptyOperator(task_id="begin")

 end = EmptyOperator(task_id="end")

 #### Define task dependencies

 chain(

 begin,

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

44 45

 upload_file,

 validate_file,

 create_redshift_table,

 load_to_redshift,

 validate_redshift,

 quality_check_group,

 drop_redshift_table,

 end

)

The resulting DAG looks like this:

There are a few things to note about the operators in this DAG:

• Every operator is given a task_id. This is a required parameter, and the
value provided will be shown as the name of the task in the Airflow UI.

• Each operator requires different parameters based on the work it does.
For example, the PostgresOperator has a sql parameter for the SQL
script to be executed, and the S3ToRedshiftOperator has parameters to
define the location and keys of the files being copied from S3 and the
Redshift table receiving the data.

• Connections to external systems are passed in most of these operators.
The parameters conn_id, postgres_conn_id, and aws_conn_id all point
to the names of the relevant connections stored in Airflow.

159

160

161

162

163

164

165

166

167

46 47

Hooks 101

Overview

Hooks are one of the fundamental building blocks of Airflow. At a high level,
a hook is an abstraction of a specific API that allows Airflow to interact with
an external system. Hooks are built into many operators, but they can also be
used directly in DAG code.

In this guide, we’ll cover the basics of using hooks in Airflow and when to use
them directly in DAG code. We’ll also walk through an example of imple-
menting two different hooks in a DAG.

Hook Basics

Hooks wrap around APIs and provide methods to interact with different
external systems. Because hooks standardize the way you can interact with
external systems, using them makes your DAG code cleaner, easier to read,
and less prone to errors.

To use a hook, you typically only need a connection ID to connect with an
external system. More information on how to set up connections can be
found in Managing your Connections in Apache Airflow or in the example
section below.

All hooks inherit from the BaseHook class, which contains the logic to set up
an external connection given a connection ID. On top of making the con-
nection to an external system, each hook might contain additional methods
to perform various actions within that system. These methods might rely on
different Python libraries for these interactions.

For example, the S3Hook, which is one of the most widely used hooks, relies
on the boto3 library to manage its connection with S3.

The S3Hook contains over 20 methods to interact with S3 buckets, including
methods like:

• check_for_bucket: Checks if a bucket with a specific name exists.
• list_prefixes: Lists prefixes in a bucket according to

specified parameters.
• list_keys: Lists keys in a bucket according to specified parameters.
• load_file: Loads a local file to S3.
• download_file: Downloads a file from the S3 location to the local

file system.

When to Use Hooks

Since hooks are the building blocks of operators, their use in Airflow is often
abstracted away from the DAG author. However, there are some cases when
you should use hooks directly in a Python function in your DAG. The following
are general guidelines when using hooks in Airflow:

Over 200 Hooks are currently listed in the Astronomer Registry.
If there isn’t one for your use case yet, you can write your own and
share it with the community!

https://www.astronomer.io/guides/connections/
https://github.com/apache/airflow/blob/main/airflow/hooks/base.py
https://github.com/apache/airflow/blob/main/airflow/hooks/base.py
https://registry.astronomer.io/modules/?types=hooks%2CHooks&page=2

48 49

• Hooks should always be used over manual API interaction to connect to
external systems.

• If you write a custom operator to interact with an external system,
it should use a hook to do so.ok to do so.

• If an operator with built-in hooks exists for your specific use case, then
it is best practice to use the operator over setting up hooks manually.

• If you regularly need to connect to an API for which no hook exists yet,
consider writing your own and sharing it with the community!

Example Implementation

The following example shows how you can use two hooks (S3Hook and Slack-
Hook) to retrieve values from files in an S3 bucket, run a check on them, post
the result of the check on Slack, and log the response of the Slack API.

For this use case, we use hooks directly in our Python functions because none
of the existing S3 Operators can read data from several files within an S3
bucket. Similarly, none of the existing Slack Operators can return the re-
sponse of a Slack API call, which you might want to log for monitoring pur-
poses.

The full source code of the hooks used can be found here:

• S3Hook source code
• SlackHook source code

Before running the example DAG, make sure you have the necessary Airflow
providers installed. If you are using the Astro CLI, you can do this by adding
the following packages to your requirements.txt:

Next you will need to set up connections to the S3 bucket and Slack in the
Airflow UI.

1. Go to Admin -> Connections and click on the plus sign to add a new
connection.

2. Select Amazon S3 as connection type for the S3 bucket (if the connec-
tion type is not showing up, double check that you installed the provider
correctly) and provide the connection with your AWS access key ID as
login and your AWS secret access key as password (See AWS docu-
mentation for how to retrieve your AWS access key ID and AWS secret
access key).

3. Create a new connection. Select Slack Webhook as the connection type
and provide your Bot User OAuth Token as a password. This token can be
obtained by going to Features > OAuth & Permissions on api.slack.com/
apps.

The DAG below uses Airflow Decorators to define tasks and XCom to pass
information between them. The name of the S3 bucket and the names of the
files that the first task reads are stored as environment variables for security
purposes.

apache-airflow-providers-amazon

apache-airflow-providers-slack

1

2

https://registry.astronomer.io/providers/amazon/modules/s3hook
https://registry.astronomer.io/providers/slack/modules/slackhook
https://registry.astronomer.io/providers/slack/modules/slackhook
https://github.com/apache/airflow/blob/main/airflow/providers/amazon/aws/hooks/s3.py
https://github.com/apache/airflow/blob/main/airflow/providers/slack/hooks/slack.py
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html
https://api.slack.com/authentication/oauth-v2
https://registry.astronomer.io/guides/airflow-decorators
https://registry.astronomer.io/guides/airflow-passing-data-between-tasks

50 51

importing necessary packages

import os

from datetime import datetime

from airflow import DAG

from airflow.decorators import task

from airflow.providers.slack.hooks.slack import SlackHook

from airflow.providers.amazon.aws.hooks.s3 import S3Hook

import environmental variables for privacy (set in Dock-

erfile)

S3BUCKET_NAME = os.environ.get('S3BUCKET_NAME')

S3_EXAMPLE_FILE_NAME_1 = os.environ.get('S3_EXAMPLE_FILE_

NAME_1')

S3_EXAMPLE_FILE_NAME_2 = os.environ.get('S3_EXAMPLE_FILE_

NAME_2')

S3_EXAMPLE_FILE_NAME_3 = os.environ.get('S3_EXAMPLE_FILE_

NAME_3')

task to read 3 keys from your S3 bucket

@task.python

def read_keys_form_s3():

 s3_hook = S3Hook(aws_conn_id='hook_tutorial_s3_conn')

 response_file_1 = s3_hook.read_key(key=S3_EXAMPLE_

FILE_NAME_1,

 bucket_name=S3BUCKET_NAME)

 response_file_2 = s3_hook.read_key(key=S3_EXAMPLE_

FILE_NAME_2,

 bucket_name=S3BUCKET_NAME)

 response_file_3 = s3_hook.read_key(key=S3_EXAMPLE_

FILE_NAME_3,

 bucket_name=S3BUCKET_NAME)

 response = {'num1' : int(response_file_1),

 'num2' : int(response_file_2),

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

 'num3' : int(response_file_3)}

 return response

task running a check on the data retrieved from your S3

bucket

@task.python

def run_sum_check(response):

 if response['num1'] + response['num2'] == respon-

se['num3']:

 return (True, response['num3'])

 return (False, response['num3'])

task posting to slack depending on the outcome of the

above check

and returning the server response

@task.python

def post_to_slack(sum_check_result):

 slack_hook = SlackHook(slack_conn_id='hook_tutorial_

slack_conn')

 if sum_check_result[0] == True:

 server_response = slack_hook.call(api_

method='chat.postMessage',

 json={"channel": "#test-airflow",

 "text": f"""All is well in your

bucket!

 Correct sum: {sum_check_re-

sult[1]}!"""})

 else:

 server_response = slack_hook.call(api_

method='chat.postMessage',

 json={"channel": "#test-airflow",

 "text": f"""A test on your bucket

52 53

The DAG above completes the following steps:

1. Use a decorated Python Operator with a manually implemented S3Hook
to read three specific keys from S3 with the read_key method. Returns
a dictionary with the file contents converted to integers.

2. With the results of the first task, use a second decorated Python
Operator to complete a simple sum check.

3. Post the result of the check to a Slack channel using the call method of
the SlackHook and return the response from the Slack API.

Sensors 101

Sensors are a special kind of operator. When they run, they check to see if
a certain criterion is met before they let downstream tasks execute. This is a
great way to have portions of your DAG wait on some external check or pro-
cess to complete.

To browse and search all of the available Sensors in Airflow, visit the
Astronomer Registry. Take the following sensor as an example:

S3 Key Sensor

The S3KeySensor checks for the existence of a specified key in S3 every few
seconds until it finds it or times out. If it finds the key, it will be marked as a
success and allow downstream tasks to run. If it times out, it will fail and pre-
vent downstream tasks from running.

S3KeySensor Code

s1 = S3KeySensor(

 task_id=’s3_key_sensor’,

 bucket_key=’{{ ds_nodash }}/my_file.csv’,

 bucket_name=’my_s3_bucket’,

 aws_conn_id=’my_aws_connection’,

)

1

2

3

4

5

6

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

contents failed!

 Target sum not reached: {sum_

check_result[1]}"""})

 # return the response of the API call (for logging or

use downstream)

 return server_response

implementing the DAG

with DAG(dag_id='hook_tutorial',

 start_date=datetime(2022,5,20),

 schedule_interval='@daily',

 catchup=False,

) as dag:

 # the dependencies are automatically set by XCom

 response = read_keys_form_s3()

 sum_check_result = run_sum_check(response)

 post_to_slack(sum_check_result)

https://registry.astronomer.io/providers/amazon/modules/s3keysensor
https://github.com/apache/airflow/blob/master/airflow/sensors/s3_key_sensor.py

54 55

Sensor Params

There are sensors for many use cases, such as ones that check a database for
a certain row, wait for a certain time of day, or sleep for a certain amount of
time. All sensors inherit from the BaseSensorOperator and have 4 parameters
you can set on any sensor.

• soft_fail: Set to true to mark the task as SKIPPED on failure.
• poke_interval: Time in seconds that the job should wait in between each

try. The poke interval should be more than one minute to prevent too
much load on the scheduler.

• timeout: Time, in seconds before the task times out and fails.
• mode: How the sensor operates. Options are: { poke | reschedule },

default is poke. When set to poke the sensor will take up a worker slot
for its whole execution time (even between pokes). Use this mode if
the expected runtime of the sensor is short or if a short poke interval is
required. When set to reschedule the sensor task frees the worker slot
when the criteria is not met and it’s rescheduled at a later time.
soft_fail: Set to true to mark the task as SKIPPED on failure.

• poke_interval: Time in seconds that the job should wait in between each
try. The poke interval should be more than one minute to prevent too
much load on the scheduler.

• timeout: Time, in seconds before the task times out and fails.
• mode: How the sensor operates. Options are: { poke | reschedule },

default is poke. When set to poke the sensor will take up a worker slot
for its whole execution time (even between pokes). Use this mode if
the expected runtime of the sensor is short or if a short poke interval is
required. When set to reschedule the sensor task frees the worker slot
when the criteria is not met and it’s rescheduled at a later time.

Deferrable Operators

Prior to Airflow 2.2, all task execution occurred within your worker resources.
For tasks whose work was occurring outside of Airflow (e.g. a Spark Job),
your tasks would sit idle waiting for a success or failure signal. These idle tasks
would occupy worker slots for their entire duration, potentially queuing other
tasks and delaying their start times.

With the release of Airflow 2.2, Airflow has introduced a new way to run tasks
in your environment: deferrable operators. These operators leverage
Python’s asyncio library to efficiently run tasks waiting for an external
resource to finish. This frees up your workers, allowing you to utilize those
resources more effectively. In this guide, we’ll walk through the concepts of
deferrable operators, as well as the new components introduced to Airflow
related to this feature.

Deferrable Operator Concepts

There are some terms and concepts that are important to understand when
discussing deferrable operators:

• asyncio: This Python library is used as a foundation for multiple asynchro-
nous frameworks. This library is core to deferrable operator’s functional-
ity, and is used when writing triggers.

• Triggers: These are small, asynchronous pieces of Python code. Due to
their asynchronous nature, they coexist efficiently in a single process
known as the triggerer.

• Triggerer: This is a new airflow service (like a scheduler or a worker) that
runs an asyncio event loop in your Airflow environment. Running a trig-
gerer is essential for using deferrable operators.

• Deferred: This is a new Airflow task state (medium purple color) intro-
duced to indicate that a task has paused its execution, released the
worker slot, and submitted a trigger to be picked up by the triggerer
process.time. All sensors inherit from the BaseSensorOperator and have
4 parameters you can set on any sensor.

https://registry.astronomer.io/providers/apache-airflow/modules/basesensoroperator
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio-event-loop
https://registry.astronomer.io/providers/apache-airflow/modules/basesensoroperator

56 57

With traditional operators, a task might submit a job to an external system
(e.g. a Spark Cluster) and then poll the status of that job until it completes.
Even though the task might not be doing significant work, it would still oc-
cupy a worker slot during the polling process. As worker slots become oc-
cupied, tasks may be queued resulting in delayed start times. Visually, this is
represented in the diagram below:

With deferrable operators, worker slots can be released while polling for job
status. When the task is deferred (suspended), the polling process is offload-
ed as a trigger to the triggerer, freeing up the worker slot. The triggerer has
the potential to run many asynchronous polling tasks concurrently, prevent-
ing this work from occupying your worker resources. When the terminal status
for the job is received, the task resumes, taking a worker slot while it finishes.
Visually, this is represented in the diagram below:

Note: The terms “deferrable” and “async” or “asynchronous” are of-
ten used interchangeably. They mean the same thing in this context.

Worker Slot Allocated

Submit Job to
Spark Cluster

Submit Job to
Spark ClusterPoll Spark Cluster for Job Status

Triggerer Process

Submit Job to
Spark Cluster

Receive Terminal
Status for Job on

Spark Cluster
Poll Spark Cluster for Job Status

Worker Slot
Allocated

Worker Slot
Allocated

When and Why to Use Deferrable Operators

In general, deferrable operators should be used whenever you have tasks
that occupy a worker slot while polling for a condition in an external system.
For example, using deferrable operators for sensor tasks (e.g. poking for a
file on an SFTP server) can result in efficiency gains and reduced operation-
al costs. In particular, if you are currently working with smart sensors, you
should consider using deferrable operators instead. Compared to smart sen-
sors, which were deprecated in Airflow 2.2.4, deferrable operators are more
flexible and better supported by Airflow.

Currently, the following deferrable operators are available in Airflow:

• TimeSensorAsync
• DateTimeSensorAsync

However, this list will grow quickly as the Airflow community makes more
investments into these operators. In the meantime, you can also create your
own (more on this in the last section of this guide). Additionally, Astronomer
maintains some deferrable operators available only on Astro Runtime.
There are numerous benefits to using deferrable operators. Some of the most
notable are:

• Reduced resource consumption: Depending on the available resources
and the workload of your triggers, you can run hundreds to thousands
of deferred tasks in a single triggerer process. This can lead to a reduc-
tion in the number of workers needed to run tasks during periods of high
concurrency. With less workers needed, you are able to scale down the
underlying infrastructure of your Airflow environment.

• Resiliency against restarts: Triggers are stateless by design. This means
your deferred tasks will not be set to a failure state if a triggerer needs
to be restarted due to a deployment or infrastructure issue. Once a trig-
gerer is back up and running in your environment, your deferred tasks will
resume.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/deferring.html#smart-sensors
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/time_sensor/index.html?highlight=timesensor#module-contents
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/date_time/index.html#airflow.sensors.date_time.DateTimeSensorAsync
https://docs.astronomer.io/astro/deferrable-operators/#astronomers-deferrable-operators

58 59

• Paves the way to event-based DAGs: The presence of asyncio in core
Airflow is a potential foundation for event-triggered DAGs.

Example Workflow Using Deferrable Operators

Let’s say we have a DAG that is scheduled to run a sensor every minute,
where each task can take up to 20 minutes. Using the default settings with 1
worker, we can see that after 20 minutes we have 16 tasks running, each hold-
ing a worker slot:

Because worker slots are held during task execution time, we would need at
least 20 worker slots available for this DAG to ensure that future runs are not
delayed. To increase concurrency, we would need to add additional resources
to our Airflow infrastructure (e.g. another worker pod).

By leveraging a deferrable operator for this sensor, we are able to achieve
full concurrency while allowing our worker to complete additional work
across our Airflow environment. With our updated DAG below, we see that all
20 tasks have entered a state of deferred, indicating that these sensing jobs
(triggers) have been registered to run in the triggerer process.

from datetime import datetime

from airflow import DAG

from airflow.sensors.date_time import DateTimeSensor

with DAG(

 “sync_dag”,

 start_date=datetime(2021, 12, 22, 20, 0),

 end_date=datetime(2021, 12, 22, 20, 19),

 schedule_interval=”* * * * *”,

 catchup=True,

 max_active_runs=32,

 max_active_tasks=32

) as dag:

 sync_sensor= DateTimeSensor(

 task_id=”sync_task”,

 target_time=”””{{ macros.datetime.utcnow() + mac-

ros.timedelta(minutes=20) }}

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

60 61

Running Deferrable Tasks in Your Airflow
Environment

To start a triggerer process, run airflow triggerer in your Airflow environ-
ment. You should see an output similar to the below image.

Note that if you are running Airflow on Astro, the triggerer runs automatically
if you are on Astro Runtime 4.0+. If you are using Astronomer Software 0.26+,
you can add a triggerer to an Airflow 2.2+ deployment in the Deployment
Settings tab. This guide details the steps for configuring this feature in the
platform.

As tasks are raised into a deferred state, triggers are registered in the trig-
gerer. You can set the number of concurrent triggers that can run in a single
triggerer process with the default_capacity configuration setting in Airflow.
This can also be set via the AIRFLOW__TRIGGERER__DEFAULT_CAPACITY envi-
ronment variable. By default, this variable’s value is 1,000.

High Availability
Note that triggers are designed to be highly-available. You can implement
this by starting multiple triggerer processes. Similar to the HA scheduler in-
troduced in Airflow 2.0, Airflow ensures that they co-exist with correct lock-
ing and HA. You can reference the Airflow docs for further information on
this topic.

Creating Your Own Deferrable Operator
If you have an operator that would benefit from being asynchronous but
does not yet exist in OSS Airflow or Astro Runtime, you can create your own.
The Airflow docs have great instructions to get you started.

from datetime import datetime

from airflow import DAG

from airflow.sensors.date_time import DateTimeSensorAsync

with DAG(

 “async_dag”,

 start_date=datetime(2021, 12, 22, 20, 0),

 end_date=datetime(2021, 12, 22, 20, 19),

 schedule_interval=”* * * * *”,

 catchup=True,

 max_active_runs=32,

 max_active_tasks=32

) as dag:

 async_sensor = DateTimeSensorAsync(

 task_id=”async_task”,

 target_time=”””{{ macros.datetime.utcnow() + mac-

ros.timedelta(minutes=20) }}”””,

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

https://docs.astronomer.io/astro/deferrable-operators/#prerequisites
https://docs.astronomer.io/software/configure-deployment/#triggerer
https://airflow.apache.org/docs/apache-airflow/stable/concepts/scheduler.html#running-more-than-one-scheduler
https://airflow.apache.org/docs/apache-airflow/stable/concepts/deferring.html#high-availability
https://airflow.apache.org/docs/apache-airflow/stable/concepts/deferring.html#writing-deferrable-operators

62 63

Because Airflow is 100% code, knowing the basics of Python is all it takes to
get started writing DAGs. However, writing DAGs that are efficient, secure,
and scalable requires some Airflow-specific finesse. In this section, we will
cover some best practices for developing DAGs that make the most of what
Airflow has to offer.

In general, most of the best practices we cover here fall into one of
two categories:

• DAG design
• Using Airflow as an orchestrator

Reviewing Idempotency

• Before we jump into best practices specific to Airflow, we need to review one

concept which applies to all data pipelines.

DAG Design3.

Idempotency is the foundation for many computing
practices, including the Airflow best practices in this sec-
tion. Specifically, it is a quality: A computational operatio-
wn is considered idempotent if it always produces the
same output.

In the context of Airflow, a DAG is considered idempotent if every DAG Run
generates the same results even when run multiple times. Designing idempo-
tent DAGs decreases recovery time from failures and prevents data loss.

DAG Design

The following DAG design principles will help to make your DAGs idempo-
tent, efficient, and readable.

Keep Tasks Atomic
When breaking up your pipeline into individual tasks, ideally each task should
be atomic. This means each task should be responsible for one operation that
can be rerun independently of the others. Said another way, in an automized
task, a success in the part of the task means a success of the entire task.

For example, in an ETL pipeline you would ideally want your Extract, Trans-
form, and Load operations covered by three separate tasks. Atomizing these
tasks allows you to rerun each operation in the pipeline independently, which
supports idempotence

Use Template Fields, Variables, and Macros
With template fields in Airflow, you can pull values into DAGs using environ-
ment variables and jinja templating. Compared to using Python functions,
using template fields helps keep your DAGs idempotent and ensures you aren’t
executing functions on every Scheduler heartbeat (see “Avoid Top Level Code
in Your DAG File” below for more about Scheduler optimization).

https://en.wikipedia.org/wiki/Idempotence

64 65

Contrary to our best practices, the following example defines variables
based on datetime Python functions:

If this code is in a DAG file, these functions will be executed on every
Scheduler heartbeat, which may not be performant. Even more importantly,
this doesn’t produce an idempotent DAG: If you needed to rerun a previ-
ously failed DAG Run for a past date, you wouldn’t be able to because date-
time.today() is relative to the current date, not the DAG execution date.
A better way of implementing this is by using an Airflow variable:

You can use one of Airflow’s many built-in variables and macros, or you can
create your own templated field to pass in information at runtime. For more on
this topic check out our guide on templating and macros in Airflow.

Incremental Record Filtering
It is ideal to break out your pipelines into incremental extracts and loads
wherever possible. For example, if you have a DAG that runs hourly, each DAG
Run should process only records from that hour, rather than the whole dataset.
When the results in each DAG Run represent only a small subset of your total
dataset, a failure in one subset of the data won’t prevent the rest of your DAG
Runs from completing successfully. And if your DAGs are idempotent, you can
rerun a DAG for only the data that failed rather than reprocessing the entire
dataset.

There are multiple ways you can achieve incremental pipelines. The two best
and most common methods are described below.

• Last Modified Date
Using a “last modified” date is the gold standard for incremental loads.
Ideally, each record in your source system has a column containing the
last time the record was modified. With this design, a DAG Run looks for
records that were updated within specific dates from this column.
For example, with a DAG that runs hourly, each DAG Run will be respon-
sible for loading any records that fall between the start and end of its
hour. If any of those runs fail, it will not impact other Runs.

• Sequence IDs
When a last modified date is not available, a sequence or incrementing
ID can be used for incremental loads. This logic works best when the
source records are only being appended to and never updated. While we
recommend implementing a “last modified” date system in your
records if possible, basing your incremental logic off of a sequence ID
can be a sound way to filter pipeline records without a last modified
date.

Variables used by tasks

Bad example - Define today’s and yesterday’s date using

datetime module

today = datetime.today()

yesterday = datetime.today() - timedelta(1)

1

2

3

4

5

Variables used by tasks

Good example - Define yesterday’s date with an Airflow

variable

yesterday = {{ yesterday_ds_nodash }}

1

2

3

4

https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
https://www.astronomer.io/guides/templating

66 67

Avoid Top-Level Code in Your DAG File
In the context of Airflow, we use “top-level code” to mean any code that isn’t
part of your DAG or operator instantiations.

Airflow executes all code in the dags_folder on every min_file_process_in-
terval, which defaults to 30 seconds (you can read more about this parameter
in the Airflow docs). Because of this, top-level code that makes requests to
external systems, like an API or a database, or makes function calls outside of
your tasks can cause performance issues. Additionally, including code that isn’t
part of your DAG or operator instantiations in your DAG file makes the DAG
harder to read, maintain, and update.

Treat your DAG file like a config file and leave all of the heavy lifting to the
hooks and operators that you instantiate within the file. If your DAGs need to
access additional code such as a SQL script or a Python function, keep that
code in a separate file that can be read into a DAG Run.

For one example of what not to do, in the DAG below a PostgresOperator
executes a SQL query that was dropped directly into the DAG file:

from airflow import DAG

from airflow.providers.postgres.operators.postgres import

PostgresOperator

from datetime import datetime, timedelta

#Default settings applied to all tasks

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: False,

 ‘email_on_retry’: False,

 ‘retries’: 1,

 ‘retry_delay’: timedelta(minutes=1)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#Instantiate DAG

with DAG(‘bad_practices_dag_1’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=3,

 schedule_interval=’@daily’,

 default_args=default_args,

 catchup=False

) as dag:

 t0 = DummyOperator(task_id=’start’)

 #Bad example with top level SQL code in the DAG file

 query_1 = PostgresOperator(

 task_id=’covid_query_wa’,

 postgres_conn_id=’postgres_default’,

 sql=’’’with yesterday_covid_data as (

 SELECT *

 FROM covid_state_data

 WHERE date = {{ params.today }}

 AND state = ‘WA’

),

 today_covid_data as (

 SELECT *

 FROM covid_state_data

 WHERE date = {{ params.yesterday }}

 AND state = ‘WA’

),

two_day_rolling_avg as (

SELECT AVG(a.state, b.state) as two_day_avg

 FROM yesterday_covid_data a

 JOIN yesterday_covid_data b

 ON a.state = b.state

)

 SELECT a.state, b.state, c.two_day_avg

 FROM yesterday_covid_data a

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

68 69

Keeping the query in the DAG file like this makes the DAG harder to read
and maintain. Instead, in the DAG below we call in a file named covid_
state_query.sql into our PostgresOperator instantiation, which embodies
the best practice:

from airflow import DAG

from airflow.providers.postgres.operators.postgres import

PostgresOperator

from datetime import datetime, timedelta

#Default settings applied to all tasks

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: False,

 ‘email_on_retry’: False,

 ‘retries’: 1,

 ‘retry_delay’: timedelta(minutes=1)

}

#Instantiate DAG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

with DAG(‘good_practices_dag_1’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=3,

 schedule_interval=’@daily’,

 default_args=default_args,

 catchup=False,

 template_searchpath=’/usr/local/airflow/include’

#include path to look for external files

) as dag:

 query = PostgresOperator(

 task_id=’covid_query_{0}’.format(state),

 postgres_conn_id=’postgres_default’,

 sql=’covid_state_query.sql’, #reference query

kept in separate file

 params={‘state’: “’” + state + “’”}

)

 ‘email_on_retry’: False,

 ‘retries’: 1,

 ‘retry_delay’: timedelta(minutes=1)

}

#Instantiate DAG

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

50

51

52

53

54

55

 JOIN today_covid_data b

 ON a.state=b.state

 JOIN two_day_rolling_avg c

 ON a.state=b.two_day_avg;’’’,

 params={‘today’: today, ‘yesterday’:yesterday}

)

70 71

Use a Consistent Method for Task Dependencies
In Airflow, task dependencies can be set multiple ways. You can use set_up-
stream() and set_downstream() functions, or you can use << and >> opera-
tors. Which method you use is a matter of personal preference, but for read-
ability it’s best practice to choose one method and stick with it.

For example, instead of mixing methods like this:

Try to be consistent with something like this:

Leverage Airflow Features

The next category of best practices relates to using Airflow as
what it was originally designed to be: an orchestrator. Using
Airflow as an orchestrator makes it easier to scale and pull in
the right tools based on your needs.

Make Use of Provider Packages
One of the best aspects of Airflow is its robust and active community, which
has resulted in integrations between Airflow and other tools known as provid-
er packages.

Provider packages enable you to orchestrate third party data processing
jobs directly from Airflow. Wherever possible, it’s best practice to make use
of these integrations rather than writing Python functions yourself (no need
to reinvent the wheel). This makes it easier for teams using existing tools to
adopt Airflow, and it means you get to write less code.

For easy discovery of all the great provider packages out there, check out
the Astronomer Registry.

Decide Where to Run Data Processing Jobs
Because DAGs are written in Python, you have many options available for im-
plementing data processing. For small to medium scale workloads, it is typ-
ically safe to do your data processing within Airflow as long as you allocate
enough resources to your Airflow infrastructure. Large data processing jobs
are typically best offloaded to a framework specifically optimized for those
use cases, such as Apache Spark. You can then use Airflow to orchestrate
those jobs.

task_1.set_downstream(task_2)

task_3.set_upstream(task_2)

task_3 >> task_4

1

2

3

task_1 >> task_2 >> [task_3, task_4]1

https://airflow.apache.org/docs/apache-airflow-providers/
https://airflow.apache.org/docs/apache-airflow-providers/
https://registry.astronomer.io/
https://spark.apache.org/

72 73

We recommend that you consider the size of your data now and in the future
when deciding whether to process data within Airflow or offload to an exter-
nal tool. If your use case is well suited to processing data within Airflow, then
we would recommend the following:

• Ensure your Airflow infrastructure has the necessary resources.
• Use the Kubernetes Executor to isolate task processing and have more

control over resources at the task level.
• Use a custom XCom backend if you need to pass any data between the

tasks so you don’t overload your metadata database.

Use Intermediary Data Storage
Because it requires less code and fewer pieces, it can be tempting to write
your DAGs to move data directly from your source to destination. However,
this means you can’t individually rerun the extract or load portions of the
pipeline. By putting an intermediary storage layer such as S3 or SQL Staging
tables in between your source and destination, you can separate the testing
and rerunning of the extract and load.

Depending on your data retention policy, you could modify the load logic
and rerun the entire historical pipeline without having to rerun the extracts.
This is also useful in situations where you no longer have access to the source
system (e.g. you hit an API limit).

Use an ELT Framework
Whenever possible, look to implement an ELT (extract, load, transform) data
pipeline pattern with your DAGs. This means that you should look to offload
as much of the transformation logic to the source systems or the destina-
tions systems as possible, which leverages the strengths of all tools in your
data ecosystem. Many modern data warehouse tools, such as Snowflake, give
you easy to access to compute to support the ELT framework, and are easily
used in conjunction with Airflow.

Other Best Practices

Finally, here are a few other noteworthy best practices that don’t fall under
the two categories above.

Use a Consistent File Structure
Having a consistent file structure for Airflow projects keeps things organized
and easy to adopt. At Astronomer, we use:

Use DAG Name and Start Date Properly
You should always use a static start_date with your DAGs. A dynamic
start_date is misleading and can cause failures when clearing out failed task
instances and missing DAG runs.

Additionally, if you change the start_date of your DAG you should also change
the DAG name. Changing the start_date of a DAG creates a new entry in
Airflow’s database, which could confuse the scheduler because there will be two
DAGs with the same name but different schedules.

Changing the name of a DAG also creates a new entry in the database, which

├── dags/ # Where your DAGs go

│ ├── example-dag.py # An example dag that comes with

the initialized project

├── Dockerfile # For Astronomer’s Docker image and runtime

overrides

├── include/ # For any other files you’d like to include

├── plugins/ # For any custom or community Airflow plugins

├── packages.txt # For OS-level packages

└── requirements.txt # For any Python packages

1

2

3

4

5

6

7

8

9

https://www.astronomer.io/guides/custom-xcom-backends
https://www.snowflake.com/

74 75

powers the dashboard, so follow a consistent naming convention since changing
a DAG’s name doesn’t delete the entry in the database for the old name.
Set Retries at the DAG Level
Even if your code is perfect, failures happen. In a distributed environment
where task containers are executed on shared hosts, it’s possible for tasks to
be killed off unexpectedly. When this happens, you might see Airflow’s logs
mention a zombie process.

Issues like this can be resolved by using task retries. The best practice is to
 set retries as a default_arg so they are applied at the DAG level and get
more granular for specific tasks only where necessary. A good range to try
is ~2–4 retries.

Passing Data Between
Airflow Tasks

Introduction

Sharing data between tasks is a very common use case in Airflow. If you’ve been
writing DAGs, you probably know that breaking them up into appropriately small
tasks is the best practice for debugging and recovering quickly from failures. But,
maybe one of your downstream tasks requires metadata about an upstream task
or processes the results of the task immediately before it.

There are a few methods you can use to implement data sharing between
your Airflow tasks. In this section, we will walk through the two most com-
monly used methods, discuss when to use each, and show some example
DAGs to demonstrate the implementation. Before we dive into the specifics,
there are a couple of high-level concepts that are important when writing
DAGs where data is shared between tasks.

Ensure Idempotency
An important concept for any data pipeline, including an Airflow DAG, is
idempotency. This is the property whereby an operation can be applied
multiple times without changing the result. We often hear about this concept
as it applies to your entire DAG; if you execute the same DAGRun multiple
times, you will get the same result. However, this concept also applies to
tasks within your DAG; if every task in your DAG is idempotent, your full DAG
will be idempotent as well.

When designing a DAG that passes data between tasks, it is important to
ensure that each task is idempotent. This will help you recover and ensure no
data is lost should you have any failures.

Consider the Size of Your Data
Knowing the size of the data you are passing between Airflow tasks is import-
ant when deciding which implementation method to use. As we will describe
in detail below, XComs are one method of passing data between tasks, but
they are only appropriate for small amounts of data. Large data sets will re-
quire a method making use of intermediate storage and possibly utilizing an
external processing framework.

XCom

The first method for passing data between Airflow tasks is to use XCom,
which is a key Airflow feature for sharing task data.

What is XCom
XCom (short for cross-communication) is a native feature within Airflow.
XComs allow tasks to exchange task metadata or small amounts of data. They
are defined by a key, value, and timestamp.

XComs can be “pushed”, meaning sent by a task, or “pulled”, meaning re-
ceived by a task. When an XCom is pushed, it is stored in Airflow’s metadata
database and made available to all other tasks. Any time a task returns a val-

https://en.wikipedia.org/wiki/Zombie_process
https://en.wikipedia.org/wiki/Idempotence
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html?highlight=xcom#concepts-xcom

76 77

ue (e.g. if your Python callable for your PythonOperator has a return), that
value will automatically be pushed to XCom. Tasks can also be configured to
push XComs by calling the xcom_push() method. Similarly, xcom_pull() can
be used in a task to receive an XCom.

You can view your XComs in the Airflow UI by navigating to Admin → XComs.

You should see something like this:

When to Use XComs
XComs should be used to pass small amounts of data between tasks. Things
like task metadata, dates, model accuracy, or single value query results are
all ideal data to use with XCom.

While there is nothing stopping you from passing small data sets with XCom,
be very careful when doing so. This is not what XCom was designed for, and
using it to pass data like pandas dataframes can degrade the performance of
your DAGs and take up storage in the metadata database.

XCom cannot be used for passing large data sets between tasks. The limit
for the size of the XCom is determined by which metadata database you are
using:

• Postgres: 1 Gb
• SQLite: 2 Gb
• MySQL: 64 Kb

You can see that these limits aren’t very big. And even if you think your data
might squeak just under, don’t use XComs. Instead, see the section below on
using intermediary data storage, which is more appropriate for larger chunks
of data.

Custom XCom Backends
Custom XCom Backends are a new feature available in Airflow 2.0 and great-
er. Using an XCom backend means you can push and pull XComs to and
from an external system such as S3, GCS, or HDFS rather than the default of
Airflow’s metadata database. You can also implement your own serialization /
deserialization methods to define how XComs are handled. This is a concept
in its own right, so we won’t go into too much detail here, but you can learn
more by reading our guide on implementing custom XCom backends.

Example DAGs
This section will show a couple of example DAGs that use XCom to pass data
between tasks. For this example, we are interested in analyzing the increase
in a total number of Covid tests for the current day for a particular state. To
implement this use case, we will have one task that makes a request to the
Covid Tracking API and pulls the totalTestResultsIncrease parameter
from the results. We will then use another task to take that result and com-
plete some sort of analysis. This is a valid use case for XCom because the
data being passed between the tasks is a single integer.

https://registry.astronomer.io/providers/apache-airflow/modules/pythonoperator
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html?highlight=xcom#custom-xcom-backend
https://www.astronomer.io/guides/custom-xcom-backends
https://covidtracking.com/data/api

78 79

from airflow import DAG

from airflow.operators.python_operator import PythonOp-

erator

from datetime import datetime, timedelta

import requests

import json

url = ‘https://covidtracking.com/api/v1/states/’

state = ‘wa’

def get_testing_increase(state, ti):

 “””

 Gets totalTestResultsIncrease field from Covid API

for given state and returns value

 “””

 res = requests.get(url+’{0}/current.json’.for-

mat(state))

 testing_increase = json.loads(res.text)[‘totalT-

estResultsIncrease’]

 ti.xcom_push(key=’testing_increase’, value=testing_

increase)

def analyze_testing_increases(state, ti):

 “””

 Evaluates testing increase results

 “””

 testing_increases=ti.xcom_pull(key=’testing_in-

crease’, task_ids=’get_testing_increase_data_{0}’.for-

mat(state))

 print(‘Testing increases for {0}:’.format(state),

testing_increases)

 #run some analysis here

1

2

3

4

5

6

7

8

9

10

11

10

11

10

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Default settings applied to all tasks

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: False,

 ‘email_on_retry’: False,

 ‘retries’: 1,

 ‘retry_delay’: timedelta(minutes=5)

}

with DAG(‘xcom_dag’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=2,

 schedule_interval=timedelta(minutes=30),

 default_args=default_args,

 catchup=False

) as dag:

 opr_get_covid_data = PythonOperator(

 task_id = ‘get_testing_increase_data_{0}’.for-

mat(state),

 python_callable=get_testing_increase,

 op_kwargs={‘state’:state}

)

 opr_analyze_testing_data = PythonOperator(

 task_id = ‘analyze_data’,

 python_callable=analyze_testing_increases,

 op_kwargs={‘state’:state}

)

 opr_get_covid_data >> opr_analyze_testing_data

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

80 81

In this DAG we have two PythonOperator tasks which share data using the
xcom_push and xcom_pull functions. Note that in the get_testing_increase
function, we used the xcom_push method so that we could specify the key
name. Alternatively, we could have made the function return the testing_
increase value, because any value returned by an operator in Airflow will
automatically be pushed to XCom; if we had used this method, the XCom key
would be “returned_value”.

For the xcom_pull call in the analyze_testing_increases function, we spec-
ify the key and task_ids associated with the XCom we want to retrieve. Note
that this allows you to pull any XCom value (or multiple values) at any time
into a task; it does not need to be from the task immediately prior, as shown
in this example.

If we run this DAG and then go to the XComs page in the Airflow UI, we see
that a new row has been added for our get_testing_increase_data_wa task
with the key testing_increase and value returned from the API.

In the logs for the analyze_data task, we can see the value from the prior
task was printed, meaning the value was successfully retrieved from XCom.

TaskFlow API

Another way to implement this use case is to use the TaskFlow API that was
released with Airflow 2.0. With the TaskFlow API, returned values are pushed
to XCom as usual, but XCom values can be pulled simply by adding the key
as an input to the function as shown in the following DAG:

from airflow.decorators import dag, task

from datetime import datetime

import requests

import json

url = ‘https://covidtracking.com/api/v1/states/’

state = ‘wa’

default_args = {

 ‘start_date’: datetime(2021, 1, 1)

}

1

2

3

4

5

6

7

8

9

10

11

12

https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html

82 83

This DAG is functionally the same as the first one, but thanks to the TaskFlow
API there is less code required overall and no additional code required for
passing the data between the tasks using XCom.

Intermediary Data Storage

As mentioned above, XCom can be a great option for sharing data between
tasks because it doesn’t rely on any tools external to Airflow itself. Howev-
er, it is only designed to be used for very small amounts of data. What if the
data you need to pass is a little bit larger, for example, a small dataframe?

The best way to manage this use case is to use intermediary data storage.
This means saving your data to some system external to Airflow at the end of
one task, then reading it in from that system in the next task. This is common-
ly done using cloud file storage such as S3, GCS, Azure Blob Storage, etc.,
but it could also be done by loading the data in either a temporary or per-
sistent table in a database.

We will note here that while this is a great way to pass data that is too large
to be managed with XCom, you should still exercise caution. Airflow is meant
to be an orchestrator, not an execution framework. If your data is very large,
it is probably a good idea to complete any processing using a framework like
Spark or compute-optimized data warehouses like Snowflake or dbt.

Example DAG
Building on our Covid example above, let’s say instead of a specific value of
testing increases, we are interested in getting all of the daily Covid data for a
state and processing it. This case would not be ideal for XCom, but since the
data returned is a small dataframe, it is likely okay to process using Airflow.

@dag(‘xcom_taskflow_dag’, schedule_interval=’@daily’, de-

fault_args=default_args, catchup=False)

def taskflow():

 @task

 def get_testing_increase(state):

 “””

 Gets totalTestResultsIncrease field from Covid API

for given state and returns value

 “””

 res = requests.get(url+’{0}/current.json’.for-

mat(state))

 return{‘testing_increase’: json.loads(res.text)

[‘totalTestResultsIncrease’]}

 @task

 def analyze_testing_increases(testing_increase: int):

 “””

 Evaluates testing increase results

 “””

 print(‘Testing increases for {0}:’.format(state),

testing_increase)

 #run some analysis here

 analyze_testing_increases(get_testing_increase(state))

dag = taskflow()

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

84 85

from airflow import DAG

from airflow.operators.python_operator import PythonOpera-

tor

from airflow.providers.amazon.aws.hooks.s3 import S3Hook

from datetime import datetime, timedelta

from io import StringIO

import pandas as pd

import requests

s3_conn_id = ‘s3-conn’

bucket = ‘astro-workshop-bucket’

state = ‘wa’

date = ‘{{ yesterday_ds_nodash }}’

def upload_to_s3(state, date):

 ‘’’Grabs data from Covid endpoint and saves to flat

file on S3

 ‘’’

 # Connect to S3

 s3_hook = S3Hook(aws_conn_id=s3_conn_id)

 # Get data from API

 url = ‘https://covidtracking.com/api/v1/states/’

 res = requests.get(url+’{0}/{1}.csv’.format(state,

date))

 # Save data to CSV on S3

 s3_hook.load_string(res.text, ‘{0}_{1}.csv’.for-

mat(state, date), bucket_name=bucket, replace=True)

def process_data(state, date):

 ‘’’Reads data from S3, processes, and saves to new S3

file

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 # Connect to S3

 s3_hook = S3Hook(aws_conn_id=s3_conn_id)

 # Read data

 data = StringIO(s3_hook.read_key(key=’{0}_{1}.csv’.

format(state, date), bucket_name=bucket))

 df = pd.read_csv(data, sep=’,’)

 # Process data

 processed_data = df[[‘date’, ‘state’, ‘positive’, ‘neg-

ative’]]

 # Save processed data to CSV on S3

 s3_hook.load_string(processed_data.to_string(), ‘{0}_

{1}_processed.csv’.format(state, date), bucket_name=bucket,

replace=True)

Default settings applied to all tasks

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: False,

 ‘email_on_retry’: False,

 ‘retries’: 1,

 ‘retry_delay’: timedelta(minutes=1)

}

with DAG(‘intermediary_data_storage_dag’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=1,

 schedule_interval=’@daily’,

 default_args=default_args,

 catchup=False

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

86 87

In this DAG we make use of the S3Hook to save data retrieved from the API
to a CSV on S3 in the generate_file task. The process_data task then grabs
that data from S3, converts it to a dataframe for processing, and then saves
the processed data back to a new CSV on S3.

Using Task Groups in Airflow

Overview

Prior to the release of Airflow 2.0 in December 2020, the only way to group
tasks and create modular workflows within Airflow was to use SubDAGs.
SubDAGs were a way of presenting a cleaner-looking DAG by capitalizing on
code patterns. For example, ETL DAGs usually share a pattern of tasks that
extract data from a source, transform the data, and load it somewhere. The
SubDAG would visually group the repetitive tasks into one UI task, making
the pattern between tasks clearer.

However, SubDAGs were really just DAGs embedded in other DAGs. This
caused both performance and functional issues:

• When a SubDAG is triggered, the SubDAG and child tasks take up work-
er slots until the entire SubDAG is complete. This can delay other task
processing and, depending on your number of worker slots, can lead to
deadlocking.

• SubDAGs have their own parameters, schedule, and enabled settings.
When these are not consistent with their parent DAG, unexpected be-
havior can occur.

Unlike SubDAGs, Task Groups are just a UI grouping concept. Starting in Air-
flow 2.0, you can use Task Groups to organize tasks within your DAG’s graph
view in the Airflow UI. This avoids the added complexity and performance
issues of SubDAGs, all while using less code!

In this section, we will walk through how to create Task Groups and show
some example DAGs to demonstrate their scalability.

) as dag:

 generate_file = PythonOperator(

 task_id=’generate_file_{0}’.format(state),

 python_callable=upload_to_s3,

 op_kwargs={‘state’: state, ‘date’: date}

)

 process_data = PythonOperator(

 task_id=’process_data_{0}’.format(state),

 python_callable=process_data,

 op_kwargs={‘state’: state, ‘date’: date}

)

 generate_file >> process_data

 ‘’’

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

https://registry.astronomer.io/providers/amazon/modules/s3hook
https://www.astronomer.io/blog/introducing-airflow-2-0
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html#taskgroup

88 89

Creating Task Groups

To use Task Groups you’ll need to use the following import statement.

For our first example, we will instantiate a Task Group using a with statement
and provide a group_id. Inside our Task Group, we will define our two tasks,
t1 and t2, and their respective dependencies.

You can use dependency operators (<< and >>) on Task Groups in the same
way that you can with individual tasks. Dependencies applied to a Task Group
are applied across its tasks. In the following code, we will add additional de-
pendencies to t0 and t3 to the Task Group, which automatically applies the
same dependencies across t1 and t2:

In the Airflow UI, Task Groups look like tasks with blue shading. When we ex-
pand group1 by clicking on it, we see blue circles where the Task Group’s de-
pendencies have been applied to the grouped tasks. The task(s) immediately
to the right of the first blue circle (t1) get the group’s upstream dependen-
cies and the task(s) immediately to the left (t2) of the last blue circle get
the group’s downstream dependencies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

t0 = DummyOperator(task_id=’start’)

Start Task Group definition

with TaskGroup(group_id=’group1’) as tg1:

 t1 = DummyOperator(task_id=’task1’)

 t2 = DummyOperator(task_id=’task2’)

 t1 >> t2

End Task Group definition

t3 = DummyOperator(task_id=’end’)

Set Task Group’s (tg1) dependencies

t0 >> tg1 >> t3

from airflow.utils.task_group import TaskGroup1

Note: When your task is within a Task Group, your callable task_id
will be the task_id prefixed with the group_id (i.e. group_id.task_
id). This ensures the uniqueness of the task_id across the DAG. This is
important to remember when calling specific tasks with XCOM pass-
ing or branching operator decisions.

90 91

Dynamically Generating Task Groups

Just like with DAGs, Task Groups can be dynamically generated to make use
of patterns within your code. In an ETL DAG, you might have similar down-
stream tasks that can be processed independently, such as when you call
different API endpoints for data that needs to be processed and stored in
the same way. For this use case, we can dynamically generate Task Groups
by API endpoint. Just like with manually written Task Groups, generated Task
Groups can be drilled into from the Airflow UI to see specific tasks.

In the code below, we use iteration to create multiple Task Groups. While the
tasks and dependencies remain the same across Task Groups, we can change
which parameters are passed in to each Task Group based on the group_id:

What if your Task Groups can’t be processed independently? Next, we will
show how to call Task Groups and define dependencies between them.

Ordering Task Groups

By default, using a loop to generate your Task Groups will put them in paral-
lel. If your Task Groups are dependent on elements of another Task Group,
you’ll want to run them sequentially. For example, when loading tables with
foreign keys, your primary table records need to exist before you can load
your foreign table.

In the example below, our third dynamically generated Task Group has a foreign
key constraint on both our first and second dynamically generated Task Groups, so
we will want to process it last. To do this, we will create an empty list and append
our Task Group objects as they are generated. Using this list, we can reference the
Task Groups and define their dependencies to each other:

This screenshot shows the expanded view of the Task Groups we generated
above in the Airflow UI:

for g_id in range(1,3):

 with TaskGroup(group_id=f’group{g_id}’) as tg1:

 t1 = DummyOperator(task_id=’task1’)

 t2 = DummyOperator(task_id=’task2’)

 t1 >> t2

1

2

3

4

5

6

92 93

The following screenshot shows how these Task Groups appear in the
Airflow UI:

Conditioning on Task Groups
In the above example, we added an additional task to group1 based on our
group_id. This was to demonstrate that even though we are dynamically cre-
ating Task Groups to take advantage of patterns, we can still introduce vari-
ations to the pattern while avoiding code redundancies from building each
Task Group definition manually.

Nesting Task Groups

For additional complexity, you can nest Task Groups. Building on our previ-
ous ETL example, when calling API endpoints, we may need to process new
records for each endpoint before we can process updates to them.

In the following code, our top-level Task Groups represent our new and
updated record processing, while the nested Task Groups represent our API
endpoint processing:

groups = []

for g_id in range(1,3):

 with TaskGroup(group_id=f’group{g_id}’) as tg1:

 t1 = DummyOperator(task_id=’task1’)

 t2 = DummyOperator(task_id=’task2’)

 sub_groups = []

 for s_id in range(1,3):

 with TaskGroup(group_id=f’sub_group{s_id}’) as

tg2:

 st1 = DummyOperator(task_id=’task1’)

 st2 = DummyOperator(task_id=’task2’)

 st1 >> st2

 sub_groups.append(tg2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

groups = []

for g_id in range(1,4):

 tg_id = f’group{g_id}’

 with TaskGroup(group_id=tg_id) as tg1:

 t1 = DummyOperator(task_id=’task1’)

 t2 = DummyOperator(task_id=’task2’)

 t1 >> t2

 if tg_id == ‘group1’:

 t3 = DummyOperator(task_id=’task3’)

 t1 >> t3

 groups.append(tg1)

[groups[0] , groups[1]] >> groups[2]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

94 95

The following screenshot shows the expanded view of the nested Task
Groups in the Airflow UI:

Takeaways

Task Groups are a dynamic and scalable UI grouping concept that eliminates
the functional and performance issues of SubDAGs.

Ultimately, Task Groups give you the flexibility to group and organize your tasks
in a number of ways. To help guide your implementation of Task Groups, think
about:

• What patterns exist in your DAGs?

• How can simplifying your DAG’s graph better
communicate its purpose?

 t1 >> sub_groups >> t2

 groups.append(tg1)

groups[0] >> groups[1]

16

17

18

19

Note: Astronomer highly recommends avoiding SubDAGs if the
intended use of the SubDAG is to simply group tasks within a DAG’s
Graph View. Airflow 2.0 introduces Task Groups which is a UI group-
ing concept that satisfies this purpose without the performance and
functional issues of SubDAGs. While the SubDagOperator will contin-
ue to be supported, Task Groups are intended to replace
it long-term.

96 97

Cross-DAG Dependencies

When designing Airflow DAGs, it is often best practice to put all related tasks
in the same DAG. However, it’s sometimes necessary to create dependencies
between your DAGs. In this scenario, one node of a DAG is its own complete
DAG, rather than just a single task. Throughout this guide, we’ll use the fol-
lowing terms to describe DAG dependencies:

• Upstream DAG: A DAG that must reach a specified state before a down-
stream DAG can run

• Downstream DAG: A DAG that cannot run until an upstream DAG reach-
es a specified state

According to the Airflow documentation on cross-DAG dependencies,
wdesigning DAGs in this way can be useful when:

• A DAG should only run after one or more datasets have been updated
by tasks in other DAGs.

• Two DAGs are dependent, but they have different schedules.
• Two DAGs are dependent, but they are owned by different teams.
• A task depends on another task but for a different execution date.

For any scenario where you have dependent DAGs, we’ve got you covered!
In this guide, we’ll discuss multiple methods for implementing cross-DAG
dependencies, including how to implement dependencies if your dependent
DAGs are located in different Airflow deployments.

Note: All code in this section can be found in this Github repo.

Assumed knowledge
To get the most out of this guide, you should have knowledge of:

• Dependencies in Airflow. See Managing Dependencies in
Apache Airflow.

• Airflow DAGs. See Introduction to Airflow DAGs.
• Airflow operators. See Operators 101.
• Airflow sensors. See Sensors 101.

Implementing Cross-DAG Dependencies

There are multiple ways to implement cross-DAG dependencies in Airflow,
including:

• Dataset driven scheduling.
• The TriggerDagRunOperator.
• The ExternalTaskSensor.
• The Airflow API.

In this section, we detail how to use each method and ideal scenarios for
each, as well as how to view dependencies in the Airflow UI.

Dataset dependencies

In Airflow 2.4+, you can use datasets to create data-driven dependencies
between DAGs. This means that DAGs which access the same data can have
explicit, visible relationships, and DAGs can be scheduled based on updates
to this data.

Note: It can be tempting to use SubDAGs to handle DAG depen-
dencies, but we highly recommend against doing so as SubDAGs can
create performance issues. Instead, use one of the other methods
described below.

https://airflow.apache.org/docs/apache-airflow/stable/howto/operator/external_task_sensor.html#cross-dag-dependencies
https://github.com/astronomer/cross-dag-dependencies-tutorial
https://www.astronomer.io/guides/managing-dependencies/
https://www.astronomer.io/guides/managing-dependencies/
https://www.astronomer.io/guides/dags/
https://www.astronomer.io/guides/what-is-an-operator/
https://www.astronomer.io/guides/what-is-a-sensor/
https://www.astronomer.io/guides/airflow-datasets/
https://registry.astronomer.io/providers/apache-airflow/modules/triggerdagrunoperator
https://registry.astronomer.io/providers/apache-airflow/modules/externaltasksensor
https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html

98 99

You should use this method if you have a downstream DAG that should only
run after a dataset has been updated by an upstream DAG, especially if
those updates can be very irregular. This type of dependency also provides
you with increased observability into the dependencies between your DAGs
and datasets in the Airflow UI.

Using datasets requires knowledge of the following scheduling concepts:

• Producing task: A task that updates a specific dataset, defined by its
outlets parameter.

• Consuming DAG: A DAG that will run as soon as a specific dataset(s) are
updated.

Any task can be made into a producing task by providing one or more data-
sets to the outlets parameter as shown below.

The downstream DAG is scheduled to run after dataset1 has been updated
by providing it to the schedule parameter.

In the Airflow UI, the Next Run column for the downstream DAG shows
how many datasets the DAG depends on and how many of those have been
updated since the last DAG run. The screenshot below shows that the DAG
dataset_dependent_example_dag runs only after two different datasets have
been updated. One of those datasets has already been updated by an up-
stream DAG.

Check out the Datasets and Data Driven Scheduling in Airflow guide to learn
more and see an example implementation of this feature.

dataset1 = Dataset('s3://folder1/dataset_1.txt')

producing task in the upstream DAG

EmptyOperator(

 task_id="producing_task",

 outlets=[dataset1] # flagging to Airflow that data-

set1 was updated

)

1

2

3

4

5

6

7

8

dataset1 = Dataset('s3://folder1/dataset_1.txt')

consuming DAG

with DAG(

 dag_id='consuming_dag_1',

 catchup=False,

 start_date=datetime.datetime(2022, 1, 1),

 schedule=[dataset1]

) as dag:

1

2

3

4

5

6

7

8

9

https://www.astronomer.io/guides/airflow-datasets/

100 101

TriggerDagRunOperator

The TriggerDagRunOperator is an easy way to implement cross-DAG depen-
dencies from the upstream DAG. This operator allows you to have a task in
one DAG that triggers another DAG in the same Airflow environment.
Read more in-depth documentation about this operator on the Astronomer
Registry.

You can trigger a downstream DAG with the TriggerDagRunOperator from
any point in the upstream DAG. If you set the operator’s wait_for_comple-
tion parameter to True, the upstream DAG will pause and resume only once
the downstream DAG has finished running.

A common use case for this implementation is when an upstream DAG fetch-
es new testing data for a machine learning pipeline, runs and tests a model,
and publishes the model’s prediction. In case of the model underperforming,
the TriggerDagRunOperator is used to kick off a separate DAG that retrains
the model while the upstream DAG waits. Once the model is retrained and
tested by the downstream DAG, the upstream DAG resumes and publishes
the new model’s results.

Below is an example DAG that implements the TriggerDagRunOperator
to trigger the dependent-dag between two other tasks. The trigger-da-
grun-dag will wait until dependent-dag has finished its run until it moves onto
running end_task, since wait_for_completion in the TriggerDagRunOperator
has been set to True.

from airflow import DAG

from airflow.operators.python import PythonOperator

from airflow.operators.trigger_dagrunimport TriggerDa-

gRunOperator

from datetime import datetime, timedelta

def print_task_type(**kwargs):

 """

 Dummy function to call before and after dependent DAG.

 """

 print(f"The {kwargs['task_type']} task has complet-

ed.")

Default settings applied to all tasks

default_args = {

 'owner': 'airflow',

 'depends_on_past': False,

 'email_on_failure': False,

 'email_on_retry': False,

 'retries': 1,

 'retry_delay': timedelta(minutes=5)

}

with DAG(

 'trigger-dagrun-dag',

 start_date=datetime(2021, 1, 1),

 max_active_runs=1,

 schedule_interval='@daily',

 default_args=default_args,

 catchup=False

) as dag:

 start_task = PythonOperator(

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

https://registry.astronomer.io/providers/apache-airflow/modules/triggerdagrunoperator
https://registry.astronomer.io/providers/apache-airflow/modules/triggerdagrunoperator

102 103

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 task_id='starting_task',

 python_callable=print_task_type,

 op_kwargs={'task_type': 'starting'}

)

 trigger_dependent_dag = TriggerDagRunOperator(

 task_id="trigger_dependent_dag",

 trigger_dag_id="dependent-dag",

 wait_for_completion=True

)

 end_task = PythonOperator(

 task_id='end_task',

 python_callable=print_task_type,

 op_kwargs={'task_type': 'ending'}

)

 start_task >> trigger_dependent_dag >> end_task

In the following graph view, you can see that the trigger_dependent_dag
task in the middle is the TriggerDagRunOperator, which runs the depen-
dent-dag.

Note that if your dependent DAG requires a config input or a specific execu-
tion date, these can be specified in the operator using the conf and execu-
tion_date params respectively.

ExternalTaskSensor
To create cross-DAG dependencies from a downstream DAG, consider using
one or more ExternalTaskSensors. The downstream DAG will pause until a
task is completed in the upstream DAG before resuming.

This method of creating cross-DAG dependencies is especially useful when
you have a downstream DAG with different branches that depend on differ-
ent tasks in one or more upstream DAGs. Instead of defining an entire DAG
as being downstream of another DAG like with datasets, you can set a specif-
ic task in a downstream DAG to wait for a task to finish in an upstream DAG.

For example, you could have upstream tasks modifying different tables in a
data warehouse and one downstream DAG running one branch of data qual-
ity checks for each of those tables. You can use one ExternalTaskSensor at
the start of each branch to make sure that the checks running on each table
only start, once the update to that specific table has finished.

An example DAG using three ExternalTaskSensors at the start of three paral-
lel branches in the same DAG is shown below.

Note: In Airflow 2.2+, a deferrable version of the ExternalTaskSensor
is available, the ExternalTaskSensorAsync. For more info on deferra-
ble operators and their benefits, see this guide.

https://registry.astronomer.io/providers/apache-airflow/modules/externaltasksensor
https://registry.astronomer.io/providers/astronomer-providers/modules/externaltasksensorasync
https://www.astronomer.io/guides/deferrable-operators/

104 105

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from airflow import DAG

from airflow.operators.python import PythonOperator

from airflow.sensors.external_task import ExternalTaskSen-

sor

from airflow.operators.empty import EmptyOperator

from datetime import datetime, timedelta

def downstream_function_branch_1():

 print('Upstream DAG 1 has completed. Starting tasks of

branch 1.')

def downstream_function_branch_2():

 print('Upstream DAG 2 has completed. Starting tasks of

branch 2.')

def downstream_function_branch_3():

 print('Upstream DAG 3 has completed. Starting tasks of

branch 3.')

default_args = {

 'owner': 'airflow',

 'depends_on_past': False,

 'email_on_failure': False,

 'email_on_retry': False,

 'retries': 1,

 'retry_delay': timedelta(minutes=5)

}

with DAG(

 'external-task-sensor-dag',

 start_date=datetime(2022, 8, 1),

 max_active_runs=3,

 schedule='*/1 * * * *',

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

65

 catchup=False

) as dag:

 start = EmptyOperator(task_id="start")

 end = EmptyOperator(task_id="end")

 ets_branch_1 = ExternalTaskSensor(

 task_id="ets_branch_1",

 external_dag_id='upstream_dag_1',

 external_task_id='my_task',

 allowed_states=['success'],

 failed_states=['failed', 'skipped']

)

 task_branch_1 = PythonOperator(

 task_id='task_branch_1',

 python_callable=downstream_function_branch_1,

)

 ets_branch_2 = ExternalTaskSensor(

 task_id="ets_branch_2",

 external_dag_id='upstream_dag_2',

 external_task_id='my_task',

 allowed_states=['success'],

 failed_states=['failed', 'skipped']

)

 task_branch_2 = PythonOperator(

 task_id='task_branch_2',

 python_callable=downstream_function_branch_2,

)

 ets_branch_3 = ExternalTaskSensor(

106 107

67

68

69

70

71

72

73

74

75

78

79

80

81

82

83

84

85

86

87

36

 task_id="ets_branch_3",

 external_dag_id='upstream_dag_3',

 external_task_id='my_task',

 allowed_states=['success'],

 failed_states=['failed', 'skipped']

)

 task_branch_3 = PythonOperator(

 task_id='task_branch_3',

 python_callable=downstream_function_branch_3,

)

 start >> [ets_branch_1, ets_branch_2, ets_branch_3]

 ets_branch_1 >> task_branch_1

 ets_branch_2 >> task_branch_2

 ets_branch_3 >> task_branch_3

 [task_branch_1, task_branch_2, task_branch_3] >> end

In this DAG

• ets_branch_1 waits for the my_task task of upstream_dag_1 to complete
before moving on to execute task_branch_1.

• ets_branch_2 waits for the my_task task of upstream_dag_2 to complete
before moving on to execute task_branch_2.

• ets_branch_3 waits for the my_task task of upstream_dag_3 to complete
before moving on to execute task_branch_3.

These processes happen in parallel and independent of each other. The
graph view shows the state of the DAG after my_task in upstream_dag_1
has finished which caused ets_branch_1 and task_branch_1 to run. ets_
branch_2 and ets_branch_3 are still waiting for their upstream tasks to finish.

If you want the downstream DAG to wait for the entire upstream DAG to
finish instead of a specific task, you can set the external_task_id to None.
In the example above, we specify that the external task must have a state
of success for the downstream task to succeed, as defined by the allowed_
states and failed_states.

Also note that in the example above, the upstream DAG (example_dag)
and downstream DAG (external-task-sensor-dag) must have the same
start date and schedule interval. This is because the ExternalTaskSensor will
look for completion of the specified task or DAG at the same logical_date
(previously called execution_date). To look for completion of the external
task at a different date, you can make use of either of the execution_delta
or execution_date_fn parameters (these are described in more detail in the
documentation linked above).

Airflow API

The Airflow API is another way of creating cross-DAG dependencies. This
is especially useful in Airflow 2.0, which has a fully stable REST API. To use
the API to trigger a DAG run, you can make a POST request to the DAGRuns
endpoint as described in the Airflow API documentation.

This method is useful if your dependent DAGs live in different Airflow en-
vironments (more on this in the Cross-Deployment Dependencies section
below). The task triggering the downstream DAG will complete once the API
call is complete.

https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html
https://www.astronomer.io/blog/introducing-airflow-2-0
https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html#operation/post_dag_run

108 109

Using the API to trigger a downstream DAG can be implemented within a
DAG by using the SimpleHttpOperator as shown in the example DAG below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

from airflow import DAG

from airflow.operators.python import PythonOperator

from airflow.providers.http.operators.http import Simple-

HttpOperator

from datetime import datetime, timedelta

import json

Define body of POST request for the API call to trigger

another DAG

date = '{{ execution_date }}'

request_body = {

 "execution_date": date

}

json_body = json.dumps(request_body)

def print_task_type(**kwargs):

 """

 Dummy function to call before and after downstream DAG.

 """

 print(f"The {kwargs['task_type']} task has completed.")

 print(request_body)

default_args = {

 'owner': 'airflow',

 'depends_on_past': False,

 'email_on_failure': False,

 'email_on_retry': False,

 'retries': 1,

 'retry_delay': timedelta(minutes=5)

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

zz

with DAG(

 'api-dag',

 start_date=datetime(2021, 1, 1),

 max_active_runs=1,

 schedule_interval='@daily',

 catchup=False

) as dag:

 start_task = PythonOperator(

 task_id='starting_task',

 python_callable=print_task_type,

 op_kwargs={'task_type': 'starting'}

)

 api_trigger_dependent_dag = SimpleHttpOperator(

 task_id="api_trigger_dependent_dag",

 http_conn_id='airflow-api',

 endpoint='/api/v1/dags/dependent-dag/dagRuns',

 method='POST',

 headers={'Content-Type': 'application/json'},

 data=json_body

)

 end_task = PythonOperator(

 task_id='end_task',

 python_callable=print_task_type,

 op_kwargs={'task_type': 'ending'}

)

 start_task >> api_trigger_dependent_dag >> end_task

https://registry.astronomer.io/providers/http/modules/simplehttpoperator

110 111

This DAG has a similar structure to the TriggerDagRunOperator DAG above,
but instead uses the SimpleHttpOperator to trigger the dependent-dag using
the Airflow API. The graph view looks like this:

In order to use the SimpleHttpOperator to trigger another DAG, you need
to define the following:

• endpoint: This should be of the form '/api/v1/dags/<dag-id>/dagRuns'
where <dag-id> is the ID of the DAG you want to trigger.

• data: To trigger a DAG run using this endpoint, you must provide an ex-
ecution date. In the example above, we use the execution_date of the
upstream DAG, but this can be any date of your choosing. You can also
specify other information about the DAG run as described in the API
documentation linked above.

• http_conn_id: This should be an Airflow connection of type HTTP, with
your Airflow domain as the Host. Any authentication should be provided
either as a Login/Password (if using Basic auth) or as a JSON-formatted
Extra. In the example below, we use an authorization token.

DAG Dependencies View
In Airflow 2.1, a new cross-DAG dependencies view was added to the Airflow
UI. This view shows all dependencies between DAGs in your Airflow environ-
ment as long as they are implemented using one of the following methods:

• Using dataset driven scheduling
• Using a TriggerDagRunOperator
• Using an ExternalTaskSensor

Dependencies can be viewed in the UI by going to Browse » DAG Depen-
dencies or by clicking on the Graph button from within the Datasets tab.
The screenshot below shows the dependencies created by the TriggerDa-
gRunOperator and ExternalTaskSensor example DAGs in the sections above.

https://www.astronomer.io/guides/connections/
https://airflow.apache.org/docs/apache-airflow-providers-http/stable/connections/http.html
https://airflow.apache.org/docs/apache-airflow/stable/changelog.html#airflow-2-1-0-2021-05-21

112 113

When DAGs are scheduled depending on datasets, both the DAG containing
the producing task, as well as the dataset itself will be shown upstream of the
consuming DAG.

In Airflow 2.4 an additional Datasets tab was added, which shows all depen-
dencies between datasets and DAGs.

Cross-Deployment Dependencies

It is sometimes necessary to implement cross-DAG dependencies where the
DAGs do not exist in the same Airflow deployment. The TriggerDagRunOper-
ator, ExternalTaskSensor, and dataset methods described above are designed
to work with DAGs in the same Airflow environment, so they are not ideal for
cross-Airflow deployments. The Airflow API, on the other hand, is perfect for
this use case. In this section, we’ll focus on how to implement this method on
Astro, but the general concepts will likely be similar wherever your Airflow
environments are deployed.

Cross-Deployment Dependencies with Astronomer
To implement cross-DAG dependencies on two different Airflow environ-
ments on Astro, we can follow the same general steps for triggering a DAG
using the Airflow API described above. It may be helpful to first read our
documentation on making requests to the Airflow API from Astronomer.
When you’re ready to implement a cross-deployment dependency, follow
these steps:

1. In the upstream DAG, create a SimpleHttpOperator task that will trigger
the downstream DAG. Refer to the section above for details on configur-
ing the operator.

2. In the downstream DAG Airflow environment, create a Service Account
and copy the API key.

3. In the upstream DAG Airflow environment, create an Airflow connec-
tion as shown in the Airflow API section above. The Host should be
https://<your-base-domain>/<deployment-release-name>/airflow
where the base domain and deployment release name are from your
downstream DAG’s Airflow deployment. In the Extras, use {"Authoriza-
tion": "api-token"} where api-token is the service account API key
you copied in step 2.

4. Ensure the downstream DAG is turned on, then run the upstream DAG.

https://docs.astronomer.io/software/airflow-api
https://docs.astronomer.io/software/ci-cd#step-1-create-a-service-account

114 115

In Airflow, DAGs are defined as Python code. Airflow executes all Python
code in the DAG_FOLDER and loads any DAG objects that appear in globals().
The simplest way of creating a DAG is to write it as a static Python file.

However, sometimes manually writing DAGs isn’t practical. Maybe you have
hundreds or thousands of DAGs that do similar things with just a parameter
changing between them. Or perhaps you need a set of DAGs to load tables
but don’t want to manually update DAGs every time those tables change.
In these cases and others, it can make more sense to generate DAGs
dynamically.

Overview

Dynamically
Generating DAGs
in Airflow

4.

Because everything in Airflow is code, you can dynamically generate DAGs
using Python alone. As long as a DAG object in globals() is created by
Python code that lives in the DAG_FOLDER, Airflow will load it. In this section,
we will cover a few of the many ways of generating DAGs. We will also dis-
cuss when DAG generation is a good option and some pitfalls to watch out
for when doing this at scale.

Single-File Methods

One method for dynamically generating DAGs is to have a single Python file
that generates DAGs based on some input parameter(s) (e.g., a list of APIs
or tables). An everyday use case for this is an ETL or ELT-type pipeline with
many data sources or destinations. It would require creating many DAGs that
all follow a similar pattern.

Some benefits of the single-file method:
 + It’s simple and easy to implement.
 + It can accommodate input parameters from many different sources

(see a few examples below).
 + Adding DAGs is nearly instantaneous since it requires only changing

the input parameters.

However, there are also drawbacks:
 × Since a DAG file isn’t actually being created, your visibility into the

code behind any specific DAG is limited.
 × Since this method requires a Python file in the DAG_FOLDER, the

generation code will be executed on every Scheduler heartbeat.
It can cause performance issues if the total number of DAGs is
large or if the code is connecting to an external system such as
a database. For more on this, see the Scalability section below.

https://airflow.apache.org/docs/apache-airflow/stable/concepts.html#dags

116 117

In the following examples, the single-file method is implemented differently
based on which input parameters are used for generating DAGs.

In this example, the input parameters can come from any source that the
Python script can access. We can then set a simple loop (range(1, 4)) to
generate these unique parameters and pass them to the global scope, there-
by registering them as valid DAGs within the Airflow scheduler:

EXAMPLE:
Use a Create_DAG Method
To dynamically create DAGs from a file, we need to define a Python
function that will generate the DAGs based on an input parameter. In
this case, we are going to define a DAG template within a create_dag
function. The code here is very similar to what you would use when
creating a single DAG, but it is wrapped in a method that allows for
custom parameters to be passed in.

from airflow import DAG

from airflow.operators.python_operator import PythonOpera-

tor

from datetime import datetime

def create_dag(dag_id,

 schedule,

 dag_number,

 default_args):

 def hello_world_py(*args):

 print(‘Hello World’)

 print(‘This is DAG: {}’.format(str(dag_number)))

 dag = DAG(dag_id,

 schedule_interval=schedule,

 default_args=default_args)

 with dag:

 t1 = PythonOperator(

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 task_id=’hello_world’,

 python_callable=hello_world_py,

 dag_number=dag_number)

 return dag schedule,

 dag_number,

 default_args):

21

22

23

24

25

26

27

from airflow import DAG

from airflow.operators.python_operator import PythonOpera-

tor

from datetime import datetime

def create_dag(dag_id,

 schedule,

 dag_number,

 default_args):

 def hello_world_py(*args):

 print(‘Hello World’)

 print(‘This is DAG: {}’.format(str(dag_number)))

 dag = DAG(dag_id,

 schedule_interval=schedule,

 default_args=default_args)

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

118 119

And if we look at the Airflow UI, we can see the DAGs have been created.
Success!

EXA M P L E:
Generate DAGs from Variables
As previously mentioned, the input parameters don’t have to exist in
the DAG file itself. Another common form of generating DAGs is by
setting values in a Variable object.

 dag = DAG(dag_id,

 schedule_interval=schedule,

 default_args=default_args)

 with dag:

 t1 = PythonOperator(

 task_id=’hello_world’,

 python_callable=hello_world_py)

 return dag

build a dag for each number in range(10)

for n in range(1, 4):

 dag_id = ‘loop_hello_world_{}’.format(str(n))

 default_args = {‘owner’: ‘airflow’,

 ‘start_date’: datetime(2021, 1, 1)

 }

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

120 121

We can retrieve this value by importing the Variable class and passing it into
our range. We want the interpreter to register this file as valid — regardless
of whether the variable exists, the default_var is set to 3.

If we look at the scheduler logs, we can see this variable was pulled into the
DAG and, and 15 DAGs were added to the DagBag based on its value.

We can then go to the Airflow UI and see all of the new DAGs that have
been created.

from airflow import DAG

from airflow.models import Variable

from airflow.operators.python_operator import PythonOpera-

tor

from datetime import datetime

def create_dag(dag_id,

 schedule,

 dag_number,

 default_args):

 def hello_world_py(*args):

 print(‘Hello World’)

 print(‘This is DAG: {}’.format(str(dag_number)))

 dag = DAG(dag_id,

 schedule_interval=schedule,

 default_args=default_args)

 with dag:

 t1 = PythonOperator(

 task_id=’hello_world’,

 python_callable=hello_world_py)

 return dag

number_of_dags = Variable.get(‘dag_number’, default_var=3)

number_of_dags = int(number_of_dags)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

for n in range(1, number_of_dags):

 dag_id = ‘hello_world_{}’.format(str(n))

 default_args = {‘owner’: ‘airflow’,

 ‘start_date’: datetime(2021, 1, 1)

 }

 schedule = ‘@daily’

 dag_number = n

 globals()[dag_id] = create_dag(dag_id,

 schedule,

 dag_number,

 default_args)

29

30

31

32

33

34

35

36

37

38

39

40

41

122 123

EXAMPLE:
Generate DAGs from Connections
Another way to define input parameters for dynamically generating
DAGs is by defining Airflow connections. It can be a good option if
each of your DAGs connects to a database or an API. Because you
will be setting up those connections anyway, creating the DAGs from
that source avoids redundant work.

To implement this method, we can pull the connections we have in
our Airflow metadata database by instantiating the “Session” and
querying the “Connection” table. We can also filter this query so that
it only pulls connections that match specific criteria.

from airflow import DAG, settings

from airflow.models import Connection

from airflow.operators.python_operator import PythonOpera-

tor

from datetime import datetime

def create_dag(dag_id,

 schedule,

 dag_number,

 default_args):

 def hello_world_py(*args):

 print(‘Hello World’)

 print(‘This is DAG: {}’.format(str(dag_number)))

dag = DAG(dag_id,

 schedule_interval=schedule

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

124 125

Notice that, as before, we access the Models library to bring in the Connec-
tion class (as we did previously with the Variable class). We are also ac-
cessing the Session() class from settings, which will allow us to query the
current database session.

We can see that all of the connections that match our filter have now been
created as a unique DAG. The one connection we had which did not match
(SOME_OTHER_DATABASE) has been ignored.

 default_args=default_args)

 with dag:

 t1 = PythonOperator(

 task_id=’hello_world’,

 python_callable=hello_world_py)

 return dag

session = settings.Session()

conns = (session.query(Connection.conn_id)

 .filter(Connection.conn_id.ilike(‘%MY_DATABASE_

CONN%’))

 .all())

for conn in conns:

 dag_id = ‘connection_hello_world_{}’.format(conn[0])

 default_args = {‘owner’: ‘airflow’,

 ‘start_date’: datetime(2018, 1, 1)

 }

 schedule = ‘@daily’

 dag_number = conn

 globals()[dag_id] = create_dag(dag_id,

 schedule,

 dag_number,

 default_args)

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

126 127

Multiple-File Methods

Another method for dynamically generating DAGs is to use code to create
full Python files for each DAG. The end result of this method is having one
Python file per generated DAG in your DAG_FOLDER.

One way of implementing this method in production is to have a Python script
that, when executed, generates DAG files as part of a CI/CD workflow. The
DAGs are generated during the CI/CD build and then deployed to Airflow. You
could also have another DAG that runs the generation script periodically.

Some benefits of this method:
 + It’s more scalable than single-file methods. Because the DAG files

aren’t generated by parsing code in the DAG_FOLDER, the DAG
generation code isn’t executed on every scheduler heartbeat.

 + Since DAG files are being explicitly created before deploying to
Airflow, you have a full visibility into the DAG code.

On the other hand, this method includes drawbacks:
 × It can be complex to set up.
 × Changes to DAGs or additional DAGs won’t be generated until the

script is run, which in some cases requires deployment.

Let’s see a simple example of how this method could be implemented.

EXA M P L E:
Generate DAGs from JSON Config Files
One way of implementing a multiple-file method is using a Python
script to generate DAG files based on a set of JSON configuration
files. For this simple example, we will assume that all DAGs have the
same structure: each has a single task that uses the PostgresOpera-
tor to execute a query. This use case might be relevant for a team of
analysts who need to schedule SQL queries, where the DAG is mostly
the same, but the query and the schedule are changing.

To start, we create a DAG ‘template’ file that defines the DAG’s
structure. It looks like a regular DAG file, but we have added specific
variables where we know information will be dynamically generated,
namely the dag_id, scheduletoreplace, and querytoreplace.

from airflow import DAG

from airflow.operators.postgres_operator import Post-

gresOperator

from datetime import datetime

default_args = {‘owner’: ‘airflow’,

 ‘start_date’: datetime(2021, 1, 1)

 }

dag = DAG(dag_id,

 schedule_interval=scheduletoreplace,

 default_args=default_args,

 catchup=False)

1

2

3

4

5

6

7

8

9

10

11

12

13

128 129

Next, we create a dag-config folder that will contain a JSON config file
for each DAG. The config file should define the parameters that we noted
above, the DAG ID, schedule interval, and query to be executed.

Finally, we write a Python script to create the DAG files based on the tem-
plate and the config files. The script loops through every config file in the
dag-config/ folder, makes a copy of the template in the dags/ folder and
overwrites the parameters in that file (including the parameters from the
config file).

To generate our DAG files, we either run this script ad-hoc as part of our CI/
CD workflow, or we create another DAG that would run it periodically. Af-
ter running the script, our final directory would look like the example below,
where the include/ directory contains the files shown above, and the dags/
directory contain the two dynamically generated DAGs:

dags/

├── dag_file_1.py

├── dag_file_2.py

include/

├── dag-template.py

├── generate-dag-files.py

└── dag-config

 ├── dag1-config.json

 └── dag2-config.json

1

2

3

4

5

6

7

8

9

{

 “DagId”: “dag_file_1”,

 “Schedule”: “’@daily’”,

 “Query”:”’SELECT * FROM table1;’”

}

1

2

3

4

5

import json

import os

import shutil

import fileinput

config_filepath = ‘include/dag-config/’

dag_template_filename = ‘include/dag-template.py’

1

2

3

4

5

6

7

for filename in os.listdir(config_filepath):

 f = open(filepath + filename)

 config = json.load(f)

 new_filename = ‘dags/’+config[‘DagId’]+’.py’

 shutil.copyfile(dag_template_filename, new_filename)

 for line in fileinput.input(new_filename, in-

place=True):

 line.replace(“dag_id”, “’”+config[‘DagId’]+”’”)

 line.replace(“scheduletoreplace”, config[‘Sched-

ule’])

 line.replace(“querytoreplace”, config[‘Query’])

 print(line, end=””)

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

with dag:

 t1 = PostgresOperator(

 task_id=’postgres_query’,

 postgres_conn_id=connection_id

 sql=querytoreplace)

1

2

3

4

5

130 131

This is obviously a simple starting example that works only if all DAGs fol-
low the same pattern. However, it could be expanded upon to have dynamic
inputs for tasks, dependencies, different operators, etc.

DAG Factory

A notable tool for dynamically creating DAGs from the community is
dag-factory. dag-factory is an open-source Python library for dynamically
generating Airflow DAGs from YAML files.

To use dag-factory, you can install the package in your Airflow environment
and create YAML configuration files for generating your DAGs. You can then
build the DAGs by calling the dag-factory.generate_dags() method in a
Python script, like this example from the dag-factory README:

Scalability

Dynamically generating DAGs can cause performance issues when used at
scale. Whether or not any particular method will cause problems is depen-
dent on your total number of DAGs, your Airflow configuration, and your
infrastructure. Here are a few general things to look out for:

• Any code in the DAG_FOLDER will run on every Scheduler heartbeat.
Methods where that code dynamically generates DAGs, such as the sin-
gle-file method, are more likely to cause performance issues at scale.

• If the DAG parsing time (i.e., the time to parse all code in the DAG_
FOLDER) is greater than the Scheduler heartbeat interval, the scheduler
can get locked up, and tasks won’t get executed. If you are dynamically
generating DAGs and tasks aren’t running, this is a good metric to review
in the beginning of troubleshooting.

Upgrading to Airflow 2.0 to make use of the HA Scheduler should help with
these performance issues. But it can still take some additional optimization
work depending on the scale you’re working at. There is no single right way
to implement or scale dynamically generated DAGs. Still, the flexibility of
Airflow means there are many ways to arrive at a solution that works for a
particular use case.

from airflow import DAG

import dagfactory

dag_factory = dagfactory.DagFactory(“/path/to/dags/config_

file.yml”)

dag_factory.clean_dags(globals())

dag_factory.generate_dags(globals())

1

2

3

4

5

6

7

8

https://github.com/ajbosco/dag-factory
https://www.astronomer.io/blog/airflow-2-scheduler

132 133

Overview

One of the core principles of Airflow is that your DAGs are defined as Python
code. Because you can treat data pipelines like you would any other piece of
code, you can integrate them into a standard software development lifecycle
using source control, CI/CD, and automated testing.

Although DAGs are 100% Python code, effectively testing DAGs requires
accounting for their unique structure and relationship to other code and data
in your environment. This guide will discuss a couple of types of tests that we
would recommend to anybody running Airflow in production, including DAG
validation testing, unit testing, and data and pipeline integrity testing.

Before you begin
If you are newer to test-driven development, or CI/CD in general, we’d
recommend the following resources to get started:

Testing Airflow DAGs5.

TUTO RIA L

Getting Started With Testing in Python
SEE TUTO RIA L

TUTO RIA L

Continuous Integration With Python: An Introduction
SEE TUTO RIA L

A RTICL E

The Challenge of Testing Data Pipelines
SEE A RTICL E

DO CUM ENTATIO N

Deploying to Astronomer via CI/CD
SEE DO CUM ENTATIO N

We also recommend checking out Airflow’s documentation on testing DAGs and
testing guidelines for contributors; we will walk through some of the concepts

covered in those docs in more detail below.

Note on test runners: Before we dive into different types of tests for
Airflow, we have a quick note on test runners. There are multiple test
runners available for Python, including unittest, pytest, and nose2.
The OSS Airflow project uses pytest, so we will do the same in this
section. However, Airflow doesn’t require using a specific test runner.
In general, choosing a test runner is a matter of personal preference
and experience level, and some test runners might work better than
others for a given use case.

https://realpython.com/python-testing/
https://realpython.com/python-continuous-integration/
https://medium.com/slalom-build/the-challenge-of-testing-data-pipelines-4450744a84f1
https://www.astronomer.io/docs/enterprise/v0.25/deploy/ci-cd
https://airflow.apache.org/docs/apache-airflow/stable/best-practices.html#testing-a-dag
https://github.com/apache/airflow/blob/master/TESTING.rst

134 135

DAG Validation Testing

DAG validation tests are designed to ensure that your DAG objects are de-
fined correctly, acyclic, and free from import errors.

These are things that you would likely catch if you were starting with the local
development of your DAGs. But in cases where you may not have access
to a local Airflow environment or want an extra layer of security, these tests
can ensure that simple coding errors don’t get deployed and slow down your
development.

DAG validation tests apply to all DAGs in your Airflow environment, so you
only need to create one test suite.

To test whether your DAG can be loaded, meaning there aren’t any syntax
errors, you can run the Python file:

Or to test for import errors specifically (which might be syntax related but
could also be due to incorrect package import paths, etc.), you can use
something like the following:

You may also use DAG validation tests to test for properties that you want to
be consistent across all DAGs. For example, if your team has a rule that all
DAGs must have two retries for each task, you might write a test like this to
enforce that rule:

To see an example of running these tests as part of a CI/CD workflow, check
out this repo, which uses GitHub Actions to run the test suite before deploy-
ing the project to an Astronomer Airflow deployment.

def test_retries_present():

 dag_bag = DagBag()

 for dag in dag_bag.dags:

 retries = dag_bag.dags[dag].default_args.get(‘re-

tries’, [])

 error_msg = ‘Retries not set to 2 for DAG {id}’.for-

mat(id=dag)

 assert retries == 2, error_msg

1

2

3

4

5

6

7

8

import pytest

from airflow.models import DagBag

def test_no_import_errors():

 dag_bag = DagBag()

 assert len(dag_bag.import_errors) == 0, “No Import Fail-

ures”

1

2

3

4

5

6

7

python your-dag-file.py1

Unit Testing

Unit testing is a software testing method where small chunks of source code
are tested individually to ensure they function as intended. The goal is to iso-
late testable logic inside of small, well-named functions, for example:

def test_function_returns_5():

 assert my_function(input) == 5

1

2

https://github.com/astronomer/airflow-testing-guide
https://en.wikipedia.org/wiki/Unit_testing

136 137

In the context of Airflow, you can write unit tests for any part of your DAG,
but they are most frequently applied to hooks and operators. All official Air-
flow hooks, operators, and provider packages have unit tests that must pass
before merging the code into the project. For an example, check out the
AWS S3Hook, which has many accompanying unit tests.

If you have your custom hooks or operators, we highly recommend using unit
tests to check logic and functionality. For example, say we have a custom
operator that checks if a number is even:

We would then write a test_evencheckoperator.py file with unit tests like
the following:

from airflow.models import BaseOperator

from airflow.utils.decorators import apply_defaults

class EvenNumberCheckOperator(BaseOperator):

 @apply_defaults

 def __init__(self, my_operator_param, *args,

**kwargs):

 self.operator_param = my_operator_param

 super(EvenNumberCheckOperator, self).__init__(*args,

**kwargs)

 def execute(self, context):

 if self.operator_param % 2:

 return True

 else:

 return False

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

import unittest

import pytest

from datetime import datetime

from airflow import DAG

from airflow.models import TaskInstance

from airflow.operators import EvenNumberCheckOperator

DEFAULT_DATE = datetime(2021, 1, 1)

class EvenNumberCheckOperator(unittest.TestCase):

 def setUp(self):

 super().setUp()

 self.dag = DAG(‘test_dag’, default_args={‘owner’:

‘airflow’, ‘start_date’: DEFAULT_DATE})

 self.even = 10

 self.odd = 11

 def test_even(self):

 “””Tests that the EvenNumberCheckOperator returns True for

10.”””

 task = EvenNumberCheckOperator(my_operator_param=-

self.even, task_id=’even’, dag=self.dag)

 ti = TaskInstance(task=task, execution_date=date-

time.now())

 result = task.execute(ti.get_template_context())

 assert result is True

 def test_odd(self):

 “””Tests that the EvenNumberCheckOperator returns False

for 11.”””

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

https://registry.astronomer.io/providers/amazon/modules/s3hook
https://github.com/apache/airflow/blob/master/tests/providers/amazon/aws/hooks/test_s3.py

138 139

Note that if your DAGs contain PythonOperators that execute your Python
functions, it is a good idea to write unit tests for those functions as well.

The most common way of implementing unit tests in production is to auto-
mate them as part of your CI/CD process. Your CI tool executes the tests
and stops the deployment process if any errors occur.

Mocking
Sometimes unit tests require mocking: the imitation of an external system,
dataset, or another object. For example, you might use mocking with an
Airflow unit test if you are testing a connection but don’t have access to the
metadata database. Another example could be testing an operator that exe-
cutes an external service through an API endpoint, but you don’t want to wait
for that service to run a simple test.

Many Airflow tests have examples of mocking. This blog post also has a help-
ful section on mocking Airflow that may help get started.

Data Integrity Testing

Data integrity tests are designed to prevent data quality issues from break-
ing your pipelines or negatively impacting downstream systems. These tests
could also be used to ensure your DAG tasks produce the expected output
when processing a given piece of data. They are somewhat different in scope
than the code-related tests described in previous sections since your data is
not static like a DAG.

One straightforward way of implementing data integrity tests is to build them
directly into your DAGs. This allows you to use Airflow dependencies to man-
age any errant data in whatever way makes sense for your use case.

There are many ways you could integrate data checks into your DAG. One
method worth calling out is using Great Expectations (GE), an open-source
Python framework for data validations. You can make use of the Great Ex-
pectations provider package to easily integrate GE tasks into your DAGs. In
practice, you might have something like the following DAG, which runs an
Azure Data Factory pipeline that generates data then runs a GE check on the
data before sending an email.

 task = EvenNumberCheckOperator(my_operator_param=-

self.odd, task_id=’odd’, dag=self.dag)

 ti = TaskInstance(task=task, execution_date=date-

time.now())

 result = task.execute(ti.get_template_context())

 assert result is False

32

33

34

35

36

37

38

from airflow import DAG

from datetime import datetime, timedelta

from airflow.operators.email_operator import EmailOperator

from airflow.operators.python_operator import PythonOpera-

tor

from airflow.providers.microsoft.azure.hooks.azure_data_

factory import AzureDataFactoryHook

from airflow.providers.microsoft.azure.hooks.wasb import

WasbHook

from great_expectations_provider.operators.great_expecta-

tions import GreatExpectationsOperator

#Get yesterday’s date, in the correct format

yesterday_date = ‘{{ yesterday_ds_nodash }}’

#Define Great Expectations file paths

data_dir = ‘/usr/local/airflow/include/data/’

data_file_path = ‘/usr/local/airflow/include/data/’

ge_root_dir = ‘/usr/local/airflow/include/great_expectations’

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

https://github.com/apache/airflow/tree/master/tests
https://godatadriven.com/blog/testing-and-debugging-apache-airflow/
https://greatexpectations.io/
https://registry.astronomer.io/providers/great-expectations
https://registry.astronomer.io/providers/great-expectations

140 141

 #Make connection to ADF, and run pipeline with parame-

ter

 hook = AzureDataFactoryHook(‘azure_data_factory_conn’)

 hook.run_pipeline(pipeline_name, parameters=params)

def get_azure_blob_files(blobname, output_filename):

 ‘’’Downloads file from Azure blob storage

 ‘’’

 azure = WasbHook(wasb_conn_id=’azure_blob’)

 azure.get_file(output_filename, container_

name=’covid-data’, blob_name=blobname)

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: False,

 ‘email_on_retry’: False,

 ‘retries’: 0,

 ‘retry_delay’: timedelta(minutes=5)

}

with DAG(‘adf_great_expectations’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=1,

 schedule_interval=’@daily’,

 default_args=default_args,

 catchup=False

) as dag:

 run_pipeline = PythonOperator(

 task_id=’run_pipeline’,

 python_callable=run_adf_pipeline,

 op_kwargs={‘pipeline_name’: ‘pipeline1’, ‘date’:

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

yesterday_date}

)

 download_data = PythonOperator(

 task_id=’download_data’,

 python_callable=get_azure_blob_files,

 op_kwargs={‘blobname’: ‘or/’+ yesterday_date

+’.csv’, ‘output_filename’: data_file_path+’or_’+yesterday_

date+’.csv’}

)

 ge_check = GreatExpectationsOperator(

 task_id=’ge_checkpoint’,

 expectation_suite_name=’azure.demo’,

 batch_kwargs={

 ‘path’: data_file_path+’or_’+yesterday_

date+’.csv’,

 ‘datasource’: ‘data__dir’

 },

 data_context_root_dir=ge_root_dir

)

 send_email = EmailOperator(

 task_id=’send_email’,

 to=’noreply@astronomer.io’,

 subject=’Covid to S3 DAG’,

 send_email = EmailOperator(

 task_id=’send_email’,

 to=’noreply@astronomer.io’,

 subject=’Covid to S3 DAG’,

 html_content=’<p>The great expectations checks passed success-

fully. <p>’

)

142 143

If the GE check fails, any downstream tasks will be skipped. Implementing
checkpoints like this allows you to either conditionally branch your pipeline
to deal with data that doesn’t meet your criteria or potentially skip all down-
stream tasks so problematic data won’t be loaded into your data warehouse
or fed to a model. For more information on conditional DAG design, check
out the documentation on Airflow Trigger Rules and our guide on branching
in Airflow.

It’s also worth noting that data integrity testing will work better at scale if
you design your DAGs to load or process data incrementally. We talk more
about incremental loading in our Airflow Best Practices guide. Still, in short,
processing smaller, incremental chunks of your data in each DAG Run en-
sures that any data quality issues have a limited blast radius and are easier to
recover from.

DAG Authoring
for Apache Airflow
The Astronomer Certification: DAG Authoring for Apache
Airflow gives you the opportunity to challenge yourself and show
the world your ability to create incredible data pipelines.
And don’t worry, we’ve also prepared a preparation course to
give you the best chance of success!

Concepts Covered:
• Variables
• Pools
• Trigger Rules
• DAG Dependencies

• Idempotency
• Dynamic DAGs
• DAG Best Practices
• DAG Versioning and much more

Get Certified

WEBINAR

Testing Airflow to Bulletproof Your Code with
Bas Harenslak
SEE WEBINAR

https://airflow.apache.org/docs/apache-airflow/2.0.0/concepts.html#trigger-rules
https://www.astronomer.io/guides/airflow-branch-operator
https://www.astronomer.io/guides/airflow-branch-operator
https://www.astronomer.io/guides/dag-best-practices
https://academy.astronomer.io/plan/astronomer-certification-for-apache-airflow-fundamentals-exam?utm_campaign=Marketing&utm_source=EbookDag&utm_term=DAGcertification
https://hubs.ly/Q01ccWYh0
(https://www.astronomer.io/events/webinars/testing-airflow-to-bulletproof-your-code)
https://www.astronomer.io/events/webinars/testing-airflow-to-bulletproof-your-code/

144 145

7 Common Errors to Check when
Debugging Airflow DAGs

Apache Airflow is the industry standard for workflow orchestration. It’s an
incredibly flexible tool that powers mission-critical projects, from machine
learning model training to traditional ETL at scale, for startups and Fortune
50 teams alike.

Airflow’s breadth and extensibility, however, can make it challenging to adopt
— especially for those looking for guidance beyond day-one operations. In
an effort to provide best practices and expand on existing resources, our
team at Astronomer has collected some of the most common issues we see
Airflow users face.

Whether you’re new to Airflow or an experienced user, check out this list of
common errors and some corresponding fixes to consider.

Debugging DAGs6.

You wrote a new DAG that needs to run every hour and you’re ready to turn it
on. You set an hourly interval beginning today at 2pm, setting a reminder to
check back in a couple of hours. You hop on at 3:30pm to find that your DAG
did in fact run, but your logs indicate that there was only one recorded exe-
cution at 2pm. Huh — what happened to the 3pm run?

Before you jump into debugging mode (you wouldn’t be the first), rest
assured that this is expected behavior. The functionality of the Airflow
Scheduler can be counterintuitive, but you’ll get the hang of it.

The two most important things to keep in mind about scheduling are:
• By design, an Airflow DAG will run at the end of its schedule_interval
Airflow operates in UTC by default.

1. Your DAG Isn’t Running at the Expected
Time

Note: Following the Airflow 2.0 release in December of 2020, the
open-source project has addressed a significant number of pain
points
commonly reported by users running previous versions. We strongly
encourage your team to upgrade to Airflow 2.x.

If your team is running Airflow 1 and would like help establishing a
migration path, reach out to us.

https://www.astronomer.io/guides/dag-best-practices
https://www.astronomer.io/airflow#features
https://www.astronomer.io/get-started/

146 147

Airflow’s Schedule Interval

As stated above, an Airflow DAG will execute at the completion of its sched-
ule_interval, which means one schedule_interval AFTER the start date.
An hourly DAG, for example, will execute its 2:00 PM run when the clock
strikes 3:00 PM. This happens because Airflow can’t ensure that all of the
data from 2:00 PM - 3:00 PM is present until the end of that hourly interval.

This quirk is specific to Apache Airflow, and it’s important to remember —
especially if you’re using default variables and macros. Thankfully, Airflow
2.2+ simplifies DAG scheduling with the introduction of the timetables!

Use Timetables for Simpler Scheduling

There are some data engineering use cases that are difficult or even impossible
to address with Airflow’s original scheduling method. Scheduling DAGs to skip
holidays, run only at certain times, or otherwise run on varying intervals can
cause major headaches if you’re relying solely on cron jobs or timedeltas.

This is why Airflow 2.2 introduced timetables as the new default scheduling
method. Essentially, timetable is a DAG-level parameter that you can set to a
Python function that contains your execution schedule.

A timetable is significantly more customizable than a cron job or timedelta.
You can program varying schedules, conditional logic, and more, directly within
your DAG schedule. And because timetables are imported as Airflow plugins,
you can use community-developed timetables to quickly — and literally — get
your DAG up to speed.

We recommend using timetables as your de facto scheduling mechanism in
Airflow 2.2+. You might be creating timetables without even knowing it: if you
define a schedule-interval, Airflow 2.2+ will convert it to a timetable behind
the scenes.

Airflow Time Zones

Airflow stores datetime information in UTC internally and in the database. This
behavior is shared by many databases and APIs, but it’s worth clarifying.
You should not expect your DAG executions to correspond to your local time-
zone. If you’re based in US Pacific Time, a DAG run of 19:00 will correspond to
12:00 local time.

In recent releases, the community has added more time zone-aware features
to the Airflow UI. For more information, refer to Airflow documentation.

2. One of Your DAGs Isn’t Running

If workflows on your Deployment are generally running smoothly but you
find that one specific DAG isn’t scheduling tasks or running at all, it might
have something to do with how you set it to schedule.

Make Sure You Don’t Have datetime.now() as Your
start_date

It’s intuitive to think that if you tell your DAG to start “now” that it’ll execute
immediately. But that’s not how Airflow reads datetime.now().

For a DAG to be executed, the start_date must be a time in the past, other-
wise Airflow will assume that it’s not yet ready to execute. When Airflow eval-
uates your DAG file, it interprets datetime.now() as the current timestamp
(i.e. NOT a time in the past) and decides that it’s not ready to run.

To properly trigger your DAG to run, make sure to insert a fixed time in the
past and set catchup=False if you don’t want to perform a backfill.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/scheduler.html
https://airflow.apache.org/docs/apache-airflow/stable/templates-ref.html
 https://airflow.apache.org/docs/apache-airflow/stable/concepts/timetable.html
https://airflow.apache.org/docs/apache-airflow/2.0.1/timezone.html
https://github.com/apache/airflow/blob/v1-9-stable/airflow/models.py#L2865

148 149

If your Airflow UI is entirely inaccessible via web browser, you likely have a
Webserver issue.

If you’ve already refreshed the page once or twice and continue to see a 503
error, read below for some Webserver-related guidelines.

Your Webserver Might Be Crashing

A 503 error might indicate an issue with your Deployment’s Webserver, which
is the Airflow component responsible for rendering task state and task execu-
tion logs in the Airflow UI. If it’s underpowered or otherwise experiencing an
issue, you can expect it to affect UI loading time or web browser accessibili-
ty.

3. You’re Seeing a 503 Error on Your
Deployment

In our experience, a 503 often indicates that your Webserver is crashing.
If you push up a deploy and your Webserver takes longer than a few seconds
to start, it might hit a timeout period (10 secs by default) that “crashes” the
Webserver before it has time to spin up. That triggers a retry, which crashes
again, and so on and so forth.

If your Deployment is in this state, your Webserver might be hitting a mem-
ory limit when loading your DAGs even as your Scheduler and Worker(s)
continue to schedule and execute tasks.

Increase Webserver Resources

If your Webserver is hitting the timeout limit, a bump in Webserver resources
usually does the trick.

If you’re using Astronomer, we generally recommend running the Webserver
with a minimum of 5 AUs (Astronomer Units), which is equivalent to 0.5 CPUs
and 1.88 GiB of memory. Even if you’re not running anything particularly
heavy, underprovisioning your Webserver will likely return some funky behav-
ior.

Increase the Webserver Timeout Period

If bumping Webserver resources doesn’t seem to have an effect, you might
want to try increasing web_server_master_timeout or web_server_work-
er_timeout.

Raising those values will tell your Airflow Webserver to wait a bit longer to
load before it hits you with a 503 (a timeout). You might still experience slow
loading times if your Webserver is underpowered, but you’ll likely avoid hit-
ting a 503.

Note: You can manually trigger a DAG run via Airflow’s UI directly on
your dashboard (it looks like a “Play” button). A manual trigger exe-
cutes immediately and will not interrupt regular scheduling, though
it will be limited by any concurrency configurations you have at the
deployment level, DAG level, or task level. When you look at corre-
sponding logs, the run_id will show manual__ instead of scheduled__.

If your team is running Airflow 1 and would like help establishing a
migration path, reach out to us.

https://www.astronomer.io/guides/airflow-ui

150 151

Avoid Making Requests Outside of an Operator

If you’re making API calls, JSON requests, or database requests outside of
an Airflow operator at a high frequency, your Webserver is much more likely
to timeout.

When Airflow interprets a file to look for any valid DAGs, it first runs all code
at the top level (i.e. outside of operators). Even if the operator itself only
gets executed at execution time, everything outside of an operator is called
every heartbeat, which can be very taxing on performance.

We’d recommend taking the logic you have currently running outside of an
operator and moving it inside of a Python Operator if possible.

4. Sensor Tasks are Failing Intermittently

If your sensor tasks are failing, it might not be a problem with your task.
It might be a problem with the sensor itself.

Be Careful When Using Sensors

By default, Airflow sensors run continuously and occupy a task slot in per-
petuity until they find what they’re looking for, often causing concurrency
issues. Unless you never have more than a few tasks running concurrently, we
recommend avoiding them unless you know it won’t take too long for them to
exit.

For example, if a worker can only run X number of tasks simultaneously and
you have three sensors running, then you’ll only be able to run X-3 tasks at
any given point. Keep in mind that if you’re running a sensor at all times, that
limits how and when a scheduler restart can occur (or else it will fail
the sensor).

Depending on your use case, we’d suggest considering the following:

• Create a DAG that runs at a more frequent interval.
• Trigger a Lambda function.
• Set mode=’reschedule’. If you have more sensors than worker slots, the

sensor will now get thrown into an up_for_reschedule state, which frees
up its worker slot.

Replace Sensors with Deferrable Operators

If you’re running Airflow 2.2+, we recommend almost always using Deferrable
Operators instead of sensors. These operators never use a worker slot when
waiting for a condition to be met. Instead of using workers, deferrable op-
erators poll for a status using a new Airflow component called the triggerer.
Compared to using sensors, tasks with deferrable operators use a fraction of
the resources to poll for a status.

As the Airflow community continues to adopt deferrable operators, the
number of available deferrable operators is quickly growing. For more infor-
mation on how to use deferrable operators, see our Deferrable Operators
Guide.

5. Tasks are Executing Slowly

If your tasks are stuck in a bottleneck, we’d recommend taking a closer
look at:

• Environment variables and concurrency configurations
Worker and Scheduler resources

https://www.astronomer.io/guides/what-is-a-sensor
https://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction-function.html
https://www.astronomer.io/guides/deferrable-operators
https://www.astronomer.io/guides/deferrable-operators

152 153

Update Concurrency Settings

The potential root cause for a bottleneck is specific to your setup. For ex-
ample, are you running many DAGs at once, or one DAG with hundreds of
concurrent tasks?

Regardless of your use case, configuring a few settings as parameters or
environment variables can help improve performance. Use this section to
learn what those variables are and how to set them.

Most users can set parameters in Airflow’s airflow.cfg file. If you’re using
Astro, you can also set environment variables via the Astro UI or your proj-
ect’s Dockerfile. We’ve formatted these settings as parameters for readability
– the environment variables for these settings are formatted as AIRFLOW__
CORE__PARAMETER_NAME. For all default values, refer here.

Parallelism

parallelism determines how many task instances can run in parallel across
all DAGs given your environment resources. Think of this as “maximum active
tasks anywhere.” To increase the limit of tasks set to run in parallel, set this
value higher than its default of 32.

DAG Concurrency

max_active_tasks_per_dag (formerly dag_concurrency) determines how
many task instances your Scheduler is able to schedule at once per DAG.
Think of this as “maximum tasks that can be scheduled at once, per DAG.”
The default is 16, but you should increase this if you’re not noticing an im-
provement in performance after provisioning more resources to Airflow.

Max Active Runs per DAG

max_active_runs_per_dag determines the maximum number of active DAG
runs per DAG. This setting is most relevant when backfilling, as all of your
DAGs are immediately vying for a limited number of resources. The default
value is 16.

Pro-tip: If you consider setting DAG or deployment-level concurrency con-
figurations to a low number to protect against API rate limits, we’d recom-
mend instead using “pools” - they’ll allow you to limit parallelism at the task
level and won’t limit scheduling or execution outside of the tasks that need it.

Worker Concurrency

Defined as AIRFLOW__CELERY__WORKER_CONCURRENCY=9, worker_concurrency
determines how many tasks each Celery Worker can run at any given time.
The Celery Executor will run a max of 16 tasks concurrently by default. Think
of this as “how many tasks each of my workers can take on at any given time.”

It’s important to note that this number will naturally be limited by dag_con-
currency. If you have 1 Worker and want it to match your Deployment’s
capacity, worker_concurrency should be equal to parallelism. The default
value is 16.

Pro-tip: If you consider setting DAG or deployment-level concurren-
cy configurations to a low number to protect against API rate limits,
we’d recommend instead using “pools” — they’ll allow you to limit
parallelism at the task level and won’t limit scheduling or execution
outside of the tasks that need it.

https://airflow.apache.org/docs/apache-airflow/stable/howto/set-config.html
https://docs.astronomer.io/astro/
https://docs.astronomer.io/astro/
https://github.com/apache/airflow/blob/v2-0-stable/airflow/config_templates/default_airflow.cfg
https://github.com/apache/airflow/blob/v2-0-stable/airflow/config_templates/default_airflow.cfg#L676
https://airflow.apache.org/docs/apache-airflow/stable/concepts/index.html

154 155

Try Scaling Up Your Scheduler or Adding a Worker

If tasks are getting bottlenecked and your concurrency configurations are al-
ready optimized, the issue might be that your Scheduler is underpowered or
that your Deployment could use another worker. If you’re running on Astro,
we generally recommend 5 AU (0.5 CPUs and 1.88 GiB of memory) as the
default minimum for the Scheduler and 10 AU (1 CPUs and 3.76 GiB of mem-
ory) for workers.

Whether or not you scale your current resources or add an extra Celery
Worker depends on your use case, but we generally recommend the follow-
ing:

• If you’re running a relatively high number of light tasks across DAGs and
at a relatively high frequency, you’re likely better off having 2 or 3 “light”
workers to spread out the work.

• If you’re running fewer but heavier tasks at a lower frequency, you’re like-
ly better off with a single but “heavier” worker that can more efficiently
execute those tasks.

For more information on the differences between Executors, we recommend
reading Airflow Executors: Explained.

Generally speaking, logs fail to show up because of a process that died on
your Scheduler or one or more of your Celery Workers.

If you’re missing logs, you might see something like this under “Log by at-
tempts” in the Airflow UI:

6. You’re Missing Tasks Logs

Failed to fetch log file from worker. Invalid URL ‘http://:8793/

log/staging_to_presentation_pipeline_v5/redshift_to_s3_Order_Pay-

ment_17461/2019-01-11T00:00:00+00:00/1.log’: No host supplied

A few things to try:
• Clear the task instance via the Airflow UI to see if logs show up. This will

prompt your task to run again.
• Change the log_fetch_timeout_sec to something greater than 5 sec-

onds. Defined in seconds, this setting determines the amount of time
that the Webserver will wait for an initial handshake while fetching logs
from other workers.

• Give your workers a little more power. If you’re using Astro, you can do
this in the Configure tab of the Astro UI.

• Are you looking for a log from over 15 days ago? If you’re using Astro,
the log retention period is an Environment Variable we have hard-coded
on our platform. For now, you won’t have access to logs over 15 days old.

• Exec into one of your Celery workers to look for the log files. If you’re
running Airflow on Kubernetes or Docker, you can use kubectl or Docker
commands to run $ kubectl exec -it {worker_name} bash. Log files
should be in ~/logs. From there, they’ll be split up by DAG/TASK/RUN.

• Try checking your Scheduler and Webserver logs to see if there are any
errors that might tell you why your task logs are missing. If your tasks are
slower than usual to get scheduled, you might need to update Scheduler
settings to increase performance and optimize your environment.

If your tasks are slower than usual to get scheduled, you might need to up-
date Scheduler settings to increase performance and optimize your environ-
ment.

7. Tasks are Slow to Schedule and/or Have
Stopped Being Scheduled Altogether

https://www.astronomer.io/guides/airflow-executors-explained/
https://kubernetes.io/docs/tasks/tools/

156 157

Just like with concurrency settings, users can set parameters in Airflow’s air-
flow.cfg file. If you’re using Astro, you can also set environment variables via
the Astro UI or your project’s Dockerfile. We’ve formatted these settings as
parameters for readability – the environment variables for these settings are
formatted as AIRFLOW__CORE__PARAMETER_NAME. For all default values, refer
here.

• min_file_process_interval: The Scheduler parses your DAG files every
min_file_process_interval number of seconds. Airflow starts using
your update DAG code only after this interval ends. Because the Sched-
uler will parse your DAGs more often, setting this value to a low number
will increase Scheduler CPU usage. If you have dynamic DAGs or other-
wise complex code, you might want to increase this value to avoid poor
Scheduler performance. By default, it’s set to 30 seconds.

• dag_dir_list_interval: This setting determines how often Airflow
should scan the DAGs directory in seconds. A lower value here means
that new DAGs will be processed faster, but this comes at the cost of
CPU usage. By default, this is set to 300 seconds (5 minutes). You might
want to check how long it takes to parse your DAGs (dag_processing.
total_parse_time) to know what value to choose for dag_dir_list_in-
terval. If your dag_dir_list_interval is less than this value, then you
might see performance issues.

• parsing_processes: (formerly max_threads) The Scheduler can run
multiple processes in parallel to parse DAGs, and this setting determines
how many of those processes can run in parallel. We recommend setting
this to 2x your available vCPUs. Increasing this value can help to serialize
DAGs if you have a large number of them. By default, this is set to 2.

Ready for more?
Discover our guides where we cover everything from
introductory content to advanced tutorials around Airflow.

Discover Guides

Pro-tip: Scheduler performance was a critical part of the Airflow 2
release and has seen significant improvements since December of
2020. If you are experiencing Scheduler issues, we strongly recom-
mend upgrading to Airflow 2.x. For more information, read our blog
post: The Airflow 2.0 Scheduler.

https://github.com/apache/airflow/blob/v2-0-stable/airflow/config_templates/default_airflow.cfg
https://hubs.ly/Q01ccX8G0
https://www.astronomer.io/blog/airflow-2-scheduler

158 159

Error Notifications in Airflow

Overview

A key question when using any data orchestration tool is “How do I know
if something has gone wrong?” Airflow users always have the option to
check the UI to see the status of their DAGs, but this is an inefficient way
of managing errors systematically, especially if certain failures need to be
addressed promptly or by multiple team members. Fortunately, Airflow has
built-in notification mechanisms that can be leveraged to configure error
notifications in a way that works for your team.

In this section, we will cover the basics of Airflow notifications and how to
set up common notification mechanisms including email, Slack, and SLAs.
We will also discuss how to make the most of Airflow alerting when using the
Astronomer platform.

Airflow Notification Basics

Airflow has an incredibly flexible notification system. Having your DAGs de-
fined as Python code gives you full autonomy to define your tasks and notifi-
cations in whatever way makes sense for your use case.
In this section, we will cover some of the options available when working with
notifications in Airflow.

Notification Levels
• Sometimes it makes sense to standardize notifications across your entire

DAG. Notifications set at the DAG level will filter down to each task in
the DAG. These notifications are usually defined in default_args.

• For example, in the following DAG, email_on_failure is set to True,
meaning any task in this DAG’s context will send a failure email to all
addresses in the email array.

In contrast, it’s sometimes useful to have notifications only for certain tasks.
The BaseOperator that all Airflow Operators inherit from has support for
built-in notification arguments, so you can configure each task individually as
needed. In the DAG below, email notifications are turned off by default at
the DAG level but are specifically enabled for the will_email task.

from datetime import datetime

from airflow import DAG

default_args = {

 ‘owner’: ‘airflow’,

 ‘start_date’: datetime(2018, 1, 30),

 ‘email’: [‘noreply@astronomer.io’],

 ‘email_on_failure’: True

}

with DAG(‘sample_dag’,

 default_args=default_args,

 schedule_interval=’@daily’,

 catchup=False) as dag:

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

160 161

Notification Triggers
The most common trigger for notifications in Airflow is a task failure. However,
notifications can be set based on other events, including retries and successes.

Emails on retries can be useful for debugging indirect failures; if a task need-
ed to retry but eventually succeeded, this might indicate that the problem
was caused by extraneous factors like a load on an external system. To turn
on email notifications for retries, simply set the email_on_retry parameter
to True as shown in the DAG below.

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator

default_args = {

 ‘owner’: ‘airflow’,

 ‘start_date’: datetime(2018, 1, 30),

 ‘email_on_failure’: False,

 ‘email’: [‘noreply@astronomer.io’],

 ‘retries’: 1

}

with DAG(‘sample_dag’,

 default_args=default_args,

 schedule_interval=’@daily’,

 catchup=False) as dag:

 wont_email = DummyOperator(

 task_id=’wont_email’

)

 will_email = DummyOperator(

 task_id=’will_email’,

 email_on_failure=True

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

from datetime import datetime, timedelta

from airflow import DAG

default_args = {

 ‘owner’: ‘airflow’,

 ‘start_date’: datetime(2018, 1, 30),

 ‘email’: [‘noreply@astronomer.io’],

 ‘email_on_failure’: True,

 ‘email_on_retry’: True,

 ‘retry_exponential_backoff’: True,

 ‘retry_delay’ = timedelta(seconds=300)

 ‘retries’: 3

}

with DAG(‘sample_dag’,

 default_args=default_args,

 schedule_interval=’@daily’,

 catchup=False) as dag:

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

162 163

When working with retries, you should configure a retry_delay. This is the
amount of time between a task failure and when the next try will begin. You
can also turn on retry_exponential_backoff, which progressively increases
the wait time between retries. This can be useful if you expect that extrane-
ous factors might cause failures periodically.

Finally, you can also set any task to email on success by setting the email_
on_success parameter to True. This is useful when your pipelines have con-
ditional branching, and you want to be notified if a certain path is taken (i.e.
certain tasks get run).

Custom Notifications
The email notification parameters shown in the sections above are an exam-
ple of built-in Airflow alerting mechanisms. These simply have to be turned
on and don’t require any configuration from the user.

You can also define your own notifications to customize how Airflow alerts you
about failures or successes. The most straightforward way of doing this is by
defining on_failure_callback and on_success_callback Python functions.
These functions can be set at the DAG or task level, and the functions will be
called when a failure or success occurs respectively. For example, the following
DAG has a custom on_failure_callback function set at the DAG level and an
on_success_callback function for just the success_task.

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator

def custom_failure_function(context):

 “Define custom failure notification behavior”

1

2

3

4

5

6

 dag_run = context.get(‘dag_run’)

 task_instances = dag_run.get_task_instances()

 print(“These task instances failed:”, task_instances)

def custom_success_function(context):

 “Define custom success notification behavior”

 dag_run = context.get(‘dag_run’)

 task_instances = dag_run.get_task_instances()

 print(“These task instances succeeded:”, task_instanc-

es)

default_args = {

 ‘owner’: ‘airflow’,

 ‘start_date’: datetime(2018, 1, 30),

 ‘on_failure_callback’: custom_failure_function

 ‘retries’: 1

}

with DAG(‘sample_dag’,

 default_args=default_args,

 schedule_interval=’@daily’,

 catchup=False) as dag:

 failure_task = DummyOperator(

 task_id=’failure_task’

)

 success_task = DummyOperator(

 task_id=’success_task’,

 on_success_callback=custom_success_function

)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

164 165

Note that custom notification functions can be used in addition to email
notifications.

Email Notifications
Email notifications are a native feature in Airflow and are easy to set up. As
shown above, the email_on_failure and email_on_retry parameters can be
set to True either at the DAG level or task level to send emails when tasks
fail or retry. The email parameter can be used to specify which email(s) you
want to receive the notification. If you want to enable email alerts on all fail-
ures and retries in your DAG, you can define that in your default arguments
like this:

In order for Airflow to send emails, you need to configure an SMTP server in
your Airflow environment. You can do this by filling out the SMTP section of
your airflow.cfg like this:

You can also set these values using environment variables. In this case, all
parameters are preceded by AIRFLOW__SMTP__, consistent with Airflow envi-
ronment variable naming convention. For example, smtp_host can be speci-
fied by setting the AIRFLOW__SMTP__SMTP_HOST variable. For more on Airflow
email configuration, check out the Airflow documentation.

Note: If you are running on the Astronomer platform, you can set up
SMTP using environment variables since the airflow.cfg cannot be
directly edited. For more on email alerting on the Astronomer plat-
form, see the ‘Notifications on Astronomer’ section below.

[smtp]

If you want airflow to send emails on retries, failure,

and you want to use

the airflow.utils.email.send_email_smtp function, you

have to configure an

smtp server here

smtp_host = your-smtp-host.com

smtp_starttls = True

smtp_ssl = False

Uncomment and set the user/pass settings if you want to

use SMTP AUTH

smtp_user =

smtp_password =

smtp_port = 587

smtp_mail_from = noreply@astronomer.io

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

from datetime import datetime, timedelta

from airflow import DAG

default_args = {

 ‘owner’: ‘airflow’,

 ‘start_date’: datetime(2018, 1, 30),

 ‘email’: [‘noreply@astronomer.io’],

 ‘email_on_failure’: True,

 ‘email_on_retry’: True,

 ‘retry_delay’ = timedelta(seconds=300)

 ‘retries’: 1

}

with DAG(‘sample_dag’,

 default_args=default_args,

 schedule_interval=’@daily’,

 catchup=False) as dag:

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

https://airflow.apache.org/docs/apache-airflow/stable/howto/email-config.html

166 167

Customizing Email Notifications
By default, email notifications will be sent in a standard format as defined
in the email_alert() and get_email_subject_content() methods of the
TaskInstance class. The default email content is defined like this:

To see the full method, check out the source code here.

You can overwrite this default with your custom content by setting the sub-
ject_template and/or html_content_template variables in your airflow.cfg
with the path to your jinja template files for subject and content respectively.

Slack Notifications

Sending notifications to Slack is another common way of alerting with
Airflow.

There are multiple ways you can send messages to Slack from Airflow. In this
section, we will cover how to use the Slack Provider’s SlackWebhookOperator
with a Slack Webhook to send messages, since this is Slack’s recommended way
of posting messages from apps. To get started, follow these steps:

1. From your Slack workspace, create a Slack app and an incoming Web-
hook. The Slack documentatio here walks through the necessary steps.
Make a note of the Slack Webhook URL to use in your Python function.

2. Create an Airflow connection to provide your Slack Webhook to Airflow.
Choose an HTTP connection type (if you are using Airflow 2.0 or greater,
you will need to install the apache-airflow-providers-http provider for
the HTTP connection type to appear in the Airflow UI). Enter https://
hooks.slack.com/services/ as the Host, and enter the remainder of
your Webhook URL from the last step as the Password (formatted as
T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX).

default_subject = ‘Airflow alert: {{ti}}’

For reporting purposes, we report based on 1-indexed,

not 0-indexed lists (i.e. Try 1 instead of

Try 0 for the first attempt).

default_html_content = (

 ‘Try {{try_number}} out of {{max_tries + 1}}
’

 ‘Exception:
{{exception_html}}
’

 ‘Log: Link
’

 ‘Host: {{ti.hostname}}
’

 ‘Mark success: Link</

a>
’

)

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://github.com/apache/airflow/blob/main/airflow/models/taskinstance.py#L1802
https://registry.astronomer.io/providers/slack
https://api.slack.com/messaging/webhooks

168 169

3. Create a Python function to use as your on_failure_callback method.
Within the function, define the information you want to send and invoke
the SlackWebhookOperator to send the message. Here’s an example:

4. Define your on_failure_callback parameter in your DAG either as a
default_arg for the whole DAG, or for specific tasks. Set it equal to the
function you created in the previous step. You should now see any failure
notifications show up in Slack.

States

One of the key pieces of data stored in Airflow’s metadata database is State.
States are used to keep track of what condition task instances and DAG Runs are
in. In the screenshot below, we can see how states are represented in the Airflow
UI:

DAG Runs and tasks can have the following states:

• Running (Lime): DAG is currently being executed.
• Success (Green): DAG was executed successfully.
• Failed (Red): The task or DAG failed.

Task States
• None (Light Blue): No associated state. Syntactically - set as Python

None.

Note: In Airflow 2.0 or greater, to use the SlackWebhookOperator you will
need to install the apache-airflow-providers-slack provider package.

from airflow.providers.slack.operators.slack_webhook import

SlackWebhookOperator

def slack_notification(context):

 slack_msg = “””

 :red_circle: Task Failed.

 Task: {task}

 Dag: {dag}

 Execution Time: {exec_date}

 Log Url: {log_url}

 “””.format(

 task=context.get(‘task_instance’).task_id,

 dag=context.get(‘task_instance’).dag_id,

 ti=context.get(‘task_instance’),

 exec_date=context.get(‘execution_date’),

 log_url=context.get(‘task_instance’).log_url,

)

 failed_alert = SlackWebhookOperator(

 task_id=’slack_notification’,

 http_conn_id=’slack_webhook’,

 message=slack_msg)

 return failed_alert.execute(context=context)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

170 171

• Queued (Gray) : The task is waiting to be executed, set as queued.
• Scheduled (Tan): The task has been scheduled to run.
• Running (Lime): The task is currently being executed.
• Failed (Red): The task failed.
• Success (Green): The task was executed successfully.
• Skipped (Pink): The task has been skipped due to an upstream condition.
• Shutdown (Blue): The task is up for retry.
• Removed (Light Grey): The task has been removed.
• Retry (Gold): The task is up for retry.
• Upstream Failed (Orange): The task will not run because of a failed

upstream dependency.

Airflow SLAs

Airflow SLAs are a type of notification that you can use if your tasks are tak-
ing longer than expected to complete. If a task takes longer than a maximum
amount of time to complete as defined in the SLA, the SLA will be missed
and notifications will be triggered. This can be useful in cases where you have
potentially long-running tasks that might require user intervention after a
certain period of time or if you have tasks that need to complete by a certain
deadline.

Note that exceeding an SLA will not stop a task from running. If you want
tasks to stop running after a certain time, try using timeouts instead.

You can set an SLA for all tasks in your DAG by defining ‘sla’ as a default
argument, as shown in the DAG below:

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator

from airflow.operators.python_operator import PythonOpera-

tor

from datetime import datetime, timedelta

import time

def my_custom_function(ts,**kwargs):

 print(“task is sleeping”)

 time.sleep(40)

Default settings applied to all tasks

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: True,

 ‘email’: ‘noreply@astronomer.io’,

 ‘email_on_retry’: False,

 ‘sla’: timedelta(seconds=30)

}

Using a DAG context manager, you don’t have to specify

the dag property of each task

with DAG(‘sla-dag’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=1,

 schedule_interval=timedelta(minutes=2),

 default_args=default_args,

 catchup=False

) as dag:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

https://airflow.apache.org/docs/apache-airflow/stable/concepts/tasks.html#slas
https://airflow.apache.org/docs/apache-airflow/stable/concepts/tasks.html#timeouts

172 173

SLAs have some unique behaviors that you should consider before implementing
them:

• SLAs are relative to the DAG execution date, not the task start time.
For example, in the DAG above the sla_task will miss the 30 second
SLA because it takes at least 40 seconds to complete. The t1 task will
also miss the SLA, because it is executed more than 30 seconds after
the DAG execution date. In that case, the sla_task will be considered
“blocking” to the t1 task.

• SLAs will only be evaluated on scheduled DAG Runs. They will not be
evaluated on manually triggered DAG Runs.

• SLAs can be set at the task level if a different SLA is required for each
task. In this case, all task SLAs are still relative to the DAG execution
date. For example, in the DAG below, t1 has an SLA of 500 seconds.
If the upstream tasks (t0 and sla_task) combined take 450 seconds
to complete, and t1 takes 60 seconds to complete, then t1 will miss its
SLA even though the task did not take more than 500 seconds

from airflow import DAG

from airflow.operators.dummy_operator import DummyOp-

erator

from airflow.operators.python_operator import Pytho-

nOperator

from datetime import datetime, timedelta

import time

def my_custom_function(ts,**kwargs):

 print(“task is sleeping”)

 time.sleep(40)

Default settings applied to all tasks

default_args = {

 ‘owner’: ‘airflow’,

 ‘depends_on_past’: False,

 ‘email_on_failure’: True,

 ‘email’: ‘noreply@astronomer.io’,

 ‘email_on_retry’: False

}

Using a DAG context manager, you don’t have to spec-

ify the dag property of each task

with DAG(‘sla-dag’,

 start_date=datetime(2021, 1, 1),

 max_active_runs=1,

 schedule_interval=timedelta(minutes=2),

 default_args=default_args,

 catchup=False

) as dag:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

 t0 = DummyOperator(

 task_id=’start’

)

 t1 = DummyOperator(

 task_id=’end’

)

 sla_task = PythonOperator(

 task_id=’sla_task’,

 python_callable=my_custom_function

)

t0 >> sla_task >> t1

31

32

33

34

35

36

37

38

39

40

41

42

43

174 175

Any SLA misses will be shown in the Airflow UI. You can view them by going
to Browse SLA Misses, which looks something like this:

If you configured an SMTP server in your Airflow environment, you will also
receive an email with notifications of any missed SLAs.

Note that there is no functionality to disable email alerting for SLAs. If you
have an ‘email’ array defined and an SMTP server configured in your Air-
flow environment, an email will be sent to those addresses for each DAG Run
that has missed SLAs.

Notifications on Astronomer

If you are running Airflow on the Astronomer platform, you have multiple
options for managing your Airflow notifications. All of the methods above for
sending task notifications from Airflow are easily implemented on Astrono-
mer. Our documentation discusses how to leverage these notifications on the
platform, including how to set up SMTP to enable email alerts.

Astronomer also provides deployment and platform-level alerting to notify
you if any aspect of your Airflow or Astronomer infrastructure is unhealthy.

 t0 = DummyOperator(

 task_id=’start’,

 sla=timedelta(seconds=50)

)

 t1 = DummyOperator(

 task_id=’end’,

 sla=timedelta(seconds=500)

)

 sla_task = PythonOperator(

 task_id=’sla_task’,

 python_callable=my_custom_function,

 sla=timedelta(seconds=5)

)

 t0 >> sla_task >> t1

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

46

https://www.astronomer.io/docs/enterprise/v0.25/customize-airflow/airflow-alerts

176

Thank you

We hope you’ve enjoyed our guide to DAGs. Please follow us on

Twitter and LinkedIn, and share your feedback, if any.

Start building your
next-generation data
platform with Astro

Experts behind the guide:
Marc Lamberti | Head of Customer Training at Astronomer

Kenten Danas | Lead Developer Advocate at Astronomer
Jake Witz | Technical Writer at Astronomer

Created by © Astronomer 2022, Revised edition

Get Started

http://astronomer.io
http://astronomer.io
https://www.astronomer.io/get-astronomer?utm_campaign=Marketing&utm_source=EbookDag&utm_term=GetAstronomer
https://twitter.com/intent/tweet?url=https://hubs.ly/H0VYfBl0&text=Our%20Definitive%20Guide%20to%20DAGs%20ebook%20has%20been%20revised%20and%20contains%20everything%20you%20need%20to%20know%20as%20a%20data%20engineer;%20140%20pages%20of%20code-rich%20walkthroughs%20and%20best%20practices.%20Check%20it%20out
https://www.linkedin.com/sharing/share-offsite/?url=https://hubs.ly/H0VYfBh0

