
Apache Airflow 101 
Essential concepts and tips for beginners

Powered by Astronomer

http://astronomer.io
http://astronomer.io
http://astronomer.io


2

Editor’s Note

Welcome to The Apache Airflow 101 ebook, brought to you by Astronomer. 

We believe that Airflow is the best-in-class open source technology for 

adapting to the ever-changing data landscape. In this ebook, we’ve gathered 

and explained key Airflow concepts and components to help you get started 

using this data orchestration platform. We’ve also compiled some guides and 

tutorials for more advanced Airflow features. This ebook is everything you 

need to successfully kick off your Airflow journey.

Follow us on Twitter and LinkedIn!

Table of Contents

What is Apache Airflow?

Why Apache Airflow? 

Why Open Source Software?

Apache Airflow 101 Core Concepts & Components 
Core Concepts
Core Components

Apache Airflow 2 
Major Features in Airflow 2.0
Major Features in Airflow 2.2
Major Features in Airflow 2.3 
Major Features in Airflow 2.4

Useful Resources to Get Started with Airflow 
Airflow Essentials  
Integrations

About Astronomer 

04

08

12

16
16
22

24
25
31
34
37

48 
48 
51 

56 

https://www.astronomer.io/
https://twitter.com/intent/tweet?url=https://www.astronomer.io/ebooks/airflow-101&text=A%20free%20ebook%20about%20the%20best-in-class%20open%20source%20technology%20for%20data%20orchestration
https://www.linkedin.com/sharing/share-offsite/?url=https://www.astronomer.io/ebooks/airflow-101/


4 5

 
What is 
Apache Airflow? 

1.

Apache Airflow is the world’s most popular data orchestration platform, 
a framework for programmatically authoring, scheduling, and monitoring 
data pipelines. It was created as an open-source project at Airbnb and 
later brought into the Incubator Program of the Apache Software Foun-
dation, which named it a Top-Level Apache Project in 2019. Since then, it 
has evolved into an advanced data orchestration tool used by organizations 
spanning many industries, including software, healthcare, retail, banking, and 
fintech.

Today, with a thriving community of more than 2k contributors, 25k+ stars on 
Github, and thousands of users—including organizations ranging from ear-
ly-stage startups to Fortune 500s and tech giants—Airflow is widely recog-
nized as the industry’s leading data orchestration solution.				  

Apache Airflow’s popularity as a tool for data pipeline automation has grown 
for a few reasons:

•	 Proven core functionality for data pipelining. 
Airflow’s core capabilities are used by thousands of organizations in pro-
duction, delivering value across scheduling, scalable task execution, and 
UI-based task management and monitoring. 
				  

•	 An extensible framework. 
Airflow was designed to make integrating existing data sources as simple 
as possible. Today, it supports over 80 providers, including AWS, GCP, 
Microsoft Azure, Salesforce, Slack, and Snowflake. Its ability to meet the 
needs of simple and complex use cases alike makes it both easy to adopt 
and scale. 
				  

•	 Scalability. 
From running a few pipelines to thousands every day, Airflow manages 
workflows using a reliable scheduler. Additionally, you can use parame-
ters to fine-tune the performance of Airflow to fit any use case.	
	

•	 A large, vibrant community. 
Airflow boasts thousands of users, and over 2k+ contributors who regu-
larly submit features, plugins, content and bug fixes to ensure continuous 
momentum, and improvement. So far Airflow has reached 15k+ commits 
and 25k+ GitHub stars. 
 
Apache Airflow continues to grow thanks to its active and expanding 
community. And because it belongs to the Apache Software Foundation 
and is governed by a group of PMC members, it can live forever.	  
 
As a result, hundreds of companies — including Fortune 500s, tech gi-
ants, and early-stage startups — are adopting Airflow as their preferred 
tool to programmatically author, schedule, and monitor workflows. 
Among the biggest names, you’ll find Adobe, Bloomberg, Asana,  
Dropbox, Glassdoor, HBO, PayPal, Tesla, ThoughtWorks, WeTransfer,  
and more!  



6 7

Apache Airflow Core Principles

Airflow is built on a set of core ideals that allow you to leverage the most 
popular open source workflow orchestrator on the market while maintaining 
enterprise-ready flexibility and reliability. 

Apache Airflow — Built on a 
Strong and Growing Community

 
Flexible 

Fully programmatic workflow 
authoring allows you to 
maintain full control of the 
logic you wish to execute.

 
Extensible 

Leverage a robust ecosystem 
of open source mintegrations 
to connect natively to any 
third party datastore or API.

 
Open Source 

Get the optionality of an 
open-source codebase while 
tapping into a buzzing and 
action-packed community.

 
Scalable 

Scale your Airflow 
environment to infinity with a 
modular and highly-available 
architecture across a variety of 
execution frameworks.

 
Secure 

Integrate with your internal 
authentication systems and 
secrets managers for an 
platform ops experience that 

 
Modular 

Plug into your internal logging 
and monitoring systems to 
keep all of the metrics you 
care about in one place.

    27k+
Github Stars Slack community

    25k+

Monthly downloads

    12m+
Contributors

   2 k+

https://github.com/apache/airflow
https://apache-airflow-slack.herokuapp.com/
https://www.astronomer.io/blog/how-we-track-the-growth-of-apache-airflow/
https://github.com/apache/airflow/graphs/contributors


8 9

 
Why Apache Airflow? 
 

Viraj Parekh 
Field CTO at Astronomer

Kenten Danas 
Lead Developer Advocate at Astronomer

 

Our Field CTO Viraj Parekh and Lead Developer Advocate 
Kenten Danas gathered some of the most common questions 
data practitioners ask us on a daily basis. If you’d like to find 
out why Airflow is the best tool for data orchestration, here are 
their answers. 
 

2.

: Q   Why would you run your pipelines as code?	 
At Astronomer, we believe using a code-based data pipeline tool like  
Airflow should be a standard. There are many benefits to that solution, 
but a few come to mind as high-level concepts: 
 
Firstly, code-based pipelines are dynamic. If you can write it in code, 
then you can do it in your data pipeline. And that’s really powerful. 
 
Firstly, code-based pipelines are dynamic. If you can write it in code, 
then you can do it in your data pipeline. And that’s really powerful.	  
 
Secondly, code-based pipelines are highly extensible. If your external 
system has an API, there’s a way to integrate it with Airflow.	  
 
Finally, they are more manageable. Because everything is in code, these 
pipelines can integrate seamlessly into your source controls CICT and 
general developer workflows.	  
 

: Q   What about a company that is looking at a drag-and-drop tool or other 
low/no-code approach? Why should they consider Airflow? 
We never think of it as “Airflow or”– instead, it’s always “Airflow and”. 
Because Airflow is so extensible, you can still use those drag-and-drop 
tools and then orchestrate and integrate them with other pipelines using 
Airflow. This approach allows you to have a one-stop-shop for orchestra-
tion without necessarily having to make a giant migration effort upfront 
or convince everybody at one time. 
 
As those internal teams get more comfortable with Airflow and see all 
the benefits, they’ll naturally start to transfer to Airflow.  



10 11

: Q   How can functional data pipelines improve my business? 
Data pipelines help users manage data workflows that need to be run  
on a consistent, reliable schedule. You can use data pipelines to help you 
with simple use cases,  such as running a report about yesterday’s sales. 
Data pipelines empower those users who are looking for baseline insights 
into the business. 
 
You can also use data pipelines to help with more complex use cases, 
such as running machine learning models, training AI, and generating 
complex business intelligence reports that help you make critical deci-
sions. 
 
So, if you want something that’s flexible, standardized, and scalable that 
has the ongoing support of the open-source community— Airflow is  
perfect for you. 
 

: Q   Is Apache Airflow hard to learn?  
Many resources exist for learning how to write code for Airflow, includ-
ing Astronomer’s Airflow Guides. Airflow becomes more difficult to learn 
once you try to run it at business scale. Luckily, there are tools like Astro 
that allow for abstracting and managing the infrastructure easily and 
efficiently. 	  
 
				  

: Q  What companies use Apache Airflow? 
Walmart, Tinder, JP Morgan, Tesla, Revolut....just to name a few. Current-
ly, hundreds of companies around the world, from various industries like 
healthcare, AI, fintech, or e-commerce, use Apache Airflow as part of 
their modern data stack to help them make sense of their data and drive 
better business decisions. 

 

Get Apache Airflow  
Support
 
Schedule time with Astronomer experts to learn how we can help 
you address your Airflow issues.

Contact Us

https://www.astronomer.io/guides/
https://www.astronomer-stage.io/product/
https://www.astronomer.io/get-started/?utm_campaign%3DMarketing%26utm_source%3DEbookDag%26utm_term%3DGetAstronomer&sa=D&source=editors&ust=1657716597443723&usg=AOvVaw1ksEvc1RDmTdZQC2iocQBF


12 13

 
Why Open Source 
Software? 

The massive increase in open source software (OSS) projects is changing 
both the tech scene and the business scene on a global scale. So why do we 
love open-source? Because it is:
 

Innovative	  
				  
According to Wired in the 2016 article, Facebook decided to stop “treating 
data center design like Fight Club” by making its architecture open and ac-
cessible to everyone. Companies like Microsoft, HP, and even Google fol-
lowed suit by open-sourcing many of their technologies that had been kept 
secret for years. By making code for their projects accessible to the public, 
companies could freely adapt golden standards in the open-source world 
and create better integrations between products, all while freeing up time to 
innovate elsewhere. 

3.

Reliable 
 
We’ve all had “technical difficulties” when our technology operated unreli-
ably. Professionally, that can cause a variety of outcomes, from mild annoy-
ance to genuine detriment. When everybody’s using the same components, 
everybody’s optimizing the same components. As Linux Creator Linus Tor-
valds said, “Given enough eyeballs, all bugs are shallow” (Linus’s Law). In 
other words, the more people who can see and test a set of code, the more 
likely any flaws will be caught and fixed quickly.
		   
						    
Diverse 
	 	 		
It’s a huge benefit to have a large, diverse community of developers look at 
and contribute to the same system. Instead of a few people with the same 
view of the world-building components, an entire community with varying 
perspectives and strengths contributes to the system (and has a stake in its 
success and adoption), which makes the system more resilient.
		   
			 
Transparent	  
	 			 
When software is transparent people aren’t tied down to a proprietary system 
protected in a black box. Users and builders of open source software can see 
everything; they can open GitHub, look at the source code, and trust that 
the code has been reviewed publicly. This gives decision-makers insight into 
what’s going on — where components can be swapped around — and the 
control they need to do it.

https://www.wired.com/2016/03/google-facebook-designing-open-source-data-center-gear-together/


14 15

Apache Airflow
Fundamentals
The Astronomer Certification for Apache Airflow Fundamen-
tals exam assesses an understanding of the basics of the Airflow 
architecture and the ability to create basic data pipelines for 
scheduling and monitoring tasks.

Concepts Covered:
• User Interface
• Scheduling
• Backfill & Catchup
• DAG Structure

• Architectural Components
• Use Cases

Get Certified

Agile 

When components are living in a community-curated open source world, 
they are built to “play nicely” with other components. This flexibility allows us 
to stay on the cutting edge. With open-source, any organization can take a 
piece of code and customize it to best fit their needs. When it comes to tech, 
we want to live in a world where we’re free to explore, invent best-in-class 
technology and use it in revolutionary ways. We can do it through  
open source. 

https://academy.astronomer.io/plan/astronomer-certification-for-apache-airflow-fundamentals-exam?utm_campaign=Marketing&utm_source=EbookDag&utm_term=DAGcertification
https://hubs.ly/Q01gL5RR0


16 17

Apache Airflow 101 
Core Concepts & 
Components

4.

Airflow Core Concepts 

DAGs 

In Airflow, a DAG is your data pipeline and represents a set of instructions 
that must be completed in a specific order. This is beneficial to data orches-
tration for a few reasons:

• DAG dependencies ensure that your data tasks are executed in the same
order every time, making them reliable for your everyday data infrastructure.

• The graphing component of DAGs allows you to visualize dependencies in
Airflow’s user interface.
• Because every path in a DAG is linear, it’s easy to develop and test your
data pipelines against expected outcomes.

Learn more:

Operators 

Operators are the building blocks of Airflow. They contain the logic of how 
data is processed in a pipeline. There are different operators for different 
types of work: some operators execute general types of code, while others 
are designed to complete very specific types of work. 

1

2

3

operator

     file = open(“myfile”, “r”) 

     print (f.read() )

A RITCL E

What exactly is a DAG?
SEE A RTICL E 

https://www.astronomer.io/blog/what-exactly-is-a-dag/


18 19

•	 Action Operators execute pieces of code. For example, a Python action 
operator will run a Python function, a bash operator will run a bash  
script, etc.

•	 Transfer Operators are more specialized, designed to move data from 
one place to another.

•	 Sensor Operators, frequently called “sensors,” are designed to wait for 
something to happen — for example, for a file to land on S3, or for an-
other DAG to finish running. 

When you create an instance of an operator in a DAG and provide it with its 
required parameters, it becomes a task.

Learn more:

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tasks 

A task is an instance of an operator. In order for an operator to complete 
work within the context of a DAG, it must be instantiated through a task. 
Generally speaking, you can use tasks to configure important context for 
your work, including when it runs in your DAG. 

Learn more: 
 
 
 
 
 
 

 

TUTORIAL 

Operators 101 
SEE TUTORIAL  

TUTORIAL 

Deferrable Operators
SEE TUTORIAL  

TUTORIAL 

Sensors 101
SEE TUTORIAL  

GUIDE 

Using Task Groups in Airflow 
SEE GUIDE 

GUIDE 

Passing Data Between Airflow Tasks 
SEE GUIDE 

https://www.astronomer.io/guides/what-is-an-operator
https://www.astronomer.io/guides/deferrable-operators
https://www.astronomer.io/guides/what-is-a-sensor/
https://www.astronomer.io/guides/task-groups
https://www.astronomer.io/guides/airflow-passing-data-between-tasks


20 21

A data pipeline 

A “data pipeline” describes the general process by which data moves from 
one system into another. From an engineering perspective, it can also be 
represented by a DAG. Each task in a DAG is defined by an operator, and 
there are specific downstream or upstream dependencies set between tasks. 
A DAG run either extracts, transforms, or loads data - becoming a data pipe-
line, essentially.  

Learn more: 

Providers 

Airflow providers are Python packages that contain all of the relevant Airflow 
modules for interacting with external services. Airflow is designed to be an 
agnostic workflow orchestrator: You can do your work within Airflow, but you 
can also use other tools with it, like AWS, Snowflake, or Databricks.

Most of these tools already have community-built Airflow modules, giving 
Airflow spectacular flexibility. Check out the Astronomer Registry to find all 
the providers.

The following diagram shows how these concepts work in practice. As you 
can see, by writing a single DAG file in Python using existing provider  
packages, you can begin to define complex relationships between data  
and actions.

ARITCLE

Data Pipeline: Components, Types, and Best Practices
SEE ARTICLE 

https://registry.astronomer.io
https://www.astronomer.io/blog/data-pipeline


22 23

Flask server running with  
Gunicorn serving the UI

webserver

Daemon responsible for  
scheduling jobs

scheduler

A database where all  
metadata are stored

metastore

Defines how tasks are  
executed

executor

Process executing the tasks, 
defined by the executor

worker

Process running asyncio to 
support deferrable operators

triggerer

Airflow Core Components 

When working with Airflow, it is important to understand the underlying 
components of its infrastructure. Even if you mostly interact with Airflow as 
a DAG author, knowing which components are “under the hood” and why 
they are needed can be helpful for developing your DAGs, debugging, and 
running Airflow successfully. The first four components below run at all times, 
and the last two are situational components that are used only to run tasks or 
make use of certain features.

The infrastructure: 



24 25

Apache Airflow 2
As Apache Airflow grows in adoption, there’s no question that a major release 
to expand on the project’s core strengths was long overdue. Astronomer was 
delighted to release Airflow 2.0 together with the community in  
December 2020. 

Throughout the year various organizations and leaders within the Airflow 
community have been in close collaboration refining the scope of Airflow 2.0 
and actively working towards enhancing existing functionality and introducing
changes to make Airflow faster, more reliable, and more performant at scale.

5.

Major Features in Airflow 2.0

Airflow 2.0 includes hundreds of features and bug fixes both large and small. 
Many of the significant improvements were influenced and inspired by feed-
back from Airflow’s 2019 Community Survey, which garnered over 300 re-
sponses. 

A New Scheduler: Low-Latency + High-Availability

The Airflow scheduler as a core component has been key to the growth and 
success of the project following its creation in 2014. In fact, “Scheduler Per-
formance” was the most asked for improvement in the Community Survey. 
Airflow users have found that while the Celery and Kubernetes Executors  
allow for task execution at scale, the scheduler often limits the speed at 
which tasks are scheduled and queued for execution. While effects vary 
across use cases, it’s not unusual for users to grapple with induced downtime 
and a long recovery in the case of a failure and experience high latency be-
tween short-running tasks.

It is for that reason we introduced a new, refactored scheduler with the Air-
flow 2.0 release. The most impactful Airflow 2.0 change in this area is sup-
port for running multiple schedulers concurrently in an active/active model. 
Coupled with DAG Serialization, Airflow’s refactored scheduler is now highly 
available, significantly faster, and infinitely scalable. Here’s a quick overview 
of the new functionality: 

1. Horizontal Scalability. If task load one scheduler increases, a user
can now launch additional “replicas” of the scheduler to increase the
throughput of their Airflow Deployment.

2. Lowered Task Latency. In Airflow 2.0, even a single scheduler has proven
to schedule tasks at much faster speeds with the same level of CPU
and Memory.

https://www.google.com/url?q=https://www.astronomer-stage.io/airflow/&sa=D&source=docs&ust=1654709997679474&usg=AOvVaw15n9qqcitiOdPkurTr35AN
https://airflow.apache.org/blog/airflow-survey/
https://www.astronomer.io/blog/the-new-kubernetesexecutor
https://www.astronomer.io/blog/what-exactly-is-a-dag


26 27

3.	 Zero Recovery Time. Users running 2+ Schedulers see zero downtime and 
no recovery time in the case of a failure. 

4.	 Easier Maintenance. The Airflow 2.0 model allows users to make changes 
to individual schedulers without impacting the rest and inducing down-
time. 

The scheduler’s now-zero recovery time and readiness for scale eliminate it 
as a single point of failure within Apache Airflow. Given the significance of 
this change, our team published “The Airflow 2.0 Scheduler”, a blog post that 
dives deeper into the story behind scheduler improvements alongside an 
architecture overview and benchmark metrics. 
 
For more information on how to run more than 1 scheduler concurrently,  
refer to the official documentation on the Airflow Scheduler.
 

Full REST API 

Data engineers have been using Airflow’s “Experimental API” for years, most 
often for triggering DAG runs programmatically. With that said, the API has 
historically remained narrow in scope and lacked critical elements of func-
tionality, including a robust authorization and permissions framework.
Airflow 2.0 introduces a new, comprehensive REST API that sets a strong 
foundation for a new Airflow UI and CLI in the future. Additionally, the new 
API: 

•	 Makes for easy access by third-parties.
•	 Is based on the Swagger/OpenAPI Spec.
•	 Implements CRUD (Create, Update, Delete) operations on all Airflow 

resources.
•	 Includes authorization capabilities (parallel to those of the Airflow UI).

These capabilities enable a variety of use cases and create new opportunities 
for automation. For example, users now have the ability to programmatically 
set Connections and Variables, show import errors, create Pools, and monitor 
the status of the Metadata Database and scheduler. 

For more information, reference Airflow’s REST API documentation. 

TaskFlow API
 
While Airflow has historically shined in scheduling and running idempotent 
tasks, it has historically lacked a simple way to pass information between 
tasks. Let’s say you are writing a DAG to train some set of Machine Learning 
models. The first set of tasks in that DAG generates an identifier for each 
model and the second set of tasks outputs the results generated by each of 
those models. In this scenario, what’s the best way to pass output from that 
first set of tasks to the latter? 

Historically, XComs have been the standard way to pass information between 
tasks and would be the most appropriate method to tackle the use case 
above. As most users know, however, XComs are often cumbersome to use 
and require redundant boilerplate code to set return variables at the end of a 
task and retrieve them in downstream tasks. 

With Airflow 2.0, we were excited to introduce the TaskFlow API and Task 
Decorator to address this challenge. The TaskFlow API implemented in 2.0 
makes DAGs significantly easier to write by abstracting the task and depen-
dency management layer from users. Here’s a breakdown of the functionality: 

https://www.astronomer.io/blog/airflow-2-scheduler
https://airflow.apache.org/docs/apache-airflow/stable/concepts/scheduler.html
https://www.astronomer.io/blog/apache-airflow-for-data-engineers
https://www.google.com/url?q=https://www.astronomer.io/docs/cloud/stable/customize-airflow/airflow_api/&sa=D&source=docs&ust=1654710289586688&usg=AOvVaw1G4ctEllS4menVftrUDA4b
https://swagger.io/specification/
https://airflow.apache.org/docs/apache-airflow/stable/stable-rest-api-ref.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/index.html


28 29

•	 A framework that automatically creates PythonOperator tasks from 
Python functions and handles variable passing. Now, variables such as 
Python Dictionaries can simply be passed between tasks as return and 
input variables for cleaner and more efficient code.

•	 Task dependencies are abstracted and inferred as a result of the Python 
function invocation. This again makes for much cleaner and more simple 
DAG writing for all users.

•	 Support for Custom XCom Backends. Airflow 2.0 includes support for a 
new xcom_backend parameter that allows users to pass even more ob-
jects between tasks. Out-of-the-box support for S3, HDFS, and other 
tools is coming soon. 

It’s worth noting that the underlying mechanism here is still XCom and data 
is still stored in Airflow’s Metadata Database, but the XCom operation itself 
is hidden inside the PythonOperator and is completely abstracted from the 
DAG developer. Now, Airflow users can pass information and manage depen-
dencies between tasks in a standardized Pythonic manner for cleaner and 
more efficient code. 

To learn more, refer to Airflow documentation on the TaskFlow API and the 
accompanying tutorial.
 
 
Task Groups
 
Airflow SubDAGs have long been limited in their ability to provide users with 
an easy way to manage a large number of tasks. The lack of parallelism cou-
pled with confusion around the fact that SubDAG tasks can only be executed 
by the Sequential Executor, regardless of which executor is employed for all 
other tasks, made for a challenging and unreliable user experience. 

Airflow 2.0 introduced Task Groups as a UI construct that doesn’t affect task 
execution behavior but fulfills the primary purpose of SubDAGs. Task Groups 
give a DAG author the management benefits of “grouping” a logical set of 
tasks with one another without having to look at or process those tasks any 
differently. 

While Airflow 2.0 continues to support the SubDAG Operator, Task Groups 
are intended to replace it in the long term.
 

Independent Providers 

One of Airflow’s signature strengths is its sizable collection of communi-
ty-built operators, hooks, and sensors — all of which enable users to integrate 
with external systems like AWS, GCP, Microsoft Azure, Snowflake, Slack and 
many more. 

Providers have historically been bundled into the core Airflow distribution 
and versioned alongside every Apache Airflow release. As of Airflow 2.0, they 
are now split into their own airflow/providers directory such that they can be 
released and versioned independently from the core Apache Airflow dis-
tribution. Cloud service release schedules often don’t align with the Airflow 
release schedule and either result in incompatibility errors or prohibit users 
from being able to run the latest versions of certain providers. The separation 
in Airflow 2.0 allows the most up-to-date versions of Provider packages to 
be made generally available and removes their dependency on core Airflow 
releases. 

It’s worth noting that some operators, including the Bash and Python Opera-
tors, remain in the core distribution given their widespread usage. 

To learn more, refer to Airflow documentation on Provider Packages. 

https://www.astronomer.io/events/recaps/dag-writing-best-practices-in-apache-airflow
https://airflow.apache.org/docs/apache-airflow/stable/concepts/index.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/index.html
https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/index.html
https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html
https://airflow.apache.org/docs/apache-airflow-providers/index.html


30 31

Simplified Kubernetes Executor
 
Airflow 2.0 includes a re-architecture of the Kubernetes Executor and Kuber-
netesPodOperator, both of which allow users to dynamically launch tasks as 
individual Kubernetes Pods to optimize overall resource consumption. 

Given the known complexity users previously had to overcome to successful-
ly leverage the executor and operator, we drove a concerted effort towards 
simplification that ultimately involved removing over 3,000 lines of code.  
The changes incorporated in Airflow 2.0 made the executor and operator 
easier to understand, faster to execute and offers far more flexibility in con-
figuration. 

Data Engineers have now access to the full Kubernetes API to create a yaml 
‘pod_template_file’ instead of being restricted to a partial set of configura-
tions through parameters defined in the airflow.cfg file. We’ve also replaced 
the executor_config dictionary with the pod_override parameter, which takes 
a Kubernetes V1Pod object for a clear 1:1 override setting. 

For more information, we encourage you to follow the documentation on the 
new pod_template file and pod_override functionality. 
 
 
UI/UX Improvements
 
Perhaps one of the most welcomed sets of changes brought by Airflow 2.0  
has been the visual refreshment of the Airflow UI. 

In an effort to give users a more sophisticated and intuitive front-end experi-
ence, we’ve made over 30 UX improvements. 
 
 
 
 
 
 
 
 
 
 

Major Features in Airflow 2.2

Airflow 2.2 Big Features

 
Custom 
timetables 

Run DAGs exactly 
when you want

 
@task.docker 
 

Easily run Python 
functions in 
seperate docker 
containers

 
Deferrable tasks 
 

Turn any task into 
a super-efficient 
asynchronous loop

 
 
 
Custom Timetables 

Cron expressions got us as far as regular time intervals, which is only con-
venient for predictable data actions. Before Airflow 2.2.0, it was impossible 
to schedule data activities from Monday to Friday and stop them from run-
ning over the weekend. Now that the custom timetables are finally here, the 
scheduling sky is the limit. With this feature, it’s also now possible to look at a 
given data for a specific period of time. 

New concept: data_interval — A period of data that a task should operate on. 

Since the concept of execution_date was confusing to every new user, a 
better version is now available. No more ”why didn’t my DAG run?”, as this 
feature has been replaced with data_interval, which is the period of data that 
a task should operate on. 

https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html
https://kubernetes.io/blog/2018/06/28/airflow-on-kubernetes-part-1-a-different-kind-of-operator/
https://kubernetes.io/blog/2018/06/28/airflow-on-kubernetes-part-1-a-different-kind-of-operator/
https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html?highlight=pod_override#pod-template-file
https://airflow.apache.org/docs/apache-airflow/stable/executor/kubernetes.html?highlight=pod_override#pod-override
https://www.astronomer.io/guides/airflow-ui
https://www.astronomer.io/blog/what-exactly-is-a-dag


32 33

It includes:
•	 logical_date (aka execution_date)
•	 data_interval_start (same value as execution_date for cron)
•	 data_interval_end (aka next_execution_date)
 
 

Key Benefits of Custom Timetables

•	 Flexibility

•	 Run DAGs

•	 Introducing  
explicit “data interval”

•	 Full back-compability 
maintained —  
schedule_interval 
not going away

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bonus for Astronomer Customers only:
NYSE Trading Timetable
 
The trading hours timetable allows users to run DAGs based on the start and 
end of trading hours for NYSE and Nasdaq. It includes historic trading hours 
as well as holidays and half-days where the markets have irregular hours. 
 

Deferrable operators 

Do you know the feeling of tasks or sensors clogging up worker resources 
when waiting for external systems and events? Airbnb introduced smart sen-
sors, the first tackle to this issue. Deferrable operators go further than sen-
sors — they are perfect for anything that submits a job to an external system 
and then polls for status. 

With this feature, operators or sensors can postpone themselves until a light-
weight async check succeeds, at which time they can resume executing. This 
causes the worker slot, as well as any resources it uses, to be returned to Air-
flow. A deferred task does not consume a worker slot while in deferral mode 
— instead, one triggerer process (a new component, which is the daemon 
process that executes the asyncio event loop) can run 100s of async deferred 
tasks concurrently. As a result, tasks like monitoring a job on an external sys-
tem or watching for an event become far less expensive.  

Custom @task decorators and @task.docker
The ‘@task.docker’ decorator allows for running a function inside a docker 
container. Airflow handles putting the code into the container and returning 
xcom. This is especially beneficial when there are competing dependencies 
between Airflow and tasks that must run.

 
 
 
Key Benefits of Deferrable Tasks

•	 Turn any task into a 
super-efficient  
asynchronous loop

•	 Resilient against  
restarts

•	 Resilient against restarts

•	 Doesn’t use worker 
resources when deferred

•	 Paves the way to 
event-based DAGs!

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 35

Major Features in Airflow 2.3

Dynamic Task Mapping

Dynamic task mapping permits Airflow’s scheduler to trigger tasks based on 
context: given this input — a set of files in an S3 bucket — run these tasks. 
The number of tasks can change based on the number of files; you no longer 
have to configure a static number of tasks.

As of Airflow 2.3, you can use dynamic task mapping to hook into S3, list any 
new files, and run separate instances of the same task for each file. You don’t 
have to worry about keeping your Airflow workers busy, because Airflow’s 
scheduler automatically optimizes for available parallelism.

Dynamic task mapping not only gives you a means to easily parallelize these 
operations across your available Airflow workers, but also makes it easier to 
rerun individual tasks (e.g., in the case of failure) by giving you vastly im-
proved visibility into the success or failure of these tasks. Imagine that you 
create a monolithic task to process all of the files in the S3 bucket, and that 
one or more steps in this task fail. In past versions of Airflow, you’d have to 
parse the Airflow log file generated by your monolithic task to determine 
which step failed and why. In 2.3, when a dynamically mapped task fails, it 
generates a discrete alert for that step in Airflow. This enables you to zero 
in on the specific task and troubleshoot from there. If appropriate, you can 
easily requeue the task and run it all over again.

Learn more:

New Grid View 

Airflow’s new grid view replaces the tree view which was not ideal for repre-
senting DAGs and their topologies, since a tree cannot natively represent a 
DAG that has more than one path, such as a task with branching dependen-
cies. The tree view could only represent these paths by displaying multiple, 
separate instances of the same task. So if a task had three paths, Airflow’s 
tree view would show three instances of the same task — confusing even for 
expert users. The grid view, by contrast, is ideal for displaying complex DAGs, 
such as tasks that have multiple dependencies. The grid view also offers first-
class support for Airflow task groups. The tree view chained task group IDs 
together, resulting in repetitive text and, occasionally, broken views. In the 
new grid view, task groups display summary information and can be expand-
ed or collapsed as needed. The new grid view also dynamically generates 
lines and hover effects based on the task you’re inspecting, and displays the 
durations of your DAG runs; this lets you quickly track performance — and 
makes it easier to spot potential problems. These are just a few of the im-
provements the new grid view brings. 

Note: Airflow 2.3 was released in April 2022

GUIDE

Dynamic Tasks in Airflow 
SEE GUIDE 

https://www.astronomer.io/guides/dynamic-tasks/


36 37

A New LocalKubenetesExecutor

Airflow 2.3’s new local K8s executor allows you to be selective about which 
tasks you send out to a new pod in your K8s cluster — i.e., you can either 
use a local Airflow executor to run your tasks within the scheduler service or 
send them out to a discrete K8s pod. Kubernetes is powerful, to be sure, but 
it’s overkill for many use cases. (It also adds layers of latency that the local 
executor does not.) The upshot is that for many types of tasks — especially 
lightweight ones — it’s faster (and, arguably, just as reliable) to run them in 
Airflow’s local executor, as against spinning up a new K8s pod.  

Storing Airflow Connections in JSON Instead of 
URI Format 

And the new release’s ability to store Airflow connections in JSON (rather 
than in Airflow URI) format is a relatively simple feature that — for some 
users — could nevertheless be a hugely welcomed change. Earlier versions 
stored connection information in Airflow’s URI format, and there are cases in 
which that format can be tricky to work with. JSON provides a simple,  
human-readable alternative.

–
Altogether, Airflow 2.3 introduces more than a dozen new features, including, 
in addition to the above, a new command in the Airflow CLI for reserializing 
DAGs, a new listener plugin API that tracks TaskInstance state changes, a 
new REST API endpoint for bulk-pausing/resuming DAGs, and other ease-of-
use (or fit-and-finish) features. Learn more about Airflow 2.3 on our blog.

Major Features in Airflow 2.4

When Airflow 2.3 dropped just over four months ago, we called it one of the 
most important-ever releases of Apache Airflow, thanks mainly to its intro-
duction of dynamic task mapping.

The same can be said of today’s Airflow 2.4 release, which introduces a “data-
sets” feature that augments Airflow with powerful new data-driven schedul-
ing capabilities. 

In Airflow 2.4, you can use data-driven scheduling to break up large, mono-
lithic DAGs into multiple upstream and downstream DAGs, and explicitly de-
fine dependencies between them. Doing so makes it easier for you to ensure 
the timely delivery of data to consumers in different roles, as well as optimize 
the runtime performance of your business-critical DAGs. Basically, if you 
have any downstream use case that depends on one or more upstream data 
sources, data-driven scheduling is going to transform how you use Airflow.

Other benefits include:

• Ensuring that data scientists, data analysts, and other self-service users
always have access to the up-to-date data they need to do their work.

• Guaranteeing the timely delivery of the cleansed, conditioned data used
to feed the business-critical KPIs, metrics, and measures that power op-
erational dashboards.

• Enabling ML engineers and ops personnel to automate the process of
retraining, testing, and redeploying production ML models, radically sim-
plifying maintenance.

Note: Airflow 2.4 was released in September 2022

https://github.com/apache/airflow/pull/19857
https://github.com/apache/airflow/pull/19471
https://github.com/apache/airflow/pull/19471
https://github.com/apache/airflow/pull/19758
https://www.astronomer.io/blog/apache-airflow-2-3-everything-you-need-to-know
https://www.astronomer.io/blog/apache-airflow-2-3-everything-you-need-to-know/
https://airflow.apache.org/docs/apache-airflow/stable/concepts/datasets.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/datasets.html


38 39

Data-driven scheduling is Airflow 2.4’s top-line feature, but it isn’t the only 
major change. The new release also introduces a schedule parameter that 
consolidates all of Airflow’s extant scheduling parameters. Now, authors can 
use that one parameter for all their tasks. And Airflow 2.4 expands the input 
types that DAG authors can use with its dynamic task mapping capabilities, 
fleshing out that capability first introduced in 2.3.

The rapidly improving Airflow UI benefits from a number of ease-of-use 
updates, too, while — behind the scenes — Airflow 2.4 packs several improve-
ments that promise to reduce the amount of code DAG authors and ops 
personnel need to write and maintain. Once again, Airflow has gotten easier 
to code for, operate, maintain, and govern.
 

Data-Driven Scheduling Explained 

Until now, DAG authors had to write, debug, and maintain their own logic to 
manage data dependencies. In earlier versions of Airflow, they sometimes 
used cross-DAG dependencies for this purpose, but these introduced exter-
nal dependencies of their own, and — because Airflow lacked a native Data-
set class — authors still had to use sensors to trigger dependent tasks.

A more common solution was to consolidate all dependencies into a single, 
monolithic DAG. This guaranteed that a successful upstream task run would 
automatically trigger downstream tasks in the same DAG; moreover, if an 
upstream dependency failed, the downstream tasks would not run, so DAG 
authors didn’t have to use (or write their own) task sensors to control for this. 
It was a workable approach, but monolithic DAGs can be difficult to debug 
and maintain; are prone to outages (because if a single task fails, the entire 
DAG fails); are not generally reusable; and do not give organizations a way to 
visualize and track datasets in Airflow.

The new release introduces a Dataset class that augments Airflow with the 
built-in logic it needs to run and manage different kinds of data-driven de-
pendencies, exposing a single unified interface for inter-task signaling.

Data-driven scheduling works at the task level: you create a Dataset class 
and associate that with a specific task, which becomes a “producer” for one 
or more downstream “consumer” DAGs. A successful run by the producer 
task automatically triggers runs by any consumer DAGs. This makes a lot 
of sense: an upstream DAG might consist of hundreds of tasks, only one of 
which produces the dataset that a consumer DAG depends on. Or an up-
stream DAG might contain dozens of producer tasks, each corresponding to 
a separate consumer DAG.

By triggering data-driven dependencies at the task level, consumer DAGs 
can start sooner, enabling organizations to refresh the data consumed by 
their reports, dashboards, alerts, and other analytics in a timely manner.
 

Data-Driven Scheduling in Action 

To take advantage of Airflow’s new datasets feature, DAG authors: 

1.	 Define a Dataset class and give a name to the dataset in their upstream 
DAG(s).

2.	 Reference that Dataset in all producer tasks in their upstream DAG(s).
3.	 Define the Dataset in their consumer DAG(s), if any, and use that as the 

schedule parameter. 

A good example involves one or more producer tasks that update the dimen-
sion and fact tables in a data warehouse. Once these producer tasks run and 
exit successfully, Airflow “knows” to run any consumer DAGs that depend on 
this data.

A dataset is any output of a producer task. It can be a JSON or CSV file; a 
column in an Apache Iceberg table; a table, or a specific column in a table, 
in a database; etc. The dataset is usually used as a source of data for one or 
more downstream consumer DAGs.

https://www.astronomer.io/guides/airflow-ui/
https://airflow.apache.org/docs/apache-airflow/stable/howto/operator/external_task_sensor.html


40 41

A consumer DAG might, for example, condense multiple upstream datasets 
into the CSV files that business analysts load into their data visualization 
tools. Or it might pull data from multiple upstream CSV files, Parquet files, 
and database tables to create training datasets for machine learning models.

Datasets are powerful because you can chain them together, such that one 
consumer DAG can function as a producer for the next DAG downstream 
from it. It’s easy to imagine a chain of datasets in which the first consumer 
DAG — triggered by a producer task in an upstream ETL DAG — extracts a 
fresh dataset from the data warehouse, triggering a run by the next consumer 
DAG in the sequence, which cleanses, joins, and models this dataset, output-
ting the results to a second, entirely new dataset. The next and last consumer 
DAG in this imagined sequence then uses this second dataset to compute 
different types of measurements over time, outputting the results to a third 
and final dataset.

The Dataset class is fungible enough to be adapted to many common 
event-dependent use cases — including cutting-edge use cases, like model 
maintenance in ML engineering. New data added to upstream sources can 
trigger a consumer DAG that processes and loads it into the feature store 
used to train your ML models. This DAG can be a producer for the next steps 
in your pipeline, triggering consumer DAGs which validate (and retrain if 
necessary) your existing models on the updated data. In theory, you can 
even use datasets to more or less automate the maintenance of your ML 
models — for example, by creating consumer DAGs that automatically test 
and deploy your retrained models in production.

For DAG authors charged with creating and maintaining datasets, the new 
Dataset class promises to be a huge time-saver; for organizations concerned 
about governing datasets — which have a tendency to proliferate and be-
come ungoverned data silos — it makes tracking and visualizing them much 
easier. (Admittedly, this ability is fairly basic in Airflow 2.4 today — users can 
see a “Datasets” tab in the Airflow UI; clicking on it displays the extant data-
set objects — but is poised to improve over time.)

Beyond Datasets, One Scheduling Parameter to 
Consolidate Them All 

Another big change in Airflow 2.4 is its consolidated schedule parameter, 
which was prompted in part by the new Dataset  class.

In prior versions of Airflow, DAG authors used a pair of parameters — sched-
ule_interval and timetable — to tell Airflow when to run their DAGs. To 
accommodate Dataset scheduling in Airflow 2.4, maintainers initially planned 
to introduce a third parameter, schedule_on. Ultimately, though, they de-
cided to consolidate the functions of all three parameters into a new one: 
schedule, which can accept cron expressions, as well as timedelta, timetable, 
and dataset objects.

Fortunately, updating your DAGs to use the new schedule parameter is 
extremely simple. In existing DAGs, authors can paste it in as a drop-in 
replacement for the deprecated schedule_interval and timetable parame-
ters. For new, dataset-aware DAGs, authors can use the schedule parameter 
to schedule DAG runs for both upstream DAGs that have producer tasks and 
any consumer DAGs that depend on upstream producer datasets.

Although schedule_interval and timetable are officially deprecated as 
of Airflow 2.4, Airflow will continue to support all three parameters for now. 
Support for the deprecated ones won’t be sunsetted until a future major re-
lease, giving organizations plenty of time to update their DAGs. And because 
schedule is literally a drop-in replacement for the older parameters, imple-
menting this change should be as easy as using an editor to find-and-replace 
them. In practice, many organizations will likely write scripts to bulk-auto-
mate this process. 

 

https://www.astronomer.io/blog/data-silos-what-are-they-how-to-fix-them/


42 43

Other Airflow Improvements Simplify DAG Writing 
and Maintenance, Reduce Custom Coding
 
Another scheduling-related change in Airflow 2.4 is CronTriggerTimetable, 
a cron timetable that tells Airflow’s scheduler to use cron-like conventions. 
The background to this is that, by default, Airflow runs daily task instances 24 
hours after their specified start time. So, if an author scheduled an end-of-
week task to run on Sunday at 12 AM, it would actually run on Monday at 12 
AM. (There’s a similar default interval for hourly tasks: if you schedule a task 
to run from 9-10 AM, it won’t actually start running until 10 AM.) A delay in-
terval makes sense for certain types of batch jobs (e.g., end-of-day reports), 
but is a constant source of confusion for new Airflow users. Now, tasks can run 
on the day and at the time you specify, in accordance with cron conventions.

The new 2.4 release also augments Airflow’s dynamic task mapping capabil-
ities, with support for expanded input types — namely expand_kwargs and 
expand_zip. Expand_kwargs is an escape hatch of sorts that enables DAG 
authors to address a large number of use cases; expand_zip , by contrast, is 
quite specific, albeit also quite useful: it tells Airflow to “zip” two lists togeth-
er, such that a,b,c and d,e,f become (a,d), (b,e), and (c,f).

These additions, along with several others, help to reduce the amount of 
code that DAG authors need to write and maintain, because — as with the 
data-driven scheduling logic undergirding Airflow’s new Dataset class — the 
necessary logic has now moved into Airflow itself.

Another example is a new UI option that administrators can use to configure 
a global task retry delay. Airflow’s default task retry delay is 300 seconds; 
previously, authors could change this by hardcoding it into their tasks. You 
can still do this — e.g., if you want to use a time limit other than the global 
value — but the new feature is a labor-saving alternative.

Similarly, Airflow 2.4’s option to reuse decorated task groups makes it much 
easier for authors to reuse collections of tasks to accommodate repeatable 
patterns in DAGs.

The Airflow UI is a locus of ongoing innovation. Also new in Airflow 2.4 is an 
ability to drill-down into logs from the default grid view, which enables users 
— either DAG authors or DevOps/SRE personnel — to click on a task (repre-
sented by a block in Airflow’s grid view) to see the log file associated with it, 
rather than being redirected to another page. The idea is to expose as much 
useful information as possible in an integrated UI workflow, so users don’t 
have to switch contexts. 
 
 
 

Airflow 2.4 UI showing a task group

http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/concepts/timetable.html#differences-between-the-two-cron-timetables
http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/concepts/timetable.html#differences-between-the-two-cron-timetables
http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/concepts/timetable.html#differences-between-the-two-cron-timetables
http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/concepts/timetable.html#differences-between-the-two-cron-timetables
http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/concepts/timetable.html#differences-between-the-two-cron-timetables
https://github.com/apache/airflow/pull/25160
https://www.astronomer.io/blog/everything-you-should-know-about-airflow-2-3s-new-grid-view/?utm_campaign=Marketing&utm_source=linkedin&utm_medium=social&utm_term=blog&utm_content=grid-view
https://github.com/apache/airflow/pull/24249


44 45

Flexible Deferrable Operators to Replace  
Smart Sensors 

For all its useful improvements, Airflow 2.4 is taking one capability away: 
smart sensors, first introduced in Airflow 2.0 (December 2020) as an experi-
mental feature — a short-term fix, explicitly excepted from Airflow’s version-
ing policy — which DAG authors could use to trigger tasks to run in response 
to specific events. Smart sensors were useful, but they also had a few draw-
backs: they worked for only a limited range of sensor-style workloads, had 
no redundancy, and had to run in the context of a custom DAG. Airflow 2.2 
introduced a permanent solution to this problem — deferrable operators, a 
term used to describe a category of hooks, sensors, and operators capable 
of asynchronous operation — and included two novel async sensors, TimeS-
ensorAsync and DateTimeSensorAsync. Deferrable operators are a more 
robust and flexible solution for supporting sensor-style event triggering. They 
support a broader range of use cases and workloads. Functionally, they far 
outstrip what you can do with smart sensors.

Airflow 2.4 UI showing a dynamically mapped task

When Airflow 2.2.4 was released in February, support for smart sensors was 
officially deprecated, with a warning that support would be terminated as 
of Airflow 2.4; now, that Airflow 2.4 is available, smart sensors are no longer 
supported. The Airflow community produced only one known pre-built smart 
sensor, which has been superseded by an equivalent deferrable operator.

If you wrote smart sensors of your own, you can now reimplement them as 
deferrable operators. If you have questions about doing this, consider reach-
ing out to us at Astronomer. Not only did we build the first deferrable oper-
ators for Airflow, we made them available under the Apache 2.0 license, and 
we’ve helped our customers reimplement their own smart sensors as deferra-
ble operators. We can definitely be of assistance to you as you manage this 
breaking change. 
 

An Upgrade That Cuts Complexity and Promotes 
Timely Delivery of Data 

There’s a lot of amazing stuff in Airflow 2.4, but by any criteria, its support 
for datasets is the breakout star. Data-driven scheduling is going to change 
what organizations can do with Airflow. By augmenting Airflow with the built-
in logic it needs to automatically manage different kinds of data-dependent 
events, the feature makes it much easier for data teams to break up large, 
monolithic DAGs into smaller, function- or process-specific DAGs — i.e., 
“datasets.” Data-driven scheduling allows organizations to more effectively 
optimize how, when, or under what conditions their pipelines run, enabling 
them to prioritize the timely delivery of data for business-critical processes.

For DAG authors, Airflow’s new Dataset class does away with a big source of 
tedium and frustration: the need to design elaborate logic to manage depen-
dencies and control for different kinds of task failures between their DAGs. 
And from an operational standpoint, breaking up monolithic DAGs into dis-
crete datasets ensures that they run reliably and are much easier to trouble-
shoot and maintain.

https://airflow.apache.org/docs/apache-airflow/2.3.4/concepts/smart-sensors.html
https://airflow.apache.org/docs/apache-airflow/stable/release-process.html
https://airflow.apache.org/docs/apache-airflow/stable/release-process.html
https://www.astronomer.io/blog/apache-airflow-2.2.0-is-here/
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/time_sensor/index.html?highlight=timesensor#module-contents
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/time_sensor/index.html?highlight=timesensor#module-contents
https://airflow.apache.org/docs/apache-airflow/stable/_api/airflow/sensors/date_time/index.html#airflow.sensors.date_time.DateTimeSensorAsync
https://www.astronomer.io/guides/deferrable-operators/
https://airflow.apache.org/docs/apache-airflow/stable/release_notes.html#airflow-2-2-4-2022-02-22
https://airflow.apache.org/docs/apache-airflow/stable/release_notes.html#airflow-2-2-4-2022-02-22
https://github.com/apache/airflow/blob/v2-2-stable/airflow/providers/apache/hive/sensors/metastore_partition.py#L46
https://github.com/apache/airflow/blob/v2-2-stable/airflow/providers/apache/hive/sensors/metastore_partition.py#L46
https://github.com/apache/airflow/blob/v2-2-stable/airflow/providers/apache/hive/sensors/metastore_partition.py#L46
https://airflow.apache.org/docs/apache-airflow/stable/concepts/deferring.html#deferring-writing
https://airflow.apache.org/docs/apache-airflow/stable/concepts/deferring.html#deferring-writing
https://www.astronomer.io/blog/the-astronomer-providers-package-a-better-option-for-long-running-tasks/
https://www.astronomer.io/blog/the-astronomer-providers-package-a-better-option-for-long-running-tasks/


46 47

For the moment, data-driven scheduling in Airflow does have one significant 
limitation: dataset dependencies don’t (yet) span separate Airflow deploy-
ments. You cannot have a run by a producer task in one deployment trigger-
ing a run by a consumer DAG in another. But for a novel implementation of a 
major new feature, data-driven scheduling is already hugely useful.

As this feature improves, it will become easier to track and visualize data-
sets within Airflow, as well as to manage and improve the quality of the data 
used to produce them. Organizations will be able to better understand how 
and for whom they’re producing datasets, along with what those people and 
teams are doing with them. They will be able to more easily identify redun-
dant, infrequently used, or incomplete datasets, along with datasets that 
contain sensitive information, enabling them to more effectively govern the 
data produced and consumed by self-service users. The datasets capabilities 
we’re getting in Airflow 2.4 are just the beginning.

Ready for more?
 
 
Discover our guides where we cover everything from  

introductory content to advanced tutorials around Airflow.

Discover Guides

https://academy.astronomer.io/plan/astronomer-certification-dag-authoring-for-apache-airflow-exam?utm_campaign=Marketing&utm_source=DAGebookrevised&utm_medium=certificationbanner&utm_content=DAGAuthoringcourse


48 49

Useful Resources 
to Get Started  
with Airflow 

Airflow Essentials

6.

WEBINAR

Intro to Data Orchestration with Apache Airflow 
SEE WEBINAR 

V IDEO

Coding Your First DAG for Beginners 
SEE V IDEO  

WEBINA R

Best Practices For Writing DAGs in Airflow 2 
SEE WEBINA R 

GUIDE

Airflow Executors Explained  
SEE GUIDE 

GUIDE

Managing Your Connections in Apache Airflow  
SEE GUIDE 

GUIDE

DAG Writing Best Practices 
SEE GUIDE 

GUIDE

Using Airflow to Execute SQL 
SEE GUIDE 

GUIDE

Understanding the Airflow UI  
SEE GUIDE 

WEBINAR

Intro to Airflow 
SEE WEBINAR 

http://
https://www.astronomer.io/events/webinars/airflow-101-essential-tips-for-beginners
http://
https://www.astronomer.io/events/webinars/intro-to-data-orchestration-with-airflow
http://
https://www.youtube.com/watch?v=IH1-0hwFZRQ
http://
https://www.astronomer.io/events/webinars/best-practices-writing-dags-airflow-2
http://
https://www.astronomer.io/guides/airflow-executors-explained?utm_campaign=Marketing&utm_source=GettingStartedEBook
http://
https://www.astronomer.io/guides/connections?utm_campaign=Marketing&utm_source=GettingStartedEBook
http://
https://www.astronomer.io/guides/dag-best-practices?utm_campaign=Marketing&utm_source=GettingStartedEBook
http://
https://www.astronomer.io/guides/airflow-sql-tutorial?utm_campaign=Marketing&utm_source=GettingStartedEBook
https://www.astronomer.io/guides/airflow-ui?utm_campaign=Marketing&utm_source=GettingStartedEBook


50 51

GUIDE

Debugging DAGs 
SEE GUIDE 

GUIDE

Rerunning DAGs 
SEE GUIDE 

GUIDE

Airflow Decorators 
SEE GUIDE 

GUIDE

Deferrable Operators 
SEE GUIDE 

Integrations 

WEBINAR

Scaling out Airflow 
SEE WEBINAR 

WEBINAR

Scheduling in Airflow 
SEE WEBINAR 

GUIDE

Integrating Airflow and dbt 
SEE GUIDE 

A RITCL E

Airflow and dbt, Hand in Hand
SEE A RTICL E 

GUIDE

Integrating Airflow and Great Expectations 
SEE GUIDE 

A RITCL E

Building a Scalable Analytics  
Architecture With Airflow and dbt
SEE A RTICL E 

Airflow + dbt 

 Airflow + Great Expectations 

Make the most of Airflow by connecting it to other tools. 

GUIDE

Using TaskGroups in Airflow 
SEE GUIDE 

http://
https://www.astronomer.io/guides/debugging-dags
http://
https://www.astronomer.io/guides/rerunning-dags
http://
https://www.astronomer.io/guides/airflow-decorators
http://
https://www.astronomer.io/guides/deferrable-operators
http://
https://www.astronomer.io/events/webinars/scaling-out-airflow
http://
https://www.astronomer.io/events/webinars/trigger-dags-any-schedule
http://
https://www.astronomer.io/guides/airflow-dbt
https://www.astronomer.io/blog/airflow-and-dbt
http://
https://www.astronomer.io/guides/airflow-great-expectations
https://www.astronomer.io/blog/airflow-dbt-1
https://www.astronomer.io/guides/task-groups?utm_campaign=Marketing&utm_source=GettingStartedEBook


52 53

GUIDE

Executing Azure Data Factory Pipelines with Airflow 
SEE GUIDE 

 Airflow + Azure

GUIDE

Executing Azure Data Explorer Queries with Airflow 
SEE GUIDE 

GUIDE

Orchestrating Azure Container Instances with Airflow 
SEE GUIDE 

GUIDE

Orchestrating Redshift Operations from Airflow 
SEE GUIDE 

 Airflow + Redshift

GUIDE

Using Airflow with SageMaker 
SEE GUIDE 

 Airflow + Sagemaker

 Airflow + Notebooks

GUIDE

Deploying Kedro Pipelines to Apache Airflow 
SEE GUIDE 

 Airflow + Kedro

GUIDE

Orchestrating Databricks Jobs with Airflow 
SEE GUIDE 

 Airflow + Databricks

GUIDE

Executing Notebooks with Airflow 
SEE GUIDE 

http://
https://www.astronomer.io/guides/airflow-azure-data-factory-integration
http://
https://www.astronomer.io/guides/airflow-azure-data-explorer
http://
https://www.astronomer.io/guides/airflow-azure-container-instances
http://
https://www.astronomer.io/guides/airflow-redshift
http://
https://www.astronomer.io/guides/airflow-sagemaker
http://
https://www.astronomer.io/guides/airflow-kedro
http://
https://www.astronomer.io/guides/airflow-databricks
https://www.astronomer.io/guides/executing-notebooks


54 55

GUIDE

Executing Talend Jobs with Airflow 
SEE GUIDE 

 Airflow + Talend

GUIDE

Best Practices Calling AWS Lambda from Airflow 
SEE GUIDE 

 Airflow + AWS Lambda

GUIDE

Error Notifications in Airflow 
SEE GUIDE 

Setting Up Error Notifications in Airflow Using 
Email, Slack, and SLAs

Can’t find  
the integration you’re 
looking for?
Check out the Astronomer Registry — a go-to discovery 

and distribution hub for Apache Airflow integrations.

Browse Registry

https://www.astronomer.io/guides/airflow-talend-integration
(https://www.astronomer.io/events/webinars/testing-airflow-to-bulletproof-your-code)
https://www.astronomer.io/guides/airflow-talend-integration
https://www.astronomer.io/guides/lambda-cloud
(https://www.astronomer.io/events/webinars/testing-airflow-to-bulletproof-your-code)
https://www.astronomer.io/guides/lambda-cloud
(https://www.astronomer.io/events/webinars/testing-airflow-to-bulletproof-your-code)
https://www.astronomer.io/guides/error-notifications-in-airflow
https://hubs.ly/Q01gLCdV0


56 57

About Astronomer 

With its rapidly growing number of downloads and contributors, Airflow is at 
the center of the data management conversation—a conversation Astrono-
mer is helping to drive. 

Our commitment is evident in our people. We’ve got a robust Airflow Engi-
neering team and sixteen active committers on board, including seven PMC 
members: Ash Berlin-Taylor, Kaxil Naik, Daniel Imberman, Jed Cunningham, 
Bolke de Bruin, Sumit Maheshwari, and Ephraim Anierobi. 

A significant portion of the work all these people do revolves around Airflow 
releases—creating new features, testing, troubleshooting, and ensuring that 
the project continues to improve and grow. Their hard work, combined with 

that of the community at large, allowed us to deliver Airflow 2.0 in late 2020, 
Airflow 2.2 in 2021, and Airflow 2.3 and 2.4 in 2022.

7.

With every new release, Astronomer is unlocking more of Airflow’s potential 
and moving closer to the goal of democratizing the use of Airflow, so that all 
members of the data team can work with or otherwise benefit from it. We’ve 
built Astro—the essential data orchestration platform. With the strength and 
vibrancy of Airflow at its core, Astro offers a scalable, adaptable, and effi-
cient blueprint for successful data orchestration.

If you’d like to learn more about how Astronomer drives the Apache Airflow 
project together with the community check out our recent article. 

https://www.astronomer.io/blog/astro-fully-managed-data-orchestration-platform
https://www.astronomer.io/blog/apache-airflow-at-astronomer-data-orchestration
https://www.astronomer.io/blog/apache-airflow-at-astronomer-data-orchestration
http://astronomer.io


58

Thank you 
 

We hope you’ve enjoyed our guide to Airflow. Please follow us on 

Twitter and LinkedIn, and share your feedback, if any.

Start building your 
next-generation data 
platform with Astro

Experts behind this ebook:   
Viraj Parekh  |  Field CTO at Astronomer

Kenten Danas  |  Lead Developer Advocate at Astronomer
Jake Witz  |  Technical Writer at Astronomer

Created by ©Astronomer 2022

Get Started

http://astronomer.io
http://astronomer.io
https://www.astronomer.io/get-astronomer?utm_campaign=Marketing&utm_source=EbookDag&utm_term=GetAstronomer
https://twitter.com/intent/tweet?url=https://www.astronomer.io/ebooks/airflow-101&text=A%20free%20ebook%20about%20the%20best-in-class%20open%20source%20technology%20for%20data%20orchestration
https://www.linkedin.com/sharing/share-offsite/?url=https://www.astronomer.io/ebooks/airflow-101/



