

Data testing with

the practical guide

:

Discover the goals of testing with dbt, types of
tests, principles & best practices for an effective
testing strategy.

GUIDE

Table of Contents

What is data testing? Testing vs. observability……………….……………….…………………….3

Data testing with dbt ……………….……………….……………….……………….……………….………………………………………..……4

Types of data tests for dbt……………….……………….……………….……………….……………………………….……………….4

Assertion tests……………….……………….……………….……………….……………….……………….……………….……………….……………...5

Using live vs. mock data for assertions……………….……………….……………….……………….……………….……………….6

Tests based on live data (dbt tests)……………….……………….……………….……………….……………….……………….……7

Mock (unit) tests for dbt……………….……………….……………….……………….……………….……………….……………….……….….12

Data Diff……………….……………….……………….……………….……………….……………….……………….……………….……………….…………..14

A comparison between types of dbt testing……………….……………….……………….……………….……………….……19

Principles for effective data testing with dbt……………….……………….………………………...20

1

What is data testing? Testing vs. observability

You’re here to learn more about using tests in dbt. But what is data testing in the first
place, and how is it different from data observability?

Data testing is the process of ensuring data quality by validating the code that
processes data before its deployed to production. The goal of testing is to prevent data
quality regressions when data-processing code (e.g., dbt SQL) is written or modified.
Data testing is about proactively identifying issues before they even happen.

Data testing can help detect and prevent issues like:

A change in a SQL column definition causing a major change in a
critical business metric

1

Code refactoring causing an unexpected change in a KPI downstream 2

Column renaming breaking a downstream dashboard or reverse-ETL
sync to Salesforce

3

You’ve probably also heard of data observability, but its not the same thing as data
testing. Observability is aboutcontinuously monitoring the state of data thats already in
production (e.g., what tables are there and what kind of data is in them) and identifying
anomalies.

Observability helps identify live data quality issues in real-time, like:

A column has an unusual % of NULL values since yesterday 1

An analytics event stopped sending 2

A rollup of a revenue column is half of the expected value 3

2

3

But this all happens after your code is merged and your changes are live. The big
limitation of data observability is that it applies to data in production and is thus
reactive: it detects problems that have already occurred in production. We believe

It’s critically important to address data quality proactively with testing as
part of a well-formed data quality strategy.

Data testing with dbt

Before we get into the specifics of different types of dbt tests, it’s worth stepping back
and taking a look at how dbt tests work more broadly.

The concept of a dbt test is really simple: you’re making sure the data in your dbt
project (a specific model, or many) matches the format that you expect it to. You might
be checking for NULL values, asserting that values fall within an expected range, or even
just comparing what a table looks like before and after a major code change. Most of
the kinds of tests you run will be based on a code change: you’re making an update to a
model and want to understand the impact of that change.

Logistically, you can define your native dbt tests in a few different places throughout
your project, and then run `dbt test` manually or as part of your CI process. But we’ll
see that there are other, more powerful ways to ensure data quality in your dbt project
using tools like data-diff.

Types of data tests for dbt

There are three major types of testing techniques for dbt code, each with pros and
cons. The first two are native to dbt, while the last is a separate open-source package
called data-diff.

https://www.datafold.com/blog/the-day-you-stopped-breaking-your-data
https://docs.getdbt.com/reference/test-configs

4

Assertion tests on live data – dbt’s built-in testing framework for
running assertions on your project’s data

1

Assertion tests on mock data – more similar to unit tests in traditional
software engineering

2

Regression and integration tests – analyzing the difference between
your tables pre- and post-code changes

3

Assertion tests

Assertion tests, like assertions in software engineering, validate whether your dbt SQL
code produces the expected results based on the input data. Here’s how it works:

input data
dbt model
SQL code

output
data

pass

fail

test
SQL

Simple enough, but there are two types of assertion tests you can run in dbt: tests on
live data in your project or tests on mock data.

5

Using live vs. mock data for assertions

An essential distinction in assertion testing is where the input and output data for the
test come from. The input/output data for the test can be:

Live (built-in dbt tests) – the dbt model SQL runs against the data in the development
or production environment in your data warehouse. The input and output data can
change over time.

Mock (unit tests) – the input and output data for testing a dbt model are predefined
and stay constant over time (unless a developer makes changes).

The term “mock” comes from testing in software engineering. It means
that the inputs and outputs are not real, but rather simulated (mocked),
which allows for isolating the system components. In data engineering,
mocking allows teams to separate changes in data from changes in code
to reduce false positives and negatives.

We’ll dive deeper into this distinction and when you should utilize each type of test. But
before then, the chart below gives a higher-level overview of the use cases for each:

6

Let’s dive in.

Can be prone to noise due to changing
data

Tests precisely what’s defined

Included in dbt Core and dbt Cloud Exist as standalone packages

Just write a SQL assertion Need to create mock input/output
datasets

Increase compute/runtime with data
volume

No dependencies on live data

Medium

Official

Low

Medium/Low

High

Community

High

High

Specificity

dbt support status

Effort to implement

Scalability

Live assertion tests
(dbt test)

Mock assertion tests
(unit tests)

Code and data

Development
Deployment (CI/CD)
Production

Can be used to validate data in prod

Variable

Code

Development
Deployment (CI/CD)

Constant

Test scope

Environment
context

Test input/output
data Based on the data in the warehouse Mocked

Tests based on live data (dbt tests)

dbt tests run on live data (i.e., the data in your project) by default. The basic gist is as follows:
you write SELECT statements in SQL queries to confirm that the data models, data sources,,

https://docs.getdbt.com/docs/build/tests

7

and other resources in a dbt project work as intended. These tests are designed to
return rows or records that fail to meet the assertion criteria specified in the test. They
can be as simple as asserting that a column has no NULL values or as complex as
comparing the values of one column to an aggregation of another.

An important design principle of dbt tests is that these SELECT statements attempt to
find failing records: records that would show a test to be incorrect. This is sort of the
opposite framing from normal software testing, where certain conditions are asserted
to be correct or true.

Within the spectrum of live tests, you can define two types of assertions:

Singular tests – custom tests meant to validate specific cases for a
given model

1

Generic tests (macros) – tests that test for common scenarios to be
used across multiple models, i.e., reusable tests

2

Singular tests

When a testing scenario is unique to a single case, and you can’t envision applying it
across multiple models, you’d write a singular test. Singular tests are focused, written as
typical SQL statements, and stored in SQL files (or, in simpler cases, elsewhere) in your
dbt project.

Imagine you’re an analytics engineer at a SaaS company, and you’re looking to add some
tests to your dbt project. Your data model has an append-only events table called
stg_button_events that records all types of button clicks in the web app. There’s also a
downstream table called button_clicks_by_day that aggregates the count of button clicks
per day for each button in a column called number_of_clicks.

You can write a singular test to ensure the number of button clicks per day is always
greater than or equal to zero, and is never negative. The test would be placed in a SQL file
in your dbt project, something like tests/assert_button_clicks_by_day_not_negative.sql

https://docs.getdbt.com/docs/building-a-dbt-project/tests#singular-tests

select
 *
from {{ ref('button_clicks_by_day') }}
where number_of_clicks < 0

The test will fail if the SQL statement returns any rows, i.e. the number of clicks for a
given button on a given day is less than zero.

Generic tests

When a testing scenario is generalizable to several cases or models, it should be implemented
as a generic test. Generic tests are written and stored in YAML files, with parameterized
queries that can be used across different dbt models. Back to our example: if the concept of
testing for rows with a negative value is something you think might be relevant to multiple
columns in your project, you could rewrite the above test as generic:

{% test column_is_not_negative(model, column_name) %}

select
 {{ column_name }} as should_be_non_negative
 from {{ model }}
where {{ column_name }} < 0

{% endtest %}

You’ll note that we replaced the specific column we wanted to test in the previous
example with`{{column_name}}`, and the table with `{{model}}`. Now, we can reuse this
test in any model, for any column, using a quick bit of YAML:

models:
 - name: button_clicks_by_day
 columns:
 - name: number_of_clicks
 tests:
 - column_is_not_negative

8

9

Standard generic tests

Out of the box, dbt includes four generic tests already defined: unique, not_null,
accepted_values, and relationships. You can use these in your model YAML without defining
them up front in a separate file:

unique – tests that all the values in a given column are unique

not_null – tests that all the values in a given column are not null

accepted_values – you pass an array of accepted values, and it tests
that all the values in a given column intersect with that array

relationships – tests for referential integrity with another table (i.e. a
join will not miss any rows)

Here's a full example from your company’s SaaS app using those tests on the
button_clicks_by_day model:

models: - name: button_clicks_by_day
 description: This table aggregates data from stg_button_events to
summarize the daily clicks per button.
 columns:
 - name: id
 tests:
 - unique
 - not_null
 description: Each row is associated with a unique combination
of button and date.
- name: button_id
 description: Foreign key to the buttons table.
 tests:
 - not_null
 - relationships:
 to: ref('stg_buttons')
 field: id
- name: button_type
 description: '{{ doc("button_type") }}'
 tests:
 - not_null
 - accepted_values:
 values: ['CTA', 'Administrative', 'External_Link', 'Other']

https://docs.getdbt.com/docs/build/tests#generic-tests

10

Though it’s only these 4 that are included natively in the core dbt module, the
community has built a rich ecosystem of packages with pre-defined generic tests, like
dbt-utils and dbt-expectations.

Here are a couple of examples of useful generic tests from the dbt-utils package:

equal_rowcount
The following test checks to confirm that two models, date_spine and
new_users_per_day, have the same number of rows, i.e., there is a user
count for each date in the calendar.

models:
 - name: new_users_per_day
 tests:
 - dbt_utils.equal_rowcount:
 compare_model: ref('date_spine')

unique_combination_of_columns
The following test checks to ensure every row in button_clicks_by_day
represents a unique combination of date and button_id.

models:
 - name: button_clicks_by_day
 tests:
 - dbt_utils.unique_combination_of_columns:
 combination_of_columns:
 - date
 - button_id

And here are a few from the dbt_expectations package:

https://hub.getdbt.com/dbt-labs/dbt_utils/latest/
https://hub.getdbt.com/calogica/dbt_expectations/latest/
https://www.datafold.com/blog/dbt-expectations

11

expect_table_aggregation_to_equal_other_table
The following test checks to ensure the number of unique date values in
button_clicks_by_day matches the number of unique date values in the
date_spine model.

models:
 - name: button_clicks_by_day
 tests:
 -
dbt_expectations.expect_table_aggregation_to_equal_other_table:
 expression: count(distinct date)
 compare_model: ref('date_spine')
 compare_expression: count(distinct date)

Check out Advanced Testing with dbt-expectations to learn more about using dbt-
expectations for sophisticated tests.

Mock (unit) tests for dbt

The core concept of mock tests is that you execute dbt SQL code against a predefined,
mocked dataset as opposed to live data in your data warehouse. This allows focusing the
test on validating the code logic, isolating it from potential changes in the actual data in
your warehouse. Because of that isolation, mock tests are fast and highly scalable.

As of today, there is no official support for mocking in dbt Core or dbt Cloud; the feature is
in the discussion stage. Having said that, there are two community-developed dbt
packages that simplify unit testing. Both packages add convenient methods for dealing
with mock data management and differ primarily in how the mock data is curated.

https://www.datafold.com/blog/dbt-expectations
https://github.com/dbt-labs/dbt-core/discussions/6726#discussion-4791505

12

datamocktool

datamocktool utilizes dbt seed functionality and relies on CSV as the main format for
your mock data.

Using datamocktool, you can create mock CSV seeds for input and output test data.
The input seed replaces the source/ref for a tested model during the test execution,
and the output seed is used to validate the model output. Back to our SaaS example:

models:
 - name: button_clicks_by_day
 tests:
 - dbt_datamocktool.unit_test:
 input_mapping:
 source('saas_app', 'raw_button_events'): ref('dmt__raw_button_events')
 expected_output: ref('dmt__expected_button_events')
 depends_on:
 - ref('raw_button_events')
 columns: …

An advantage of using CSVs to define mock data is the ability to curate them in
spreadsheets or easily generate them programmatically in Python / Pandas.

dbt-unit-testing

dbt-unit-testing is a SQL-first unit testing framework. Unlike datamocktool, it relies on
SQL to define the inputs and outputs of the tests instead of CSVs. One advantage of
defining mock data in SQL is the ability to use Jinja macros to autogenerate datasets.
However, some may find this cumbersome and prefer CSV seeds.

https://github.com/mjirv/dbt-datamocktool
https://docs.getdbt.com/docs/build/seeds
https://github.com/EqualExperts/dbt-unit-testing

13

{{ config(tags=['unit-test']) }}

{% call dbt_unit_testing.test('errors', 'should aggregate average
errors per button to calculate button_error_rate') %}

 {% call dbt_unit_testing.mock_ref ('stg_buttons') %}
 select 1 as id, '' as button_name, '' as button_description,
 select 2 as id, '' as button_name, '' as button_description
 {% endcall %}

 {% call dbt_unit_testing.mock_ref ('stg_button_events') %}
 select 1001 as id, 1 as button_id, true as error
 UNION ALL
 select 1002 as id, 1 as button_id, false as error
 {% endcall %}

 {% call dbt_unit_testing.expect() %}
 select 1 as button_id, 0.5 as error_rate
 {% endcall %}
{% endcall %}

Further reading: learn how Shopify built a unit-testing framework internally.

Data Diff

The two methods of testing we’ve covered thus far – live and mock data assertions –
both rely on the traditional assertion-based testing model. There’s one major issue with
assertions, though: scalability. Each test must be manually defined, implemented, and
tuned, making it virtually impossible to cover all potential failure scenarios. Assertions
also risk blind spots: we write tests to check for failure scenarios that either have
occurred or that we anticipate may occur, but many failure modes are impossible to
anticipate. In other words, we don't know what we don't know when it comes to testing.

This is where data diff – a tool for comparing datasets – can come in handy. Similar to
how one runs dbt tests on the staging environment to validate changes to dbt SQL,

https://www.datafold.com/blog/data-quality-meetup-4#s3

14

you can run data diff to compare staging data with production data to see how each code
change will impact the data practically. The power of data diff is in its ability to highlight
all changes and therefore help you catch all potential issues without having to write tests
beforehand.

Data-Diff

Git Diff

Development data

Raw data

Production data

Dev-
Branch

Main

data diff compares data in a similar way git diff compares code

Let’s take a look at how you can use open-source data-diff to implement testing for your
dbt project.

15

Using open-source data-diff with dbt in development

data-diff is open-source and is easy to integrate into your dbt project. After installation,
you can run data-diff after executing the `dbt run` command locally to see how the most
recent code change impacted your data. The diff shows you useful information like how
many rows were added and removed, which values changed in which columns, and more.

data-diff supports all major cloud data warehouses and even lets you compare tables
across databases.

https://github.com/datafold/data-diff

16

Getting data-diff into your CI process, and the cloud UI

Where data-diff gets really powerful is the ability to integrate it into your CI process.
When you make a code change in dbt and open a Pull Request in GitHub, you can
configure data-diff to run automatically and show results inline:

17

You can also get access to a powerful UI that helps visualize your data diffs:

Like dbt, data-diff is open-core but also offers a cloud component. The CI integration and
cloud UI are part of the cloud version of data-diff, and arent available in the simpler open-
source package.

https://www.datafold.com/

18

Can slow down the project if
the input data grows large

Independent of the data volume Scales well using sampling and
filtering

Testing general rules
such as uniqueness,
value ranges, and sets,
referential integrity

Testing complex
business logic

Understanding the
impact of every code
change on data and
downstream models

Poor Excellent Excellent

Optimal for

Scalability
with data
volume

dbt tests mock tests data diff

Medium High Low

Medium Low High

Relatively easy to add standard
tests

Given the high effort to set up,
should be applied to the most
critical and complex logic only

Automatically captures all
changes to data

Requires test cases to be
written

Requires test cases and
input/output dataset curation

Doesn’t require manual test
setup

Medium High Medium

Effort to
implement

Expected
code
coverage

Specificity
Reacts to changes in code and
data

Focused on testing code given
fixed data inputs

Requires the user to interpret
results

How clear the test
results are

A comparison between types of dbt testing

We’ve covered three types of testing for your dbt project: two types of assertion-based
testing and data diffing. A healthy data quality regimen will use several types of tests, and
they’re not one size fits all. Here’s a quick comparison chart:

19

Principles for effective data testing with dbt

Now that we’ve covered the specifics of tests in dbt, the final section of this guide
is going to run through how to use those tests effectively. Our team works with
some of the most advanced organizations in the world when it comes to data
quality, and we’ve gathered general principles for approaching data testing with
dbt. These are designed to be helpful to both mature dbt deployments and teams
just getting starting with dbt.

1) Implement basic assertion tests

The idea of writing an assertion test for every possible failure case probably seems daunting;
just start with essential tests first. The CUR framework defines three types of easy tests:

Completeness (testing for NULL values) 1

Uniqueness (testing primary key uniqueness) 2

Referential Integrity (e.g. ensuring that joining related tables wont miss
any records)

3

Each of these test types is included in the generic dbt test functionality, making it easy to
add to every model.

2) Test during CI

While it’s alright to start small, organizations serious about data quality should testing of
every code change. To do that reliably, every code change that is proposed for a dbt
project (pull/merge request) has to be tested during CI.

20

Setting up a CI pipeline for your dbt project is very straightforward if you're using dbt
Cloud. For dbt Core users, you can implement similar functionality by using custom CI
runners like Github Actions to build and test your data before deploying code to
production.

3) Keep your tests healthy

As the number of tests in your dbt project grows, it’s essential to keep good test hygiene.
The #1 rule of test hygiene is never to proceed to deploy with failing tests. That means if
certain tests fail, the developer needs to either fix their code, update the test, or remove
the test completely. When the team starts to deploy with failing tests, the tests lose their
relevance and value.

We’ve seen organizations define owners for each model, which can help make the process
of updating tests easier. Owners are responsible for the entire model and the tests
associated with that model.

4) Use tests as documentation

Besides validating code correctness, assertion tests are a valuable source of knowledge
about the data, helping others on the team familiarize themselves with the model's
contents and behavior of data without having to spend time extensively querying it.

For example, by including a simple `unique` test to a column, you communicate to others
that this column is unique, and they wouldn’t need to verify that or write excessive
deduplication logic when querying that data.

5) Establish and enforce testing guidelines

Writing and maintaining tests is yet another activity that data teams “have” to do. To ensure
great data quality while minimizing the burden on the team, it’s best to establish project-

https://docs.getdbt.com/docs/deploy/cloud-ci-job
https://docs.getdbt.com/docs/deploy/cloud-ci-job
https://www.datafold.com/blog/accelerating-dbt-core-ci-cd-with-github-actions-a-step-by-step-guide

21

wide testing guidelines that define what types of tests should be written. For example,
you may require that each dimension table should have at least one uniqueness test,
and so on.

Enforcing testing guidelines is essential to maintaining a healthy codebase. And just like
with the tests themselves, it’s most effective when fully automated as part of the CI
process.

dbt-coverage is an excellent, highly configurable package for calculating and reporting
on the code coverage for your dbt project. You can plug it into CI to ensure that every
code change or new model complies with the defined testing guidelines

6) Implement data-diff

Data diffing is a great place to start with testing. From the very first run, it adds visibility
into the data and helps develop faster and with higher confidence. And unlike assertion
tests, it doesn’t require developers to create test cases in advance.

Open-source data-diff takes a few minutes to install and configure, and makes it easy to
visualize the downstream impacts of your code changes in dbt. And for a richer
experience, you can automate testing in CI (plus use Datafold’s intuitive cloud UI) to make
sure bad dbt code never makes it into production.

https://github.com/slidoapp/dbt-coverage
https://docs.datafold.com/development_testing/open_source
https://www.datafold.com/data-deployment-testing

Data testing with dbt: the practical guide
Goals of testing with dbt, types of tests,
principles & best practices for an effective
testing strategy.

Datafold, 2023

support@datafold.com
datafold.com

