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What is data testing? Testing vs. observability 

You’re here to learn more about using tests in dbt. But what is data testing in the first 
place, and how is it different from data observability?  
  
Data testing is the process of ensuring data quality by validating the code that 
processes data before its deployed to production. The goal of testing is to prevent data 
quality regressions when data-processing code (e.g., dbt SQL) is written or modified. 
Data testing is about proactively identifying issues before they even happen.  
  
Data testing can help detect and prevent issues like: 

A change in a SQL column definition causing a major change in a 
critical business metric 

1 

Code refactoring causing an unexpected change in a KPI downstream 2 

Column renaming breaking a downstream dashboard or reverse-ETL 
sync to Salesforce 

3 

You’ve probably also heard of data observability, but its not the same thing as data 
testing. Observability is aboutcontinuously monitoring the state of data thats already in 
production (e.g., what tables are there and what kind of data is in them) and identifying 
anomalies.  
  
Observability helps identify live data quality issues in real-time, like: 

A column has an unusual % of NULL values since yesterday 1 

An analytics event stopped sending 2 

A rollup of a revenue column is half of the expected value 3 

2 
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But this all happens after your code is merged and your changes are live. The big 
limitation of data observability is that it applies to data in production and is thus 
reactive: it detects problems that have already occurred in production. We believe 

It’s critically important to address data quality proactively with testing as 
part of a well-formed data quality strategy. 

Data testing with dbt 

Before we get into the specifics of different types of dbt tests, it’s worth stepping back 
and taking a look at how dbt tests work more broadly.  
 
The concept of a dbt test is really simple: you’re making sure the data in your dbt 
project (a specific model, or many) matches the format that you expect it to. You might 
be checking for NULL values, asserting that values fall within an expected range, or even 
just comparing what a table looks like before and after a major code change. Most of 
the kinds of tests you run will be based on a code change: you’re making an update to a 
model and want to understand the impact of that change. 
  
Logistically, you can define your native dbt tests in a few different places throughout 
your project, and then run `dbt test` manually or as part of your CI process.  But we’ll 
see that there are other, more powerful ways to ensure data quality in your dbt project 
using tools like data-diff. 

Types of data tests for dbt 

There are three major types of testing techniques for dbt code, each with pros and 
cons. The first two are native to dbt, while the last is a separate open-source package 
called data-diff. 

https://www.datafold.com/blog/the-day-you-stopped-breaking-your-data
https://docs.getdbt.com/reference/test-configs
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Assertion tests on live data – dbt’s built-in testing framework for 
running assertions on your project’s data 

1 

Assertion tests on mock data – more similar to unit tests in traditional 
software engineering 

2 

Regression and integration tests – analyzing the difference between 
your tables pre- and post-code changes 

3 

Assertion tests 

Assertion tests, like assertions in software engineering, validate whether your dbt SQL 
code produces the expected results based on the input data. Here’s how it works:  

input data 
dbt model 
SQL code 

output 
data 

pass 

fail 

test  
SQL 

Simple enough, but there are two types of assertion tests you can run in dbt: tests on 
live data in your project or tests on mock data. 
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Using live vs. mock data for assertions 

An essential distinction in assertion testing is where the input and output data for the 
test come from. The input/output data for the test can be: 
 

Live (built-in dbt tests) – the dbt model SQL runs against the data in the development 
or production environment in your data warehouse. The input and output data can 
change over time. 
  
Mock (unit tests) –  the input and output data for testing a dbt model are predefined 
and stay constant over time (unless a developer makes changes). 

The term “mock” comes from testing in software engineering. It means 
that the inputs and outputs are not real, but rather simulated (mocked), 
which allows for isolating the system components. In data engineering, 
mocking allows teams to separate changes in data from changes in code 
to reduce false positives and negatives. 

We’ll dive deeper into this distinction and when you should utilize each type of test. But 
before then, the chart below gives a higher-level overview of the use cases for each: 
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Let’s dive in. 

Can be prone to noise due to changing 
data 

Tests precisely what’s defined 

Included in dbt Core and dbt Cloud Exist as standalone packages 

Just write a SQL assertion Need to create mock input/output 
datasets 

Increase compute/runtime with data 
volume 

No dependencies on live data 

Medium 

Official 

Low 

Medium/Low 

High 

Community 

High 

High 

Specificity 

dbt support status 

Effort to implement 

Scalability 

Live assertion tests   
(dbt test) 

Mock assertion tests   
(unit tests) 

Code and data 

Development  
Deployment (CI/CD)  
Production 

Can be used to validate data in prod 

Variable 

Code 

Development  
Deployment (CI/CD) 

Constant 

Test scope 

Environment 
context 

Test input/output 
data Based on the data in the warehouse Mocked 

Tests based on live data (dbt tests) 

dbt tests run on live data (i.e., the data in your project) by default. The basic gist is as follows: 
you write SELECT statements in SQL queries to confirm that the data models, data sources,, 

https://docs.getdbt.com/docs/build/tests
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and other resources in a dbt project work as intended. These tests are designed to 
return rows or records that fail to meet the assertion criteria specified in the test. They 
can be as simple as asserting that a column has no NULL values or as complex as 
comparing the values of one column to an aggregation of another. 
 
An important design principle of dbt tests is that these SELECT statements attempt to 
find failing records: records that would show a test to be incorrect. This is sort of the 
opposite framing from normal software testing, where certain conditions are asserted 
to be correct or true. 
 
Within the spectrum of live tests, you can define two types of assertions: 

Singular tests – custom tests meant to validate specific cases for a 
given model 

1 

Generic tests (macros) – tests that test for common scenarios to be 
used across multiple models, i.e., reusable tests 

2 

Singular tests 

When a testing scenario is unique to a single case, and you can’t envision applying it 
across multiple models, you’d write a singular test. Singular tests are focused, written as 
typical SQL statements, and stored in SQL files (or, in simpler cases, elsewhere) in your 
dbt project. 
  
Imagine you’re an analytics engineer at a SaaS company, and you’re looking to add some 
tests to your dbt project. Your data model has an append-only events table called 
stg_button_events that records all types of button clicks in the web app. There’s also a 
downstream table called button_clicks_by_day that aggregates the count of button clicks 
per day for each button in a column called number_of_clicks.  
  
You can write a singular test to ensure the number of button clicks per day is always 
greater than or equal to zero, and is never negative. The test would be placed in a SQL file 
in your dbt project, something like tests/assert_button_clicks_by_day_not_negative.sql 

https://docs.getdbt.com/docs/building-a-dbt-project/tests#singular-tests


 

 

 

 

 

select  
  * 
from {{ ref('button_clicks_by_day') }} 
where number_of_clicks < 0 

The test will fail if the SQL statement returns any rows, i.e. the number of clicks for a 
given button on a given day is less than zero. 

Generic tests 

When a testing scenario is generalizable to several cases or models, it should be implemented 
as a generic test. Generic tests are written and stored in YAML files, with parameterized 
queries that can be used across different dbt models. Back to our example: if the concept of 
testing for rows with a negative value is something you think might be relevant to multiple 
columns in your project, you could rewrite the above test as generic: 

{% test column_is_not_negative(model, column_name) %} 
 
select 
    {{ column_name }} as should_be_non_negative 
  from {{ model }} 
where {{ column_name }} < 0 
 
{% endtest %} 

 

You’ll note that we replaced the specific column we wanted to test in the previous 
example with`{{column_name}}`, and the table with `{{model}}`. Now, we can reuse this 
test in any model, for any column, using a quick bit of YAML: 

models: 
  - name: button_clicks_by_day 
    columns: 
      - name: number_of_clicks 
        tests: 
          - column_is_not_negative 
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Standard generic tests 

Out of the box, dbt includes four generic tests already defined: unique, not_null, 
accepted_values, and relationships. You can use these in your model YAML without defining 
them up front in a separate file: 

unique – tests that all the values in a given column are unique 

not_null – tests that all the values in a given column are not null 

accepted_values – you pass an array of accepted values, and it tests 
that all the values in a given column intersect with that array 

relationships – tests for referential integrity with another table (i.e. a 
join will not miss any rows) 

Here's a full example from your company’s SaaS app using those tests on the 
button_clicks_by_day model: 

models:  - name: button_clicks_by_day 
    description: This table aggregates data from stg_button_events to  
summarize the daily clicks per button.  
    columns: 
      - name: id 
        tests: 
          - unique 
          - not_null 
        description: Each row is associated with a unique combination 
of button and date.        
- name: button_id 
        description: Foreign key to the buttons table. 
        tests: 
          - not_null 
          - relationships: 
              to: ref('stg_buttons') 
              field: id      
- name: button_type 
        description: '{{ doc("button_type") }}' 
        tests: 
          - not_null 
          - accepted_values: 
              values: ['CTA', 'Administrative', 'External_Link', 'Other'] 

https://docs.getdbt.com/docs/build/tests#generic-tests
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Though it’s only these 4 that are included natively in the core dbt module, the 
community has built a rich ecosystem of packages with pre-defined generic tests, like 
dbt-utils and dbt-expectations.  
  
Here are a couple of examples of useful generic tests from the dbt-utils package: 

equal_rowcount  
The following test checks to confirm that two models, date_spine and 
new_users_per_day, have the same number of rows, i.e., there is a user 
count for each date in the calendar. 

models: 
  - name: new_users_per_day 
    tests: 
      - dbt_utils.equal_rowcount: 
          compare_model: ref('date_spine') 

unique_combination_of_columns  
The following test checks to ensure every row in button_clicks_by_day 
represents a unique combination of date and button_id. 

models: 
  - name: button_clicks_by_day 
  tests: 
    - dbt_utils.unique_combination_of_columns: 
        combination_of_columns: 
          - date 
          - button_id 

And here are a few from the dbt_expectations package: 

https://hub.getdbt.com/dbt-labs/dbt_utils/latest/
https://hub.getdbt.com/calogica/dbt_expectations/latest/
https://www.datafold.com/blog/dbt-expectations
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expect_table_aggregation_to_equal_other_table  
The following test checks to ensure the number of unique date values in 
button_clicks_by_day matches the number of unique date values in the 
date_spine model. 

models: 
  - name: button_clicks_by_day 
    tests: 
      - 
dbt_expectations.expect_table_aggregation_to_equal_other_table: 
          expression: count(distinct date) 
          compare_model: ref('date_spine') 
          compare_expression: count(distinct date) 

Check out Advanced Testing with dbt-expectations to learn more about using dbt-
expectations for sophisticated tests. 

Mock (unit) tests for dbt 

The core concept of mock tests is that you execute dbt SQL code against a predefined, 
mocked dataset as opposed to live data in your data warehouse. This allows focusing the 
test on validating the code logic, isolating it from potential changes in the actual data in 
your warehouse. Because of that isolation, mock tests are fast and highly scalable. 
  
As of today, there is no official support for mocking in dbt Core or dbt Cloud; the feature is 
in the discussion stage. Having said that, there are two community-developed dbt 
packages that simplify unit testing. Both packages add convenient methods for dealing 
with mock data management and differ primarily in how the mock data is curated. 

https://www.datafold.com/blog/dbt-expectations
https://github.com/dbt-labs/dbt-core/discussions/6726#discussion-4791505
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datamocktool 

datamocktool utilizes dbt seed functionality and relies on CSV as the main format for 
your mock data.  
  
Using datamocktool, you can create mock CSV seeds for input and output test data. 
The input seed replaces the source/ref for a tested model during the test execution, 
and the output seed is used to validate the model output. Back to our SaaS example:  

models: 
  - name: button_clicks_by_day 
    tests: 
      - dbt_datamocktool.unit_test: 
          input_mapping: 
            source('saas_app', 'raw_button_events'): ref('dmt__raw_button_events') 
          expected_output: ref('dmt__expected_button_events') 
          depends_on: 
            - ref('raw_button_events') 
    columns: … 

An advantage of using CSVs to define mock data is the ability to curate them in 
spreadsheets or easily generate them programmatically in Python / Pandas. 

dbt-unit-testing 

dbt-unit-testing is a SQL-first unit testing framework. Unlike datamocktool, it relies on 
SQL to define the inputs and outputs of the tests instead of CSVs. One advantage of 
defining mock data in SQL is the ability to use Jinja macros to autogenerate datasets. 
However, some may find this cumbersome and prefer CSV seeds. 

https://github.com/mjirv/dbt-datamocktool
https://docs.getdbt.com/docs/build/seeds
https://github.com/EqualExperts/dbt-unit-testing
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{{ config(tags=['unit-test']) }} 
 
 
{% call dbt_unit_testing.test('errors', 'should aggregate average 
errors per button to calculate button_error_rate') %} 
   
  {% call dbt_unit_testing.mock_ref ('stg_buttons') %} 
    select 1 as id, '' as button_name, '' as button_description, 
    select 2 as id, '' as button_name, '' as button_description 
  {% endcall %} 
   
  {% call dbt_unit_testing.mock_ref ('stg_button_events') %} 
    select 1001 as id, 1 as button_id, true as error 
    UNION ALL 
    select 1002 as id, 1 as button_id, false as error 
  {% endcall %} 
 
 
  {% call dbt_unit_testing.expect() %} 
    select 1 as button_id, 0.5 as error_rate 
  {% endcall %} 
{% endcall %} 
 

Further reading: learn how Shopify built a unit-testing framework internally. 

Data Diff 

The two methods of testing we’ve covered thus far – live and mock data assertions – 
both rely on the traditional assertion-based testing model. There’s one major issue with 
assertions, though: scalability. Each test must be manually defined, implemented, and 
tuned, making it virtually impossible to cover all potential failure scenarios. Assertions 
also risk blind spots: we write tests to check for failure scenarios that either have 
occurred or that we anticipate may occur, but many failure modes are impossible to 
anticipate. In other words, we don't know what we don't know when it comes to testing. 
 
This is where data diff – a tool for comparing datasets – can come in handy. Similar to 
how one runs dbt tests on the staging environment to validate changes to dbt SQL, 

https://www.datafold.com/blog/data-quality-meetup-4#s3


 

 

 

 

 

14 

you can run data diff to compare staging data with production data to see how each code 
change will impact the data practically. The power of data diff is in its ability to highlight 
all changes and therefore help you catch all potential issues without having to write tests 
beforehand. 

Data-Diff 

Git Diff 

Development data 

Raw data 

Production data 

Dev-
Branch 

Main 

data diff compares data in a similar way git diff compares code 

Let’s take a look at how you can use open-source data-diff to implement testing for your 
dbt project. 
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Using open-source data-diff with dbt in development 

data-diff is open-source and is easy to integrate into your dbt project. After installation, 
you can run data-diff after executing the `dbt run` command locally to see how the most 
recent code change impacted your data. The diff shows you useful information like how 
many rows were added and removed, which values changed in which columns, and more. 

data-diff supports all major cloud data warehouses and even lets you compare tables 
across databases. 

https://github.com/datafold/data-diff
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Getting data-diff into your CI process, and the cloud UI 

Where data-diff gets really powerful is the ability to integrate it into your CI process. 
When you make a code change in dbt and open a Pull Request in GitHub, you can 
configure data-diff to run automatically and show results inline: 
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You can also get access to a powerful UI that helps visualize your data diffs: 

Like dbt, data-diff is open-core but also offers a cloud component. The CI integration and 
cloud UI are part of the cloud version of data-diff, and arent available in the simpler open-
source package. 

https://www.datafold.com/
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Can slow down the project if 
the input data grows large 

Independent of the data volume Scales well using sampling and 
filtering 

Testing general rules 
such as uniqueness, 
value ranges, and sets, 
referential integrity 

Testing complex 
business logic 

Understanding the 
impact of every code 
change on data and 
downstream models 

Poor Excellent Excellent 

Optimal for 

Scalability 
with data 
volume 

dbt tests mock tests data diff 

Medium High Low 

Medium Low High 

Relatively easy to add standard 
tests 

Given the high effort to set up, 
should be applied to the most 
critical and complex logic only 

Automatically captures all 
changes to data 

Requires test cases to be 
written 

Requires test cases and 
input/output dataset curation 

Doesn’t require manual test 
setup 

Medium High Medium 

Effort to 
implement 

Expected 
code 
coverage 

Specificity 
Reacts to changes in code and 
data 

Focused on testing code given 
fixed data inputs 

Requires the user to interpret 
results 

How clear the test 
results are 

A comparison between types of dbt testing 

We’ve covered three types of testing for your dbt project: two types of assertion-based 
testing and data diffing. A healthy data quality regimen will use several types of tests, and 
they’re not one size fits all. Here’s a quick comparison chart: 
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Principles for effective data testing with dbt 

Now that we’ve covered the specifics of tests in dbt, the final section of this guide 
is going to run through how to use those tests effectively. Our team works with 
some of the most advanced organizations in the world when it comes to data 
quality, and we’ve gathered general principles for approaching data testing with 
dbt. These are designed to be helpful to both mature dbt deployments and teams 
just getting starting with dbt. 

1) Implement basic assertion tests 

The idea of writing an assertion test for every possible failure case probably seems daunting; 
just start with essential tests first. The CUR framework defines three types of easy tests: 

Completeness (testing for NULL values) 1 

Uniqueness (testing primary key uniqueness) 2 

Referential Integrity (e.g. ensuring that joining related tables wont miss 
any records) 

3 

Each of these test types is included in the generic dbt test functionality, making it easy to 
add to every model. 

2) Test during CI 

While it’s alright to start small, organizations serious about data quality should testing of 
every code change. To do that reliably, every code change that is proposed for a dbt 
project (pull/merge request) has to be tested during CI. 
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Setting up a CI pipeline for your dbt project is very straightforward if you're using dbt 
Cloud. For dbt Core users, you can implement similar functionality by using custom CI 
runners like Github Actions to build and test your data before deploying code to 
production. 

3) Keep your tests healthy 

As the number of tests in your dbt project grows, it’s essential to keep good test hygiene. 
The #1 rule of test hygiene is never to proceed to deploy with failing tests. That means if 
certain tests fail, the developer needs to either fix their code, update the test, or remove 
the test completely. When the team starts to deploy with failing tests, the tests lose their 
relevance and value. 
 
We’ve seen organizations define owners for each model, which can help make the process 
of updating tests easier. Owners are responsible for the entire model and the tests 
associated with that model. 

4) Use tests as documentation 

Besides validating code correctness, assertion tests are a valuable source of knowledge 
about the data, helping others on the team familiarize themselves with the model's 
contents and behavior of data without having to spend time extensively querying it. 
 
For example, by including a simple `unique` test to a column, you communicate to others 
that this column is unique, and they wouldn’t need to verify that or write excessive 
deduplication logic when querying that data. 

5) Establish and enforce testing guidelines 

Writing and maintaining tests is yet another activity that data teams “have” to do. To ensure 
great data quality while minimizing the burden on the team, it’s best to establish project- 

https://docs.getdbt.com/docs/deploy/cloud-ci-job
https://docs.getdbt.com/docs/deploy/cloud-ci-job
https://www.datafold.com/blog/accelerating-dbt-core-ci-cd-with-github-actions-a-step-by-step-guide
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wide testing guidelines that define what types of tests should be written. For example, 
you may require that each dimension table should have at least one uniqueness test, 
and so on. 
 
Enforcing testing guidelines is essential to maintaining a healthy codebase. And just like 
with the tests themselves, it’s most effective when fully automated as part of the CI 
process. 
 

dbt-coverage is an excellent, highly configurable package for calculating and reporting 
on the code coverage for your dbt project. You can plug it into CI to ensure that every 
code change or new model complies with the defined testing guidelines 

6) Implement data-diff 

Data diffing is a great place to start with testing. From the very first run, it adds visibility 
into the data and helps develop faster and with higher confidence. And unlike assertion 
tests, it doesn’t require developers to create test cases in advance. 
 

Open-source data-diff takes a few minutes to install and configure, and makes it easy to 
visualize the downstream impacts of your code changes in dbt. And for a richer 
experience, you can automate testing in CI (plus use Datafold’s intuitive cloud UI) to make 
sure bad dbt code never makes it into production. 

https://github.com/slidoapp/dbt-coverage
https://docs.datafold.com/development_testing/open_source
https://www.datafold.com/data-deployment-testing
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