
A overview of the templates for deploying the
commercetools API-based commerce platform

Blueprint Architecture for
Modern Commerce

commercetools Blueprint Architecture 2

Table of Content
Executive Summary							 3

Business Issues							 5

Cloud Transformation							 6

Continuous Integration / Continuous					 7
Deployment: End-to-End Ownership					

Microservice/API/Event Based Architecture				 8
						
Why Monoliths with APIs Added On Do Not Work			 9
						
Omnichannel Consumer and Corporate Applications			 9
						
Solution: Create Your Own Cloud Native Architecture			 10
					
Proven Methodology to Rapidly Build, Test and Deploy		 11	
				
What is in the Blueprint?						 12

Architectural Strategy of the Blueprint					 13
						
Blueprint Offerings							 15

Conclusion								 19

About the Author							 19

commercetools Blueprint Architecture 3

Customers now expect commerce to come to them across many different
touchpoints. Combine that with increased pressures on operational costs while
requiring constant innovation are forcing retailers to rapidly modernize their
commerce architecture. Not since ecommerce first became an imperative
during the 1990s have enterprises required such a monumental shift in the way
they engage, deliver content across channels, sell and fulfill. Customer-facing
sales channels have grown from the standard storefront and desktop webstore
to contact points on mobile, television and streaming media, social media and
IoT devices.

The large monolithic applications that were the commerce platform solution of
choice in the 1990s have become costly, burdensome and ineffective at rapidly
adapting to consumer needs. Modern commerce requires the capabilities of
cloud and the flexibility of microservices to rapidly anticipate and respond to
consumer behavior. Only cloud-native, high-speed API, microservice and event-
based architectures allow for rapid application development with unified real-time
data as required by consumer centric applications.

While enterprises realize the need, they often have limited budgets and
limited knowledge of how to transform their architectures. commercetools
is meeting this need with the only API-first, microservice-backed, cloud-native
commerce platform on the market and a publicly available open-source
blueprint architecture that allows enterprises to rapidly transform to a modern
commerce architecture without starting from zero.

Executive Summary

Modern
commerce
requires the
capabilities of
cloud and the
flexibility of
microservices
to rapidly
anticipate
and respond
to consumer
behavior.

commercetools Blueprint Architecture 4

In this paper, we will cover:
•	 How monolithic applications impact the enterprise
•	 How conflicting objectives can be overcome with the blueprint architecture
•	 How to use the commercetools Blueprint to rapidly create your own

microservices commerce architecture

PIM

CRM

OMS

CMS

...

ERP Shop

PIM

CRM

OMS

CMS

...

ShopERP

Channels

Devices

Complexity

Content

Uncertainty

PIM

CRM

OMS

CMS

...

ShopERP

1st Generation
ERP-Focused Setup

2nd Generation
Features in Shop

Next Generation
Features in Ecosystem

Evolution of commerce platforms beginning with onsite monolithic applications to the modern
API-first, microservice-backed, cloud-native commerce platform architectures available today.

E-commerce = additional sales
channels

E-commerce = new business model Digital commerce = part of an
ecosystem

commercetools Blueprint Architecture 5

Once the organization has determined that an API-first, microservice-backed,
cloud-native commerce architecture is the right solution, the inevitable next
question is ‘now what?’. The organization may have some existing applications
with APIs built on top or perhaps small teams have even built a few one-off
microservices exposed as APIs but there is not institutional knowledge around
what or how to transform the organization.

The existing enterprise architecture is typically so complex and interdependent
that the business suffers paralysis regarding where and how to start. Modern
cloud-centric organizational transformation typically has four tracks (see figure
1) that are simultaneously vying for dollars and priority. All need to be in place
to recognize full transformative value, but a big-bang approach is both reckless
and costly.

Priority needs to be given to those capabilities that are the most consumer and
cost focused. Thereby meeting both the revenue and cost reduction goals of
the organization while presenting the highest ROI.

Transformation is typically centered around the following four capability tracks:

Business Issues

 Four interdependent initiatives organizations face
in modernizing their commerce architecture.

CI/CD-End-to-End Ownership

Microservices/ API/
Event Architecture

Omnichannel Consumer
& Corporate

Cloud and Digital
Transformation

commercetools Blueprint Architecture 6

There is more to ‘going to the cloud’ than simply copying your footprint
into someone else’s data center. Cloud transformation is a shift in technical
operations, infrastructure costing and most importantly, the way applications
actually work. The cloud, in turn, becomes the fabric on which the digital
commerce platform is built, operated and grown. The simple ‘lift and shift’ of an
application does little to gain the value of a cloud strategy.

When utilizing a cloud-based architecture, organizations are looking for the
following capabilities from applications:

1.	 DevOps: The IT organization moves to a culture and practice of unifying
software development (Dev) and software operations (Ops). The goal
being shorter development cycles, more frequent deployments, and
more dependable releases, in close alignment with business objectives.
This is done with a focus on automation and monitoring throughout the
development, testing, deployment and operations stages.

2.	 Fully Elastic Consumption: Scaling up and down, in an automated fashion,
based on machine-based monitoring to maintain optimal performance
at the lowest possible cost is typically the biggest benefit of a cloud
transformation. The infrastructure scales up and down based on usage
- even to the point of only existing when required. The need to estimate
server/network usage a year in advance so hardware can be budgeted,
ordered and deployed becomes a thing of the past. A virtually unlimited
set of hardware is available the instant it is needed - and discarded the
moment it is under-utilized.

3.	 Geo-redundancy: Duplicating data centers (DCs) and applications based
on concerns of a statistically unlikely occurrence is an expensive form
of insurance. Even when we optimize the cost spent by running live out
of both data centers and sizing so that normal traffic could be entirely
run from one DC in the event of disaster, it means our insurance policy
only covers us when it matters least. It is not peak, Black Friday or Cyber
Monday. When 70% of sales happen in two months, true geo-redundancy
in the event of a disaster needs to be in place. In an active/passive model,
cloud based geo-redundancy allows your off-DC to be turned off with
near-zero cost while your live-DCs are operating and scaling as designed.
Cloud native models typically run active/active as the need for a passive
environment is typically redundant or unnecessary due to auto-scaling
capabilities.

Cloud Transformation

commercetools Blueprint Architecture 7

Minimizing the time from ideation to launch is an ongoing quest in technology.
With the advent of automation technologies around version control, testing
and deployment, the speed of change can be nearly instantaneous with
multiple deploys per day. The only limitation is how fast change can be coded.
Fixes and updates go from version control to production in a matter of minutes
– vs. the weeks, months or years we face with monolithic applications.

The way code is deployed also changes in the CI/CD world. Three examples are:

1.	 Blue Green Deploys - two identical environments where green hosts the
present production version while blue hosts the upgraded environment.
You run smoke tests or any other tests in the blue environment while you
prime the operating system, cache, etc. When things are fully running and
ready, you point the the load balancer / router to the blue environment,
which now becomes production environment.

2.	 A/B Testing - allows the enterprise to test features in the application for
things like usability, popularity, noticeability, etc. If a feature presents value,
it is rolled out to the remainder of the platform.

3.	 Canary Releases - send out a version of the application to see how it will
perform, integrate with other applications, utilize memory, etc. The idea
here being that no matter how much we test in lower environments, issues
always arise in production. This way the deployment issues are isolated and
can be rolled back before broad release.

Continuous Integration / Continuous
Deployment: End-to-End Ownership

4.	 Rapid, low-cost development: Spinning up new or modified applications
requires minimal investment as the underlying infrastructure is on-
demand. Additionally, public cloud offered SAAS and PAAS solutions allow
for focus on coding applications or configuring for a business need instead
of focusing on deployment, scaling, hardware and data storage. If the
application is not successful, it can be quickly removed with minimal sunk-
costs.

commercetools Blueprint Architecture 8

Microservice/API/Event Based Architecture
In an ideal world, all data and all processes would be available real-time to
any valid application. This is the idea behind the API/Event economy. Simply
put, the idea is that any data or processing is made available the instant it is
required. An API allows you to request or post data to a process. Events,in turn,
notify consuming entities that changes have occurred within the system.

An order is a simple example of how APIs and events work together. An order
may be submitted via an API call while changes to the order state, such as
received or shipped would be posted as events. Events become particularly
interesting as IoT connected devices and artificial intelligence-driven actions
increase in usage.

While the tooling around building development pipelines is part of the process,
it is only a part of what is required. Using a scaled agile development approach
to replace the waterfall methodology required by monolithic applications is
essential as the process matches the organizational structure.

Instead of organizing teams around skill sets; such as DBAs, middle layer
coders, front end developers, operations, etc. Development is organized
around a functionality set and teams become vertical in nature. All skills
required around a given functionality are available within the team. For more
information on this topic, I recommend reading here on how Spotify has
implemented a scaled agile development process.

IoT event based AI mechanism. The AI mechanism reacts to the incoming event
by posting its own event and/or exposing as an API.

ai
Post

Event
Post

Event

APIs

https://medium.com/project-management-learnings/spotify-squad-framework-part-i-8f74bcfcd761

commercetools Blueprint Architecture 9

Why Monoliths with APIs Added On
Do Not Work

In the days of the monolith, all data was stored in one massive database with a
middle tier and view tier built on top. This pattern was duplicated for different
business purposes over and over within the enterprise. Any application that
was going to rely on the monolith’s data would either have to be a part of the
monolith or would need to store a duplicate version of the data. Batch jobs
and ETL (Extraction, Transformation and Loading) became the wiring that held
together corporate architectures.

As needs changed, software vendors added layers on top of the monolith to
expose APIs for use by external applications. This was meant to modify ETL
processes to be less batch in nature but was never intended to fully support
the high-speed scale required for omnichannel commerce. Because the API was
an afterthought of the monolith, it was never meant to be a truly high-speed
entity. Typically, any large load on an API causes the internal processing of the
monolith to slow or fail due to the unexpected processing burden. This meant
duplicating data in caching and content delivery layers in an attempt to cover
up the weaknesses of the system.

The modern commerce platform has highly available, highly scalable APIs exposed
to multiple consumer end points.

In the original retail model, there were two primary touchpoints: storefront
and catalog. Ecommerce came along in the 1990s and the catalog was largely
replaced with the desktop webstore. Thus, organizations typically had one set
of operations for stores and one for ecommerce. The software that supported
this dual front was logically monolithic in nature. Ecommerce was treated as
just another store in many instances and it was fed the data it needed.

Customer touchpoints are everywhere now. While companies are trying to
catch up by building mobile apps, innovative companies like Disney® are
unifying customer experiences online and in parks with their Magic Band while
Amazon uses ‘Dash Buttons’ to allow customers to order with the push of a

Omnichannel Consumer and
Corporate Applications

commercetools Blueprint Architecture 10

Solution: Create Your Own Cloud
Native Architecture

Innovative organizations want to combine the building of a sustainable,
modern architecture with the highest impact customer facing capabilities. The
commercetools Blueprint Architecture for Microservices Commerce gives you a
foundation on which you can build and grow your digital platform.

The Blueprint is designed for focuses on a cloud-native, microservices based
architecture with API and event-based transaction capabilities. The architecture
is useful for interacting with both commercetools and other API based
providers as well as connecting the internal ERP and other legacy systems.

At its core, the Blueprint is a cloud native foundation on which to build the
omnichannel commerce capability that enterprises seek. The Blueprint is
meant to be deployed into the public cloud. The enterprise is the owner of the
deployment, all the code and all the networking. It is a fully stand-alone set of
infrastructure and tools separate from commercetools and other vendors.

The Blueprint creates a level of abstraction between the corporate environment
and providers. The enterprise then can define their own API contracts with
multiple consuming applications. If the supporting component behind the
API changes, consuming applications are unaffected and will not require code
updates or testing. This means that providers can be replaced based on the
value of their APIs vs competitors in the market. By introducing the blueprint
abstraction, the enterprise does not tie their consuming applications directly to
any licensed provider. The enterprise retains control of their public interface.

button. Touchpoints like these are created by building small apps on top of the
API economy. The objective for every retailer should be to allow consumers to
make a purchase everywhere they interact with the brand.

The monolithic nature of the old ecommerce platforms just can not be
modified to handle dozens of simultaneous applications (both internal and
external) all vying for the same instantaneous real-time updated data. They
were built in an era of web only purchasing, not the omnichannel experiences
of the modern shopper.

commercetools Blueprint Architecture 11

The commercetools Blueprint Architecture for Microservices Commerce allows
companies implementing the commercetools platform to rapidly build, test and
deploy a cloud-native, microservice based architecture just as commercetools
uses, in a rapid, reproducible fashion into their own cloud environment.

The Blueprint creates a functional abstraction API, event and service layer with
full CI/CD and auto scaling capabilities that is fully controlled by the enterprise.
The commercetools APIs and events are abstracted away from direct
consuming applications behind a corporate infrastructure.

Proven Methodology to Rapidly Build,
Test and Deploy

Vendor software is obfuscated behind enterprise owned microservices and APIs. Full control of the API interface rests with the
enterprise. All consuming applications engage with enterprise APIs, thereby allowing downstream vendors to be replaced or

upgraded without any consuming application impact.

Legacy
Platform

Enterprise Cloud - Blueprint

Microservice 1 Microservice 2 Microservice 3 Microservice n

API Gateway

Pub / Sub

Internet

Internet

External Provider
(Payments)

commercetools
Platform

External Provider
(Taxes)

External Provider
X

...

...

commercetools Blueprint Architecture 12

Unlike typical blueprints or open source samples, the commercetools
Blueprints are full architectures that can be workable in a very short time
period. If this were a lawn, the commercetools Blueprint would be the sod –
not just seed. While there is effort to deploy and connect, there is a full set of
workable services, development pipelines and connections ready to go.

What is in the Blueprint?
There are multiple blueprints available. Each has a mono-repository and
instructions on how to deploy a fully functional blueprint. In addition, individual
pieces of the Blueprint can be utilized if the full architecture is not required.
Examples of this would be the CI/CD pipelines, sample microservices (both
serverless and standing service in nature).

The Blueprint addresses the transformative requirements enterprises seek in
the following ways:

Cloud Transformation: The Blueprint is a cloud-native, auto scaling
architecture that is API and Event based. While the core Blueprint microservices
integration is with commercetools, the microservices can be cloned or passed
through to connect easily to other API vendors. Ultimately, the architecture
provides the connection functionality to commercetools along with the pattern
of integration for other API based vendors. There are two architectures
available:

•	 Blueprint GCP PaaS – Organizations that want to push as much of the
operational activities as possible while still owning the code can utilize a
blueprint built entirely on the Google Cloud PaaS offerings. This means
that all control of server level functionality and autoscaling gets pushed
to become Google’s responsibility. The enterprise need only provide the
coding, testing and deploy of functionality. Google handles the rest.

•	 Blueprint K8 – A cloud independent Blueprint with fully containerized code
built within a Kubernetes deployment. This means that AWS, GCP or Azure
can all be used. Each component is fully independent and multiple clouds
can be used simultaneously. Ultimately, this means more control rests in
the hands of the enterprise.

commercetools Blueprint Architecture 13

CI/CD – End-to-End Ownership: A full continuous integration/continuous
delivery pipeline including Github-based source repository, automated testing
scripts and deployment built on Kubernetes.

Microservices/API/Event Architecture: The blueprint is a microservice-
based architecture with exposure via APIs and Events. Connections to the
commercetools set of APIs and events are built into each of the representative
services.

Omnichannel Consumer & Corporate: While no consuming applications
are built as part of the architecture, a full high speed corporate API/eventing
layer is available to access via the include API gateway. This allows for rapid
development of both corporate facing and consumer facing applications on
mobile, IoT, desktop, etc.

Architectural Strategy of the Blueprint
In an ideal world, the commercetools Blueprint Architecture would be an end-
to-end enterprise architecture that could do everything any enterprise needed
in a high-speed, cloud-native, microservice based API fashion. Replacing ERP,
warehousing, and innumerable other large monoliths with a one time project
is an unsound practice. Thus, the blueprint focuses on the consumer facing,
commerce layer of the architecture and not on the operational side.

Inherent in deploying the Blueprint is that the underlying legacy architecture
core is not modified. This strategy is often referred to as Dual-Speed or Hybrid
architecture. The idea is that the consumer facing technologies and data are
built on very high speed – scalable, microservices architecture while the core,
infrastructure of the organization is not modified (at least in the initial phases).

This allows the organization to compete and lead in consumer facing
applications while the core of the architecture can be modified over time in a
reasonable and methodical manner. Other components of the enterprise can
be removed or reduced through a strangle pattern while the outward face of
the organization is cutting edge.

The
commercetools
Blueprint
focuses on
the consumer-
facing
commerce
layer.

commercetools Blueprint Architecture 14

The blueprint layer is owned and managed by the enterprise. The endpoints it
is exposing to consuming apps are then always controlled by the enterprise.
If, for example, one of the commercetools microservices is replaced by a
microservice built in-house, the consuming app exposed endpoint would not
need to change.

Additionally the blueprint layer offers another place where customization
can occur. As the enterprise defines its own API interface, the enterprise
microservice layer defined by the blueprint architecture will contain enterprise-
built custom microservices, transforms, customization on vendor APIs,
GraphQL capabilities and multi-API consolidation.

As with any architectural structure, the enterprise should determine if the
blueprint architecture has more benefits versus directly integrating with API
vendors such as commercetools. Both have an element of dual-speed in the
architecture, but the blueprint centralizes control of the enterprise API set into
something wholly owned and controlled by the enterprise. See the comparison
chart below.

WMSCRM OMS CMSERP ...

Legacy Applications

Enterprise Developed Apps

Enterprise Modern
Architecture Layer

External Provider API / Event

Consumer Apps Employee Apps Consumer Apps Employee Apps

Blueprint Microservices /
API / Eventing

commercetools External Vendor ...

ESB / Integration

Enterprise
Microservices 1

Enterprise
Microservices 2

Enterprise
Microservices 3

Enterprise
Microservices 4

Utilize the blueprint to create a high speed commerce face while removing any tight vendor coupling and legacy system dependency.

commercetools Blueprint Architecture 15

Benefits of Enterprise-Owned
Service Layer Model

Benefits of Directly Connecting
Consuming Applications to API

Vendors

Full control of the app facing layer
No additional hop - transactionally,
this is going to be in the 10 to 50
millisecond range

Consumers applications do not
change when functionality vendors
are replaced

No additional monitoring and issue
diagnosis layer

Additional point of customization
No additional cloud environment
costs

Optimize APIs for consuming
applications

No additional development cost

Organizational change starting point

Rapid development environment

Automation built-in

Blueprint Offerings
Two blueprint architectures are available. Blueprint GCP PaaS is meant for
organizations who want to move most of the operations side of their cloud
offerings to the cloud provider. Blueprint K8s has significantly more flexibility
but requires the organization to take more control over what, where and how
they deploy their architecture.

Blueprint GCP PaaS
Blueprint GCP PaaS is dependent on the use of Google Cloud Platform. It is an
entirely Node.js based set of code. It utilizes the GCP’s set of SaaS and PaaS
offerings to let Google handle things like scaling and machine sizing. There
is almost no required knowledge of hardware required in this blueprint. It is
entirely a coding exercise and is meant to minimize the operational knowledge
and resource requirements for deployment.

commercetools Blueprint Architecture 16

•	 API Gateway: Cloud Endpoints - Google Cloud Platforms API gateway
offering.

•	 Serverless Microservice: Google Cloud Function - Node.js serverless
function within the Google ecosystem.

•	 Microservice: Google Flexible Environment - Node.js implementation of
‘always-on’ microservices.

•	 Cloud Pub/Sub: Google Cloud Pub/Sub - Eventing environment
•	 Monitoring: Stackdriver
•	 CI/CD Pipeline: Pictured below, includes automated testing with Jest and

deploy.

Catalog Product Cart Order

GCP Cloud Endpoints

GCP Fexible Enviroment Node.js

commercetools

Product
Serverless

Order
Serverless

GCP
Pub/Sub

GCP Cloud
Functions

Inventory Webhook

Components of Blueprint GCP PaaS

>_

Code Push to
Github

Run local tests
on Travis CI

Deploy to Cloud Platform
and run end-to-end test

commercetools Blueprint Architecture 17

Blueprint K8s
Blueprint K8s has no cloud provider based dependencies. All functionality is
containerized via docker as well as deployed and scaled via Kubernetes. This
does mean that the cloud to which it is deployed must support Kubernetes; of
which AWS, GCP and Azure all support. Where Blueprint GCP PaaS relied on
Google Cloud autoscaling and networking, Blueprint K8s gives full control back
to the enterprise.

The blueprint provides a pattern and deployment for the enterprise to move to
a large scale cloud architecture in a matter of days.

Components of Blueprint K8s Implementation
•	 API Gateway: Kong (https://konghq.com/)
•	 Serverless Microservice: Kubernetes native serverless offering called

Kubeless. Written in Node.js for the included code, but does not have
a language restriction like GCP or any of the cloud provider serverless
offering out today.

Pricing Cart Order Inventory

API Gateway Kong

Microservice - Kubernetes - Node.js

commercetools

Product Promo

Docker Terraform Kubernetes
Engine

Cloud Git
Repository

Jest JUnit/
Mockito/

PowerMoch

Client
Backend

Cloud
Pub/Sub

Serverless
Kubeless
Node.js

Product Feed >

< Order Out

Order Update >

Inventory >

Product Feed

Order Out

Order Update

Inventory

Includeed in Blueprint

Enterprise System

Inventory
Webhook

https://konghq.com/

commercetools Blueprint Architecture 18

Operational Components
Because Blueprint K8s can be deployed into any of the Kubernetes supporting
clouds (AWS, GCP or Azure), the cloud dependent operational and management
functions are left to the implementation.

Getting Started
The goal behind the Blueprints is to accelerate and define many of the
early steps in an implementation. Organizations typically know the set
of functionality they need to build in a project. The blueprint gives the
development team a template from which to start. It defines everything
from directory structure to deployment pipelines as well as containing coded
solutions and template microservices to assist the team in jumping over the
‘getting started hurdles’. The goal is to save a typical project six to eight weeks
and allow the team to quickly deliver functionality.

Utilizing either of the blueprints as an accelerator for your platform can
be done in a number of ways. The most obvious use is as part of a digital
transformation project as you move to headless commerce built around
commercetools. Enterprises who wish to slowly modify their platform because
of business or technical reasoning would likely utilize the architecture to build
out a greenfield site or replace portions of their digital experience piece by
piece over time. If you have already started the journey, it is likely that you
would only use components such as the CI/CD pipeline and a few of the sample
services to accelerate a commercetools implementation.

•	 Microservice: Kubernetes based deploy of a Node.js and Java based
‘always-on’ microservices.

•	 Cloud Pub/Sub: Kubeless based offering written in Node.js
•	 Logging and Monitoring are left for the implementation. Every enterprise

has tools in place and there is no need to force a second set as part of
the implementation. Each cloud will have logging by default as part of the
deploy which can be integrated or replaced.

•	 CI/CD Pipeline: Pictured below, includes automated testing in Jest or JUnit
(Mockito/PowerMock libraries), Terraform and Kubernetes deploy.

The goal of the
Blueprint is to
accelerate an
implementation
by 6-8 weeks.

commercetools Blueprint Architecture 19

The Blueprint is available from commercetools and includes full descriptions
of components as well as instructions on implementing. Much of the work on
the part of the enterprise will be setting up the cloud environment and many of
the administrative tasks such as billing, security, developer access and general
cloud setups. At that point, the blueprint is simple to deploy and the enterprise
is ready to expose its modern cloud-native API centric platform.

Conclusion
Enterprises recognize the need to upgrade their architecture. The monolithic
structures relied on as the digital market grew have become burdens to progress.
Many enterprises understand where they want to be but not how to get there.

Utilizing the commercetools Blueprint Architecture for Modern Commerce delivers
immediate impact to the organization. By focusing on consumer centric portions
of the organization, the enterprise becomes very nimble and is given the buffer
room required to update the operational back end systems in a reasonable
manner.

To learn more about the Blueprint or to sign up for a demo,
go to: https://ok.commercetools.com/blueprint-architecture

About the Author
William Linebarger is a solution architect at commercetools, the world’s leading
API-based commerce platform. He has more than twenty years of ecommerce
development experience ranging from developer to senior architect. William came
to commercetools from Belk, where he led their transition to cloud as Director of
Enterprise Architecture. Before Belk, he spent more than eight years leading the
development of eBay Enterprise’s first microservices-based commerce platform.
He holds a bachelor’s degree from the University of Rochester, an M.B.A. from the
University of Kansas, and is a Google Professional Cloud Architect.

https://ok.commercetools.com/blueprint-architecture

Contact

Americas
American Tobacco Campus | Reed Building
318 Blackwell St. Suite 240
Durham, NC 27701, USA
Tel. +1 212-220-3809
mail@commercetools.com

commercetools is a next-generation software technology company that offers a true cloud commerce
platform, providing the building blocks for the new digital commerce age. Our leading-edge API
approach helps retailers create brand value by empowering commerce teams to design unique and
engaging digital commerce experiences everywhere – today and in the future. Our agile, componentized
architecture improves profitability by significantly reducing development time and resources required
to migrate to modern commerce technology and meet new customer demands. It is the perfect starting
point for customized microservices.

Europe - HQ
Adams-Lehmann-Str. 44
80797 Munich, Germany
Tel. +49 (89) 99 82 996-0
info@commercetools.com

Join the Conversation

@commercetools
commercetools-gmbh
commercetools

CT-WP-Blueprint-EN_V01_08.18

