
Getting started
To be able to work on a Scolvo Project the following steps should be done (the order is just a
proposal, different sequence can be appropriate):

● Install the Scolvo VS Code Extension with its dependencies
● Acquire Scolvo access
● Configure the Scolvo VS Code Extension
● Create new Project/Environment
● Save the developer license file
● Plan your project
● Prepare database structure of the components
● Update existing script codebase to reflect your project domain

Install the Scolvo VS Code Extension with
its dependencies

It is recommended to have Docker Desktop installed and running while working with Scolvo
Development Platform. The Docker Desktop can be downloaded and installed from Docker
Desktop official site. When working with the Scolvo Development Platform configure at least 4
GB memory resource to Docker to avoid container restart.

The next step is the installation of Scolvo VS Code Extension: the easiest way to install it is to
user the VS Code Extensions view and filter for Scolvo keyword. When the extension is
displayed, then activate the Install button. After the installation a restart is required.

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

Finally, it is recommended to install the Docker extension too, as it is a great help when dealing
with Docker containers.

Acquire Scolvo access
If you do not have a Scolvo access yet, then you can register your account on Scolvo
Playground. It is required to be able to Start your Environment (used when downloading
Framework container images).

https://playground.scolvo.solutions/scolvo-mhub/registration
https://playground.scolvo.solutions/scolvo-mhub/registration

After a successful registration you’ll receive a welcome email containing your developer license.

Configure the Scolvo VS Code Extension
The Scolvo VS Code Extension requires configuration parameters to be set to be able to work
correctly. These are:

● workspace directory for Scolvo projects,
● account username,
● and account password.

Open the File/Preferences/Settings window, select Extensions/Scolvo and set the above listed
parameters.

If you start an environment without configuration values, then the Extension shows input fiends
on the fly (and stores them to the configuration).

Create new Project/Environment
If you have a Scolvo account, the Scolvo Extension installed, Docker Desktop up and running
(and Docker extension installed), then it is time to create your first Scolvo Environment.

Open Scolvo view and select Create Environment button. The extension now asks few
parameters for new project creation (project name and default language).

When input parameters are defined for new project, then it downloads content from Scolvo
remote services and opens the project.

Note: Actually “en”, “de” and “hu” default languages are supported on Login screens, but this
can be extended on demand.

Save the developer license file
After a successful Scolvo account registration you own a developer license file what can be
used during local development. This file has to be copied (or the content of this file) to the
license folder of your environment with name scolvo.license. This allows you to start the Scolvo
environment locally, with maximum 3 users created.

If the license is expired then login to your Scolvo Playground profile and request a new one.

Plan your project
It is recommended to define your project domain model before starting the feature
implementation. Think about what data needed where, and what is the minimal data structure
for clients (different model can be defined for Mobile and Admin use cases).

Prepare database structure of the
components

When planning a solution in Scolvo Development Platform following 3 components require
database design:

● Backend,
● Admin (mhub),
● and Mobile (base for webview too)

https://playground.scolvo.solutions/scolvo-mhub/login

Tables required by the system are already defined in starter projects in form of Liquibase files.
To separate them from the domain of the customer project the have a name 0.xml. It is advised
to not change thses, but add new tables or new columns of existing tables in separate files
(1.xml, 2.xml, etc). The different files are bound in changeLog.xml files (this name is configured,
do not change it), so if you add new change descriptor xml, then do not forget extending them.

Working with Backend data structure

The Backend’s Database is persisted, it also stores the Liquibase version information, therefore
sometimes it is necessary to reset your project to wipe out data (and data structure) from
database and from authentication database too. (How to reset the project is described in
separate section under Environment operation.). The only domain table in the starting content is
the user table and its history table with name user_history.

● If you extend the structure of the user table then extend the same time its history table
with same columns (but do not use not-null constraints)

● If you add a new table to the Backend data structure, then create immediately its history
table (e.g. bird and bird_history). All backend domain table must have mandatory
columns to be added (see the user table example: createdAt, createdBy, updatedAt,
updatedBy).

● Use type VARCHAR(36) for id columns (uuid() built-in function generates this type), make
them PK.

● Define indexes for possible filtering and for foreign keys (real FKs are not recommended
to use, but the indexes are recommended) to not lose performance when the tables are
populated.

Working with Admin data structure

The database of an Admin session is memory based, no need to restart/reset anything when the
schema is changed, a logout/login is enough to be done. The relevant files are under the mhub
directory. There is a 0.xml defined to separate tables created for the system use (user table for
user administration feature). There is no history feature in the client, so these tables are not
defined in the database structure, and usually columns storing history related information are
not added (createdAt, createdBy, updatedAt, updatedBy).

● If you extend the structure of the user table for Backend database and this data is UI
relevant, then extend accordingly the definition of the user table in the mhub folder by
adding a new change definition file.

● If you add a new table to the Admin data structure, then use same types as for the
Backend definition of the same table: use VARCHAR(36) for id columns (uuid() built-in
function generates this type), make it PK.

● Define indexes for possible filtering and for foreign keys (FKs are not defined, but the
indexes are required) to not lose performance when the tables are populated.

● Transfer only the required data structure and data set to the client to keep database as
lightweight and performant as possible.

Working with Mobile data structure

The database of a Mobile session is memory based, no need to restart/reset anything when the
schema is changed, a logout/login is enough to be done. The relevant files are under the mobile
directory. There is no 0.xml file defined, as there is no predefined structure for mobile apps.
According to this behavior new definitions are placed immediately to 1.xml file. There is no
history feature in the client, so these tables are not defined in the database structure, and
usually columns storing history related information are not added (createdAt, createdBy,
updatedAt, updatedBy).

● If you add a new table to the Mobile data structure, then use same types as for the
Backend definition of the same table: use VARCHAR(36) for id columns (uuid() built-in
function generates this type), make it PK.

● Define indexes for possible filtering and for foreign keys (FKs are not defined, but the
indexes are required) to not lose performance when the tables are populated.

● Transfer only required data structure and data set to the client to keep database as
lightweight and performant as possible.

Best practice on data types

● Define id columns as VARCHAR(36) and you can define unique value using uuid()
built-in function.

● Define date-time and date values as BIGINT, there are many useful conversion
methods defined, check details in Date functions.

● You must define boolean types as VARCHAR(8), this type is specially
serialized/deserialized by the Framework. When you deal with this value in scripts, then
normal boolean values (true, false) can be used.

● It is a good habit to use reference id-s to other tables, but usually we do not use FKs.
The referring column has a name <other-table-entity-singular>Id (e.g. birdId for referring
a bird entity). As it is a FK-like column, an index has to be created for this column.

Update existing script codebase to reflect
your project domain

The starting script content of your Scolvo environment reflects to the starting data structure, if
you for example extend the structure with a new table, then the script set has to be extended
accordingly.

In our example we define a simple new table bird having the following structure:

Backend, bird table definition

● id - VARCHAR(36), PK
● name - VARCHAR(50), Not null
● birthDate - BIGINT, Not null
● description - VARCHAR(200)
● createdAt - BIGINT, Not null
● createdBy - VARCHAR(36), Not null
● updatedAt - BIGINT

http://docs.scolvo.com/api/pages/builtin_functions/interpreterBuiltInFunctions.html#date-functions

● updatedBy - VARCHAR(36)
● indexes:

○ id has index, as defined as PK
○ createdBy should have and index, as it is a userId FK
○ updatedBy should have and index, as it is a userId FK

Backend, bird_history table definition

● id - VARCHAR(36)
● name - VARCHAR(50)
● birthDate - BIGINT
● description - VARCHAR(200)
● createdAt - BIGINT
● createdBy - VARCHAR(36)
● updatedAt - BIGINT
● updatedBy - VARCHAR(36)
● indexes:

○ no indexes are defined, even PK must not be defined

Mobile, bird table definition

● id - VARCHAR(36), PK
● name - VARCHAR(50), Not null
● birthDate - BIGINT, Not null
● description - VARCHAR(200)
● index definitions:

○ id has index, as defined as PK
○ name should have and index, for filtering
○ birthDate should have an index, as in our example a range filtering is planned

Backend script change, /backend/TypeDefinitionLifeCycle.scolvo

This script contains database change events, where a strict name pattern is defined for the db
operations. You have to create below functions for our example, in case INSERT, UPDATE and
DELETE operations are all supported:

● onBirdInserting(originId)
● onBirdInserted(originId)
● onBirdUpdating(originId)
● onBirdUpdated(originId)
● onBirdDeleting(originId)
● onBirdDeleted(originId)

According to the logic of the domain, they can hold code for pre- and post-processing of DB
operation (or can be empty if there is no such logic). The row representation can be accesses
through $IN.data.map context reference (e.g. var birdDao = $IN.data.map;).

Backend script change, /backend/repository/BirdRepository.scolvo

The repository script is usually a new script for a new entity, it holds the different database
select definitions according to the needs. Normally a function is created for data synchronization
collecting all relevant rows in appropriate structure (matching the client data structure). For our
example we create the BirdRepository.scolvo file containing only one function collecting all birds
with all client side defined columns:

BirdRepository.scolvo example

1function getBirds() {
2 return select()
3 .selectAs("id")
4 .selectAs("name")
5 .selectAs("birthDate")
6 .selectAs("descripton")
7 .from("bird")
8 .execute();
9}

Backend script change, /backend/DataSync.scolvo

The DataSync scolvo file contains the event definition of onDataSync(userId, deviceType), what
is called, when a successful login is processed in one of the clients. In this case the Backend is
requested to collect all relevant data (as minimal as possible) to be sent to the client database.
Here you can make decisions based on the user role and the client type. In our case we can
differentiate between pre-defined role “superUser”, a usually defined role “administrator” and
the domain specific “zooKeeper” role. Do not forget to import new scolvo file before using its
functions! Here is the extended function:

DataSync.scolvo handling zooKeepers

1import {
2 /common/Roles,
3 /backend/repository/UserRepository,
4 /backend/repository/BirdRepository
5}
6
7function onDataSync(userId, deviceType) {
8 info("onDataSync for " + userId + ", deviceType: '" + deviceType + "'");
9 if (userId == "superUser") {
10 if (deviceType == "MHUB") {
11 return dataSyncByAdministrator();
12 }
13 return [];
14 }
15
16 var user = getUserById(userId);
17 if (user.role == roleAdministrator && deviceType == "MHUB") {

18 return dataSyncByAdministrator();
19 }
20 if (user.role == "zooKeeper") {
21 return dataSyncByZooKeeper();
22 }
23
24 warn("DataSync returs empty for role " + user.role);
25 return [];
26}
27
28function dataSyncByAdministrator() {
29 return [
30 createDataSyncElement("user", getUsers()),
31];
32}
33
34function dataSyncByZooKeeper() {
35 return [
36 createDataSyncElement("bird", getBirds()),
37];
38}

Client side script change, /mobile/DataChange.scolvo

This script contains the event invoked when a data change arrives from Backend. Here you can
decide what to do with the received information, how the client has to react to that. Usually we
check the table name and the operation, and based on that, we can execute or skip data
handling. This is the place where you can include the logic for reactive behavior. For our
example, we simply save the received bird table changes, and refresh the lists on the UI, if
needed (we expect that Birds page is already defined with relevant refresh function
refreshBirdList):

DataChange.scolvo handling bird changes

1import {
2 /mobile/SessionUser,
3 /mobile/bird/Birds
4}
5
6function onDataChangeDg(originId) {
7 debug("Data change message arrived ...");
8 if (getCurrentUser() == null) {
9 return null;
10 }
11 var changeset = $IN.changeset;
12 var typeDefinition = $IN.typeDefinition;
13 debug("Data change message arrive with type definition: " +
typeDefinition + ", size is: " + changeset.size());
14 if (typeDefinition == "bird") {

15 changeset.each(function(dao) {
16 if (dao.changeType == "INSERT") {
17 insertOrReplaceTypeDefinition(typeDefinition, dao);
18 } else if (dao.changeType == "UPDATE") {
19 updateTypeDefinition(typeDefinition, dao.id, dao);
20 } else {
21 deleteTypeDefinition(typeDefinition, dao.id);
22 }
23 });
24 refreshBirdList(originId);
25 }
26}

Environment operation
Different phases of the development requires different actions to be executed in the
environment. Consider following hints:

● Running state only required when you want to use admin view or mobile view.
● Changes (database schema, script) in admin (mhub) and mobile scripts require only a

logout-login process.
● Changes in the Backend database schema or scripts require Backend restart, or

environment restart.
● Usage of admin and mobile views require created user and logged-in in the

environment. You can use Admin view for user creation.

Following cases are described in detail below:

● Start, stop and restart
● Backend restart
● Login to admin view
● Login to web view to debug mobile scripts
● Creating new user
● Resetting the environment

Start, stop and restart
The Scolvo VS Code Extension supports all necessary operations to be able to start, stop or
restart the environment. You can use the Run and Debug view to do that:

● The extension checks for running images, and if the same environment is running, then it
attaches the log and controlling panel.

● If the environment is not started yet, you can use Start Debugging button of Run and
Debug view to start the environment. Relevant log lines are listed in Output view at first,
and later in the Debug Console. The console shows log lines for Backend, Admin and
Webapp (compatible with a mobile client) components.

● Using the floating control panel of the Run and Debug view the environment can be
stopped/started or restarted any time.

● If the Run and Debug view is not in synch with the running state of the environment
images, then the Docker Extension view can be used to stop the environment and get a
synchronized state again (so you are able to use the Run and Debug view correctly
again).

Backend restart
Changes in the Backend database schema or scripts require Backend restart (restart of the
whole environment is suitable too). A dedicated quick link with name Restart backend can be
found in the Scolvo view’s Help and Feedback section performing the required action. There is
no need to logout/login to the existing sessions, when the Backend is running again, then the
usage can be continued smoothly. (If the change is in the data synchronization part, then a
logout/login is required anyway.)

Login to Admin view
When testing changes in the Admin part (under mhub folder) of the scripts, it is required to login
to an Admin session. A dedicated quick link with name Open Admin can be found in the Scolvo
view’s Help and Feedback section performing the required action.

This opens a new tab with the login screen in the default browser of your OS (Chrome and
Firefox browsers are supported). An existing user of the local environment (created beforehand)
is required. After successful login, the menu structure and default page is displayed according
to the script content.

Login to web view to debug mobile scripts
As the mobile apps are too complex to use them locally, the web view represents their
functionality while implementing the project. When testing changes in the Mobile part (under
mobile folder) of the scripts, it is required to login to a WebApp session. A dedicated quick link
with name Open WebApp can be found in the Scolvo view’s Help and Feedback section
performing the required action.

This opens a new tab with the login screen in the default browser of your OS (Chrome and
Firefox browsers are supported). An existing user of the local environment (created beforehand)
is required. After successful login, the menu structure and default page is displayed according
to the script content.

Creating new user
Local user accounts are required to be able to login to Admin and WebApp sessions. A new
user can be registered using Admin scripts and default super administrator user credentials
(username/password is su/su). After successful login the default page is the Users page, where
the existing users of the environment are listed. Here you can create, modify, disable and enable
users. The relevant scripts are under the mhub/users folder and in the common/Roles.scolvo
script where the logic and roles in your environment can be updated according to your needs.

Resetting the environment
The state of the local environment might become unusable due to radical database structure or
logical change needing to wipe out the whole environment and start with a fresh new. For these

cases we can use the Reset environment operation. This can be invoked by opening the VS
Code command palette and filter for Scolvo keyword and finally activate Reset scolvo project
command. It is advised to stop the environment before resetting it.

This command removes the container instances, so after starting the environment, a brand-new
environment is set up.

https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_keyboard-reference-sheets
https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_keyboard-reference-sheets

