Rate Transient Analysis

Gas Flow Considerations

Note: $\overline{\mu}_{g}$ and \overline{c}_{t} are evaluated at average reservoir pressure (unlike PTA).

- The calculation of pseudo-time is *iterative* because it depends on μ_{g} and c_{f} at average reservoir pressure, and average reservoir pressure depends on *G* (usually unknown).
- Note: Pseudo-time in build-up testing is evaluated at well flowing pressure *not* at average reservoir pressure.

balance pseudo-time ($t_{\rm{ca}}$).

and the model is considered and an income the consideration of the

<u>سرت استثنی استین استین استین استین استین استین استین است</u>

Constant pressure solution (q_b) is converted to
constant rate (1/p_b) using Material Balance Time (*t*_c).

 \blacksquare Constant rate and constant pressure solutions using t_c

Fetkovich Analysis

29. Rate (Normalized) <u>condition and in condition and in condition and in condition and in condition and in condition</u> $t_{\rm D} = \frac{0.00633kt}{\phi \mu c_{\rm t} r_{\rm wa}^2}$

 $p_{\rm D} = \frac{1}{g} = \frac{k h (p_{\rm i} - p_{\rm wf})}{141.2 g B u}$

141.2 $qB\mu$

• No-flow outer boundary. $h \qquad q_{\rm D}$ • Skin factor represented by r_{wa} . • Information content for all typecurves is the same $0.00633 k_{c} t_{c}$ (see Figures 23 - 30). $\pi \phi \mu_0 c_t$ t_{DA} $s = \ln\left(\frac{r_{\rm w}}{r}\right)$ • The shapes are different because of different plotting formats. $(r_{eD})_{\text{match}}$ • Each format represents a different "look" at the data and emphasizes different aspects. $N = \frac{\pi r_{\rm e}^2 \phi h S_{\rm ei}}{R}$ $\left[0.00633k_{t} t_{c}\right]$ $\int \pi \phi \mu_{\rm o} c_{\rm t}$ $\lambda_{\rm pA}$ $B_{\rm os}$ **23. Blasingame: Rate (Normalized) 24. Blasingame: Integral-derivative Blasingame** • q_{Dd} and t_{Dd} definitions are similar to Fetkovich. • Normalized rate ($q/\Delta p$ or $q/\Delta p_p$) is ploted. • Three sets of typecurves: 1. $q_{\rm Dd}$ vs. $t_{\rm Dd}$ (see Figure 23). 2. Rate integral (q_{Ddi}) vs. t_{Dd} (has the same shape as q_{Dd}). 3. Rate integral-derivative (q_{Ddid}) vs. t_{Dd} (see Figure 24). $q_{\rm Dd} = q_{\rm D}(\ln r_{\rm eD} - 0.5)$, $r_{\rm eD} = \frac{r_{\rm e}}{r}$ • In general: $q_{\text{Dd}} = q_{\text{D}} b_{\text{Dpss}}$, $t_{\text{Dd}} = \frac{2\pi}{L} t_{\text{DA}}$ $t_{\rm Dd} = \frac{v_{\rm D}}{(\ln r_{\rm eD} - 0.5)(r_{\rm eD}^2 - 1)}$ \cdot *b*_{Dpps} is a constant for a particular well / reservoir configuration. **Agarwal-Gardner 25. Agarwal-Gardner: Rate (Normalized) 26. Agarwal-Gardner: Integral-derivative** • q_{D} and t_{DA} definitions are similar to PTA. • Normalized rate ($q/\Delta p$ or $q/\Delta p_p$) is ploted. isina r.. • Three sets of typecurves: $1.~q_{\text{\tiny D}}$ vs. $t_{\text{\tiny DA}}$ (see Figure 25). 2. Inverse of pressure derivative $(1/p_{\text{Dd}})$ vs. t_{DA} (not shown). 3. Inverse of pressure integral-derivative $(1/p_{\text{Did}})$ vs. t_{DA} (see Figure 26).

- pressure integral-derivative is used instead.
-
- p_D and t_{DA} definitions are similar to PTA.
- **27. NPI: Pressure (Normalized) Normalized Pressure Integral (NPI) 28. NPI: Integral-derivative**
	-
	-
	- Normalized pressure ($\Delta p/q$ or $\Delta p_y/q$) is ploted rather than
	- normalized rate ($q/\Delta p$ or $q/\Delta p_p$).
	-
	-
	-
-
-

-
-
- Three sets of typecurves: 1. $p_{\rm D}$ vs. $t_{\rm DA}$ (see Figure 27).
- 2. Pressure integral (p_{Di}) vs. t_{DA} (has the same shape as p_D).
- 3. Pressure integral-derivative (p_{Did}) vs. t_{DA} (see Figure 28).

Radial Typecurves

Flowing Material Balance

3. Inverse of pressure integral-derivative $(1/p_{\text{Did}})$ vs. t_{D} . (see Figure 30).

 \overrightarrow{y}

• Determines hydrocarbon-in-place, N or G. • Oil (N): Direct calculation. • Gas (G): Iterative calculation because of pseudo-time. • Simple yet powerful. • Data readily available (wellhead pressure can be converted to sandface pressure). • Supplements static material balance.

3. Obtain $\overline{\mu}_{\scriptscriptstyle \rm g}$ and $\overline{\mathsf{c}},$ at $\overline{\mathsf{p}}.$ 4. Convert t to t_a and p_{wf} to p_{pvf} (see Figures 12 & 14). 5. Determine b_{obs} from Figure 16. 6. Determine \overline{p} from $\overline{p}_p = p_{pwt} + qb_{ps}$. 7. Plot $\overline{p}/\overline{Z}$ vs. G_p and determine new G. 8. Repeat steps 2-7 until G converges.

22. Calculations for Gas

 (Agarwal-Gardner Typecurves)

 $=\frac{1.417\times10^{6}T}{q^{4/\Delta p}}$

41. Blasingame: Integral-derivative 42. Blasingame: Integral-derivative 43. Blasingame: Integral-derivative

-
-

Horizontal Well Typecurves

Radial Flow Model: Typecurve Analysis

All radial flow typecurves are based on the same reservoir model: • The well is in the center of a cylindrical homogeneous reservoir.

Notes:
1. Pressure derivative is defined as $P_{\text{Dd}} = \frac{d\left(P_{\text{D}}\right)}{d\left(\ln t_{\text{DA}}\right)}$

Constant Rate

 $t_c = \frac{Q}{q} = \frac{1}{q} \int_0^t q dt$

!|<u>|</u>||| Material Balance Time (tc) Notes:

2. The inverse of the pressure derivative is usually too noisy, so the inverse of the

Transient-dominated Data

- Similar to Figures 25 & 26 but uses $t_{\rm D}$ instead of $t_{\rm DA}$. When most of the data is in *transient* flow, use this format. • q_{D} and t_{D} definitions are similar to PTA. • Normalized rate ($q/\Delta p$ or $q/\Delta p_p$) is plotted.
- Three sets of typecurves:
	-
- 1. $q_\textrm{\tiny D}$ vs. $t_\textrm{\tiny D}$ (see Figure 29).
-
-
-
-
-

Fracture Typecurves

32. Integral-derivative

 $0.00633kt$

 $\overline{\phi\mu c_{,}x_{\rm f}^2}$

tual Rate Decline

33. Elliptical Flow: Integral-derivative 34. Elliptical Flow: Integral-derivative 35. Elliptical Flow: Integral-derivative

 $F_{CD} = 5.0$

Finite Conductivity Fracture

Finite Conductivity Fracture

-
-
-
-
-
-
-
-
- 2. Inverse of pressure integral $(1/p_{\text{Di}})$ vs. t_{D} (not shown).
-
-
- -
-
-
-

• Fracture with finite conductivity results in bilinear flow (quarter slope).

• Dimensionless Fracture Conductivity is defined as: $F_{CD} = \frac{K_f V}{k x}$

• Fracture with infinite conductivity results in linear flow (half slope).

• For $F_{\text{\tiny CD}}$ > 50, the fracture is assumed to have infinite conductivity.

-
-
- -
- <u> 11111 11111111 11111111111</u>

Compound Linear Typecurves

 $t_{\rm{Dd}}$

Water-drive Typecurves

Unconventional Reservoir Module (URM)

Nomenclature

Multiphase Flowing Material Balance (FMB) & FMB Model

 $F_{CD} = 50.0$

All analyses described can be performed using IHS Markit's Rate Transient Analysis software Harmony Reservoir