Rate Transient Analysis

Fetkovich Analysis

Modern Decline Analysis Concepts

Radial Typecurves

29. Rate (Normalized)

al count count count count count $t_{\rm D} = \frac{0.00633kt}{\phi\mu c_{\rm t} r_{\rm wa}^2}$

Transient-dominated Data

- Similar to Figures 25 & 26 but uses $t_{\rm D}$ instead of $t_{\rm DA}$. When most of the data is in transient flow, use this format. • $q_{\rm D}$ and $t_{\rm D}$ definitions are similar to PTA. • Normalized rate ($q/\Delta p$ or $q/\Delta p_p$) is plotted.
- Three sets of typecurves:
- 1. $q_{\rm D}$ vs. $t_{\rm D}$ (see Figure 29).

Finite Conductivity Fracture

- 2. Inverse of pressure integral (1/ $p_{\rm Di}$) vs. $t_{\rm D}$ (not shown).
- $d_{\rm u}$

30. Integral-derivative

32. Integral-derivative

0.00633*kt*

 $\phi \mu c_{t} x_{f}^{2}$

 $p_{\rm Di} = \frac{1}{t} \int_0^{t_{\rm D}} p_{\rm D} dt_{\rm D}$

.....

 $p_{\rm Did} = \frac{d(p_{\rm Di})}{d(\ln t_{\rm D})}$

Gas Flow Considerations

- pressure.
 - (usually unknown).
- Pseudo-time (t_a) corrects for changing viscosity and compressibility with
 - The calculation of pseudo-time is *iterative* because it depends on $\mu_{\rm g}$ and $c_{\rm t}$ at average reservoir pressure, and average reservoir pressure depends on ${\cal G}$

Note: Pseudo-time in build-up testing is evaluated at well flowing pressure not at average reservoir pressure.

• Convert material balance time (t_c) to material balance pseudo-time (t_{m}) .

Note: $\overline{\mu}_{g}$ and \overline{c}_{t} are evaluated at average reservoir pressure (unlike PTA).

3. Inverse of pressure integral-derivative $(1/p_{\text{Did}})$ vs. t_{Did} (see Figure 30).

Fracture Typecurves

33. Elliptical Flow: Integral-derivative

36. Blasingame: Rate and Integral-derivative

 $t_{\rm Dd}$

 $F_{CD} = 5.0$ $t_{\rm DA}$

Finite Conductivity Fracture

37. NPI: Pressure and Integral-derivative

Compound Linear Typecurves

Horizontal Well Typecurves

41. Blasingame: Integral-derivative

42. Blasingame: Integral-derivative

• Fracture with finite conductivity results in bilinear flow (quarter slope).

• Dimensionless Fracture Conductivity is defined as: $F_{\rm CD} = \frac{K_{\rm f} v}{k_{\rm X}}$

• Fracture with infinite conductivity results in linear flow (half slope).

• For $F_{\rm CD}$ > 50, the fracture is assumed to have infinite conductivity.

34. Elliptical Flow: Integral-derivative

 $F_{\rm CD} = 50.0$ $t_{\rm DA}$

35. Elliptical Flow: Integral-derivative

38. Wattenbarger: Rate

• Determines hydrocarbon-in-place, N or G. • Oil (N): Direct calculation. • Gas (G): Iterative calculation because of pseudo-time. • Simple yet powerful. • Data readily available (wellhead pressure can be converted to sandface pressure). Supplements static material balance.

3. Obtain μ_{q} and \overline{c} , at \overline{p} . 4. Convert *t* to t_a and p_{wf} to p_{pwf} (see Figures 12 & 14). 5. Determine b_{pss} from Figure 16. 6. Determine \overline{p} from $\overline{p}_{p} = p_{pwf} + qb_{pss}$. 7. Plot $\overline{p}/\overline{Z}$ vs. G_p and determine new G. 8. Repeat steps 2-7 until G converges.

Water-drive Typecurves

Unconventional Reservoir Module (URM)

Multiphase Flowing Material Balance (FMB) & FMB Model

Nomenclature

a semi-major axis of ellipse A area b semi-minor axis of ellipse b_{pss} dimensionless parameter b_{pss} inverse of productivity index B formation volume factor	B_{oi} initial oil formation volume factor B_w water formation volume factor c_g gas compressibility c_t total compressibility \overline{c}_t total compressibility at average reservoir pressure	G original gas-in-place G_p gas cumulative production G_{pa} pseudo-cumulative production h net pay k permeability k_{aq} aquifer permeability		p pressure \overline{p} average reservoir pressure p_{o} reference pressure p_{D} dimensionless pressure p_{Dd} dimensionless pressure $derivative$ dimensionless pressure	p_i initial reservoir pressure p_p pseudo-pressure \overline{p}_p pseudo-pressure at average reservoir pressure p_{pi} initial pseudo-pressure p_{pij} pseudo-pressure at well flowing pressure	$q_{\rm D}$ dimensionless rate $q_{\rm Ddi}$ dimensionless rate $q_{\rm Ddi}$ dimensionless rate $q_{\rm Ddid}$ dimensionless rate $q_{\rm Ddid}$ dimensionless rate $medianmedian$	r_eexterior radius of reservoirr_eDdimensionless exterior radius of reservoirr_wwellbore radiusr_waapparent wellbore radiusR_νsolution oil-gas ratio	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} t_{\rm DA} & {\rm dimensionless\ time} \\ t_{\rm Dd} & {\rm dimensionless\ time} \\ t_{\rm Dxf} & {\rm dimensionless\ time} \\ t_{\rm Dye} & {\rm dimensionless\ time} \\ t_{\rm elf} & {\rm time\ at\ end\ of\ linear\ flow} \\ T & {\rm reservoir\ temperature} \\ \end{array}$		$\begin{array}{ll} \mu_{g} & \text{gas viscosity} \\ \overline{\mu}_{g} & \text{gas viscosity at average} \\ reservoir pressure \\ \mu_{gi} & \text{initial gas viscosity} \\ \mu_{o} & \text{oil viscosity} \\ \mu_{oi} & \text{initial oil viscosity} \\ \end{array}$
B_g gas formation volume factor	average reservoir pressure	$k_{ m f}$ fracture permeability	M mobility ratio	$p_{_{ m Di}}$ dimensionless pressure integral	pressure	q_{\circ} oil rate	R_{vi} initial solution oil-gas ratio	$t_{\rm c}$ material balance time	w fracture width	α constant	$\pmb{\mu}_{ m res}$ reservoir fluid viscosity
$B_{ m gi}$ initial gas formation volume factor	$F_{\scriptscriptstyle ext{CD}}$ dimensionless fracture	k_{res} reservoir permeability	N original oil-in-place	$p_{_{ m Did}}$ dimensionless pressure	$p_{_{ m wf}}$ well flowing pressure	${\it Q}$ cumulative production	s skin	t_{ca} material balance pseudo-time	$m{x}_{ m e}$ reservoir length	ϕ porosity	μ_w water viscosity
B_{\circ} oil formation volume factor	conductivity	$m{k}_{roi}$ initial oil-relative permeability	$N_{ m p}~~{ m oil}~{ m cumulative}~{ m production}$	integral-derivative	<i>q</i> flow rate	$oldsymbol{Q}_{ ext{ iny Dd}}$ dimensionless cumulative	S_g gas saturation	$t_{\rm D}$ dimensionless time	$x_{\rm f}$ fracture half length	μ viscosity	Oil field units;
						production			x_i half SRV width	$\mu_{\rm aq}$ aquifer fluid viscosity	$q_{\rm g}$ (MMSCFD); t (days)

All analyses described can be performed using IHS Markit's Rate Transient Analysis software Harmony Reservoir

