Proof of Concept to rapidly provision and demonstrate the business value and technical feasibility of an Open-Source-based data orchestration platform that enables secure, real-time streaming data processing capabilities across the OT, IoT and IT estates.

Developing this new capability, at affordable cost, is crucial to handle the increased complexity and volatility of a Net Zero energy system.

IBM Consulting

The 4D megatrends, driven by regulation and new technologies, fundamentally change the energy industry

Decarbonization

New zero carbon energy sources, resources, and incentives drive massive electrification of society and industries

Decentralization

Uptake of distributed assets and IoT allow the field to inform control systems and enable digital operations

Key enabling technologies

- Growth of RES
- Power-to-X
- E-mobility
- Heat pumps
- CCS

- Growth of DER
- Energy efficiency
- Flexibility
- Microgrids
- ADMS/DERMS

Democratization

Prosumers become active players in the system; transparency, trust, and control deliver real value

Digitization

Exponential technologies enable open, real-time, and automated systems operations

- AMI 2.0 —
- Smart appliances/devices —
- Beyond the meter optimization —
- Energy tokenization
- Aggregation platforms
- Blockchain

- IoT and smart sensors
- Edge computing
- IT/OT integration
- Predictive insights/forecasting
- **Business automation**
- Open data ecosystems

Energy players need to develop new capabilities at affordable cost to handle the increased complexity and volatility in the Clean Energy era

New Capabilities needed to address industry shifts

Secure, near real-time intelligent operations based on OT/IoT/IT data sets, combined with advanced predictive and prescriptive analytics.

- Efficiently operate closer to real-time and increase the level of instrumentation deployed on the asset base (e.g. LV grid monitoring, Hydrogen generation optimization) to deal with the increased complexity and volatility of a Clean Energy system.
- Improve and scale capabilities around **real-time** data streaming and closely integrate OT, IoT and **IT data sets**, combined with **advanced predictive** and prescriptive analytics on these data estates like digital twins, optimization engines, etc.
- These new capabilities must be deployed with an increased level of security to protect Critical National Infrastructure as OT and IT converge, and compliant with evolving regulatory frameworks.

Typical Challenges to build out the new capabilities

- Common, integrated IT/IoT/OT semantic models: Digital Twin Models require that data is put into context through associated engineering data and asset models. Currently these data sets are highly siloed and fragmented.

- High cost of scaling: Traditional OT platforms (e.g. historian) are priced by the number of endpoints. As energy companies deploy 10–20 times the number of sensors, this results in exploding license costs and data-related Opex and Capex.

- Data streaming and real-time processing: New requirements require rethinking the data platform with real-time data streaming at the core, and not as an add-on (as it is typically the case today).

IBM Consulting Offering for accelerated capability development

Energy Data Hub is a scalable, portable, clouddeployable data platform tailored to utilities' needs built on license-free OS technology.

- Data streaming and real-time processing platform to collect, aggregate, validate, inter-/extrapolate and interpret operational data, and provide a foundation for advanced analytics and digital twins.
- Low cost, highly scalable Cloud-ready platform built on license-free Open-Source technology that supports high volume, high velocity sensor and control message processing.
- **Best of Breed –** combines the best elements of several custom-developed solutions for energy clients, such as a rules engine for data validation (data quality and completeness), multiple persistence technologies and adapters for easy integration into a client's existing environment.

The IBM Energy Data Hub enables secure, data-driven operations with integrated, predictive intelligence for bi-directional electric grids

Example: Power Networks

- Augmented / new applications for more efficient and effective planning and operations of the electric grid leveraging combined data from OT, IoT instrumentation and IT (Smart Grid applications).
- Advanced Analytics & AI/ML are applied to the data for leverage by augmented / new applications, e.g. to improve operational awareness or for predictive insight.
- **Convergence of OT/IoT/IT** data is orchestrated by the Energy Data Hub managing streaming data and near real-time processing of data, and providing data historians.
- Increased level of security is managed by the Secure Hybrid Cloud Platform to protect the CNI from vulnerabilities as OT and IT converge.

Control Room Operations

OT Environment

Field Operations

Smart Meter Operations

Network Planning

Intelligent Operations Platform for Clean Energy

Operational Control | Predictive Insight | Intelligent Decision-making

Real-time Data Orchestration (**IBM Energy Data Hub**)

Secure Hybrid Cloud Platform

AMI

IoT Environment

WAM/GIS/CIS

External Sources

IT Environment

Energy Data Hub high-level architectural overview

Key characteristics and benefits of the Energy Data Hub solution offered by IBM Consulting

- Scalable Architecture, Multi-Cloud Ready Platform
- Open-Source Technology Stack
- Enterprise Systems Integration
- Industry Standards Driven Integration
- Linux Foundation Edge Platform (Fledge)
- Multiple Persistence ayers
- Enablement of Intelligent Workflows

Utility, Industrial, Chemicals and Petroleum companies are beginning to transition a lot of their analytical workloads and System of Engagement to the Cloud, while keeping their Systems of Records on premise. As a result, we offer a solution that can be deployed both on premise as well as in the cloud, which provides customers with flexibility.

solutions in this space apply.

The Energy Data Hub platform is designed to support analytics platforms, as well as interfacing to real time control systems. The platform supports standards such as Kafka, SPARK, Kubernetes etc.

The integrations are based on standards prevalent in the industry for interfacing with IoT devices and include ICCP, DNP3, MQTT, OPC as well as JSON and XML. Supports traditional comms such as serial and Modbus, as well as newer IP based protocols and 5G

Deployed in industrial use cases since early 2018, Fledge integrates IIoT, sensors, machines, ML/AI tools-processesworkloads, and cloud/s with the current industrial production systems and levels, as per ISA-95.

The platform offers many different persistence layers, as such it can support IBM Products such as DB2 and Informix, as well as partner technologies like Snowflake, AWS Aurora and Redshift.

The Energy Data Hub platform integrates a **Rules Engine** to apply validation and estimation rules for improving data quality and completeness, and furthermore, it combines **Data, AI/ML services** to build Intelligent workflows with automation

Customers often seek Open-Source based solutions to avoid the high, end-point based licensing fees that traditional

We offer a Proof of Concept for the IBM Energy Data Hub using client data sets to demonstrate the platform capability on select use cases

Offering Overview

Rapid deployment of a Proof of Concept of the Energy Data Hub

The Energy Data Hub Proof of Concept offering aims at rapid provisioning and demonstration of a data orchestration platform across OT, IoT and IT estates with real-time streaming data processing capabilities.

- Scoping the PoC in terms of use cases, data requirements, solution/integration architecture, expected outcomes etc.
- Setup and Configuration of the Energy Data Hub platform according to custom requirements and scope
- Client Data integrations with existing client environment – platform can adapt to multiple persistence technologies

Proof of Concept Design & Execution

Scope and deliver the PoC in 12-16 weeks using the user-centric IBM Garage method for co-creating the solution, and by following a 3-phased approach

Proof of Concept Outcomes

Demonstrate the suitability and feasibility of the Energy Data Hub

- **Technical:** Prove data streaming and real-time processing capability in your specific environment as the foundation for a fully integrated, endurable solution
- **Best Practice:** Drive DataOps culture and skills, and user-centric digital transformation with IBM Garage
- Financial Case: Reduce data-related costs by up to 60% for platform build and operate, and for new use cases (license costs; automation; reuse data pipelines, etc.)
- Business Risk: Accelerate time-tovalue and reduce implementation risk by using proven, secure industry assets

Why IBM

EE&U Industry Expertise – deep expertise and experience on industry-specific data-driven use cases and implementations, as well as assets/accelerators like the DMEU (Data Model for E&U)

IBM iX – a globally leading consultancy with 60+ design studios for differentiated user experiences and data-driven visualizations using Enterprise Design Thinking and IBM Garage methodologies

Data & AA/AI – leader in Data & Analytics Services with 10,000+ practitioners globally supporting clients to transform digital operations by unlocking the value of enterprise data, building an AI-driven organization and driving intelligent automation at scale

Secure Hybrid Cloud Expertise – deep capability in building secure microservices-based applications and complex integration services of on-premises and in-the-cloud applications and data sources as a key enabler for digital operations/Digital Twins

Best-of-Breed Platform – comprehensive platform natively designed for OT/IoT streaming data processing based on proven architecture and models with accelerators to deliver rapid results in just a few weeks

Open Architecture – open, multi-cloud architecture based on low cost Open-Source technology that can be deployed on Azure as well as onpremise hence providing increased flexibility

Ecosystem & Partners – strategic partnerships with leading industry OEMs such as ABB, Aspentech OSI, GE, Itron, L+G, Schneider Electric, Siemens, Venios etc. as well as Microsoft and IBM Technology to accelerate the implementation of data-driven Clean Energy use cases

