

SQL REPLACE 01

SQL DELETE 07

SQL UPDATE with JOIN 03

SQL INSERT INTO SELECT 05

PostgreSQL Index Examples 08

SQL REPLACE
5 tips for finding and
replacing text in PostgreSQL

01

-- Use the default case-sensitive REPLACE:

DO $$

DECLARE

 txt TEXT:= 'Cats are great pets and so easy to take care of.
 They make good companions. Having a cat around

 is good for children.';

 txt2 TEXT;

 BEGIN

 txt2:= REPLACE(txt,'cat','dog');

 RAISE NOTICE '%', txt2;

 END;

$$;

-- Output: Cats are great pets and so easy to take care of. They make good
companions. Having a dog around is good for children.

-- Use the LOWER() function to convert a string to lowercase:

DO $$

DECLARE

 txt TEXT := LOWER('Cats are great pets and so easy to take care of.

 They make good companions. Having a cat around

 is good for children.');

 txt2 TEXT;

 BEGIN

 txt2:= REPLACE(txt,'сat','dog');

 RAISE NOTICE '%', txt2;

 END;

$$;

-- Output: dogs are great pets and so easy to take care of. They make good
companions. Having a dog around is good for children.

1. Case-sensitive REPLACE

01

02

DO $$
DECLARE
 txt TEXT:= 'Cats are great pets and so easy to take care of.
 They make good companions. Having a cat around

 is good for children.';

 txt2 TEXT;

 BEGIN

 txt2:= REPLACE(REPLACE(txt,'cat','dog'),'Cat','Dog');

 RAISE NOTICE '%', txt2;

 END;

$$;

-- Output: Dogs are great pets and so easy to take care of. They
make good companions. Having a dog around is good for children.

2. SQL REPLACE can be nested

-- Replace all occurrences of 'know' within a given string
SELECT REPLACE('know the unknown','know','foresee');

-- Output: 'foresee the unforeseen'

-- Add a space to the string to search for entire words only
SELECT REPLACE('know the unknown','know ','foresee');

-- Output: 'foresee the unknown'

3. SQL REPLACE replaces text for ALL occurrences

-- Update the address table by replacing '1923 Hanoi Way' with '1913/2 Hanoi Way':

UPDATE address

 SET address = REPLACE(address,'1923 Hanoi Way','1913/2 Hanoi Way')

 WHERE postal_code = '35200';

5. REPLACE can be used with UPDATE to store replaced texts

-- This will remove the hyphen in @sakila-customer:

SELECT email,

 REPLACE (email, '-', '') AS NEWEMAIL

 FROM public.customer;

4. SQL REPLACE can remove texts

1. Preview records using the SELECT statement

-- View the records you need to update using the SELECT
statement. This way, you will see the records prior to the
actual update.

SELECT sta.store_id,

 CAST(CAST(AVG(CAST(sto.Rating AS DECIMAL(3,2))) AS

 DECIMAL(3,2)) AS varchar(9)) AS AverageRating

 INTO ComputedRatings

 FROM staff sta

 LEFT JOIN store sto

 ON sta.store_id = sto.TitleID

GROUP BY sta.store_id;

--UPDATE staff

--SET OverallUserRating = sto.AverageRating

SELECT sta.store_id, sta.OverallUserRating, sto.AverageRating
 FROM staff sta
 INNER JOIN ComputedRatings b

 ON sta.store_id = sto.TitleID;

SQL UPDATE with JOIN

03

3 tips for running SQL UPDATE
with JOIN in PostgreSQL

2. Update data using variables

-- If you need to use your data recurringly, write it to a
variable and refer to this variable whenever it is required.

SELECT sta.store_id,

 CAST(CAST(AVG(CAST(sto.Rating AS DECIMAL(3,2))) AS
 DECIMAL(3,2)) AS varchar(9)) AS AverageRating
 INTO ComputedRatings

 FROM staff sta

 LEFT JOIN store sto

 ON sta.store_id = sto.TitleID

GROUP BY sta.store_id;

SELECT * INTO tmpstaff FROM staff;

UPDATE tmpstaff

 SET OverallUserRating = sto.AverageRating

 FROM tmpstaff a

 INNER JOIN ComputedRatings b

 ON sta.store_id = sto.TitleID;

3. Use the RETURNING CLAUSE to update data

SELECT sta.store_id,
 CAST(CAST(AVG(CAST(sto.Rating AS DECIMAL(3,2))) AS
 DECIMAL(3,2)) AS varchar(9)) AS AverageRating

 INTO ComputedRatings

 FROM staff sta

 LEFT JOIN store sto

 ON sta.store_id = sto.TitleID

GROUP BY sta.store_id;

SELECT * INTO tmpstaff FROM staff;

UPDATE tmpstaff

 SET OverallUserRating = sto.AverageRating

 FROM tmpstaff a JOIN ComputedRatings b

 ON ststa.store_id = sto.TitleID

RETURNING sta.store_id, sta.OverallUserRating;

04

SQL INSERT
INTO SELECT
The easiest ways to handle duplicates

INSERT INTO actual_cities (city_id,city, address, country_id)
SELECT a.city_id, c.city, a.address, c.country_id

 FROM address a INNER JOIN city c

 ON a.city_id = c.city_id

 WHERE NOT EXISTS (SELECT c.city_id

 FROM city c

 WHERE a.city_id = c.city_id

 AND country_id IN (1, 100));

2. Use WHERE NOT EXISTS

04

INSERT INTO postal_codes (city_id, city, postal_code)

SELECT a.city_id, c.city, a.postal_code
 FROM address a

 INNER JOIN city c

 ON a.city_id = c.city_id

 WHERE a.address_id NOT IN (SELECT address_id FROM store);

1. Use WHERE NOT IN

05

06

3. Use COUNT(*) = 0

INSERT INTO actual_cities (city_id, city, address, country_id)
SELECT a.city_id, c.city, a.address, c.country_id

 FROM address a INNER JOIN city c

 ON a.city_id = c.city_id

 WHERE country_id IN (1, 100)

 AND (SELECT COUNT(*)

 FROM actual_cities

 WHERE country_id IN (1, 100))= 0;
 6. Use IF NOT EXISTS

DO $$

BEGIN IF NOT EXISTS

(SELECT 1 FROM actual_cities ac
 WHERE ac.country_id IN (1, 100)) THEN
INSERT INTO actual_cities (city_id, city, address,

country_id)

SELECT a.city_id, c.city, a.address, c.country_id

 FROM address a INNER JOIN city c

 ON a.city_id = c.city_id

 WHERE EXISTS (SELECT c.city_id

 FROM city c

 WHERE a.city_id = c.city_id

 AND country_id IN (1, 100));

 RAISE INFO 'Not exists';

 ELSE RAISE INFO 'Exists';

 END IF;

END

$$

4. Error handling

DO $$

BEGIN

INSERT INTO postal_codes (city_id, city, postal_code)

SELECT city_id, city, postal_code

 FROM address a INNER JOIN city c

 ON a.city_id = c.city_id

 WHERE a.postal_code = NULL;

EXCEPTION WHEN OTHERS

 THEN RAISE INFO 'Error Name:%',SQLERRM;

 RAISE INFO 'Error State:%', SQLSTATE;

END

$$

INSERT INTO postal_codes (postal_code)

SELECT DISTINCT postal_code

 FROM address;

5. Use INSERT INTO SELECT DISTINCT

SQL DELETE
5 useful DELETE syntax tips for PostgreSQL developers

07

CREATE TABLE payment_backup AS
SELECT * FROM payment;

DELETE FROM payment_backup;

2. Delete all records

DELETE FROM payment
 WHERE payment_id = 200;

-- Delete 3 records using IN:

DELETE FROM payment

 WHERE payment_id IN (201, 202, 203);

5. Conditional DELETE with WHERE clause

1. LIMIT

DELETE FROM film
 WHERE YEAR (release_year) = 2006

 ORDER BY last_update
 LIMIT 2;

3. DELETE with a JOIN

DELETE FROM payment USING staff

 WHERE payment.staff_id = staff.staff_id
 AND staff.username =
'Jon_Stephens@sakilastaff.com';

4. DELETE with a subquery

DELETE FROM film_actor

 WHERE actor_id IN (SELECT actor_id

FROM actor

WHERE first_name = 'NICK'

AND last_name = 'WAHLBERG');

PostgreSQL Index Examples
16 index examples to speed up your SQL queries

08

2. Add a UNIQUE index within CREATE TABLE

CREATE TABLE IF NOT EXISTS address_new (
address_id INTEGER NOT NULL PRIMARY KEY,
address CHARACTER VARYING(50),
city_id SMALLINT NOT NULL,
phone CHARACTER VARYING(20) UNIQUE,
last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW());

3. Create an index with included columns

CREATE TABLE IF NOT EXISTS address_new (
address_id INTEGER NOT NULL PRIMARY KEY,

address CHARACTER VARYING(50),

city_id SMALLINT NOT NULL,

phone CHARACTER VARYING(20),

last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW(),
UNIQUE (phone)

INCLUDE (address));

CREATE UNIQUE INDEX ind_phone

 ON address_new(phone);

1. Create a simple unique index

09

CREATE TABLE IF NOT EXISTS address_new (
 address_id INTEGER NOT NULL,

 address CHARACTER VARYING(50),

 city_id SMALLINT NOT NULL,

 phone CHARACTER VARYING(20),

 last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW());

ADD CONSTRAINT address_pk PRIMARY KEY (address_id);

4. Use ALTER TABLE...ADD CONSTRAINT

CREATE TABLE IF NOT EXISTS address_new (

 address_id INTEGER NOT NULL PRIMARY KEY,

 address CHARACTER VARYING(50),

 city_id SMALLINT NOT NULL,

 phone CHARACTER VARYING(20),

 last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW());

CREATE INDEX ind_phone

 ON address_new (phone) INCLUDE (address, city_id)

 WHERE address_id > 10

 AND city_id = 4;

5. Create a filtered index

CREATE TABLE IF NOT EXISTS address_new (
 address_id INTEGER NOT NULL PRIMARY KEY,
 address CHARACTER VARYING(50),

 city_id SMALLINT NOT NULL,

 phone CHARACTER VARYING(20),

 last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW());

CREATE INDEX ind_address_phone

 ON address_new (address, phone);

7. Add a composite index

6. Create a GIST index for the spatial data type

ALTER TABLE IF EXISTS city ADD COLUMN points POINT;

CREATE INDEX idx ON city USING GIST (points);

CREATE TABLE IF NOT EXISTS address_new (

 address_id INTEGER NOT NULL PRIMARY KEY,

 address CHARACTER VARYING(50),

 city_id SMALLINT NOT NULL,

 phone CHARACTER VARYING(20),

 last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW());
CREATE INDEX ind_phone ON address_new (phone);

8. Add an index using CREATE INDEX

CREATE TABLE IF NOT EXISTS prod_order (
 order_id INTEGER NOT NULL,

 product CHARACTER VARYING(50) COLLATE pg_catalog."default",
 price DOUBLE PRECISION NOT NULL,

 amount DOUBLE PRECISION NOT NULL,

 sum_order DOUBLE PRECISION GENERATED ALWAYS AS ((amount * price)) STORED,
 last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW(),

 CONSTRAINT prod_order_pkey PRIMARY KEY (order_id));

9. Add an index within CREATE TABLE using CONSTRAINT

10

CREATE TABLE IF NOT EXISTS prod_order (
 order_id INTEGER NOT NULL,

 product CHARACTER VARYING(50) COLLATE pg_catalog."default",
 price DOUBLE PRECISION NOT NULL,

 amount DOUBLE PRECISION NOT NULL,

 sum_order DOUBLE PRECISION GENERATED ALWAYS AS ((amount * price)) STORED,
 last_update TIMESTAMP,

 CONSTRAINT prod_order_pkey PRIMARY KEY (order_id));

CREATE INDEX ind_sum ON prod_order (sum_order);

10. Create an index on a computed column

CREATE INDEX ind_phone
 ON address_new(phone);

11. Add an index with one column

CREATE MATERIALIZED VIEW staff_list

 AS SELECT s.first_name,

 s.last_name,

 s.email,

 s.username,

 ad.address

 FROM staff s INNER JOIN address ad
 ON s.address_id = ad.address_id;

CREATE INDEX ind

 ON staff_list (username);

13. Create an index on a materialized view

11

CREATE UNIQUE INDEX ind_sum
 ON prod_order (sum_order,product);

16. Create a unique index on a computed column

CREATE INDEX ind_txt

 ON film USING GIN (to_tsvector('english', description));

12. Create a GIN index to speed up text search

CREATE UNIQUE INDEX ind_phone_address

 ON address_new (phone,address);

15. Create a GIN index to speed up text search

CREATE TABLE IF NOT EXISTS address_new (

 address_id INTEGER NOT NULL PRIMARY KEY,

 address CHARACTER VARYING(50),

 city_id SMALLINT NOT NULL,

 phone CHARACTER VARYING(20),

 last_update TIMESTAMP WITHOUT TIME ZONE NOT NULL DEFAULT NOW());

CREATE INDEX IF NOT EXISTS ind_phone ON address_new (phone);

14. Create a new index—and drop it immediately if it exists

dbForge Studio is a multifunctional IDE for
PostgreSQL, which helps you handle

a variety of tasks, including operations with
JOINs. With its help, you can instantly get

at least 30% more effective and reduce the
time you typically spend

on your routine work with databases by
about 50%.

DOWNLOAD FREE 30-DAY TRIAL
It is easy to improve the readability, consistency, and standardization of your code with
the rich SQL formatting options offered by the Studio. Depending on your needs, you
can apply automatic, manual, or wizard-aided formatting.

SQL formatting

12

dbForge Studio for PostgreSQL:

your comprehensive IDE for PostgreSQL databases

SQL editor
The built-in SQL editor helps you effectively manage your SQL code with smart
completion, syntax highlighting, formatting, refactoring, and a slew of other
productivity enhancements that let you get a sharper focus on your work.

With dbForge Studio, you can easily speed up your routine SQL coding by at least
90% with context-sensitive keyword and object suggestions, which include auto-
generation of JOIN clauses. Auxiliary features include code snippets, column picker,
wildcards, highlighting, and parameter information.

Context-sensitive code completion

The syntax checker is one of the most valuable features integrated into the SQL editor.
Whenever the checker detects an error in the code that you are typing, it instantly
highlights the problematic place so you can fix it immediately.

Instant syntax check

https://www.devart.com/dbforge/postgresql/studio/download.html?utm_source=whitepaper&utm_medium=referral&utm_campaign=Best_practices_SQL_queries_StudioPostgreSQL

Helpful resources
Here are a few bonuses to help you expand your PostgreSQL skills.

13

Video tutorials on our
YouTube channel

More PostgreSQL
insights on our blog

DOWNLOAD FREE 30-DAY TRIALGet started with dbForge Studio for free today!

Get in touch with us to
request a product demo

https://www.devart.com/dbforge/postgresql/studio/download.html?utm_source=whitepaper&utm_medium=referral&utm_campaign=Best_practices_SQL_queries_StudioPostgreSQL
https://www.youtube.com/playlist?list=PLpO6-HKL9JxWyXjze9eCHO9f2WHcNEDYQ
mailto:sales@devart.com?subject=dbForge Studio for PostgreSQL Demo Request [Best practices for writing PostgreSQL queries]
https://blog.devart.com/category/products/postgresql-tools/?utm_source=whitepaper&utm_medium=referral&utm_campaign=Best_practices_SQL_queries_StudioPostgreSQL

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

