
OVERVIEW.md 5/25/2023

1 / 12

Get the big picture of your product quality in Azure DevOps
Are you working with different test tools and technologies? Do you struggle with getting the big
picture of your product quality?

We've got you covered!

Solidify's Test Result Importer will get all of your manual and automatic test results in one place -
Azure Test Plans.

As long as your test tool of choice supports reporting in the JUnit/xUnit, TestNG or Gherkin formats, it can be
imported to Azure Test Plans using this tool.

Key benefits

Combine automatic and manual test results into one source for reporting and visualizing of product
quality.
Convert the test data into test suites and test cases in a way that preserves the data hierarchy.
Automatic generation of test cases and test steps in Azure DevOps.
Support for both yaml pipelines and classic build and releases.

Easy and secure

Everything created with Test Result Importer stays in your Azure DevOps, which means you don't have to
worry about integration, security or data protection in a separate service.

Up and running in 5 minutes:

Install the extension in your Azure DevOps
Add the Test Result Importer activity to your pipelines
Find both your manual and automatic test results in the same source - Azure test Plans
Create reports from your combined manual and automatic test effort, or visualize the quailty using
Azure Dashboards.

Try Solidify's Test Result Importer now

Still not sure? Try our free 30-day trail. Click the "Get It Now" button and get started!

Features

OVERVIEW.md 5/25/2023

2 / 12

The Solidify Test Result Importer extension provides a build task that can convert test results files from a
variety of test frameworks into an Azure Testplan.

The extension currently supports the following file formats:

Gherkin (.json)
JUnit/xUnit (.xml)
TestNG (.xml)

Additional features:

Convert the test data into test suites and test cases in a way that preserves the data hierarchy.
Choose wether to create new test cases or overwrite the existing ones.
Choose which target project in which to create the test data.
Supports test steps.
Supports test parameters (a new test iteration will be created for every parameter set).
Supports custom work item fields (specify in the task).
Supports import of additional test steps from a .json file.
Supports import of files and links as Attachments on the Test Runs or Test Results.

Supported test frameworks

Test Result Importer has support for all test automation frameworks that integrate with the JUnit, TestNG or
Gherkin formats, including the following:

Selenium
Cypress
Appium
NUnit
Cucumber
Robot Framework
TestComplete
Jasmine
Karma
Protractor
Gauge
Karate
PyTest
Spring Boot
SoapUI
JMeter
WebdriverIO
XCUITest
Espresso
Gatling
And many more...

Installation and configuration

OVERVIEW.md 5/25/2023

3 / 12

Installation

Install the Test Result Importer to your Azure DevOps Organization.

Configure the license

Before you get started, you must import import your .json license file into the extension's storage. If you have
been in contact with us before, chances are you have already been given a license file. Otherwise contact us at
support.tri@solidify.dev to inquire about purchasing a license.

The validity period of the license is 12 months, after which you must request a new license from us.

You will need to open the configuration page via Organization Settings -> Extensions -> Test Result Importer -
> Enter License Manually. Paste the contents of the json file in its entirety.

Pipelines or Releases?

Add the Test Result Importer as a task in either Pipelines or in Releases, both classic task and yaml task are
supported.

Configure the task

mailto:support.tri@solidify.dev

OVERVIEW.md 5/25/2023

4 / 12

Required configuration

Testresults filepath: The root path to your testresults file, default: "$(System.DefaultWorkingDirectory)"
Specific Filename: The path to your test results file (.xml/.json)
Name of TestPlan: The name of the test plan to write the data to
The file type (JUnit/Gherkin/TestNG)

This is all the configuration required! However, you can see that there are a lot more options to try out:

OVERVIEW.md 5/25/2023

5 / 12

Optional configuration

Target Project: The project where the chosen Test Plan resides (leave empty to use the same project as
the pipeline)
Create Test Cases: Check this if you want to automatically create Test Cases in the selected Test Plan in
Azure DevOps
Reset Test Cases: Check this if you want to reset all Test Cases in the chosen Test Plan
Ignore Test Steps: Check this if you want to skip writing the Test Case test steps
Ignore Test Parameters: Check this if you want to skip writing the Test Case parameters
File type: Which type of file to parse (JUnit/Gherkin/TestNG)
Specific TestStep filename: The path to the .json file containing the extra test steps.
Test Result Details filename: The name of the .json that contains the testresult details, including
attachments, URLs, work item links and test case summaries.
Custom work item fields and values on the target TestCase work items: Specify custom work item
fields to add on every created test case. One field/value-pair per line. example:

System.Title=My title!
System.Description=My description!

Build Service Account, required permissions

OVERVIEW.md 5/25/2023

6 / 12

The Build Service Account will be either one fo the following depending on your project configuration:

Project Collection Build Service ([Collection name])
[Project name] Build Service ([Collection name])

The Build Service Account will require the following permissions under Project Settings -> Permissions:

Create Test Runs
Delete Test Runs
Manage Test Plans

Additionally, you must configure the permissions of the area path where the Test Plan is located. Under
Project Settings -> Project configuration -> Areas -> [Select the area path of the Test Plan] -> Security:
You must add the Build Service Account and Allow the following permissions:

Manage test plans
Manage test suites

If the area permissions are configured incorrectly, you will see the following error message in the pipeline log:

Task failed, error message: Error: You do not have the appropriate permissions to
manage test suites under this area path.: import-test-results

Import Extra test steps from .json file

In order to import extra test steps into your cases, you must first specify the Specific TestStep filename task
parameter. Specify the path to your .json file in the repository which contains the extra test steps.

The extra test steps file must follow this schema:

OVERVIEW.md 5/25/2023

7 / 12

{
 "testcases": [
 {
 "id": <number>,
 "name": <string>,
 "teststeps": [
 {
 "id": <number>,
 "name": <string>
 }
]
 }
]
}

Here:

testcases contains references to the test cases for which we want to add test steps.
id must be a unique positive integer (e.g. 1, 2, 3, 4...).
name must match the name of the TestCase work item.
teststeps contains the test steps that we want to add to the current TestCase.

id is an integer that defines the order of the test steps (1, 2, 3, 4...).
name is the text of the test step that will appear in the work item.

Here is a complete example of the test steps .json file:

{
 "testcases": [
 {
 "id": 1,
 "name": "Verify number of frames",
 "teststeps": [
 {
 "id": 1,
 "name": "Test Setup"
 },
 {
 "id": 2,
 "name": "Create session"
 },
 {
 "id": 3,
 "name": "TEST = Get number of received frames from session"
 },
 {
 "id": 4,
 "name": "Test Teardown"
 }
]
 },

OVERVIEW.md 5/25/2023

8 / 12

 {
 "id": 2,
 "name": "Verify can receive messages",
 "teststeps": [
 {
 "id": 1,
 "name": "Test Setup"
 },
 {
 "id": 2,
 "name": "Create session"
 },
 {
 "id": 3,
 "name": "Verify that session can receive messages"
 },
 {
 "id": 4,
 "name": "Test Teardown"
 }
]
 }
]
}

Edit details for specific test case/test run result

Additional details about the individual test cases/test run results can be supplied in the file
testresultdetails.json in the working directory (the git repository root). If no such file is found in the
repo, this step will be skipped.

Using the testresultdetails.json file, you can:

Import files or links as Test Run/Test Result attachments
Specify individual work item links (useful to track which requirements are verified by what test cases)
Specify test case descriptions (summaries).

testresultdetails.json must follow this schema:

{
 "testrun": {
 "urls": [
 {
 "id": <number>,
 "name": <string>,
 "urlstring": <urlstring>
 }
],
 "attachments": [
 {
 "id": <number>,

OVERVIEW.md 5/25/2023

9 / 12

 "name": <string>,
 "filename": <urlstring>
 }
]
 },
 "testcases": [
 {
 "id": <number>,
 "name": <string>,
 "summary": <string>,
 "workItemLinks": [
 {
 "id": <number>,
 "linkType": <string>
 }
]
 "urls": [
 {
 "id": <number>,
 "name": <string>,
 "urlstring": <urlstring>
 }
],
 "attachments": [
 {
 "id": <number>,
 "name": <string>,
 "filename": <urlstring>
 }
]
 }
]
}

Here:

testrun contains the urls and attachments to be added to the Test Run.
testcases contains the urls, attachments, work item links and descriptions to be added to the
individual test case results. The id property must be a unique positive integer (e.g. 1, 2, 3, 4...). The name
must match the test case name.

Here is a complete example of the testresultdetails.json file:

{
 "testrun": {
 "urls": [
 { "id": 1, "name": "aftonbladet", "urlstring":
"http://www.aftonbladet.se" },
 { "id": 2, "name": "expressen", "urlstring": "http://www.expressen.se"
}
],

OVERVIEW.md 5/25/2023

10 / 12

 "attachments": []
 },
 "testcases": [
 {
 "id": 1,
 "name": "Verify user can add THU Line",
 "summary": "This is my summary!",
 "workItemLinks": [
 {
 "id": 57841,
 "linkType": "Hierarchy-Forward"
 }
],
 "urls": [
 { "id": 1, "name": "aftonbladet", "urlstring":
"http://www.aftonbladet.se" },
 { "id": 2, "name": "expressen", "urlstring":
"http://www.expressen.se" }
],
 "attachments": [
 { "id": 1, "name": "file_a.md", "filename": "testdata\\file_a.md"
},
 { "id": 2, "name": "file_b.md", "filename": "testdata\\file_b.md"
}
]
 },
 {
 "id": 2,
 "name": "Verify added Pickup Reference is available in confirmed TBR",
 "urls": [
 { "id": 1, "name": "aftonbladet","urlstring":
"http://www.aftonbladet.se" },
 { "id": 2, "name": "aftonbladet","urlstring":
"http://www.expressen.se" }
],
 "attachments": [
 { "id": 1, "name": "file_a.md", "filename": "testdata\\file_a.md"
},
 { "id": 2, "name": "file_b.md", "filename": "testdata\\file_b.md"
}
]
 }
]
}

Set AutomatedTest properties on the Test Cases

Add the following lines to the Custom work item fields and values on the target TestCase work items
property:

OVERVIEW.md 5/25/2023

11 / 12

Microsoft.VSTS.TCM.AutomatedTestStorage=myTestStorageFile.dll
Microsoft.VSTS.TCM.AutomatedTestId=527a1270-8d28-41d3-ba70-933a59c63ab1
Microsoft.VSTS.TCM.AutomatedTestType=Unit Test
Microsoft.VSTS.TCM.AutomationStatus=Automated

Enable access to the OAuth token

For the pipeline to run, you must give it access to the Oauth token, otherwise you will receive errors like the
following.

SYSTEM_ACCESSTOKEN env var not set

Simply go to: Edit Pipeline -> Agent Job 1 -> Additional Options, and ensure the "Allow scripts to access
the OAuth token" checkbox is ticked. Then save the pipeline and run again.

Configuration example: yaml
Here is a screenshot detailing how to configure the task in yaml:

Configuration: Overriding Automated Test Case name

For JUnit and TestNG, the Automated Test Case property on the Testcase work item is inferred automatically
from the testcase/class name. If you wish to override it, or also set it for Gherkin, the following must go into
the Custom work item fields and values on the target TestCase work items-textbox at the bottom of the
config:

Microsoft.VSTS.TCM.AutomatedTestName=ExampleTestName
Microsoft.VSTS.TCM.AutomatedTestStorage=example.dll
Microsoft.VSTS.TCM.AutomatedTestId=527a1270-8d28-41d3-ba70-933a59c63ab1
Microsoft.VSTS.TCM.AutomatedTestType=Unit Test
Microsoft.VSTS.TCM.AutomationStatus=Automated

OVERVIEW.md 5/25/2023

12 / 12

Replace "ExampleTestName" with whatever you want the AutomatedTestName field to say.

Do you have questions, issues or a feature request?
Please get in touch using the Q&A section or our contact form: https://solidify.dev/contact

https://solidify.dev/contact

