
Deploying to Azure with
Kubernetes
This page shows how to deploy a complete Metaflow stack powered by Kubernetes on

Microsoft Azure. For more information about the deployment, see deployment

details, advanced options and FAQ.

1. Preparation

Terraform Tooling

Terraform is a popular infrastructure-as-code tool for managing cloud resources. We have

published a set of Terraform templates here for setting up Metaflow on Microsoft Azure.

Terraform needs to be installed on your system in order to use these templates.

1. Install Terraform by following these instructions.

2. Download Metaflow on Azure terraform templates:
git clone git@github.com:outerbounds/metaflow-tools.git

Azure Command Line Interface

This is the official CLI tool ("az") published by Microsoft for working with Azure. It will be used

by Terraform when applying our templates (e.g. for authentication with Azure). Please install it

by following these instructions.

kubectl Command Line Interface

kubectl is a standard CLI tool for working with Kubernetes clusters. It will be used by

Terraform when applying our templates (e.g. for deploying some services to your Azure

Kubernetes Service cluster). Please install it by following these instructions.

2. Provision Azure Resources

https://outerbounds.com/engineering/service-architecture/
https://outerbounds.com/engineering/deployment/azure-k8s/details/
https://outerbounds.com/engineering/deployment/azure-k8s/details/
https://outerbounds.com/engineering/deployment/azure-k8s/advanced/
https://outerbounds.com/engineering/deployment/azure-k8s/faq/
https://www.terraform.io/
https://github.com/outerbounds/metaflow-tools/tree/master/azure/terraform
https://learn.hashicorp.com/tutorials/terraform/install-cli
https://github.com/outerbounds/metaflow-tools/tree/master/azure/terraform
https://docs.microsoft.com/en-us/cli/azure/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://kubernetes.io/docs/tasks/tools/#kubectl

See here for the exact set of resources to be provisioned. Also, note the permissions that are

needed.

Login to Azure

You must be logged onto Azure as an account with sufficient permissions to provision the

required resources. Use the Azure CLI (az):

az login

Initialize your Terraform Workspace

From your metaflow-tools/azure/terraform directory, run:

terraform init

Set org_prefix

Create a TF vars file FILE.tfvars (FILE could be something else), with this content.

org_prefix = "yourorg" # use something short and distinctive

Some Azure resources must have globally unique names:

• Azure storage account

• Azure PostgreSQL Flexible Server

org_prefix will be used to ensure this uniqueness.

Uncomment this line, and set org_prefix to a value of your choice. Short and distinctive is best.

Optional: Enable Argo Events

To enable event triggering for Metaflow, add the following line in FILE.tfvars:

enable_argo=true

For more technical context, see this page about event triggering.

https://outerbounds.com/engineering/deployment/azure-k8s/details/#required-azure-permissions-for-running-flows
https://outerbounds.com/engineering/deployment/azure-k8s/details/#required-azure-permissions-for-running-flows
https://github.com/outerbounds/metaflow-tools/blob/f7ff07d49563dc8217f7fe49150b2d50a14d999f/azure/terraform/variables.tf#L9
https://docs.metaflow.org/production/event-triggering
https://outerbounds.com/engineering/operations/event-triggering/

Optional: Enable Airflow

Optionally, you can include Apache Airflow as the production orchestrator for Metaflow in your

deployment by including the following lines in FILE.tfvars:

deploy_airflow=true

Setting deploy_airflow=true will create a storage blob-container named airflow-logs, provide blob-

container read and write permissions to the service principal and deploy Airflow in the AKS

cluster with a LocalExecutor. The Airflow installation will store the logs in the airflow-logs blob

container.

Apply Terraform Template to Provision Azure Infrastructure

From your local metaflow-tools/azure/terraform directory, run:

terraform apply -target="module.infra" -var-file="FILE.tfvars"

A plan of action will be printed to the terminal. You should review it before accepting.

See details for what to expect.

Common Resource Provisioning Hiccups

PostgreSQL Provisioning API Errors (on Azure Side)

If you do not create Azure PostgreSQL Flexible Server instances often, Azure API may be flaky

for you initially:

| Error: waiting for creation of the Postgresql Flexible Server "metaflow-database-server-xyz" (Resource
Group "rg-db-metaflow-xyz"):
| Code="InternalServerError" Message="An unexpected error occured while processing the request. Tracking
ID: 'xyz'"
|
| with module.infra.azurerm_postgresql_flexible_server.metaflow_database_server,
| on infra/database.tf line 20, in resource "azurerm_postgresql_flexible_server" "metaflow_database_server":
| 20: resource "azurerm_postgresql_flexible_server" "metaflow_database_server" {

In our experience, waiting 20 mins and trying again resolves this issue. This appears to be a

one-time phenomenon - future stack spin-ups do not encounter such InternalServerErrors.

https://docs.metaflow.org/production/scheduling-metaflow-flows/scheduling-with-airflow
https://outerbounds.com/engineering/deployment/azure-k8s/details/

Node Pool Provisioning

We have hard-coded some default instance types to be used for Kubernetes nodes as well as

worker pools (taskworkers). Depending on the real-time availability of such instances in your

region or availability zone, you may consider choosing alternate instance types.

VM Availability issues might look something like this:

| Error: waiting for creation of Node Pool: (Agent Pool Name "taskworkers" / Managed Cluster Name
"metaflow-kubernetes-xyz" /
| Resource Group "rg-k8s-metaflow-xyz"): Code="ReconcileVMSSAgentPoolFailed"
Message="Code=\"AllocationFailed\" Message=\"Allocation failed.
| We do not have sufficient capacity for the requested VM size in this region. Read more about improving
likelihood of allocation success
| at http://aka.ms/allocation-guidance\""

VM quotas may also cause provisioning to fail - we recommend working with your Azure admin

to raise quotas, and/or pick other instance types:

| Error: creating Node Pool: (Agent Pool Name "taskworkers" / Managed Cluster Name "metaflow-
kubernetes-default" / Resource Group "rg-k8s-metaflow-default"):
| containerservice.AgentPoolsClient#CreateOrUpdate: Failure sending request: StatusCode=400 -- Original
Error: Code="PreconditionFailed"
| Message="Provisioning of resource(s) for Agent Pool taskworkers failed. Error: {\n \"code\":
\"InvalidTemplateDeployment\",\n
| \"message\": \"The template deployment '8b1a99f1-e35e-44be-a8ac-0f82009b7149' is not valid according
to the validation procedure.
| The tracking id is 'xyz'. See inner errors for details.\",\n \"details\":
| [\n {\n \"code\": \"QuotaExceeded\",\n \"message\": \"Operation could not be completed as it results
in exceeding approved standardDv5Family Cores quota.
| Additional details - Deployment Model: Resource Manager, Location: westeurope, Current Limit: 0, Current
Usage: 0,
| Additional Required: 4, (Minimum) New Limit Required: 4.
| Submit a request for Quota increase at https://<AZURE_LINK> by specifying parameters listed in the
‘Details’ section for deployment to succeed.
| Please read more about quota limits at https://docs.microsoft.com/en-us/azure/azure-supportability/per-
vm-quota-requests\"\n }\n]\n }"

3. Deploy Metaflow Services to AKS Cluster

Apply Terraform Template to Deploy Services

From your local metaflow-tools/azure/terraform directory, run:

https://outerbounds.com/engineering/deployment/azure-k8s/faq/#how-do-i-change-the-vm-instance-types-for-the-aks-control-plane-as-well-as-for-metaflow-task-runner-nodes

terraform apply -target="module.services" -var-file="FILE.tfvars"

4. End User Setup Instructions

When the command above completes, it will print a set of setup instructions for Metaflow end

users (folks who will be writing and running flows). These instructions are meant to get end

users started on running flows quickly.

You can access the Terraform instruction output at any time by running (from metaflow-

tools/azure/terraform directory):

terraform output -raw END_USER_SETUP_INSTRUCTIONS

Sample Output

Setup instructions for END USERS (e.g. someone running Flows vs the new stack):

There are three steps:
1. Ensuring Azure access
2. Configure Metaflow
3. Run port forwards
4. Install necessary Azure Python SDK libraries

STEP 1: Ensure you have sufficient access to these Azure resources on your local workstation:

- AKS cluster ("aks-ob-metaflow-minion") ("Azure Kubernetes Service Contributor" + "Azure Kubernetes
Service Cluster User Role")
- Azure Storage ("metaflow-storage-container" in the storage account "stobmetaflowminion") ("Storage Blob
Data Contributor")

You can use "az login" as a sufficiently capabable account. To see the credentials for the service principal
(created by terraform) that is capable, run this:

$ terraform output -raw SERVICE_PRINCIPAL_CREDENTIALS

Use the credentials with "az login"

$ az login --service-principal -u $AZURE_CLIENT_ID -p $AZURE_CLIENT_SECRET --tenant
$AZURE_TENANT_ID

Configure your local Kubernetes context to point to the the right Kubernetes cluster:

$ az aks get-credentials --resource-group rg-metaflow-minion-westus --name aks-ob-metaflow-minion

STEP 2: Configure Metaflow:

$ metaflow configure azure
$ metaflow configure kubernetes

Use these values when prompted:

METAFLOW_DATASTORE_SYSROOT_AZURE=metaflow-storage-container/tf-full-stack-sysroot
METAFLOW_AZURE_STORAGE_BLOB_SERVICE_ENDPOINT=https://stobmetaflowminion.blob.core.windows.
net/
METAFLOW_KUBERNETES_SECRETS=metaflow-azure-storage-credentials
METAFLOW_SERVICE_URL=http://127.0.0.1:8080/
METAFLOW_SERVICE_INTERNAL_URL=http://metadata-service.default:8080/
[For Argo only] METAFLOW_KUBERNETES_NAMESPACE=argo

Note: you can skip METAFLOW_SERVICE_AUTH_KEY (leave it blank)

STEP 3: Setup port-forwards to services running on Kubernetes:

option 1 - run kubectl's manually:
$ kubectl port-forward deployment/metadata-service 8080:8080
$ kubectl port-forward deployment/metaflow-ui-backend-service 8083:8083
$ kubectl port-forward deployment/metaflow-ui-static-service 3000:3000
$ kubectl port-forward -n argo deployment/argo-server 2746:2746

option 2 - this script manages the same port-forwards for you (and prevents timeouts)

$ python metaflow-tools/scripts/forward_metaflow_ports.py [--include-argo]

STEP 4: Install Azure Python SDK
$ pip install azure-storage-blob azure-identity

	Deploying to Azure with Kubernetes
	1. Preparation​
	Terraform Tooling​
	Azure Command Line Interface​
	kubectl Command Line Interface​

	2. Provision Azure Resources​
	Login to Azure​
	Initialize your Terraform Workspace​
	Set org_prefix​
	Optional: Enable Argo Events​
	Optional: Enable Airflow​

	Apply Terraform Template to Provision Azure Infrastructure​
	Common Resource Provisioning Hiccups​
	PostgreSQL Provisioning API Errors (on Azure Side)​
	Node Pool Provisioning​

	3. Deploy Metaflow Services to AKS Cluster​
	Apply Terraform Template to Deploy Services​

	4. End User Setup Instructions​
	Sample Output​

