
•

Finxact’s novel engineering

accommodates extensibility from

multiple sources

Custom authoring features for a

bank’s proprietary functions and

extensions

Build upon Finxact’s API library and

reuse Finxact’s components and/or

your own creations

Modify, enhance and create source

code, API, and database elements

with versioning and run time code

generation

Model Driven Architecture

Using modern design and novel engineering Finxact is advancing the state of the art in
development. But until we can predict the future, even the most advanced engineering may
not anticipate all future configurability needs. That is why Finxact created Model Driven
Development. Finxact’s novel Model Driven Development provides banks a way to rapidly
enhance their core, adding functionality, data elements, and new APIs – thus, future proofing
their core system, making configurability always current and making obsolescence…
obsolete.

Finxact’s Extensible Schema allows for the Finxact core application schema (‘base schema’),
as delivered, to be extended and/or combined with other schema files provided by any
combination of Finxact, customers or 3rd party providers. The combined schema definitions
are then used to generate a virtual ‘Integrated Schema’ definition which is consumed by the
code generator to product the supported output definitions.

F U T UR E P R O O F

Extensibility is the ultimate in

future proofing. Modern design

allows banks to rapidly and

easily modify the Finxact Core

as a Service with proprietary

functionality. Using Finxact’s

JSON Schemas, banks can

modify and add components,

data elements, generate new

APIs, and create or enhance

most system objects.

R A P I D A P I C R E A T I O N

Banks can quickly modify and

add new APIs simply be adding

or enhancing Finxact’s reference

JSON Schemas.

C ODE G E NE R AT I O N

Each enhancement is

recompiled and available to

Finxact’s Core as a Service at

runtime, using Finxact’s novel

versioning methodology.

Extend Your Core – Extend Your Future

•

Model Driven Development

The 'base schema' can be extended or customized by simply adding additional schema
classes as well as adding or modifying properties on existing classes and providing them
in separate JSON schema files. These files are stored in directories that are linked to the
base schema via configuration specific search list parameter.

Any number of directories can be included in the search list and the list is processed
sequentially. Simply put, given a directory search list "[A,B,C]", the schema definition
builds up, beginning with the content of directory "A", then searches "B" and "C"
sequentially. If a *.json filename does not currently exist, it is simply added to the
schema. If it does exist, its contents are merged with the existing file (i.e.., new property
definitions are added to the class and pre-existing property definitions of the same name
are overlaid). Currently there is no schema directive to remove or delete a property, but
that could be added.

The search list is defined in an OS environmental variable defined in a configuration file
($ZSL?). It is a JSON formatted array and can include complete directories and or files
within directories. For example the search list [A, B: [B1, B2], C] would start with directory
A, then overlay the files B.B1 and B:B2 then all of directory C.

The separation of the base schema from the extensions allows for easy code management
and reconciliation, as the base schema is untouched by any changes (and easily
reconcilable). It is also quite easy to add directories and or files to the search path as
required, and easy to identify the schema extensions by listing the directories they reside
in.

This extension model could be considered 'unsafe' in that it is possible to introduce
changes to existing schema definitions that generate errors or break existing core
application code. It is also possible to introduce new schema elements that also break the
application or affect its behavior.

On the other hand, the partitioned and isolated nature of the content provides for very
simple content management and an easy process flow to both introduce changes and to
revert to prior versions (via modifications to the search list). It also treats all schema
content as a 'first class citizen' in the application as the resulting generated components
are produced from a combined definition consisting of all of the component definitions. It
is also quite easy to design a directory structure that can be implemented for every
application instance, offering easy and isolated extensibility at the instance level. It is even
possible to share schema content (e.g., the base schema and Finxact patches) across
instances by including common directory references in the search list.

