
Login for new users
Multi-Factor Authentication
Adding Users under Organization Admin : Step-by-Step Guide

Onboarding

Step 1: Click on the 'Try for free' button on our Bizdata website to launch our eZintegration
application.

Step 2: You will be redirected to the eZintegration sign up window. Click on 'Onboard' button on the
left-hand side panel to watch a demonstration video for easy sign up. After watching the video, you
can start with filling the details in the Sign-up form.

Login for new users

https://www.bizdata360.com/
https://help.bizdata360.com/uploads/images/gallery/2023-03/ob1.png
https://help.bizdata360.com/uploads/images/gallery/2023-03/ob2.png

Step 3: Fill up the form with details mentioned: First name, Last name, work email address, Phone
number, and company. Select your job title, number of employees in the company, and country of
your organization.

 Read the Master Subscription Agreement and select the check box to agree to the agreement.
Click on 'Start my free trial' button to submit the form.

Step 4: After signing up, you will receive a welcome email with a link to verify your account. Click
on the 'Verify account' button to start the account verification process. You will be redirected to the
account verification page.

Step 5: You will receive a verification code over email. Enter the code under verification code text
box to verify your email id. If you haven't received the code yet, click on the 'Resend code' button.
Click on 'verify'.

https://www.bizdata360.com/master-subscription-agreement.pdf
https://help.bizdata360.com/uploads/images/gallery/2023-03/ob3.png

Step 6: You will be redirected to the password change window. Enter a new password for your
account. Confirm the password by entering the same password. Select a security question from the
list provided. Provide an answer to the security question which should not be complete answer or
can be guessed easily. Click on 'Set password' button.

Step 7: Login to the portal by entering your username and password. Select the 'Remember me'
check box for easy login in future. You will be logged in to the eZintegration portal to explore
various integration options.

Multi-factor authentication (MFA) is a multi-step account login process that requires users to enter
more information than just a password. For example, along with the password, users might be
asked to enter a code sent to their email, answer a secret question, or scan a fingerprint. A second
form of authentication can help prevent unauthorized account access if a system password has
been compromised.
In eZintegrations, we use Two-factor authentication (2FA). 2FA is a specific type of multi-factor
authentication (MFA) that strengthens access security by requiring two methods to verify your
identity. These factors can include something you know — like a username and password — plus
something you have — like a smartphone app — to approve authentication requests. 2FA protects
against phishing, social engineering and password brute-force attacks and secures your logins from
attackers exploiting weak or stolen credentials.

Enabling multifactor authentication:

Step 1: Log in to eZintegration.
Step 2: Click on “Settings” in the right-side panel and navigate to “Multi-Factor
Authentication”.

Multi-Factor Authentication

https://help.bizdata360.com/uploads/images/gallery/2023-12/screenshot-61.png

Step 3: Toggle the “Enable Multi Factor Authentication” button.

Step 4: On toggling the “Enable Multi Factor Authentication” button, all the information regarding
2FA will be displayed, as shown in the image below.

Step 5: Download and install the Google Authenticator app on your smartphone. Complete the
necessary initial app setup. Click on “Add a Code” or the “+” (plus) symbol, then choose “Scan the
QR code”. Scan the QR code displayed on the 2FA information. After successful scanning, the
authenticator app will generate a time-based code every 30 seconds. Enter the
code from the app and click on the “Verify” button.

https://help.bizdata360.com/uploads/images/gallery/2023-12/screenshot-62.png
https://help.bizdata360.com/uploads/images/gallery/2023-12/screenshot-64.png

Step 6: Upon successful verification, a popup will appear, indicating “MFA enabled”. The “Multi
Factor Authentication” button will be enabled. Click on the “Update” button, and a popup will
confirm “Successfully Updated profile”. If you choose not to enable MFA, toggle the “Multi Factor
Authentication” button. A popup will appear, stating “MFA disabled”. Click on the “Update” button
at the bottom of the page, and another popup will confirm “Successfully Updated profile”.

Step 7: Whenever you log out and attempt to log in again, a popup will prompt you for the Multi
Factor Authentication One Time Passcode. Enter the code displayed on the authenticator app and
click on the “Sign” button to log in to eZintegration.

https://help.bizdata360.com/uploads/images/gallery/2023-12/screenshot-65.png

Step 1 : Click on the three horizontal lines located to the left of the screen, just after the Bizdata
logo.

Step 2 : Click on the "Management" option, which becomes visible when you click on the three
horizontal lines. Then, under the "Management" menu, click on "User."

Adding Users under
Organization Admin : Step-
by-Step Guide

https://help.bizdata360.com/uploads/images/gallery/2023-11/ojsau1.png

Step 3 : Click on the "Add" button, and fill in all the necessary details of the user.

https://help.bizdata360.com/uploads/images/gallery/2023-11/au2.png
https://help.bizdata360.com/uploads/images/gallery/2023-11/au3.png

Step 4 : After filling in the First name, Last name, and Email, select the user permission.

Access Levels:
1. User Access:

LIST: View a list of users under the organization.
ADD: Add new users to the organization.
EDIT: Modify user details within the organization.
DELETE: Remove users from the organization.

https://help.bizdata360.com/uploads/images/gallery/2023-11/au4.png
https://help.bizdata360.com/uploads/images/gallery/2023-11/au5.png

DETAILS: Access detailed information of users within the organization.
2. Integration Bridge Access (Same controls as User Access):

LIST: View a list of users under the organization.
ADD: Add new users to the organization.
EDIT: Modify user details within the organization.
DELETE: Remove users from the organization.
DETAILS: Access detailed information of users within the organization.
VIEW STREAMING LOGS: Access real-time streaming logs.
DOWNLOAD LOGS: Download logs for analysis.

Step 5 : Click on "Add." The new user will receive a verification email, through which they can
change the password and begin using their account.

Note: Only new users, not existing ones, can be added to the organization

Dashboard
Plan
Current Plan
Payment Method
Billing Information
Invoices

Accounting & Billing

This page contains information of the users billing amount, billing cycle, billing period and the
details of the payment method.

Dashboard

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-446-copy.png

This page has information related to the plans, pricing and payment options.

Users can select the required plan (Monthly or Yearly) and Quantity of integrations and click
'Subscribe'. Users will be redirected to payment gateway where details regarding payment method
should be entered. Once the inputs are correctly entered, click 'Subscribe' to avail the services.

Step 1: Select plan (Monthly or Yearly)

Step 2: Select the required quantity and click 'Subscribe'

Plan
First Time User

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-451.png

Step 3: Enter the card details and other required details and click 'Subscribe'.

If quantity of integrations selected is 4, users will be charged only for 3 integrations since the
first integration is free. Charge of the first integration will be auto deducted from the bill with
code BizdataONE as displayed on payment gateway screen.

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-452.png
https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-457.png

In case of upgradation of the previously selected plan, users can select the required quantity from
the 'Select Quantity' option and increase the quantity as per requirement.

Plan Upgradation

If the user selected quantity 2 (Integrations) previously and wants to upgrade to 5 then a
total of quantity 5 should be selected in the 'Select Quantity' option. Pricing of only the
increased quantity would be added to the previously calculated bill.

https://help.bizdata360.com/uploads/images/gallery/2023-05/hQNscreenshot-458.png

This page contains information of the current selected plan.

Current Plan

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-449.png

This page has information of the payment method used by the user.

Payment Method

Users can update/ change their payment method from edit option available beside their
payment method information.

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-453.png

This page contains Billing Information of the selected plan in the format as mentioned below

First Name:

Last Name:

Work Email Address:

Phone Number:

Job Title:

Employee:

Company:

Country:

Subscription Start Date:

Billing Information

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-465.png

This page contains information of the Invoices of the plans subscribed.

Users can find Invoice ID, Invoice Date, Amount, Status of the selected plan and option to download
the Invoice.

Invoices

https://help.bizdata360.com/uploads/images/gallery/2023-05/screenshot-454.png

Test the Data Source
Authorization
Time Parameters
Numeric Parameters
Pagination
Environment Settings
Response Params
Pre- request Scripts

Data Source - API

To test the data source-

Step 1:

Specify or add the data source from Catalog

Step 2:

Select the business object

Step 3:

URL will be generated. All the fields pre-defined in API catalog so click on 'Test' to get response.

Test the Data Source

https://help.bizdata360.com/uploads/images/gallery/2023-02/screenshot-429.png
https://help.bizdata360.com/uploads/images/gallery/2023-02/screenshot-431.png

https://help.bizdata360.com/uploads/images/gallery/2023-02/screenshot-432.png

eZintegrations platform supports all sort of Authorization for any standard APIs like REST API, SOAP
API, gRPC or GraphQL.

The major Authorizations are :-

API Key
Basic Authentication
OAuth1.0
OAuth2.0
AWS Signature
NTLM Authentication
Custom Algorithm Signature
Any other custom architecture based Authorization

API Key Authorization is a method used to secure access to an API (Application Programming
Interface) by requiring clients to include a unique API key when making requests. This key is
typically a long alphanumeric string that is issued to the client by the API provider. API keys serve
as a form of authentication and authorization, allowing the API provider to identify and control
access to their API.

The API provider generates a unique API key for each client or application that needs access to
their API. This key is often associated with specific usage limits or permissions.

Clients must include their API key in the headers or query parameters of their API requests. This
key is used to identify the client making the request.

API Key is key-value pair based authorization where the key is Authorization and the value which
is one time string generated from Application while enabling the API for defined set of action with
roles and privileges.

There are various application whose API Key are static and its a one time activity to enable those
keys, keep them in secret mode and use them for API Authorization

Authorization

API Key

Authorization :
noKWB57FVhzjh11FRIv9HEghY94gXHyoFPPS3QlHEtbGIZnMqDsPjsCiWkoDNE7W6UA2gclTtZTs
4dZbiP20a9shY06IX5icKkRSdcQBnDTyaRno5BQphBdW0sX6sQto

In eZntegrations API Data Source user can select Type as No Auth under Authorization and under
Headers call the key as Authorization and the value as you get from the application

And under Headers add the key-value pair

Basic Authentication is a simple method of authenticating access to an API (Application
Programming Interface) by sending a username and password with each HTTP request.

In eZintegrations for Source, Operations and Target APIs user can select Type as Basic Auth under
Authorization Tab

OAuth 1.0: OAuth 1.0 is an open standard protocol that allows third-party applications to access a
user's resources (e.g., data) on a server without exposing the user's credentials. It relies on
cryptographic signatures and token-based authentication for secure API access.

Here are some key components and steps in the OAuth 1.0 process:

Basic Authentication

OAuth 1.0

https://help.bizdata360.com/uploads/images/gallery/2023-09/image.png
https://help.bizdata360.com/uploads/images/gallery/2023-09/tvaimage.png
https://help.bizdata360.com/uploads/images/gallery/2023-09/1vlimage.png

1. Consumer: The consumer is the third-party application or service that wants to access a
user's data on a resource server.

2. Service Provider (Provider): The service provider is the entity that hosts the user's
resources and manages access to them. It includes popular platforms like Twitter and
Flickr.

3. User: The user is the resource owner who has data on the service provider's platform.
4. Token: OAuth 1.0 uses temporary tokens (OAuth token) to grant access to resources.

These tokens are issued by the service provider.
5. Signature: OAuth 1.0 requires the use of cryptographic signatures to ensure the integrity

and authenticity of API requests.

Since OAuth 1.0 is versatile and hard to predict, eZintegrations provides flexibility to write Python
code under Pre-request Script to achieve the token or signature for Authorization requirement. If
user is not aware as how to use the OAuth 1.0, plenty of examples available under section Pre-
Request Script

OAuth 2.0: OAuth 2.0 is an authorization framework that enables third-party applications to
access a user's data or perform actions on a user's behalf through a secure and standardized
process. It defines various authorization grant types and flows for different use cases.

Key components and steps in the OAuth 2.0 process:

1. Resource Owner: The resource owner is the user who has control over their resources
and data.

2. Client: The client is the third-party application or service that wants to access the user's
resources on a resource server.

3. Resource Server: The resource server hosts the user's data and resources, which the
client wants to access.

4. Authorization Server: The authorization server is responsible for authenticating the user
and issuing access tokens to the client after the user grants consent.

5. Access Token: OAuth 2.0 uses access tokens, which are short-lived credentials that the
client presents to the resource server to access protected resources. They can also
include scopes that define the level of access the client has.

In eZintegrations for Source, Operations and Target API user can select the Type as OAuth 2.0

OAuth 2.0

https://help.bizdata360.com/books/ezintegrations/page/pre-request-scripts
https://help.bizdata360.com/books/ezintegrations/page/pre-request-scripts
https://help.bizdata360.com/uploads/images/gallery/2023-09/nznimage.png

This Authorization will help you to generate a Access Token based on Refresh Token

The "Refresh Token URL" is the specific endpoint on the authorization server where the client sends
a request to obtain a new access token using a refresh token. This URL is provided by the
authorization server as part of the OAuth 2.0 protocol.

In OAuth 2.0, when a client application needs to obtain a new access token using a refresh token, it
typically makes a POST request to a specific endpoint known as the "Token Endpoint" rather than a
"Refresh Token URL." The Token Endpoint is where the client exchanges its refresh token for a new
access token

HTTP POST Request: The client sends an HTTP POST request to the Token Endpoint of the
authorization server. This request includes the following parameters:

grant_type : This parameter should be set to "refresh_token" to indicate that the client is
using a refresh token to obtain a new access token.
refresh_token : The refresh token issued to the client during the initial authorization
process.
client_id and client_secret (optional): These are the credentials of the client application
if it's required by the authorization server. Not all OAuth 2.0 implementations use client

Refresh Token URL :

Example : https://www.googleapis.com/oauth2/v4/token

Refresh Token Method :

https://help.bizdata360.com/uploads/images/gallery/2023-09/vLNimage.png

credentials in this step.

eZintegrations provides all method available.

Some of the common headers that can be used during the process of getting an access token via a
refresh token:

Request Headers

Authorization Header: If the client needs to authenticate itself with the authorization server, it
includes the client's credentials (client_id and client_secret) in the Authorization header using the
"Basic" authentication scheme. For example:

This header is required in cases where the client authentication method involves client credentials.

Content-Type Header

The Content-Type header specifies the format of the data being sent in the request body. For
OAuth 2.0, the Content-Type is typically set to "application/x-www-form-urlencoded" for form-
encoded data.

Refresh Token Endpoint Params are the parameters that may needed to extend in Refresh Token
URL which may be needed for filtering the request. Below is such example to add in this field

In OAuth 2.0, the term "Refresh Token Endpoint Body" typically refers to the parameters that are
included in the HTTP request body when a client application requests a new access token using a
refresh token. This process is part of the OAuth 2.0 token refresh flow, where the client exchanges
a valid refresh token for a fresh access token. The refresh token body contains specific parameters
that convey the client's intent and identity to the authorization server.

Refresh Token Endpoint Header:

{"Authorization": Basic base64-encoded(client_id:client_secret)}

{"Content-Type":"application/x-www-form-urlencoded"}

Refresh Token Endpoint Params :

{

"params1":"your_params1",

"params2:"your_params2"

}

Refresh Token Endpoint Body:

Here are the key parameters that are commonly included in the refresh token endpoint body:

grant_type Parameter: This parameter is required in the request body and specifies the grant type
being used. In the context of a token refresh request, it should be set to "refresh_token" to indicate
that the client is using a refresh token to obtain a new access token.

Example:

refresh_token Parameter: The refresh_token parameter is also required and contains the refresh
token issued to the client during the initial authorization process. This refresh token is used as
proof that the client has previously been granted access and is eligible for a new access token.

Example:

client_id Parameter (Optional): Some OAuth 2.0 implementations require the inclusion of the
client_id parameter in the refresh token request to identify the client making the request. It
depends on the authorization server's configuration.

Example:

client_secret Parameter (Optional): If the authorization server requires client authentication
(using a client secret), the client_secret parameter should be included in the request. Not all OAuth
2.0 implementations use client credentials in the token refresh flow.

Example:

When a client sends a POST request to the token endpoint of the authorization server with the
above parameters in the request body, the authorization server processes the request. If the
refresh token is valid, and any required client authentication is successful, the authorization server
issues a new access token in the response body.

"grant_type":"refresh_token"

"refresh_token":"your_refresh_token"

"client_id":"your_client_id"

"client_secret":"your_client_secret"

Here is an example of a Refresh Token Endpoint Body:

Refresh Token Endpoint Body can be given in JSON format or in String Format. Preferred one is in
JSON format

It's important to note that the specific parameters required and the format of the refresh token
body may vary depending on the OAuth 2.0 implementation and the authorization server's
policies.

For other Authorization like AWS Signature, NTLM and Custom Signature please refer the Pre-
Request Script sections for examples.

{

"grant_type":"refresh_token",

"refresh_token:"your_refresh_token",

"client_id":"your_client_id",

"client_secret":"your_client_secret"

}

When working with OAuth 2.0 and sending data in URL-encoded format, user can provide
values in the Refresh Token Endpoint Body field in the following JSON format :

{

 "grant_type":"password",

 "client_id":"your_client_id",

 "client_secret":"your_client_secret",

 "username":"your_username",

 "password":"your_password"

 }

When dealing with OAuth 2.0 and sending data in URL-encoded format as a string , you can
provide values in the Refresh Token Endpoint Body field using the following format:

"client_id=your_client_id&client_secret=your_client_secret&grant_type=refresh_token&refresh_to

ken=your_refresh_token"

Note with string in Refresh Token Endpoint Body it will not support special characters like %,
^, * etc.

The attributes under Time Parameters of Data Source API are -

Today Format
Yesterday Format
Rolling Time Format
Rolling Frequency
Time Offset Value

This parameters are needed when user does not have any means of retrieving data from a API with
a given time window. Below are the cases where API architecture have shortfall in retrieving data

There are four reserved keywords which can be used in any API request to filter the time based
data. These keywords can be used in API params, headers, JSON body, pre-requiest script etc. of
any API request call

These four keywords are : today , yesterday, min_time, max_time

Today Format - A date format that returns the today's date. %Y-%m-%dT00:00:01Z . Use the
keyword today to use with any date field in dataset. For example: invoice_date = {%today%} then it
will filter all transaction or records by today's date

Yesterday Format - A date format that returns previous days's date. %Y-%m-%dT00:00:01Z. Use the
keyword yesterday to use with any date field in dataset. For example: invoice_date =

Time Parameters

User needs to retrieve data between two time window. Example : From current timestamp to
last 1 hour or last 15 minutes etc.

User needs to retrieve data from yesterday transaction only and the API does not provide
any means to filter the yesterday's transactions dynamically

User needs to retrieve the data from today transaction only and the API does not provide any
means to filter the today's transactions dynamically

User needs to retrieve the data by adjusting the Time Zone with the dataset time based
attributes like create_date, update_date, invoice_date, due_date etc.

{%yesterday%} then it will filter all transaction or records by yesterday's date

Rolling Time Format - A date format that matches with the date format of the date attribute
which user needs to filter data based on time window. For example, user needs to filter and get the
API response with all the invoices with invoice_date of past 15 minutes. So for such case the user
will input the date format %Y-%m-%dT%H:%M:00.000 which is equivalent to date format of invoice_date

Use keywords min_time and max_time to define the time window of any API request. For example
filter the invoice based on invoice_date as

Rolling Frequency - The time window in seconds between the current timestamp and frequency
input by user. Example : If 900 seconds is given then it will look for Rolling 15 minutes data based
on invoice_date

Time Offset Value -

A Time Offset Value typically refers to a numerical representation of the time difference between
two points in time, often expressed in hours, minutes, and seconds. in API data source of
eZintegrations , its in seconds This value is used to adjust or compare time between different time
zones, measure time intervals, or calculate the time elapsed between two events.

Time offset values are essential for tasks such as time zone conversions, scheduling, and
calculating the duration between two events, especially when those events occur in different time
zones or involve time intervals. Time offset values are usually added to or subtracted from a
reference time to obtain the adjusted time. For example, if you have a time in New York (EST) and
want to convert it to Tokyo time (JST), you would apply a time offset of +9 hours (for the time
difference between EST and JST).

Example 1 : Use of today and yesterday in Endpoint JSON Body of a API request

Example 2 : Use of min_time and max_time in Endpoint JSON body of a API request

invoice_date={%min_time%}&invoice_date={%max_time%}

GET
https://example.com/api/orders?start_date={%min_time%}&end_date={%max_tim
e%}

"query":"SELECT * FROM table_name WHERE column_name = '{%today%}' OR
column_name = '{%yesterday%}'"

"query":"SELECT * FROM table_name WHERE column_name BETWEEN
'{%min_time%}' AND '{%max_time%}'"

Numeric Parameters of API Data Source has two attributes

Minimum Number is to define the start number of records while flushing response from API request

Maximum Number is to define the maximum number of records in a given API request

There are two reserved keywords to use the Minimum Number and Maximum Number. Those are
min_num and max_num respectively. These keywords can be used in API params, headers, JSON body,
pre-requiest script etc. of any API request call, wherever there is need to control the flow of API
response

Numeric Parameters

Minimum Number

Maximum Number.

Example 1 : In Oracle Netsuite REST API architecture the `Minimum Number` is 0 and `
Maximum Number` is 1000 as it flushes 1000 records per request

Example 2 : In another API whose API response is like below where per page it is having 6
records. Here the `Minimum Number` is 1 and `Maximum Number` is 6

Example : GET
https://example.com/api/users?page={%min_num%}&per_page={%max_num%}

https://help.bizdata360.com/uploads/images/gallery/2023-10/Yr1image.png

https://help.bizdata360.com/uploads/images/gallery/2023-10/sR0image.png

Pagination returns the pages of response.

There are 6 types of Pagination in API Data Source of eZintegrations as Out of the box pagination
settings. These are industry standard API architecture based pagination

Next URL Pagination
Offset Pagination
Total Page Count
Pagination with Body
Cusrsor Pagination
Encoded Next Token

This pagination will apply when we have URL of next page in our API response. For example we
have next link in this key @odata.nextLink

Select Next URL pagination from the dropdown and fill these values there.

Pagination

Next URL Pagination

https://help.bizdata360.com/uploads/images/gallery/2023-10/SOEimage.png
https://help.bizdata360.com/uploads/images/gallery/2023-10/2jLimage.png

In the above example @odata.nextLink key helps to identify upto which page the
pagination will be completed , so it will come in User Key
Data Collection Key holds the data from the API and we will get the response in that key
for example here it is ['value']
Another Response Parameter key will hold the response of the next url page, This value
needs to same as that of Data Collection Key .

This pagination we will apply when we have "hasMore":true in our API response.

Select offset pagination from the dropdown and fill these values there.

In the above example hasMore key helps to identify upto which page the pagination will be
completed , so it will come in User Key
As we are using Offset pagination so Key Name to Update will be offset
Data Collection Key holds the data from the API and we will get the response in that key
for example here it is ['items'] .

Typically being used in Microsoft Graph API, Dropbox, Box Cloud

Offest Pagination

Typically being used in Oracle Netsuite, Oracle Fusion Cloud Applications etc.

https://help.bizdata360.com/uploads/images/gallery/2023-10/cRTimage.png
https://help.bizdata360.com/uploads/images/gallery/2023-10/g3Aimage.png

This pagination will apply when we have total_pages key in our API response. For example we have
total page Count in this key total_pages

Select Total Page Count from the dropdown and fill these values there.

In the above example total_pages key helps to identify upto which page the pagination
will be completed , so it will come in User Key
As we will be updating page value for going to next page data so Key Name to Update will
be page
Data Collection Key holds the data from the API and we will get the response in that key
for example here it is ['data'] .

Total Page Count

Example 1: When we have the user key in root keys

Example 2: When we have the user key in nested form.

https://help.bizdata360.com/uploads/images/gallery/2023-10/MW8image.png
https://help.bizdata360.com/uploads/images/gallery/2023-10/r8Cimage.png

Select Total Page Count from the dropdown and fill these values there.

https://help.bizdata360.com/uploads/images/gallery/2023-10/bAZimage.png
https://help.bizdata360.com/uploads/images/gallery/2023-10/qUNimage.png

In the above example total_pages key helps to identify upto which page the pagination
will be completed , so it will come in User Key , as we can see in the example data
total_page key is deep nested so we will pass the User Key as above.
As we will be updating page value for going to next page data so Key Name to Update will
be page
Data Collection Key holds the data from the API and we will get the response in that key
for example here it is ['data'] .

This pagination will apply when we have nextPageToken key in our API response. For example we
have next page token in this key `nextPageToken

Select Pagination with Body from the dropdown and fill these values there.

In the above example nextPageToken key helps to identify upto which page the pagination
will be completed , so it will come in User Key

Typically being used in all eCommerce Applications

Pagination with Body

https://help.bizdata360.com/uploads/images/gallery/2023-10/0heimage.png
https://help.bizdata360.com/uploads/images/gallery/2023-10/Ppfimage.png

As we are getting a token from this pagination so Key Name to Update will be pageToken
Data Collection Key holds the data from the API and we will get the response in that key
for example here it is ['reports'][0]['data']['rows'] .

This type of pagination ususally sends a cursor in response header when a API is requested. This is
typically used in User Interface based APIs. It provides a link for the next page but this comes in
header response and not in the dataset

This type of pagination is similar to Next URL Pagination but here the NextToken key is encoded

Typically being used in all Google Products like Google Analytics, Google Ads etc.

Cursor Pagination

Typically being used in eCommerce Apps like Shopify, WooCommerce etc.

Encoded Next Token

https://help.bizdata360.com/uploads/images/gallery/2023-10/hxRimage.png

Very rarely used in API but one such example is Amazon Seller Central APIs

https://help.bizdata360.com/uploads/images/gallery/2023-10/sl4image.png

In eZintegrations, environment settings are used to store and manage dynamic values that can be
reused across multiple requests and collections. These settings are helpful for streamlining your
API testing and ensuring consistency in your requests. Environment settings can be categorized
into different types, such as Parameters, Authorization, and Endpoint URL, based on their use. Here
are some examples:

Example: Let's say you have an environment variable called apiKey, which stores an API key. You
can use this variable in your requests like this:

Request URL: https://api.example.com/data?apikey={{apiKey}}
Request Headers: You can set a header like Authorization: Bearer {{apiKey}}
In this example, the {{apiKey}} variable is used to pass the API key in the URL and as a header
value for authentication.

Example: You can store credentials for Basic Authentication in environment settings. For instance,
you might have a variable called basicAuth with the value Base64Encode(username:password).
You can use it as follows:

In the request, you set the Authorization header to Basic {{basicAuth}}.
This approach allows you to keep sensitive information secure and make it easy to update
credentials if they change.

Example: Suppose you have an environment variable called baseURL, which represents the base
URL for your API. You can use it in requests as follows:

Request URL: {{baseURL}}/endpoint
By setting the baseURL variable, you can easily switch between different environments (e.g.,
development, staging, production) without modifying all your requests.

Here's how you can create and manage environment settings in eZintegrations:

Environment Settings

Parameters Environment settings:

Authorization Environment settings:

Endpoint URL Environment settings:

Open eZintegrations and navigate to Click Add Integration Bridge and select a API from
Data Source and click on the + button to add "Environment Settings".
Create a new environment or select an existing one.
Add settings with their names and values, and categorize them as needed (e.g.,
Parameters, Authorization, Endpoint URL). In your requests, you can reference these
settings using double curly braces, like {{variableName}}.

By using environment settings in eZintegrations, you can make your API testing more efficient,
maintainable, and adaptable to different testing scenarios and environments.

You can create Environment settings in Data Source API, Operations API, Data Target APIs
and Marketplace APIs

All your Environment Settings will be saved only when you have saved the Integration Bridge, else
you will loose the Environment Settings.
A newly created Environment Settings will be retained till the time the login session is alive.

Response parameters:
It is an API Request parameter to getting the response as per our requirement.
We can send the Response type as Text, XML, and JSON and then it will give us response on that
particular response parameters request. Once we will send the response parameter type in API
Request it will process by backend python API and then it will give the particular response based on
response type.

These are the following options we have for response params.
 Text.
 XML.
 JSON.
Below image is the UI Representation of Response Parmas in our eZintegration product. You can
get this feature inside IB (Integration Bridge) postman view in API as a source, operation & target.

Response Params

Note: Text in response params is selected by default. Users can change it as per their
requirements.

https://help.bizdata360.com/uploads/images/gallery/2023-12/screenshot-66.png

Pre-request script is a piece of code that will run before the execution of a request. Pre-request
scripts gives users a chance to modify the request after variables have been resolved but before
the request is made.

Example- Generating signatures for authentication

Pre-processing tasks including setting parameters, variable values, body data and headers can be
performed using the pre-request script. Pre-request scripts can also be used to debug the code, for
example, by logging output to the console. Additionally, we may obtain the result of the function,
such as the date, time, timestamp, etc., utilising the pre-request script notion.

The code that is run prior to sending an HTTP request using an application like requests is known
as the "pre-request" script in Python. Before submitting the actual request, the pre-request script is
used to change the response fields or headers.

Below are the various examples of Pre-Request Scripts

Method - POST

Pre- request Scripts

Pre-Request Script of Python

Amazon SP API

import time

import datetime, hashlib, hmac

import json

access_key='{{access_key}}' # Provide Values

secret_key='{{secret_key}}' # Provide Values

host = '{{host}}' # Provide Values

endpoint = '{{hostname}}' # Provide Values

canonical_uri = '{{canonical_uri}}' # Provide Values

body = {{body}} # Provide Values

##

##

request_parameters =json.dumps(body)

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

Method - POST (with Body)

datestamp = t.strftime('%Y%m%d')

method = 'POST'

service = 'execute-api'

region = 'us-east-1'

canonical_querystring = ''

canonical_headers = 'host:' + host + '\\n' + 'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256((request_parameters).encode('utf-8')).hexdigest()

canonical_request = method + '\\n' + canonical_uri + '\\n' + canonical_querystring + '\\n' +

canonical_headers + '\\n' + signed_headers + '\\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/'+ service + '/' + 'aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

kDate = hmac.new(('AWS4' + secret_key).encode('utf-8'), datestamp.encode('utf-8'),

hashlib.sha256).digest()

kRegion = hmac.new(kDate, region.encode('utf-8'), hashlib.sha256).digest()

kService = hmac.new(kRegion, service.encode('utf-8'), hashlib.sha256).digest()

kSigning = hmac.new(kService, 'aws4_request'.encode('utf-8'), hashlib.sha256).digest()

signing_key = kSigning

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

import time

import datetime, hashlib, hmac

import json

access_key='XXXXXXXXXXXXXXXXXX'

secret_key='XXXXXXXXXXXXXXXXXX'

method = 'POST'

service = 'execute-api'

host = 'sellingpartnerapi-na.amazon.com'

region = 'us-east-1'

endpoint = 'https://sellingpartnerapi-na.amazon.com'

body = {'reportType': 'GET_FLAT_FILE_ALL_ORDERS_DATA_BY_ORDER_DATE_GENERAL','dataStartTime':

'{%yesterday%}T00:00:01','dataEndTime': '{%yesterday%}T23:59:59','marketplaceIds':

['XXXXXXXXXX']}

Method - GET

request_parameters =json.dumps(body)

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

datestamp = t.strftime('%Y%m%d')

canonical_uri = '/reports/2021-06-30/reports'

canonical_querystring = ''

canonical_headers = 'host:' + host + '\\n' + 'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256((request_parameters).encode('utf-8')).hexdigest()

canonical_request = method + '\\n' + canonical_uri + '\\n' + canonical_querystring + '\\n' +

canonical_headers + '\\n' + signed_headers + '\\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/'+ service + '/' + 'aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

kDate = hmac.new(('AWS4' + secret_key).encode('utf-8'), datestamp.encode('utf-8'),

hashlib.sha256).digest()

kRegion = hmac.new(kDate, region.encode('utf-8'), hashlib.sha256).digest()

kService = hmac.new(kRegion, service.encode('utf-8'), hashlib.sha256).digest()

kSigning = hmac.new(kService, 'aws4_request'.encode('utf-8'), hashlib.sha256).digest()

signing_key = kSigning

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

import datetime, hashlib, hmac

host = '{{host}}' # Provide Values

endpoint = '{{hostname}}' # Provide Values

access_key = '{{access_key}}' # Provide Values

secret_key = '{{secret_key}}' # Provide Values

canonical_uri = '{{canonical_uri}}' # Provide Values

##

##

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

datestamp = t.strftime('%Y%m%d')

method = 'GET'

Source

service = 'execute-api'

region = 'us-east-1'

canonical_headers = 'host:' + host + '\\n' + 'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256(('').encode('utf-8')).hexdigest()

canonical_request = method + '\\n' + canonical_uri + '\\n' +canonical_headers + '\\n' +

signed_headers + '\\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/' + service + '/' + 'aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

kDate = hmac.new(('AWS4' + secret_key).encode('utf-8'), datestamp.encode('utf-8'),

hashlib.sha256).digest()

kRegion = hmac.new(kDate, region.encode('utf-8'), hashlib.sha256).digest()

kService = hmac.new(kRegion, service.encode('utf-8'), hashlib.sha256).digest()

kSigning = hmac.new(kService, 'aws4_request'.encode('utf-8'), hashlib.sha256).digest()

signing_key = kSigning

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

Oracle Netsuite

import datetime

import random

import string

import hashlib

import base64

import hmac

import urllib

oauth_consumer_id = '{{consumer_id}}' # Provide Values

oauth_consumer_key = '{{consumer_key}}' # Provide Values

oauth_consumer_secret ='{{consumer_secret}}' # Provide Values

oauth_token ='{{token}}' # Provide Values

oauth_token_secret ='{{token_secret}}' # Provide Values

##

Target / Operations

###

request_method = 'POST'

url = 'https://{{hostname}}.suitetalk.api.netsuite.com/services/rest/query/v1/suiteql'

oauth_signature_method = 'HMAC-SHA256'

oauth_timestamp = str(int(datetime.datetime.now().timestamp()))

oauth_nonce = ''.join(random.choices(string.ascii_letters + string.digits, k = 11))

oauth_version = '1.0'

normalized_request_method = request_method.replace(' ', '')

normalized_string_url = urllib.parse.quote(url, safe = '')

normalized_params = {'oauth_consumer_key': oauth_consumer_key,'oauth_token':

oauth_token,'oauth_signature_method': oauth_signature_method,'oauth_timestamp':

oauth_timestamp,'oauth_nonce': oauth_nonce,'oauth_version':

oauth_version,'limit':max_num,'offset':min_num}

sorted_params = dict(sorted(normalized_params.items()))

normalized_string_parmas = [k+'='+v for k,v in sorted_params.items()]

normalized_string_parmas = '&'.join([str(elem) for elem in normalized_string_parmas])

normalized_string_parmas.replace(' ','')

normalized_string_parmas = urllib.parse.quote(normalized_string_parmas, safe = '')

base_string = request_method + '&' + normalized_string_url + '&' + normalized_string_parmas

base_string = str.encode(base_string)

signature_key = oauth_consumer_secret + '&' + oauth_token_secret

signature_key = str.encode(signature_key)

oauth_signature = hmac.new(signature_key, base_string, hashlib.sha256)

oauth_signature.hexdigest()

oauth_signature = base64.b64encode(oauth_signature.digest())

oauth_signature = oauth_signature.decode('UTF-8')

oauth_signature = urllib.parse.quote(oauth_signature, safe = '')

signature ='OAuth

realm="'f'{oauth_consumer_id}",oauth_consumer_key="'f'{oauth_consumer_key}",oauth_token="'f'{o

auth_token}",oauth_signature_method="'f'{oauth_signature_method}",oauth_timestamp="'f'{oauth_t

imestamp}",oauth_nonce="'f'{oauth_nonce}",oauth_version="'f'{oauth_version}",oauth_signature="

'f'{oauth_signature}"'

import os

import requests

import time

import hashlib

import hmac

Source & Target / Operations

import base64

Set your environment variables (replace with your actual credentials)

account = '{{account}}'

consumerKey = '{{consumerKey}}'

consumerSecret = '{{consumerSecret}}'

tokenId = '{{tokenId}}'

tokenSecret = '{{tokenSecret}}'

Generate timestamp and nonce

timestamp = str(int(time.time()))

nonce = ''.join([str(os.urandom(1)) for _ in range(11)])

Create base string

baseString = f"{account}&{consumerKey}&{tokenId}&{nonce}&{timestamp}"

Create key

key = f"{consumerSecret}&{tokenSecret}"

Create signature

signature = base64.b64encode(hmac.new(key.encode('utf-8'), baseString.encode('utf-8'),

hashlib.sha256).digest()).decode('utf-8')

Azure Cosmos DB

from wsgiref.handlers import format_date_time

from datetime import datetime

from time import mktime

import base64

from urllib.parse import quote

import hmac

from hashlib import sha256

endpoint_url='{{hostname}}' # Provide Values

master_key = '{{master_key}}' # Provide Values

resource_type = '{{resource_type}}' # Provide Values

resource_id = '{{resource_id}}' # Provide Values

##

Method : PUT

Note: This pre_request_script is for loading data to Amazon S3 Bucket.

##

key = base64.b64decode(master_key)

endpoint_method = 'post'

now = datetime.now()

stamp = mktime(now.timetuple())

date = format_date_time(stamp)

text =

'{endpoint_method}\\n{resource_type}\\n{resource_id}\\n{date}\\n{other}\\n'.format(endpoint_me

thod=(endpoint_method.lower() or ''),resource_type=(resource_type.lower() or

''),resource_id=(resource_id or ''),date=date.lower(),other=''.lower())

body = text.encode('utf-8')

digest = hmac.new(key, body, sha256).digest()

signature = base64.encodebytes(digest).decode('utf-8')

key_type = 'master'

version = '1.0'

uri = f'type={key_type}&ver={version}&sig={signature[:-1]}'

authorization = quote(uri)

Amazon S3

import hashlib

import hmac

import datetime

access_key = '{{access_key}}' # Provide Values

secret_key = '{{secret_key}}' # Provide Values

bucket = '{{bucket_name}}' # Provide Values

region = '{{region}}' # Provide Values

payload = '''{{payload}}''' # Provide Values

host = '{{host}}' # Provide Values

canonical_uri = '/{{canonical_uri}}' # Provide Values

##

##

method = 'PUT'

amzdate = datetime.datetime.utcnow().strftime('%Y%m%dT%H%M%SZ')

datestamp = datetime.datetime.utcnow().strftime('%Y%m%d')

Method : GET

Note: This pre_request_script is for retrieving data from Amazon S3 Bucket.

canonical_querystring = ''

payload_hash = hashlib.sha256(payload.encode()).hexdigest()

canonical_headers = 'host:' + host + '\\n' + 'x-amz-content-sha256:' + payload_hash + '\\n' +

'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-content-sha256;x-amz-date'

canonical_request = method + '\\n' + canonical_uri + '\\n' + canonical_querystring + '\\n' +

canonical_headers + '\\n' + signed_headers + '\\n' +

hashlib.sha256(payload.encode()).hexdigest()

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/s3/aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode()).hexdigest()

date_key = hmac.new(('AWS4' + secret_key).encode(), datestamp.encode(),

hashlib.sha256).digest()

region_key = hmac.new(date_key, region.encode(), hashlib.sha256).digest()

service_key = hmac.new(region_key, 's3'.encode(), hashlib.sha256).digest()

signing_key = hmac.new(service_key, 'aws4_request'.encode(), hashlib.sha256).digest()

signature = hmac.new(signing_key, string_to_sign.encode(), hashlib.sha256).hexdigest()

authorization_header = algorithm + ' Credential=' + access_key + '/' + credential_scope + ',

SignedHeaders=' + signed_headers + ', Signature=' + signature

import hashlib

import hmac

import datetime

access_key = '{{access_key}}' # Provide Values

secret_key = '{{secret_key}}' # Provide Values

bucket = '{{bucket_name}}' # Provide Values

region = '{{region}}' # Provide Values

host = '{{host}}' # Provide Values

canonical_uri = '/{{canonical_uri}}' # Provide Values

##

##

method = 'GET'

service = 's3'

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

datestamp = t.strftime('%Y%m%d')

canonical_querystring = ''

canonical_headers = 'host:' + host + '\n' + 'x-amz-date:' + amzdate + '\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256(('').encode('utf-8')).hexdigest()

canonical_request = method + '\n' + canonical_uri + '\n' + canonical_querystring + '\n' +

canonical_headers + '\n' + signed_headers + '\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/'+ service + '/' + 'aws4_request'

string_to_sign = algorithm + '\n' + amzdate + '\n' + credential_scope + '\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

date_key = hmac.new(("AWS4" + secret_key).encode(), datestamp.encode(),

hashlib.sha256).digest()

region_key = hmac.new(date_key, region.encode(), hashlib.sha256).digest()

service_key = hmac.new(region_key, "s3".encode(), hashlib.sha256).digest()

signing_key = hmac.new(service_key, "aws4_request".encode(), hashlib.sha256).digest()

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

Bizintel360 Data Lake is a search engine based NO-SQL database owned by Bizdata. Users can
ingest petabyte, zettabyte, yottabyte of records both structured and unstructured for Analytics,
Storage, Machine Learning and deep learning.

Bizintel360 Data Lake Source is a connection pool in eZintegrations platform to retrieve data in
JSON format.

Response from Bizintel360 Data Lake source is stored in key `bizdata_dataset_response` . If you
are using Single Line to Multiline Operations as a next operation in your pipeline then the `Chop
key` will have value as

Bizintel360 Data Lake Source have following Parameters :

Data Lake Version : Data Lake Version is the Data Lake Name and its version assigned to the
organization by Bizdata

Index / Table Name: Index or Table name that you want to retrieve data from Data Lake. For the
List of table name or index, check `Datalake` section in Bizintel360 Visualization product.

Pagination Wait Time : By default it is 2m, where m is minute. Pagination is a standard API
capability. Bizintel360 Data Lake source retrieve data in paginated way. This parameter is to set as
how long need to wait for next page. If the response of Table/Index is very high (having 100+ keys
in a single record) then try increasing the `Pagination Wait Time'. In general `2m` is sufficient to
stream data. Use this when you have high network traffic congestion.

Can also use `h` for hours and `s` for seconds

Timeout : By default it is `2m`, where m is minute. In general `2m` is high enough to get
response from Bizintel360 Data Lake. Increase this when response from Bizintel360 Data Lake is
slow. This can happen when the Data Lake Cluster size is small. Reach out to Bizdata support team
to make a increase in cluster size of Bizintel360 Data Lake.

Can also use `h` for hours and `s` for seconds

Data Source - Bizintel360
Data Lake

['bizdata_dataset_response']

Size : By default it is `1000`. Size is number of streaming record count from Bizintel360 Data Lake
source. The source will stream the records inside pipeline in size of 1000 chunks and move to
operations and finally to Data Target. This can be increased to max of 10,000 records in case of
use case like one-time historical data loads.

For better performance and durability `1000` is recommended size. This size helps to realize 1000
records in target faster and makes perfection in real-time data processing.

Query : JSON Body based query to retrieve data from tables/index of Bizintel360 Data Lake.

This below example responds with all the records from a table. This is similar to sql select * from
table

In the below example `store_number` and `customer_number` are two keys in the Data Lake table.
It will respond with all the records with those keys only. This is similar to sql select
store_number,customer_number from table

In the below example `employee_id` is a key whose value is `130` and it responds with only two
keys that is `employee_id` and `employee_name`. This is similar to sql select
employee_id,employee_name from table where employee_id=130

Get all the Records from a table

{ "query": { "match_all": {} } }

Get all Records with specific columns/keys from a table

{

 "_source": ["store_number", "customer_number"],

 "query": {

 "match_all": {}

 }

}

Get Specific column/keys from a table

{

 "query": {

 "match": {

 "employee_id":130

 }

Below example is similar to sql

select Project,title,Assigned To,Priority,Created By,createdDateTime,dueDateTime from
table
where Project='Project ABC'
and Priority is not null
and percentComplete=100

 },

 "_source": {

 "includes": ["employee_id", "employee_name"]

 }

}

Get Specific Columns/keys and Filters from a table

{"size":50,"sort":[{}],"_source":["Project","title","Assigned To","Priority","Created

By","createdDateTime","dueDateTime"],"query":{"bool":{"must":[{"query_string":{"query":"*"}},{

"query_string":{"query":"Project:\"Project ABC\" AND Priority:[* TO *] AND NOT

percentComplete:100"}},{"bool":{"should":[]}}],"must_not":[]}}}

Revision #18
Created 9 August 2023 11:51:41 by Bizdata Help
Updated 7 December 2023 05:51:13 by Bizdata Help

A communication protocol known as WebSocket allows a client and a server to have a single,
persistent connection while offering full-duplex communication channels. It makes two-way
communication possible in real-time. Unlike REST API, this Communication API does not require a
new connection to be established for every message delivered between clients and
servers. While REST API establishes distinct connections for each request-response cycle,
messages can be sent and received constantly in WebSocket without interruption, once the
connection is established.

Parameters used for WebSocket:

Request URL: Add the URL for your request. The URL used for WebSocket connections starts with
ws:// for unencrypted connections and wss:// for encrypted (SSL/TLS) connections.
E.g.: Request URL: wss://bizdatapi-sb.bizdata360.com/streaminglogs/1132
Message: A message that needs to be sent to WebSocket API from the client. Pass the message
content in string format.
E.g.: "{"message":"Hello world"}"
Params: To pass the additional information in the parameters. Add the values in key-value format
along with the description, if any.
Headers: To pass additional information like authorization value in a key-value format in the
headers.
Example:
Key

Value

Data Source- Websocket

api-key

{api-key value}

Revision #4
Created 1 December 2023 09:18:28 by Bizdata Help
Updated 7 December 2023 05:51:13 by Bizdata Help

Test the Data Target
Pre-Request Script
REST API Target
Response Params

Data Target - API

Test the Data Target

Pre-request script is a piece of code that will run before the execution of a request. Pre-request
scripts gives users a chance to modify the request after variables have been resolved but before
the request is made.

Example- Generating signatures for authentication

Pre-processing tasks including setting parameters, variable values, body data and headers can be
performed using the pre-request script. Pre-request scripts can also be used to debug the code, for
example, by logging output to the console. Additionally, we may obtain the result of the function,
such as the date, time, timestamp, etc., utilising the pre-request script notion.

The code that is run prior to sending an HTTP request using an application like requests is known
as the "pre-request" script in Python. Before submitting the actual request, the pre-request script is
used to change the response fields or headers.

Below are the various examples of Pre-Request Scripts

Method - POST

Pre-Request Script

Pre-Request Script of Python

Amazon SP API

import time

import datetime, hashlib, hmac

import json

access_key='{{access_key}}' # Provide Values

secret_key='{{secret_key}}' # Provide Values

host = '{{host}}' # Provide Values

endpoint = '{{hostname}}' # Provide Values

canonical_uri = '{{canonical_uri}}' # Provide Values

body = {{body}} # Provide Values

##

##

request_parameters =json.dumps(body)

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

Method - POST (with Body)

datestamp = t.strftime('%Y%m%d')

method = 'POST'

service = 'execute-api'

region = 'us-east-1'

canonical_querystring = ''

canonical_headers = 'host:' + host + '\\n' + 'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256((request_parameters).encode('utf-8')).hexdigest()

canonical_request = method + '\\n' + canonical_uri + '\\n' + canonical_querystring + '\\n' +

canonical_headers + '\\n' + signed_headers + '\\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/'+ service + '/' + 'aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

kDate = hmac.new(('AWS4' + secret_key).encode('utf-8'), datestamp.encode('utf-8'),

hashlib.sha256).digest()

kRegion = hmac.new(kDate, region.encode('utf-8'), hashlib.sha256).digest()

kService = hmac.new(kRegion, service.encode('utf-8'), hashlib.sha256).digest()

kSigning = hmac.new(kService, 'aws4_request'.encode('utf-8'), hashlib.sha256).digest()

signing_key = kSigning

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

import time

import datetime, hashlib, hmac

import json

access_key='XXXXXXXXXXXXXXXXXX'

secret_key='XXXXXXXXXXXXXXXXXX'

method = 'POST'

service = 'execute-api'

host = 'sellingpartnerapi-na.amazon.com'

region = 'us-east-1'

endpoint = 'https://sellingpartnerapi-na.amazon.com'

body = {'reportType': 'GET_FLAT_FILE_ALL_ORDERS_DATA_BY_ORDER_DATE_GENERAL','dataStartTime':

'{%yesterday%}T00:00:01','dataEndTime': '{%yesterday%}T23:59:59','marketplaceIds':

['XXXXXXXXXX']}

Method - GET

request_parameters =json.dumps(body)

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

datestamp = t.strftime('%Y%m%d')

canonical_uri = '/reports/2021-06-30/reports'

canonical_querystring = ''

canonical_headers = 'host:' + host + '\\n' + 'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256((request_parameters).encode('utf-8')).hexdigest()

canonical_request = method + '\\n' + canonical_uri + '\\n' + canonical_querystring + '\\n' +

canonical_headers + '\\n' + signed_headers + '\\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/'+ service + '/' + 'aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

kDate = hmac.new(('AWS4' + secret_key).encode('utf-8'), datestamp.encode('utf-8'),

hashlib.sha256).digest()

kRegion = hmac.new(kDate, region.encode('utf-8'), hashlib.sha256).digest()

kService = hmac.new(kRegion, service.encode('utf-8'), hashlib.sha256).digest()

kSigning = hmac.new(kService, 'aws4_request'.encode('utf-8'), hashlib.sha256).digest()

signing_key = kSigning

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

import datetime, hashlib, hmac

host = '{{host}}' # Provide Values

endpoint = '{{hostname}}' # Provide Values

access_key = '{{access_key}}' # Provide Values

secret_key = '{{secret_key}}' # Provide Values

canonical_uri = '{{canonical_uri}}' # Provide Values

##

##

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

datestamp = t.strftime('%Y%m%d')

method = 'GET'

Source

service = 'execute-api'

region = 'us-east-1'

canonical_headers = 'host:' + host + '\\n' + 'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256(('').encode('utf-8')).hexdigest()

canonical_request = method + '\\n' + canonical_uri + '\\n' +canonical_headers + '\\n' +

signed_headers + '\\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/' + service + '/' + 'aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

kDate = hmac.new(('AWS4' + secret_key).encode('utf-8'), datestamp.encode('utf-8'),

hashlib.sha256).digest()

kRegion = hmac.new(kDate, region.encode('utf-8'), hashlib.sha256).digest()

kService = hmac.new(kRegion, service.encode('utf-8'), hashlib.sha256).digest()

kSigning = hmac.new(kService, 'aws4_request'.encode('utf-8'), hashlib.sha256).digest()

signing_key = kSigning

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

Oracle Netsuite

import datetime

import random

import string

import hashlib

import base64

import hmac

import urllib

oauth_consumer_id = '{{consumer_id}}' # Provide Values

oauth_consumer_key = '{{consumer_key}}' # Provide Values

oauth_consumer_secret ='{{consumer_secret}}' # Provide Values

oauth_token ='{{token}}' # Provide Values

oauth_token_secret ='{{token_secret}}' # Provide Values

##

Target / Operations

###

request_method = 'POST'

url = 'https://{{hostname}}.suitetalk.api.netsuite.com/services/rest/query/v1/suiteql'

oauth_signature_method = 'HMAC-SHA256'

oauth_timestamp = str(int(datetime.datetime.now().timestamp()))

oauth_nonce = ''.join(random.choices(string.ascii_letters + string.digits, k = 11))

oauth_version = '1.0'

normalized_request_method = request_method.replace(' ', '')

normalized_string_url = urllib.parse.quote(url, safe = '')

normalized_params = {'oauth_consumer_key': oauth_consumer_key,'oauth_token':

oauth_token,'oauth_signature_method': oauth_signature_method,'oauth_timestamp':

oauth_timestamp,'oauth_nonce': oauth_nonce,'oauth_version':

oauth_version,'limit':max_num,'offset':min_num}

sorted_params = dict(sorted(normalized_params.items()))

normalized_string_parmas = [k+'='+v for k,v in sorted_params.items()]

normalized_string_parmas = '&'.join([str(elem) for elem in normalized_string_parmas])

normalized_string_parmas.replace(' ','')

normalized_string_parmas = urllib.parse.quote(normalized_string_parmas, safe = '')

base_string = request_method + '&' + normalized_string_url + '&' + normalized_string_parmas

base_string = str.encode(base_string)

signature_key = oauth_consumer_secret + '&' + oauth_token_secret

signature_key = str.encode(signature_key)

oauth_signature = hmac.new(signature_key, base_string, hashlib.sha256)

oauth_signature.hexdigest()

oauth_signature = base64.b64encode(oauth_signature.digest())

oauth_signature = oauth_signature.decode('UTF-8')

oauth_signature = urllib.parse.quote(oauth_signature, safe = '')

signature ='OAuth

realm="'f'{oauth_consumer_id}",oauth_consumer_key="'f'{oauth_consumer_key}",oauth_token="'f'{o

auth_token}",oauth_signature_method="'f'{oauth_signature_method}",oauth_timestamp="'f'{oauth_t

imestamp}",oauth_nonce="'f'{oauth_nonce}",oauth_version="'f'{oauth_version}",oauth_signature="

'f'{oauth_signature}"'

import os

import requests

import time

import hashlib

import hmac

Source & Target / Operations

import base64

Set your environment variables (replace with your actual credentials)

account = '{{account}}'

consumerKey = '{{consumerKey}}'

consumerSecret = '{{consumerSecret}}'

tokenId = '{{tokenId}}'

tokenSecret = '{{tokenSecret}}'

Generate timestamp and nonce

timestamp = str(int(time.time()))

nonce = ''.join([str(os.urandom(1)) for _ in range(11)])

Create base string

baseString = f"{account}&{consumerKey}&{tokenId}&{nonce}&{timestamp}"

Create key

key = f"{consumerSecret}&{tokenSecret}"

Create signature

signature = base64.b64encode(hmac.new(key.encode('utf-8'), baseString.encode('utf-8'),

hashlib.sha256).digest()).decode('utf-8')

Azure Cosmos DB

from wsgiref.handlers import format_date_time

from datetime import datetime

from time import mktime

import base64

from urllib.parse import quote

import hmac

from hashlib import sha256

endpoint_url='{{hostname}}' # Provide Values

master_key = '{{master_key}}' # Provide Values

resource_type = '{{resource_type}}' # Provide Values

resource_id = '{{resource_id}}' # Provide Values

##

Method : PUT

Note: This pre_request_script is for loading data to Amazon S3 Bucket.

##

key = base64.b64decode(master_key)

endpoint_method = 'post'

now = datetime.now()

stamp = mktime(now.timetuple())

date = format_date_time(stamp)

text =

'{endpoint_method}\\n{resource_type}\\n{resource_id}\\n{date}\\n{other}\\n'.format(endpoint_me

thod=(endpoint_method.lower() or ''),resource_type=(resource_type.lower() or

''),resource_id=(resource_id or ''),date=date.lower(),other=''.lower())

body = text.encode('utf-8')

digest = hmac.new(key, body, sha256).digest()

signature = base64.encodebytes(digest).decode('utf-8')

key_type = 'master'

version = '1.0'

uri = f'type={key_type}&ver={version}&sig={signature[:-1]}'

authorization = quote(uri)

Amazon S3

import hashlib

import hmac

import datetime

access_key = '{{access_key}}' # Provide Values

secret_key = '{{secret_key}}' # Provide Values

bucket = '{{bucket_name}}' # Provide Values

region = '{{region}}' # Provide Values

payload = '''{{payload}}''' # Provide Values

host = '{{host}}' # Provide Values

canonical_uri = '/{{canonical_uri}}' # Provide Values

##

##

method = 'PUT'

amzdate = datetime.datetime.utcnow().strftime('%Y%m%dT%H%M%SZ')

datestamp = datetime.datetime.utcnow().strftime('%Y%m%d')

Method : GET

Note: This pre_request_script is for retrieving data from Amazon S3 Bucket.

canonical_querystring = ''

payload_hash = hashlib.sha256(payload.encode()).hexdigest()

canonical_headers = 'host:' + host + '\\n' + 'x-amz-content-sha256:' + payload_hash + '\\n' +

'x-amz-date:' + amzdate + '\\n'

signed_headers = 'host;x-amz-content-sha256;x-amz-date'

canonical_request = method + '\\n' + canonical_uri + '\\n' + canonical_querystring + '\\n' +

canonical_headers + '\\n' + signed_headers + '\\n' +

hashlib.sha256(payload.encode()).hexdigest()

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/s3/aws4_request'

string_to_sign = algorithm + '\\n' + amzdate + '\\n' + credential_scope + '\\n' +

hashlib.sha256(canonical_request.encode()).hexdigest()

date_key = hmac.new(('AWS4' + secret_key).encode(), datestamp.encode(),

hashlib.sha256).digest()

region_key = hmac.new(date_key, region.encode(), hashlib.sha256).digest()

service_key = hmac.new(region_key, 's3'.encode(), hashlib.sha256).digest()

signing_key = hmac.new(service_key, 'aws4_request'.encode(), hashlib.sha256).digest()

signature = hmac.new(signing_key, string_to_sign.encode(), hashlib.sha256).hexdigest()

authorization_header = algorithm + ' Credential=' + access_key + '/' + credential_scope + ',

SignedHeaders=' + signed_headers + ', Signature=' + signature

import hashlib

import hmac

import datetime

access_key = '{{access_key}}' # Provide Values

secret_key = '{{secret_key}}' # Provide Values

bucket = '{{bucket_name}}' # Provide Values

region = '{{region}}' # Provide Values

host = '{{host}}' # Provide Values

canonical_uri = '/{{canonical_uri}}' # Provide Values

##

##

method = 'GET'

service = 's3'

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dT%H%M%SZ')

datestamp = t.strftime('%Y%m%d')

canonical_querystring = ''

canonical_headers = 'host:' + host + '\n' + 'x-amz-date:' + amzdate + '\n'

signed_headers = 'host;x-amz-date'

payload_hash = hashlib.sha256(('').encode('utf-8')).hexdigest()

canonical_request = method + '\n' + canonical_uri + '\n' + canonical_querystring + '\n' +

canonical_headers + '\n' + signed_headers + '\n' + payload_hash

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/'+ service + '/' + 'aws4_request'

string_to_sign = algorithm + '\n' + amzdate + '\n' + credential_scope + '\n' +

hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

date_key = hmac.new(("AWS4" + secret_key).encode(), datestamp.encode(),

hashlib.sha256).digest()

region_key = hmac.new(date_key, region.encode(), hashlib.sha256).digest()

service_key = hmac.new(region_key, "s3".encode(), hashlib.sha256).digest()

signing_key = hmac.new(service_key, "aws4_request".encode(), hashlib.sha256).digest()

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),

hashlib.sha256).hexdigest()

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' + credential_scope +

', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' + signature

When working with OAuth 2.0 and sending data in URL-encoded format, you can provide
values in the 'refresh token endpoint body' field in the following format :

When dealing with OAuth 2.0 and sending data in URL-encoded format as a string, you
can provide values in the 'refresh token endpoint body' field using the following format:

REST API Target

Refresh Token Endpoint Body :

{

 "grant_type":"password",

 "client_id":"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",

 "client_secret":"XXXXXXXXXXXXXXXXXXXXXXXX",

 "username":"XXXXXXXXXXXXXXXXXXXXXXX",

 "password":"XXXXXXXXXXXXXXXXXXXXXXXXX"

 }

Refresh Token Endpoint Body :

"client_id=XXXXXXXXXXXXXXXXX&client_secret=XXXXXXXXXXX&grant_type=refresh_token&refresh_token=

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

Response parameters:
It is an API Request parameter to getting the response as per our requirement.
We can send the Response type as Text, XML, and JSON and then it will give us response on that
particular response parameters request. Once we will send the response parameter type in API
Request it will process by backend python API and then it will give the particular response based on
response type.

These are the following options we have for response params.
 Text.
 XML.
 JSON.
Below image is the UI Representation of Response Parmas in our eZintegration product. You can
get this feature inside IB (Integration Bridge) postman view in API as a source, operation & target.

Response Params

Note: Text in response params is selected by default. Users can change it as per their
requirements.

https://help.bizdata360.com/uploads/images/gallery/2023-12/screenshot-66.png

Database
Data Target - Database SQL Examples

Data Target-
Database

This page contains guide to keep database as a data target for the integration service.
Upon successfully configuring the Data Source and Data Operation, users proceed to the Data Target stage
to specify the integration bridge's intended destination, defining the necessary details for seamless
integration.

To configure database as a Data Target:

Step 1: Select Target Type
To begin, users need to select Database as their Target Type

Step 2: Select Storage Name
The user can select their preferred storage by choosing from the options listed under Select Storage Name.

Step 3: Version
Upon selecting the Storage Name, users will be presented with another dropdown menu to select the
version.

Step 4: Host IP
The user needs to add the Host IP address associated with their database for establishing a seamless
connection.

Step 5: Port Number
Users have the option to specify the port number pertinent to their database to establish a connection.

Step 6: Schema Name
Enter the schema name which contains the table where data is required to be inserted.

Step 7: Username
Enter the username linked to the database for authentication.

Step 8: Password
To access and authenticate the database, input the associated password.

Step 9: Order Set of Values (Tuple Key)
In tuple key, provide the key name that holds the tuple data.
Tuple key should be written inside square brackets enclosed within single quotes.
Example

Database

Step 10: Batch Size
The Batch Size within the target system defines the number of streaming records moved from the source,
optimizing transfer efficiency for real-time processing. A recommended value of 1000 facilitates smoother
data flow between systems.

Step 11: SQL Statement
Once the necessary information required above has been furnished, users can input their SQL
query in the designated section, adhering to the provided instructions.

Step 12: Execute
After composing the SQL query, users can execute it by selecting the "Execute" option found at the
top of the page.

Response
Users can check the results of their SQL query in the response section.

['Tuple Key']

This will go inside the SQL Statment of Database Target

This will go inside the SQL Statment of Database Target

This will go inside the SQL Statment of Database Target

Data Target - Database SQL
Examples
SQL Actions is Insert

"""Insert into table_name

(column1,column2,column3,column4) values

(?,?,?,?)""","column1","column2","column3","column4"

SQL Actions is Update

"""UPDATE table_name SET PICKED_STATUS = 'Y',

column_name = systimestamp where column1= ? and column2= ? and column3= ?

and column4= ?""",

"column1", "column2", "column3", "column4"

SQL Actions is PLSQL Procedure with tuple

"""DECLARE

 column_name VARCHAR2 (4000);

BEGIN

apps.xxxxxxx.insert_prc(

 column_1 => ?

 ,column_2 => ?

 ,column_3 => ?

);

 EXCEPTION WHEN OTHERS THEN

 OUTPUT.PUT_LINE ('xxxxxx ' || xxxxx);

END;""","column_1","column_2","column_3"

This will go inside the SQL Statment of Database Target

The field Order Set of Values (Tuple Key) should be empty in the Database Target

Below is the example of Merge query in Oracle Database . Insert and Update at same time in
ORDERS_TEST table

t is a alias for target table

s is a alias for source table

This will go inside the SQL Statment of Database Target

SQL Actions are not Insert, Update like Delete or Running a PLSQL
Procedure

"""DECLARE

 column_name varchar2(1000); BEGIN

END;"""

SQL Action is Upsert or Merge

"""MERGE INTO ORDERS_TEST t

 USING (

 SELECT

 ? AS AMAZON_ORDER_ID,

 TO_DATE(?, 'YYYY-MM-DD') AS LAST_SHIP_DATE,

 ? AS ORDER_TYPE,

 TO_DATE(?, 'YYYY-MM-DD') AS PURCHASE_DATE,

 ? AS BUYER_EMAIL,

 TO_DATE(?, 'YYYY-MM-DD') AS AMZ_LAST_UPDATE_DATE,

 ? AS IS_REPLACEMENT_ORDER,

 ? AS NUM_ITEMS_SHIPPED,

 ? AS SHIPMENT_SERVICE_LEVEL,

 ? AS ORDER_STATUS,

 ? AS SALES_CHANNEL,

 ? AS IS_BUSINESS_ORDER,

 ? AS NUM_ITEMS_UNSHIPPED,

 ? AS GLOBAL_EXPRESS_ENABLED,

 ? AS IS_SOLDBY_AB,

 ? AS IS_PREMIUM_ORDER,

 ? AS ORDER_TOTAL_AMOUNT,

 ? AS ORDER_TOTAL_CURRENCY,

 TO_DATE(?, 'YYYY-MM-DD') AS EARLIEST_SHIP_DATE,

 ? AS MARKETPLACE_ID,

 ? AS FULFILLMENT_CHANNEL,

 ? AS PAYMENT_METHOD,

 ? AS SHIPPING_CITY,

 ? AS SHIPPING_POSTAL,

 ? AS SHIPPING_STATE,

 ? AS SHIPPING_COUNTRY,

 ? AS IS_ISPU,

 ? AS IS_PRIME,

 ? AS SELLER_ORDER_ID,

 ? AS SHIPMENT_SERVICE_CATEGORY,

 ? AS NEXTTOKEN

 FROM dual

) s

 ON (t.AMAZON_ORDER_ID = s.AMAZON_ORDER_ID)

 WHEN MATCHED THEN

 UPDATE SET

 t.LAST_SHIP_DATE = s.LAST_SHIP_DATE,

 t.ORDER_TYPE = s.ORDER_TYPE,

 t.PURCHASE_DATE = s.PURCHASE_DATE,

 t.BUYER_EMAIL = s.BUYER_EMAIL,

 t.AMZ_LAST_UPDATE_DATE = s.AMZ_LAST_UPDATE_DATE,

 t.IS_REPLACEMENT_ORDER = s.IS_REPLACEMENT_ORDER,

 t.NUM_ITEMS_SHIPPED = s.NUM_ITEMS_SHIPPED,

 t.SHIPMENT_SERVICE_LEVEL = s.SHIPMENT_SERVICE_LEVEL,

 t.ORDER_STATUS = s.ORDER_STATUS,

 t.SALES_CHANNEL = s.SALES_CHANNEL,

 t.IS_BUSINESS_ORDER = s.IS_BUSINESS_ORDER,

 t.NUM_ITEMS_UNSHIPPED = s.NUM_ITEMS_UNSHIPPED,

 t.GLOBAL_EXPRESS_ENABLED = s.GLOBAL_EXPRESS_ENABLED,

 t.IS_SOLDBY_AB = s.IS_SOLDBY_AB,

 t.IS_PREMIUM_ORDER = s.IS_PREMIUM_ORDER,

 t.ORDER_TOTAL_AMOUNT = s.ORDER_TOTAL_AMOUNT,

 t.ORDER_TOTAL_CURRENCY = s.ORDER_TOTAL_CURRENCY,

 t.EARLIEST_SHIP_DATE = s.EARLIEST_SHIP_DATE,

 t.MARKETPLACE_ID = s.MARKETPLACE_ID,

 t.FULFILLMENT_CHANNEL = s.FULFILLMENT_CHANNEL,

 t.PAYMENT_METHOD = s.PAYMENT_METHOD,

 t.SHIPPING_CITY = s.SHIPPING_CITY,

 t.SHIPPING_POSTAL = s.SHIPPING_POSTAL,

 t.SHIPPING_STATE = s.SHIPPING_STATE,

 t.SHIPPING_COUNTRY = s.SHIPPING_COUNTRY,

 t.IS_ISPU = s.IS_ISPU,

 t.IS_PRIME = s.IS_PRIME,

 t.SELLER_ORDER_ID = s.SELLER_ORDER_ID,

 t.SHIPMENT_SERVICE_CATEGORY = s.SHIPMENT_SERVICE_CATEGORY,

 t.NEXTTOKEN = s.NEXTTOKEN

 WHEN NOT MATCHED THEN

 INSERT (

 AMAZON_ORDER_ID,

 LAST_SHIP_DATE,

 ORDER_TYPE,

 PURCHASE_DATE,

 BUYER_EMAIL,

 AMZ_LAST_UPDATE_DATE,

 IS_REPLACEMENT_ORDER,

 NUM_ITEMS_SHIPPED,

 SHIPMENT_SERVICE_LEVEL,

 ORDER_STATUS,

 SALES_CHANNEL,

 IS_BUSINESS_ORDER,

 NUM_ITEMS_UNSHIPPED,

 GLOBAL_EXPRESS_ENABLED,

 IS_SOLDBY_AB,

 IS_PREMIUM_ORDER,

 ORDER_TOTAL_AMOUNT,

 ORDER_TOTAL_CURRENCY,

 EARLIEST_SHIP_DATE,

 MARKETPLACE_ID,

 FULFILLMENT_CHANNEL,

 PAYMENT_METHOD,

 SHIPPING_CITY,

 SHIPPING_POSTAL,

 SHIPPING_STATE,

 SHIPPING_COUNTRY,

 IS_ISPU,

 IS_PRIME,

 SELLER_ORDER_ID,

 SHIPMENT_SERVICE_CATEGORY,

 NEXTTOKEN

) VALUES (

 s.AMAZON_ORDER_ID,

 s.LAST_SHIP_DATE,

 s.ORDER_TYPE,

 s.PURCHASE_DATE,

 s.BUYER_EMAIL,

 s.AMZ_LAST_UPDATE_DATE,

 s.IS_REPLACEMENT_ORDER,

 s.NUM_ITEMS_SHIPPED,

 s.SHIPMENT_SERVICE_LEVEL,

 s.ORDER_STATUS,

 s.SALES_CHANNEL,

 s.IS_BUSINESS_ORDER,

 s.NUM_ITEMS_UNSHIPPED,

 s.GLOBAL_EXPRESS_ENABLED,

 s.IS_SOLDBY_AB,

 s.IS_PREMIUM_ORDER,

 s.ORDER_TOTAL_AMOUNT,

 s.ORDER_TOTAL_CURRENCY,

 s.EARLIEST_SHIP_DATE,

 s.MARKETPLACE_ID,

 s.FULFILLMENT_CHANNEL,

 s.PAYMENT_METHOD,

 s.SHIPPING_CITY,

 s.SHIPPING_POSTAL,

 s.SHIPPING_STATE,

 s.SHIPPING_COUNTRY,

 s.IS_ISPU,

 s.IS_PRIME,

 s.SELLER_ORDER_ID,

 s.SHIPMENT_SERVICE_CATEGORY,

 s.NEXTTOKEN

)

 """

Below is the example as how you can overcome the update issue in Oracle Database.

Assume a user X is updating a record in an application with a username appuser and at the same
time user Y is also updating the same record by using the same username as appuser . In such case
there will be two session for making update. At this stage the Oracle database will go into locking
mode and you will get error like below and the update will not happen.

ORA-00060: deadlock detected while waiting for resource

If one of the user commits, then the lock will get open and then update will happen. In many cases
the sessions get locks when user uses application like Oracle sql developer , TOAD or DBeaver.

To check is the session is open and locked, use the below sql. At any given time the below query
response should be of 0 records. If there are 0 records then the update statement and truncate
statement will work perfectly

To kill the user session, use the below sql

Database Target Troubleshoot
Not able to update or truncate the records in RDBMS tables
like Oracle, MSSQL etc.

SELECT s.sid, s.serial#, s.username, s.program, s.machine
FROM v$session s
WHERE s.sid IN (
 SELECT DISTINCT l.sid
 FROM v$lock l
 JOIN dba_objects o ON l.id1 = o.OBJECT_ID
 WHERE o.OBJECT_NAME = 'YOUR_TABLE_NAME' AND o.OBJECT_TYPE = 'TABLE'
);

--1551 is sid and 4184 is serial#
ALTER SYSTEM KILL SESSION '1551,4184';
commit;

Data lake ingestion as Data target allows you to efficiently transfer and store data from various
sources directly into the Bizintel360 Datalake.

After configuring Data Source and Data operations for the integration bridge configuration, we
navigate to the Data Target configuration.

Steps to Configure

Data Target- Bizintel360
Datalake Ingestion

https://help.bizdata360.com/uploads/images/gallery/2023-11/screenshot-55.png

Step 1: Select Target Type
Select “Bizintel360 Data Lake Ingestion” in Select Target type option from Target Type drop down
list as shown below

Step 2: Select Data Lake Version
Select the required Datalake version from the drop-down menu as shown

Step 3: Add Index Name/Table Name
Write the Index or table name in which the data should be ingested.

Step 4: Select Action Type
Select the action type from the drop-down menu as per the requirement. Below mentioned is
the description for all the action types available for selection:
• Upsert- The "Upsert" action type combines "update" and "insert” functionalities, allowing data to
be updated if it exists or inserted if it doesn't, streamlining data management.
• Update- The "update" action type modifies existing data in the database, providing the ability to
change specific values within a record.
• Delete- The "update" action type delete or removes specific set of data or entire record count
from the datalake.
• Create- The "create" action type initiates the addition of new records or entities into datalake.
• Insert- The "insert" action type specifically adds new data into a database, appending records or
entities into existing datasets.

Step 5: Insert Primary Key
Define the Primary key of the Index which will help in reducing data duplication. Primary key should
be inserted in the case of UPSERT, UPDATE and DELETE.

https://help.bizdata360.com/uploads/images/gallery/2023-11/screenshot-56.png
https://help.bizdata360.com/uploads/images/gallery/2023-11/screenshot-58.png

Step 6: Select Ingestion Type
Select the ingestion type from the drop-down menu as per the requirement. Below mentioned is
the description for all the ingestion types available for selection:
• Parallel Computing- Parallel computing as an ingestion type involves simultaneously processing
and inputting large volumes of data across multiple computational resources for faster data intake
and processing.
• Streaming Computing- Streaming computing as an ingestion type involves continuous and real-
time processing of data as it flows into a system, enabling immediate analysis and action on
incoming data streams.
• Bump Computing- Bump computing as an ingestion type involves ingesting data one batch at a
time, based on batch defined in source bumps the data into Data Lake.

Revision #8
Created 30 November 2023 11:36:55 by Bizdata Help
Updated 7 December 2023 05:51:13 by Bizdata Help

Setting up Data Target as Email in eZintegrations:
This feature enables users to receive timely email alerts indicating the success or failure of specific
operations within the pipeline. This guide aims to provide a clear, step-by-step walkthrough, ensuring both
new and experienced users can easily configure and manage email notifications.
Email notifications are a crucial aspect of pipeline management, ensuring that users are promptly informed
about the status of their data operations. If a critical data transformation process fails, users can be
immediately notified via email, allowing them to take corrective actions promptly.

Pre requisites:

Before setting up email notifications, ensure you have the necessary credentials and
permissions to access and configure the pipeline.
Verify that your user account has the permission to enable the configuration of email alerts.

Please make sure to add Filter operation and give the condition to trigger the Email.
Please refer: Data Pipeline Controls | Bizdata Help (bizdata360.com) to configure filter
operation.

Steps to configure:

Data Target- Email

https://help.bizdata360.com/books/ezintegrations/page/data-pipeline-controls#bkmrk-filter-operation

Step 1:
Select Target Type - Select target as "Email" from the dropdown.

Step 2:
Compose - Configure Email Settings, Enter the recipient email addresses and email subject.

To- Enter the recipients email address.
Cc- Enter the recipients email address to whom carbon copy of the email is to be sent.
Bcc- Enter the recipients email address to whom carbon copy of the email is to be sent.
Subject- Enter the subject of email.

Step 3:
Specify conditions under which email alerts should be triggered (e.g., operation success, failure, specific
error codes).

Step 4:
Attachment
Is Attachment?: In the 'Is Attachment?' parameter, a toggle option is provided for users to specify whether
an attachment is included with the email. Users can select 'Yes' to indicate the presence of an attachment,
or 'No' if no attachment is included with the email.

File name: In the 'File Name' parameter, users can input the name of the attachment. This parameter is
enabled only when
the user selects 'Yes' in the 'Is Attachment?' parameter, signifying that an attachment is included with the
email.

Step 5:
Settings
From: In the 'From' parameter, users are required to input the sender's email address.
Password:

In the 'Password' parameter, users need to input the password associated with the sender's email
address.
Mail Server: In the 'Mail Server' parameter, users are prompted to specify the address or
hostname of the email server that will be used to send the email.
Port Number: In the 'Port Number' parameter, users are required to input the specific port number that
corresponds to the chosen mail server.
Test: The 'Test' button in the UI serves as a valuable tool for evaluating the response of the configured

Email Settings. Utilize the "Test" feature to send a sample email and ensure notifications are
configured correctly.

Step 6:
Verify the content and format of the email message.

Managing Email notification preferences:
Edit or update email notification settings as needed. Disable email notifications for a specific data
target if required.
If you need to update the recipient email address, revisit the configuration page, make the
necessary changes, and click "Save."

Troubleshooting:
Troubleshoot common issues related to email notifications. Refer to the provided REST API Target
documentation for advanced configurations.
If you're not receiving email notifications, check your spam folder and ensure that the email
settings are correctly configured. For advanced troubleshooting, refer to the REST API Target |
Bizdata Help (bizdata360.com) documentation.

https://help.bizdata360.com/books/ezintegrations/page/rest-api-target
https://help.bizdata360.com/books/ezintegrations/page/rest-api-target

Revision #1
Created 1 December 2023 09:40:33 by Bizdata Help
Updated 7 December 2023 05:51:13 by Bizdata Help

Improvement:

Alphanumeric values are now allowed in First name and Last name in My Profile page and
Register page.

Bug Fix:

Integration Bridge Update Issue with Database Source Type Resolved - Fixed the problem
where users were unable to update the integration bridge when selecting the database as
the source type, ensuring smooth editing and maintenance of integration bridges.
Improved Usability of Key-Value Pair Addition in "params" and "header" Objects in Data
Operation - Addressed the issue where the icon representing the functionality to add a
key-value pair to "params" and "header" objects was relatively small and lacked clear
recognition, resulting in difficulty for users to identify and utilize the feature effectively.
Marketplace API Testing Section Issue Resolved - Fixed the problem where the API Testing
section in the Marketplace was not functioning properly for certain APIs, ensuring reliable
and accurate testing capabilities for all APIs within the Integration Bridge platform.
Enhanced Display of Pre-request Script in View Mode - Addressed the issue where the pre-
request script was displayed as a single line in view mode, despite users entering it as
multi line text.
Integration Bridge Creation Issue Resolved - Fixed the problem encountered when
attempting to create a Integration Bridge with Data Source as Oracle Database and Data
Target as Data Lake, resulting in an error message stating "Unable to create Integration
Bridge."

Bug Fix:

Resolved Data Source Display Issue - Resolved the problem where multi line XML or JSON
bodies were displayed as a single line in view mode when users selected the body as XML,
ensuring accurate representation of the data structure.
 Integration Bridge Data Source and Target Display Issue Resolved - Fixed the issue where
data target details were not being displayed when editing an integration bridge with a
database as the data source type and an API as the target type. Additionally, resolved the
problem where a cross icon was shown in the search by target name field, ensuring a

Release Notes
Release Notes (July 4, 2023)

Release Notes (June 28, 2023)

seamless user experience during target selection.

Bug Fix:

Resolved the issue of incorrect values of source and target key when using the Email
operation.
Resolved the issue of viewing response in UI when using API in operation.
Resolved the issue in view section of the Integration bridge. Now, value is reflecting when
given target type as database.
Resolved the issue in view mode of the Integration bridge when user applies the dl
ingestion operation. The operation is now visible in the view mode.
New users can directly verify their account by clicking the verify link that comes in the
verification mail.

Bug Fix:

In Append operation, users can now pass JSON as a value for keys.
Resolved the issue of values getting dropped from Integration Bridge when using
total_pages_pagination.
Resolved the issue of user being able to update the integration bridge, without filling up
all the mandatory fields, when the Data source type is database.
Resolved the issue of user being able to edit the SQL statement and response field in view
more mode when the source type is selected as Database.

New Feature:

Introducing Database as source option in Integration Bridge's source type Dropdown,
empowering users to select databases as a data source for seamless integration.
Introducing Encode-Decode Operation in UI Transformation, enabling users to encode or
decode data within keys for enhanced data processing capabilities.

Improvement:

Enhanced User Experience with Idle Timeout set to 15 Minutes, ensuring automatic logout
from the system after a period of inactivity for improved security and resource
management.

Bug Fix:

Resolved the issue of not being able to submit the Integration Bridge with Date Analytics
operation.

Release Notes (June 23, 2023)

Release Notes (June 16, 2023)

Release Notes (June 13, 2023)

New Feature:

Introducing Filter operation under Pipeline Controls, Filter operation helps user enabling
conditional execution of subsequent operations and streamlining data flow from source to
target.

Bug Fix:

Resolved the issue of operations getting disappeared after creating the Integration Bridge.

New Feature:

Users can now seamlessly integrate with the Bizdata Data Lake in the Integration Bridge
using Bizdata360 Data Lake Ingestion option in the target type.
Enhanced Integration Bridge with Database as Target Type, empowering users to
seamlessly incorporate databases as their integration bridge targets.

Improvement:

Powerful search option specifically designed to ease out search operations in integration
bridge.

Bug Fix:

Resolved Search Result Issue in Marketplace.

New Feature:

Find exactly what you need with eZintegrations marketplace search bar. With
eZintegrations' user-friendly search functionality, you'll be able to quickly and easily
locate the products or categories you're looking for. No more endless scrolling or
navigating through confusing menus - eZintegrations search bar makes finding what you
want a breeze.
Marketplace in mobile view has an intuitive filtering system that lets users easily narrow
down search results or listings, so one can find exactly what one is looking for.
eZintegrations includes a convenient feature on the marketplace details page, allowing
users to add their selection to their integration bridge with just one click and seamlessly

Release Notes (June 8, 2023)

Release Notes (May 29, 2023)

Release Notes (May 24, 2023)

Release Notes (May 12, 2023)

Release Notes (April 27, 2023)

integrate their marketplace selection with eZintegrations' 'Add to Integration Bridge'
button.
eZintegrations includes a sort button in the marketplace list page, allowing users to sort
products according to their criteria and streamline their searching process.
Users can provide additional information or context about their integration bridge through
the description option in summary page.
Explore eZintegrations' extensive marketplace with ease thanks to eZintegrations user-
friendly pagination feature. With quick and easy navigation through search results or
product listings, you'll never miss out on finding your perfect item

New Feature:

Empower your team with eZintegrations flexible admin capabilities. eZintegrations allows
users to easily designate new administrators, streamlining the management process and
increasing productivity.
eZintegrations platform includes a user-friendly search function for both the source and
target fields in integration bridge creation and update, simplifying users integration
process with searchable business object feature.

New Feature:

eZintegrations allows organization admins to easily update their profile image and
organization logo empowering users to showcase their brand with customizable profile
and logo feature.
Protect your organization with eZintegrations enhanced security feature. eZintegrations
now limits the ability to block users to only organization admins, ensuring that only
authorized users can manage user access and prevent unauthorized access to your
system.

New Feature:

User friendly platform with guided navigation available in page of the product.

New Feature:

Users can create one integration bridge for free after sign up to the free trial version.

Release Notes (April 6, 2023)

Release Notes (March 31, 2023)

Release Notes (March 10, 2023)

Release Notes (February 24, 2023)

Release Notes (February 17, 2023)

New Feature:

Experience eZintegrations our one-year free trial version. During the trial, users will have
access to all of our features and can create one integration bridge to see how our system
works for them.

New Feature:

Simplify your integration setup with eZintegrations' brand-wise sorting drop-down list.
eZintegrations' searchable drop-down list with brand-wise sorting makes it easy to find
and select the brands you need when configuring integrations.

New Feature:

eZintegrations includes a product section, allowing users to browse and manage their
product information with ease. eZintegrations API catalog has also been updated to fetch
product names based on brand selection.

Release Notes (February 10, 2023)

Release Notes (February 3, 2023)

Revision #13
Created 11 May 2023 07:02:26 by Bizdata Help
Updated 7 December 2023 05:51:13 by Bizdata Help

A User A Owner of the Customer Organization who signs up for eZintegrations from Sign
Up Page

B User B The Employee of Customer Organization who has view Access to IB

C User C The Employee of Customer Organization who has edit Access to IB

D User D The Employee of Customer Organization who got delegated access from User-A

Security Matrix

https://help.bizdata360.com/uploads/images/gallery/2023-03/screenshot-438.png

Revision #3
Created 23 March 2023 09:33:09 by Bizdata Help
Updated 4 December 2023 06:36:09 by Bizdata Help

https://help.bizdata360.com/uploads/images/gallery/2023-03/security-page-0001.jpg

