
10/17/23, 3:52 PM Quick start | RisingWave

https://docs.risingwave.com/docs/current/get-started 1/6

Get started Quick start

Quick start

This guide is designed to help you get up and running with RisingWave quickly and easily. In this guide,
we will walk you through the common tasks of using RisingWave.

Install and start RisingWave

Ensure you have Homebrew installed and then run the following commands:

INFO

This method launches RisingWave in playground mode, where data is temporarily stored in

memory. The service is designed to automatically terminate after 30 minutes of inactivity, and any
data stored will be deleted upon termination. We recommend using this method for quick tests
only.

Other installation options are available. If you intend to deploy RisingWave to production environments,
use Kubernetes Operator or RisingWave Cloud, our fully managed service.

Connect to RisingWave

After RisingWave is up and running, connect to it via the Postgres interactive terminal psql . Ensure you

have psql installed in your environment. To learn about how to install it, see Install psql without
PostgreSQL.

Open a new terminal window and run:

Notes about the psql options:

brew tap risingwavelabs/risingwave
brew install risingwave
risingwave playground

psql -h localhost -p 4566 -d dev -U root

https://brew.sh/
https://docs.risingwave.com/docs/current/risingwave-kubernetes/
https://docs.risingwave.com/docs/current/risingwave-cloud/
https://docs.risingwave.com/docs/current/install-psql-without-postgresql/

10/17/23, 3:52 PM Quick start | RisingWave

https://docs.risingwave.com/docs/current/get-started 2/6

The -h option is used to specify the host name or IP address of the PostgreSQL server to connect
to.

The -p option is used to specify the port number that the server is listening on.

The -d option is used to specify the name of the database to connect to.

The -U option is used to specify the name of the database user to connect as.

By default, the PostgreSQL server uses the root user account to authenticate connections to the

dev database. Note that this user account does not require a password to connect.

Create a table

As RisingWave is a database, you can directly create a table and insert data into it. For example, let's

create a table to store data about web page visits.

Insert data

You can get data into RisingWave in two ways, directly inserting data and consuming data from
streaming data sources.

Inserting data into RisingWave is the same as inserting data in any SQL database. Let's insert 5 rows of
data to table website_visits .

Connect to a source

CREATE TABLE website_visits (
 timestamp timestamp,
 user_id varchar,
 page_id varchar,
 action varchar
);

INSERT INTO website_visits (timestamp, user_id, page_id, action) VALUES
 ('2023-06-13T10:00:00Z', 'user1', 'page1', 'view'),
 ('2023-06-13T10:01:00Z', 'user2', 'page2', 'view'),
 ('2023-06-13T10:02:00Z', 'user3', 'page3', 'view'),
 ('2023-06-13T10:03:00Z', 'user4', 'page1', 'view'),
 ('2023-06-13T10:04:00Z', 'user5', 'page2', 'view');

10/17/23, 3:52 PM Quick start | RisingWave

https://docs.risingwave.com/docs/current/get-started 3/6

The most common way for getting streaming data into RisingWave is through upstream sources such as
message queues or Change Data Capture streams. For streaming data ingestion, you need use the

CREATE SOURCE command to connect to a source first.

Let's assume that you have entered five rows of data in the same schema as table website_visits into

the test topic in Kafka:

You can now connect to the topic from RisingWave by running the following command:

Note that after the source is created, data is not automatically ingested into RisingWave. You need to
create a materialized view to start the data movement.

RisingWave supports ingesting data from sources including mainstream message queues and
databases. For supported sources and formats, see Supported sources and Supported formats.

Transform data with materialized views

In RisingWave, data are joined and transformed via materialized views. You do not need to set up

processing jobs or pipelines.

{"timestamp": "2023-06-13T10:05:00Z", "user_id": "user1", "page_id": "page1",
"action": "click"}
{"timestamp": "2023-06-13T10:06:00Z", "user_id": "user2", "page_id": "page2",
"action": "scroll"}
{"timestamp": "2023-06-13T10:07:00Z", "user_id": "user3", "page_id": "page1",
"action": "view"}
{"timestamp": "2023-06-13T10:08:00Z", "user_id": "user4", "page_id": "page2",
"action": "view"}
{"timestamp": "2023-06-13T10:09:00Z", "user_id": "user5", "page_id": "page3",
"action": "view"}

CREATE SOURCE IF NOT EXISTS website_visits_stream (
 timestamp timestamp,
 user_id varchar,
 page_id varchar,
 action varchar
)
WITH (
 connector='kafka',
 topic='test',
 properties.bootstrap.server='localhost:9092',
 scan.startup.mode='earliest'
) FORMAT PLAIN ENCODE JSON;

https://docs.risingwave.com/docs/current/sql-create-source/
https://docs.risingwave.com/docs/current/sql-create-source/#supported-sources
https://docs.risingwave.com/docs/current/sql-create-source/#supported-formats

10/17/23, 3:52 PM Quick start | RisingWave

https://docs.risingwave.com/docs/current/get-started 4/6

A materialized views can be created on tables, sources, or joined data between tables and sources.

Let's create a materialized view to get the total page visits, unique visitors, and the last visit time for each
page based on the data in source website_visits_stream .

Query data

Use the SELECT command to query data in a table or materialized view.

For example, let's see the latest results of the visits_stream_mv materialized view:

As new data comes in, the results in visits_stream_mv will be automatically updated. Behind the
scenes, RisingWave performs incremental computations when new data comes in.

For example, if you enter five more rows of data into the test topic:

CREATE MATERIALIZED VIEW visits_stream_mv AS
SELECT page_id,
count(*) AS total_visits,
count(DISTINCT user_id) AS unique_visitors,
max(timestamp) AS last_visit_time
FROM website_visits_stream
GROUP BY page_id;

SELECT * FROM visits_stream_mv;

 page_id | total_visits | unique_visitors | last_visit_time
---------+--------------+-----------------+---------------------
 page2 | 2 | 2 | 2023-06-13 10:08:00
 page1 | 2 | 2 | 2023-06-13 10:07:00
 page3 | 1 | 1 | 2023-06-13 10:09:00
(3 rows)

{"timestamp": "2023-06-13T10:10:00Z", "user_id": "user1", "page_id": "page3",
"action": "scroll"}
{"timestamp": "2023-06-13T10:11:00Z", "user_id": "user2", "page_id": "page1",
"action": "click"}
{"timestamp": "2023-06-13T10:12:00Z", "user_id": "user3", "page_id": "page2",
"action": "scroll"}
{"timestamp": "2023-06-13T10:13:00Z", "user_id": "user4", "page_id": "page3",
"action": "view"}

https://docs.risingwave.com/docs/current/sql-select/

10/17/23, 3:52 PM Quick start | RisingWave

https://docs.risingwave.com/docs/current/get-started 5/6

The results will be automatically updated:

Sink data out of RisingWave

Data in tables and materialized views are stored in RisingWave. You can sink data out of RisingWave and
into Kafka topics or databases.

To sink data out of RisingWave, you need to create a sink using the CREATE SINK . A sink can be created
from an existing table, source, or materialized view, or an ad-hoc SELECT query.

Let's sink all data from visits_stream_mv to a Kafka topic:

Last updated on Oct 9, 2023

{"timestamp": "2023-06-13T10:14:00Z", "user_id": "user5", "page_id": "page1",
"action": "click"}

SELECT * FROM visits_stream_mv;

 page_id | total_visits | unique_visitors | last_visit_time
---------+--------------+-----------------+---------------------
 page2 | 3 | 3 | 2023-06-13 10:12:00
 page3 | 3 | 3 | 2023-06-13 10:13:00
 page1 | 4 | 4 | 2023-06-13 10:14:00
(3 rows)

CREATE SINK sink1 FROM visits_stream_mv
WITH (
connector='kafka',
type='append-only',
force_append_only='true',
properties.bootstrap.server='localhost:9092',
topic='sink1'
);

https://docs.risingwave.com/docs/current/sql-create-sink/

10/17/23, 3:52 PM Quick start | RisingWave

https://docs.risingwave.com/docs/current/get-started 6/6

0 comments

Write Preview

Sign in to comment

Help us make this doc better!

Was this page helpful?

Yes No

Powered by Happy React

File an issue Edit this page

https://happyreact.com/?utm_source=https://docs.risingwave.com&utm_medium=widget&utm_campaign=footer

