
Track & Trace

Track & Trace APIs provide the solution for managing decentralized records for

end-to-end tracking & tracing of a product in shipment. These APIs can be

integrated with existing blockchain products or products that would require a

decentralized trustless method to trace their product's journey. These APIs create

an asset on the smart contract with a unique identifier that is transferred down the

supply chain managing trail of every action performed on it, and ownership is

transferred to all the participants with them signing the transactions.
A single unit can be packaged into a carton/container with its unique id and then can
be inwarded/outwarded and all the units in it can be transferred to new owner all at
once, afterwards, they can be unpackaged for micro transfers.

Free Users: The smart contracts for these API’s have been deployed on the Goerli
Testnet, allowing free users to test and interact with the API’s functionality.

Premium Users: Premium users, who have purchased our plans, will have the
option to select their own blockchain network for deploying their separate smart
contract. Infrablok supports the following EVM compatible blockchain networks :

1. Ethereum
2. Polygon
3. Avalanche
4. BNB
5. Telos
6. Goerli Testnet
7. Polygon Testnet
8. Avalanche Testnet
9. BNB Testnet
10. Telos Testnet

Smart Contract Deployment:

To deploy your Separate smart contract on desired chain, you need to complete
these steps:

1. Select Desired Chain
2. Create Wallet**
3. Topup/transfer native coin of your desired chain
4. Deploy Contract

** We will create a wallet address on your behalf. We will keep the private key in
encrypted form in our database. Gas fees will be deducted from this wallet when we
deploy your contract on the desired chain and when you use our API’s. You are
strongly advised to use this wallet address for “Track n Trace” API’s only.

List of Supply Chain APIs

1. Create a new asset

API: https://trackntrace.infrablok.com/api/asset/createAsset

This process involves registering products, a single unit at a time.

Input:

{

"productid": "string",

"metadata": {

},

"owner": "string",

"latitude": "string",

"longitude": "string",

"comment": "string"

}

Below are the details required to register a single product:

https://trackntrace.infrablok.com/api/asset/createAsset

1. Productid: It is the product ID, can be autogenerated at our side or can be
provided from caller’s ERP system.

2. Metadata: It is the product metadata details in JSON format, e.g. {model:
“IVHQE2022”, SKU: “SKU00123”, …}

3. Owner: It is the wallet address (EVM) of the user, to whom the ownership of
the product should be assigned at the time of registration of the product.

4. Latitude & Longitude: It is the initial location of the product, where it was
manufactured.

5. Comment: It is any comment/description provided by the user.

2. Create a new package

API: https://trackntrace.infrablok.com/api/asset/createPackage

This process involves packaging a list of products together into one package.

Input:

{

"packageId": "string",

"productIdList": [

"string"

]

}

Below are the details required to create a package:

https://trackntrace.infrablok.com/api/asset/createPackage

1. Packageid: It is the package id.
2. ProductList: It is the array of product (asset) ids need to be packaged

together.

3. Create an outward entry

API: https://trackntrace.infrablok.com/api/asset/createOutwardEntry

This process involves out warding the group of products or group of packages from
product owner to logistics provider which involves changing ownership of all the
products either provided as single product list or package list to logistics provider.

Input:

{

"type": "string",

"IdList": [

"string",”string”,….,” string”

],

"receiverAdd": "string",

"logisticAdd": "string",

"invoiceHash": "string",

https://trackntrace.infrablok.com/api/asset/createOutwardEntry

"invoiceNum": "string",

"owner": "string",

"latitude": "string",

"longitude": "string",

"comment": "string"

}

Below are the details required to create an outward:

1. Type: It is to state if the provided id list is of type UNIT or PACKAGE.
2. IdList: It is the array of product ids or package ids.
3. ReceiverAdd: It is the wallet address (EVM) of the Buyer.
4. LogisticAdd: It is the wallet address (EVM) of the Logistic Provider, to whom

the ownership of the product should be assigned at the time of outwarding.
5. InvoiceHash: It is the hash of the invoice of the dispatched products.
6. InvoiceNum: It is the invoice number of the dispatched products.
7. Owner: It is the wallet address (EVM) of the Seller, who has the ownership of

the product.
8. Latitude & Longitude: It is the current location of the product.
9. Comment: It is any comment/description provided by the seller.

4. Create an inward entry

API: https://trackntrace.infrablok.com/api/asset/createInwardEntry

In this process the receiver provides the group of products ids or the group of
package ids that are received. It involves changing ownership of all the products
either provided as a sole product list or package list to the receiver.

https://trackntrace.infrablok.com/api/asset/createInwardEntry

Input:

{

"type": "string",

"IdList": [

"string",”string”,….,” string”

],

"receiverAdd": "string",

"logisticAdd": "string",

"invoiceHash": "string",

"invoiceNum": "string",

"latitude": "string",

"longitude": "string",

"comment": "string"

}

Below are the details required to create an inward:

1. Type: It is to state if the provided id list is of type UNIT or PACKAGE.
2. IdList: It is the array of product ids or package ids.
3. ReceiverAdd: It is the wallet address (EVM) of the Buyer, to whom the

ownership of the product should be assigned at the time of inwarding.
4. LogisticAdd: It is the wallet address (EVM) of the Logistic Provider.
5. InvoiceHash: It is the hash of the invoice of the dispatched products.
6. InvoiceNum: It is the invoice number of the dispatched products.
7. Latitude & Longitude: It is the current location of the product.
8. Comment: It is any comment/description provided by the buyer.

5. Product delivery to end user (Setting status as
SOLD)

API: https://trackntrace.infrablok.com/api/asset/assetSold

In this process the buyer provides the group of products ids or the group of package
ids that the end user received. It involves changing ownership of all the products
either provided as a sole product list or package list to end user and setting final
state to SOLD.

Input:

{

"type": "string",

"IdList": [

"string", "string",..., "string"

https://trackntrace.infrablok.com/api/asset/assetSold

],

"receiverAdd": "string",

"invoiceHash": "string",

"invoiceNum": "string",

"owner": "string",

"latitude": "string",

"longitude": "string",

"comment": "string"

}

Below are the details required:

1. Type: It is to state if the provided id list is of type UNIT or PACKAGE.
2. IdList: It is the array of product ids or package ids.
3. ReceiverAdd: It is the wallet address (EVM) of the End User, to whom the

ownership of the product should be assigned.
4. InvoiceHash: It is the hash of the invoice of the dispatched products.
5. InvoiceNum: It is the invoice number of the dispatched products.
6. Owner: It is the wallet address (EVM) of the Buyer, who has the ownership of

the product.
7. Latitude & Longitude: It is the current location of the product.
8. Comment: It is any comment/description provided by the buyer.

6. Depackage a package

API: https://trackntrace.infrablok.com/api/asset/dePackage

This process involves depackaging a package. Here assets packed within the
provided package id will be unpacked again.

Input:

{

"packageId": "string"

}

1. Packageid: It is the package id.

7. Track an asset

API: https://trackntrace.infrablok.com/api/asset/productTraceById

This process returns all the tracking details of an asset.

Input:

Key: productid Value: "string"

Productid: It is the product id. For e.g., “101”.

8. Get an asset detail

https://trackntrace.infrablok.com/api/asset/dePackage
https://trackntrace.infrablok.com/api/asset/productTraceById

API: https://trackntrace.infrablok.com/api/asset/getAssetDetailsById

This process gives details about an asset.

Input:

Key: productid Value: "string"

Productid: It is the product id. For e.g., “101”.

9. Check if an asset exists for a user

API: https://trackntrace.infrablok.com/api/asset/assetExistsByUserAddress

This process checks if an asset exists for the provided user address and returns
“true” or “false” in response to the call.

Input:

Key: address Value: "string"

Key: productid Value: "string"

Address: It is the wallet address (EVM) of the user. For e.g.,
0x5B38Da6a701c568545dCfcB03FcB875f56beddC4

Productid: It is the product id. For e.g., “101”.

10. Get all asset ids

API: https://trackntrace.infrablok.com/api/asset/getAllAssets

This process returns an array of asset ids registered on blockchain so far.

https://trackntrace.infrablok.com/api/asset/getAssetDetailsById
https://trackntrace.infrablok.com/api/asset/assetExistsByUserAddress
https://trackntrace.infrablok.com/api/asset/getAllAssets

11. Get all package ids

API: https://trackntrace.infrablok.com/api/asset/getAllPackages

This process returns an array of package ids registered on blockchain so far.

12. Get package detail

API: https://trackntrace.infrablok.com/api/asset/getAllProductByPackageId

This process returns an array of asset ids mapped with the given package id.

Input:

Key: productid Value: "string"

Productid: It is the product id. For e.g., “101”.

13. Transfer Contract Ownership

API: https://trackntrace.infrablok.com/api/asset/transferContractOwnership

This function is used to change contract owner. Only the current contract owner can
make this call.

Input:

{

"newOwner ": "string"

}

1. NewOwner: It is the wallet address of the new contract owner.

https://trackntrace.infrablok.com/api/asset/getAllPackages
https://trackntrace.infrablok.com/api/asset/getAllProductByPackageId
https://trackntrace.infrablok.com/api/asset/transferContractOwnership

14. Check Contract Owner

API: https://trackntrace.infrablok.com/api/asset/checkContractOwner

This function is used to check the owner of the contract.

Service Level Agreement

Overview

SLA stands for service level agreement, which is an agreement signed between two
parties, logistic and sender of a goods, which contains the rules and regulations and
penalty criteria in case of violations, and logistic entity is liable to pay the penalty
automatically with the help of the smart contract, which is holding all the transit data,
like temperature, humidity, vibrations etc.

List of SLA APIs

1. Deposit Fund

API: https://trackntrace.infrablok.com/api/asset/depositFund

This method is used to fund smart contract. An amount greater than 0 is required to
be sent as msg.value along with function call. The value is stored
in balance variable which can later be used to fetch contract balance. The amount
should be provided in WEI.

Input:

{

"amount": int

 }

https://trackntrace.infrablok.com/api/asset/checkContractOwner
https://trackntrace.infrablok.com/api/asset/depositFund

2. Set Logistic Charge

API: https://trackntrace.infrablok.com/api/asset/setLogisticCharge

This method is used to set charges of logistic providers for a given consignment. It
takes logisticProvider (a EVM wallet address of logistic
provider), invoiceNumber and charge as input.

Input:

{

"logisticProvider":"string", "invoiceNumber": "string", "charge":int

 }

3. Set Metric

API: https://trackntrace.infrablok.com/api/asset/setMetric

This method is used to set metrics for a consignment. It takes invoiceNumber
(invoice number of consignment) and a tuple of type Metric as input. It sets one
metric at a time where each metric is mapped

with the invoiceNumber and an index (starting with 0). Metric stands for criteria I.e.,
temperature, pressure etc. and their max-min range in which the goods are to be
kept in, these metrics will be checked with the data obtained from the sensers.

struct Metric {

string name;

uint256 minRange;

uint256 maxRange;

}

Where, name is name of a metric, minRange is minimum value of a metric
and maxRange is maximum value of a metric.

Input:

{

"invoiceNumber": "string",

https://trackntrace.infrablok.com/api/asset/setLogisticCharge
https://trackntrace.infrablok.com/api/asset/setMetric

 "metricName": "string",

 "minRange":int,

 "maxRange":int

}

4. Set Penalty

API: https://trackntrace.infrablok.com/api/asset/setPenalty

This method is used to set penalties for a consignment if or when a metric value
goes out of range. It takes invoiceNumber , metricID(metric index) and an array of
tuples of type Penalty as input. It sets range and charge for one metric at a time
where each array is mapped with the invoiceNumber and metricID(metric index).

struct Penalty {

uint16 minCount;

uint16 maxCount;

uint256 charge;

}

Where, minCount is minimum violation count, maxCount is maximum violation
count and charge is penalty fee.

Input:

{

"invoiceNumber":"string",

"metricID":int,

"penalty":[

https://trackntrace.infrablok.com/api/asset/setPenalty

{

"minCount": int,

"maxCount": int,

"charge": int

},

{

"minCount": int,

"maxCount": int,

"charge": int

}

]

}

5. Set Metric Value

API: https://trackntrace.infrablok.com/api/asset/setMetricValue

https://trackntrace.infrablok.com/api/asset/setMetricValue

This method is used to update metric values at regular time intervals. It sets one
value at a time. Here each metric value is mapped with
the invoiceNumber, metricID(metric index) and the index(indexes for values
starting with 0)

Input:

{

 "invoiceNumber": "string",

 "metricID":int,

 "metricValue":int

 }

6. Calculate Penalty

API: https://trackntrace.infrablok.com/api/asset/calculatePenalty

This method is used to calculate total penalties based on total number of violations
count for a consignment. It takes invoiceNumber and an array of metricIDs(metric
indexes).

Input:

{

"invoiceNumber":"string",

 "metricID":[int,int]

 }

7. Settlement

API: https://trackntrace.infrablok.com/api/asset/Settlement

This method is used for settlement. It takes invoiceNumber,an array of
metricIDs (metric indexes) and logisticProvider address (a EVM wallet address of
the logistic provider) as input and penalty is calculated. With this method call penalty

https://trackntrace.infrablok.com/api/asset/calculatePenalty
https://trackntrace.infrablok.com/api/asset/Settlement

amount is deducted from the charge set for the logistic provider and the remaining
amount is transferred to the logistic provider from the smart contract.

Input:

{

"invoiceNumber":"string",

"metricID":[int,int],

"logisticProvider":"string"

 }

*By default, solidity creates getter functions for public variables. Using web3
we can directly get the results using the variable name.

Below are the public variables and mappings used in the contract to store and fetch
the results.

8. Check Contract Balance

API: https://trackntrace.infrablok.com/api/asset/getContractBalance

This method is used to fetch contract balance.

9. Consignment Metric Map

API: https://trackntrace.infrablok.com/api/asset/getMetricByMetricId

This mapping returns a metric stored at the given index for a given consignment.

Input:

Key: invoiceNumber Value: "string"

Key: metricID Value: int

InvoiceNumber: It is the invoice number of assets/packages outwared.

https://trackntrace.infrablok.com/api/asset/getContractBalance
https://trackntrace.infrablok.com/api/asset/getMetricByMetricId

MetricID: It is the metric index, starting with 0.

10.Counter Map

API: https://trackntrace.infrablok.com/api/asset/getTotalMetricByInvoice

This mapping returns total metric stored for a given consignment.

Input:

Key: invoiceNumber Value: "string"

Key: metricID Value: int

Key: index Value: int

Index: It is the metric value index, starting with 0.

11. Metric Value Map

API: https://trackntrace.infrablok.com/api/asset/getMetricValueByMetricId

This mapping returns metric value stored at an index for given metric of given
consignment.

Input:

Key: invoiceNumber Value: "string"

Key: metricID Value: int

Key: index Value: int

Index: It is the metric value index, starting with 0.

12. Value Count Map

https://trackntrace.infrablok.com/api/asset/getTotalMetricByInvoice
https://trackntrace.infrablok.com/api/asset/getMetricValueByMetricId

API: https://trackntrace.infrablok.com/api/asset/getTotalMetricValueByMetricId

This mapping returns total metric values stored for a given metric id for a given
consignment.

Input:

Key: invoiceNumber Value: "string"

Key: metricID Value: int

13. Penalty Map

API: https://trackntrace.infrablok.com/api/asset/getPenaltyByMetricId

This mapping returns the penalty range and charge (struct) stored at an index for the
given metric of a given consignment.

Input:

Key: invoiceNumber Value: "string"

Key: metricID Value: int

Key: index Value: int

Index: It is the penalty object index, starting with 0.

14. Penalty Updated

API: https://trackntrace.infrablok.com/api/asset/isPenaltyUpdated

This mapping is used to check if a penalty has been set for a given invoice number
and metric id. This returns true or false in response.

Input:

Key: invoiceNumber Value: "string"

https://trackntrace.infrablok.com/api/asset/getTotalMetricValueByMetricId
https://trackntrace.infrablok.com/api/asset/getPenaltyByMetricId
https://trackntrace.infrablok.com/api/asset/isPenaltyUpdated

Key: metricID Value: int

15. Settled

API: https://trackntrace.infrablok.com/api/asset/isSettled

This mapping is used to check if settlement has been made for a given consignment.
This returns true or false in response.

Input:

Key: logisticProvider Value: "string"

Key: invoiceNumber Value: "string"

LogisticProvider : It is the wallet address of logistic provider.

16. Violation Per Metric

API: https://trackntrace.infrablok.com/api/asset/getViolationCountByMetricId

This mapping returns the total violation count for a given invoice number and metric
id.

Input:

Key: invoiceNumber Value: "string"

Key: metricID Value: int

17. Violation

API: https://trackntrace.infrablok.com/api/asset/getViolationCountByInvoice

This mapping returns the total violation count for a given consignment.

Input:

https://trackntrace.infrablok.com/api/asset/isSettled
https://trackntrace.infrablok.com/api/asset/getViolationCountByMetricId
https://trackntrace.infrablok.com/api/asset/getViolationCountByInvoice

Key: invoiceNumber Value: "string"

18. Logistic Charge

API: https://trackntrace.infrablok.com/api/asset/getLogisticCharge

This mapping returns the charge set for a logistic provider for the given invoice
number.

Input:

Key: logisticProvider Value: "string"

Key: invoiceNumber Value: "string"

https://trackntrace.infrablok.com/api/asset/getLogisticCharge

