

Content

Introduction to cloud-native applications 1

Cloud-native computing 3

What is Cloud Native? 4

The pillars of cloud native 5

The cloud 5

Modern design 6

Microservices 8

Containers 11

Backing services 14

Automation 16

Candidate apps for cloud native 18

Summary 20

Introducing eShopOnContainers reference app 21

Features and requirements 22

Overview of the code 24

Understanding microservices 26

Mapping eShopOnContainers to Azure Services 26

Container orchestration and clustering 27

API Gateway 27

Data 28

Event Bus 29

Resiliency 29

Deploying eShopOnContainers to Azure 29

Azure Kubernetes Service 29

Deploying to Azure Kubernetes Service using Helm 29

Azure Functions and Logic Apps (Serverless) 31

Centralized configuration 32

Azure App Configuration 32

Azure Key Vault 33

Configuration in eShop 33

References 33

Scaling cloud-native applications 35

Leveraging containers and orchestrators 35

Challenges with monolithic deployments 35

What are the benefits of containers and orchestrators? 37

What are the scaling benefits? 39

What scenarios are ideal for containers and orchestrators? 41

When should you avoid using containers and orchestrators? 41

Development resources 41

Leveraging serverless functions 45

What is serverless? 46

What challenges are solved by serverless? 46

What is the difference between a microservice and a serverless

function? 46

What scenarios are appropriate for serverless? 46

When should you avoid serverless? 47

Combining containers and serverless approaches 48

When does it make sense to use containers with serverless? 48

When should you avoid using containers with Azure Functions? 48

How to combine serverless and Docker containers 48

How to combine serverless and Kubernetes with KEDA 49

Deploying containers in Azure 49

Azure Container Registry 49

ACR Tasks 51

Azure Kubernetes Service 51

Azure Bridge to Kubernetes 52

Scaling containers and serverless applications 52

The simple solution: scaling up 52

Scaling out cloud-native apps 53

Other container deployment options 54

When does it make sense to deploy to App Service for Containers?54

How to deploy to App Service for Containers 54

When does it make sense to deploy to Azure Container Instances? 54

How to deploy an app to Azure Container Instances 54

References 55

Cloud-native communication patterns 57

Communication considerations 57

Front-end client communication 59

Simple Gateways 61

Azure Application Gateway 62

Azure API Management 62

Real-time communication 65

Service-to-service communication 66

Queries 67

Commands 70

Events 73

gRPC 79

What is gRPC? 79

gRPC Benefits 79

Protocol Buffers 80

gRPC support in .NET 80

gRPC usage 81

gRPC implementation 82

Looking ahead 84

Service Mesh communication infrastructure 84

Summary 85

Cloud-native data patterns 87

Database-per-microservice, why? 88

Cross-service queries 89

Distributed transactions 90

High volume data 92

CQRS 92

Event sourcing 93

Relational vs. NoSQL data 95

The CAP theorem 96

Considerations for relational vs. NoSQL systems 98

Database as a Service 98

Azure relational databases 99

Azure SQL Database 99

Open-source databases in Azure 100

NoSQL data in Azure 101

NewSQL databases 105

Data migration to the cloud 106

Caching in a cloud-native app 107

Why? 107

Caching architecture 107

Azure Cache for Redis 108

Elasticsearch in a cloud-native app 109

Summary 110

Cloud-native resiliency 112

Application resiliency patterns 113

Circuit breaker pattern 115

Testing for resiliency 116

Azure platform resiliency 116

Design with resiliency 116

Design with redundancy 117

Design for scalability 119

Built-in retry in services 120

Resilient communications 121

Service mesh 121

Istio and Envoy 123

Integration with Azure Kubernetes Services 123

Monitoring and health 125

Observability patterns 125

When to use logging 125

Challenges with detecting and responding to potential app health

issues 129

Challenges with reacting to critical problems in cloud-native apps

 129

Logging with Elastic Stack 130

Elastic Stack 130

What are the advantages of Elastic Stack? 131

Logstash 131

Elasticsearch 132

Visualizing information with Kibana web dashboards 132

Installing Elastic Stack on Azure 133

References 133

Monitoring in Azure Kubernetes Services 133

Azure Monitor for Containers 133

Log.Finalize() 135

Azure Monitor 135

Gathering logs and metrics 136

Reporting data 136

Dashboards 137

Alerts 139

References 140

Cloud-native identity 141

References 141

Authentication and authorization in cloud-native apps 141

References 142

Azure Active Directory 142

References 142

IdentityServer for cloud-native applications 143

Common web app scenarios 143

Getting started 144

Configuration 144

JavaScript clients 145

References 145

Cloud-native security 146

Azure security for cloud-native apps 146

Threat modeling 147

Principle of least privilege 147

Penetration testing 148

Monitoring 148

Securing the build 148

Building secure code 149

Built-in security 149

Azure network infrastructure 149

Role-based access control for restricting access to Azure resources

 151

Security Principals 151

Roles 152

Scopes 153

Deny 153

Checking access 153

Securing secrets 154

Azure Key Vault 154

Kubernetes 154

Encryption in transit and at rest 155

Keeping secure 159

DevOps 160

Azure DevOps 161

GitHub Actions 162

Source control 162

Repository per microservice 163

Single repository 165

Standard directory structure 166

Task management 166

CI/CD pipelines 168

Azure Builds 169

Azure DevOps releases 171

Everybody gets a build pipeline 172

Versioning releases 172

Feature flags 172

Implementing feature flags 173

Infrastructure as code 174

Azure Resource Manager templates 174

Terraform 176

Azure CLI Scripts and Tasks 176

Cloud Native Application Bundles 177

DevOps Decisions 179

References 179

Summary: Architecting cloud-native apps 180

CHAPTER 1

Introduction to

cloud- native

applications

Another day, at the office, working on “the next big thing.”

Your cellphone rings. It’s your friendly recruiter - the one who

calls daily with exciting new opportunities.

But this time it’s different: Start-up, equity, and plenty of funding.

The mention of the cloud, microservices, and cutting-edge technology

pushes you over the edge.

Fast forward a few weeks and you’re now a new employee in a design session

architecting a major

eCommerce application. You’re going to compete with the leading eCommerce

sites.

How will you build it?

If you follow the guidance from past 15 years, you’ll most likely build

the system shown in Figure 1.1.

Figure 1-1. Traditional monolithic design

You construct a large core application containing all of your

domain logic. It includes modules such as Identity, Catalog,

Ordering, and more. They directly communicate with each other

within a single server process. The modules share a large

relational database. The core exposes functionality via an HTML

interface and a mobile app.

Congratulations! You just created a monolithic application.

Not all is bad. Monoliths offer some distinct advantages. For example,

they’re straightforward to…

• build

• test

• deploy

• troubleshoot

• vertically scale

Many successful apps that exist today were created as monoliths.

The app is a hit and continues to evolve, iteration after

iteration, adding more functionality.

At some point, however, you begin to feel uncomfortable. You find

yourself losing control of the application. As time goes on, the

feeling becomes more intense, and you eventually enter a state

known as the Fear Cycle:

• The app has become so overwhelmingly complicated that no single

person understands it.

• You fear making changes - each change has unintended and costly

side effects.

• New features/fixes become tricky, time-consuming, and expensive

to implement.

• Each release becomes as small as possible and requires a

full deployment of the entire application.

• One unstable component can crash the entire system.

• New technologies and frameworks aren’t an option.

• It’s difficult to implement agile delivery methodologies.

• Architectural erosion sets in as the code base deteriorates with

never-ending “quick fixes.”

• Finally, the consultants come in and

tell you to rewrite it. Sound familiar?

Many organizations have addressed this monolithic fear cycle by

adopting a cloud-native approach to building systems. Figure 1-2

shows the same system built applying cloud-native techniques and

practices.

Figure 1-2. Cloud-native design

Note how the application is decomposed across a set of small

isolated microservices. Each service is self-contained and

encapsulates its own code, data, and dependencies. Each is deployed

in a software container and managed by a container orchestrator.

Instead of a large relational database, each service owns it own

datastore, the type of which vary based upon the data needs. Note

how some services depend on a relational database, but other on

NoSQL databases. One service stores its state in a distributed

cache. Note how all traffic routes through an API Gateway service

that is responsible for routing traffic to the core back-end

services and enforcing many cross-cutting concerns. Most

importantly, the application takes full advantage of the

scalability, availability, and resiliency features found in modern

cloud platforms.

Cloud-native computing

Hmm… We just used the term, Cloud Native. Your first thought might

be, “What exactly does that mean?” Another industry buzzword

concocted by software vendors to market more stuff?"

Fortunately it’s far different, and hopefully this book will help

convince you.

Within a short time, cloud native has become a driving trend in

the software industry. It’s a new way to construct large, complex

systems. The approach takes full advantage of modern software

development practices, technologies, and cloud infrastructure.

Cloud native changes the way you design, implement, deploy, and

operationalize systems.

Unlike the continuous hype that drives our industry, cloud native

is for-real. Consider the Cloud Native Computing Foundation

(CNCF), a consortium of over 400 major corporations. Its charter is

to make

https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/

cloud-native computing ubiquitous across technology and cloud

stacks. As one of the most influential open-source groups, it hosts

many of the fastest-growing open source-projects in GitHub. These

projects include Kubernetes, Prometheus, Helm, Envoy, and gRPC.

The CNCF fosters an ecosystem of open-source and vendor-neutrality.

Following that lead, this book presents cloud-native principles,

patterns, and best practices that are technology agnostic. At the

same time, we discuss the services and infrastructure available in

the Microsoft Azure cloud for constructing cloud-native systems.

So, what exactly is Cloud Native? Sit back, relax, and let us help

you explore this new world.

What is Cloud Native?

Stop what you’re doing and ask your colleagues to define the term

“Cloud Native”. There’s a good

chance you’ll get several

different answers. Let’s start

with a simple definition:

Cloud-native architecture and technologies are an approach to

designing, constructing, and operating

workloads that are built in the cloud and take full advantage of the

cloud computing model.

The Cloud Native Computing Foundation provides the official

definition:

Cloud-native technologies empower organizations to build and run

scalable applications in modern, dynamic environments such as

public, private, and hybrid clouds. Containers, service meshes,

microservices, immutable infrastructure, and declarative APIs

exemplify this approach.

These techniques enable loosely coupled systems that are resilient,

manageable, and observable. Combined with robust automation, they

allow engineers to make high-impact changes frequently and

predictably with minimal toil.

Cloud native is about speed and agility. Business systems are

evolving from enabling business capabilities to weapons of

strategic transformation that accelerate business velocity and

growth. It’s imperative to get new ideas to market immediately.

At the same time, business systems have also become increasingly

complex with users demanding more. They expect rapid

responsiveness, innovative features, and zero downtime. Performance

problems, recurring errors, and the inability to move fast are no

longer acceptable. Your users will visit your competitor. Cloud-

https://kubernetes.io/
https://kubernetes.io/
https://prometheus.io/
https://prometheus.io/
https://helm.sh/
https://helm.sh/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://grpc.io/
https://grpc.io/
https://www.cncf.io/
https://github.com/cncf/foundation/blob/master/charter.md
https://github.com/cncf/foundation/blob/master/charter.md
https://github.com/cncf/foundation/blob/master/charter.md

native systems are designed to embrace rapid change, large scale,

and resilience

Here are some companies who have implemented cloud-native techniques.

Think about the speed,

agility, and scalability they’ve achieved.

Company Experience

Netflix Has 600+ services in production. Deploys 100 times per day.

Uber Has 1,000+ services in production. Deploys several thousand

times each week.

WeChat Has 3,000+ services in production. Deploys 1,000 times a

day.

https://www.infoq.com/news/2013/06/netflix/
https://eng.uber.com/micro-deploy/
https://www.cs.columbia.edu/~ruigu/papers/socc18-final100.pdf

As you can see, Netflix, Uber, and, WeChat expose cloud-native

systems that consist of many independent services. This

architectural style enables them to rapidly respond to market

conditions. They instantaneously update small areas of a live,

complex application, without a full redeployment. They individually

scale services as needed.

The pillars of cloud native

The speed and agility of cloud native derive from many factors.

Foremost is cloud infrastructure. But there’s more: Five other

foundational pillars shown in Figure 1-3 also provide the bedrock

for cloud- native systems.

Figure 1-3. Cloud-native foundational pillars

Let’s take some time to better understand the significance of each

pillar.

The cloud

Cloud-native systems take full advantage of the cloud service model.

Designed to thrive in a dynamic, virtualized cloud environment,

these systems make extensive use of Platform as a Service (PaaS)

compute infrastructure and managed services. They treat the

underlying infrastructure as disposable - provisioned in minutes

and resized, scaled, or destroyed on demand – via automation.

Consider the widely accepted DevOps concept of Pets vs. Cattle. In

a traditional data center, servers are treated as Pets: a physical

machine, given a meaningful name, and cared for. You scale by

adding more resources to the same machine (scaling up). If the

server becomes sick, you nurse it back to health. Should the

server become unavailable, everyone notices.

The Cattle service model is different. You provision each instance

as a virtual machine or container. They’re identical and assigned a

system identifier such as Service-01, Service-02, and so on. You

scale by creating more of them (scaling out). When one becomes

https://azure.microsoft.com/overview/what-is-paas/
https://azure.microsoft.com/overview/what-is-paas/
https://medium.com/%40Joachim8675309/devops-concepts-pets-vs-cattle-2380b5aab313
https://medium.com/%40Joachim8675309/devops-concepts-pets-vs-cattle-2380b5aab313

unavailable, nobody notices.

The cattle model embraces immutable infrastructure. Servers aren’t

repaired or modified. If one fails or

requires updating, it’s destroyed and a new one is provisioned – all

done via automation.

Cloud-native systems embrace the Cattle service model. They

continue to run as the infrastructure scales in or out with no

regard to the machines upon which they’re running.

The Azure cloud platform supports this type of highly elastic

infrastructure with automatic scaling, self-healing, and

monitoring capabilities.

Modern design

How would you design a cloud-native app? What would your

architecture look like? To what principles, patterns, and best

practices would you adhere? What infrastructure and operational

concerns would be important?

The Twelve-Factor Application

A widely accepted methodology for constructing cloud-based

applications is the Twelve-Factor Application. It describes a set

of principles and practices that developers follow to construct

applications optimized for modern cloud environments. Special

attention is given to portability across environments and

declarative automation.

While applicable to any web-based application, many practitioners

consider Twelve-Factor a solid foundation for building cloud-native

apps. Systems built upon these principles can deploy and scale

rapidly and add features to react quickly to market changes.

The following table highlights the Twelve-Factor methodology:

Factor Explanation

1 - Code Base A single code base for each microservice, stored in

its own repository. Tracked with version control, it

can deploy to multiple environments (QA, Staging,

Production).

2 -

Dependencies

Each microservice isolates and packages its own

dependencies, embracing changes without impacting

the entire system.

3 -

Configurations

Configuration information is moved out of the

microservice and externalized through a

configuration management tool outside of the code.

The same deployment can propagate across

environments with the correct configuration

applied.

4 - Backing

Services

Ancillary resources (data stores, caches, message

brokers) should be exposed via an addressable URL.

Doing so decouples the resource from the

application, enabling it to be interchangeable.

5 - Build,

Release,

Run

Each release must enforce a strict separation across

the build, release, and run stages. Each should be

tagged with a unique ID and support the ability to

roll back. Modern CI/CD systems help fulfill this

principle.

https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/

6 - Processes Each microservice should execute in its own

process, isolated from other running services.

Externalize required state to a backing service

such as a distributed cache or data store.

7 - Port

Binding

Each microservice should be self-contained with its

interfaces and functionality exposed on its own

port. Doing so provides isolation from other

microservices.

Factor Explanation

8 -

Concurrency

When capacity needs to increase, scale out services

horizontally across multiple identical processes

(copies) as opposed to scaling-up a single large

instance on the most powerful machine available.

Develop the application to be concurrent making

scaling out in cloud environments seamless.

9 -

Disposability

Service instances should be disposable. Favor fast

startup to increase scalability opportunities and

graceful shutdowns to leave the system in a

correct state. Docker containers along with an

orchestrator inherently satisfy this requirement.

10 - Dev/Prod

Parity

Keep environments across the application

lifecycle as similar as possible, avoiding

costly shortcuts. Here, the adoption of

containers can greatly contribute by promoting

the same execution environment.

11 - Logging Treat logs generated by microservices as event

streams. Process them with an event aggregator.

Propagate log data to data-mining/log management

tools like Azure Monitor or Splunk and eventually to

long-term archival.

12 -

Admin

Process

es

Run administrative/management tasks, such as data

cleanup or computing analytics, as one-off

processes. Use independent tools to invoke these

tasks from the production environment, but

separately from the application.

In the book, Beyond the Twelve-Factor App, author Kevin Hoffman

details each of the original 12 factors (written in 2011).

Additionally, he discusses three extra factors that reflect

today’s modern cloud application design.

New Factor Explanation

13 - API First Make everything a service. Assume your code will

be consumed by a front- end client, gateway, or

another service.

14 - Telemetry On a workstation, you have deep visibility

into your application and its behavior. In the

cloud, you don’t. Make sure your design

includes the collection of monitoring, domain-

specific, and health/system data.

15 -

Authenticatio

n/

Authorization

Implement identity from the start. Consider RBAC

(role-based access control) features available in

public clouds.

We’ll refer to many of the 12+ factors in this chapter and throughout

the book.

https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://docs.microsoft.com/azure/role-based-access-control/overview
https://docs.microsoft.com/azure/role-based-access-control/overview

Azure Well-Architected Framework

Designing and deploying cloud-based workloads can be challenging,

especially when implementing cloud-native architecture. Microsoft

provides industry standard best practices to help you and your

team deliver robust cloud solutions.

The Microsoft Well-Architected Framework provides a set of guiding

tenets that can be used to improve the quality of a cloud-native

workload. The framework consists of five pillars of architecture

excellence:

 Ten
ets

Description

https://docs.microsoft.com/azure/architecture/framework/

Tenets Description

Cost

manageme

nt

Focus on generating incremental value early. Apply

Build-Measure-Learn principles to accelerate time to

market while avoiding capital-intensive solutions.

Using a pay- as-you-go strategy, invest as you scale

out, rather than delivering a large investment up

front.

Operati

onal

excelle

nce

Automate the environment and operations to increase

speed and reduce human error. Roll problem updates back

or forward quickly. Implement monitoring and

diagnostics from the start.

Performa

nce

efficien

cy

Efficiently meet demands placed on your workloads.

Favor horizontal scaling (scaling out) and design it

into your systems. Continually conduct performance and

load testing to identify potential bottlenecks.

Reliability Build workloads that are both resilient and available.

Resiliency enables workloads to recover from failures

and continue functioning. Availability ensures users

access to your workload at all times. Design

applications to expect failures and recover from them.

Security Implement security across the entire lifecycle of an

application, from design and implementation to

deployment and operations. Pay close attention to

identity management, infrastructure access,

application security, and data sovereignty and

encryption.

To get started, Microsoft provides a set of online assessments to

help you assess your current cloud workloads against the five well-

architected pillars.

Microservices

Cloud-native systems embrace microservices, a popular architectural

style for constructing modern applications.

Built as a distributed set of small, independent services that

interact through a shared fabric, microservices share the following

characteristics:

• Each implements a specific business capability within a larger

domain context.

• Each is developed autonomously and can be deployed independently.

• Each is self-contained encapsulating its own data storage

technology, dependencies, and programming platform.

• Each runs in its own process and communicates with others

using standard communication protocols such as HTTP/HTTPS,

gRPC, WebSockets, or AMQP.

https://docs.microsoft.com/azure/architecture/framework/#cost-optimization
https://docs.microsoft.com/azure/architecture/framework/#cost-optimization
https://docs.microsoft.com/azure/architecture/framework/#cost-optimization
https://docs.microsoft.com/azure/architecture/framework/#cost-optimization
https://docs.microsoft.com/azure/architecture/framework/#cost-optimization
https://docs.microsoft.com/azure/architecture/framework/#operational-excellence
https://docs.microsoft.com/azure/architecture/framework/#operational-excellence
https://docs.microsoft.com/azure/architecture/framework/#operational-excellence
https://docs.microsoft.com/azure/architecture/framework/#operational-excellence
https://docs.microsoft.com/azure/architecture/framework/#operational-excellence
https://docs.microsoft.com/azure/architecture/framework/#operational-excellence
https://docs.microsoft.com/azure/architecture/framework/#performance-efficiency
https://docs.microsoft.com/azure/architecture/framework/#performance-efficiency
https://docs.microsoft.com/azure/architecture/framework/#performance-efficiency
https://docs.microsoft.com/azure/architecture/framework/#performance-efficiency
https://docs.microsoft.com/azure/architecture/framework/#performance-efficiency
https://docs.microsoft.com/azure/architecture/framework/#performance-efficiency
https://docs.microsoft.com/azure/architecture/framework/#reliability
https://docs.microsoft.com/azure/architecture/framework/#security
https://docs.microsoft.com/assessments/?mode=pre-assessment&session=local
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol

• They compose together to form an application.

Figure 1-4 contrasts a monolithic application approach with a

microservices approach. Note how the monolith is composed of a

layered architecture, which executes in a single process. It

typically consumes a relational database. The microservice

approach, however, segregates functionality into independent

services, each with its own logic, state, and data. Each

microservice hosts its own datastore.

Figure 1-4. Monolithic versus microservices architecture

Note how microservices promote the Processes principle from the

Twelve-Factor Application, discussed earlier in the chapter.

Factor #6 specifies “Each microservice should execute in its own

process, isolated from other running services.”

Why microservices?

Microservices provide agility.

Earlier in the chapter, we compared an eCommerce application built

as a monolith to that with microservices. In the example, we saw

some clear benefits:

• Each microservice has an autonomous lifecycle and can evolve

independently and deploy frequently. You don’t have to wait

for a quarterly release to deploy a new features or update.

You can update a small area of a live application with less

risk of disrupting the entire system. The update can be made

without a full redeployment of the application.

• Each microservice can scale independently. Instead of scaling

the entire application as a single unit, you scale out only

those services that require more processing power to meet

desired performance levels and service-level agreements. Fine-

grained scaling provides for greater control of your system and

helps reduce overall costs as you scale portions of your

system, not everything.

An excellent reference guide for understanding microservices is

.NET Microservices: Architecture for Containerized .NET

Applications. The book deep dives into microservices design and

architecture. It’s a companion for a full-stack microservice

reference architecture available as a free download from

Microsoft.

https://12factor.net/
https://12factor.net/
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

Developing microservices

Microservices can be created upon any modern development platform.

The Microsoft .NET platform is an excellent choice. Free and open

source, it has many built-in features that simplify microservice

development. .NET is cross-platform. Applications can be built and

run on Windows, macOS, and most flavors of Linux.

.NET is highly performant and has scored well in comparison to

Node.js and other competing platforms. Interestingly, TechEmpower

conducted an extensive set of performance benchmarks across many

web application platforms and frameworks. .NET scored in the top 10

- well above Node.js and other competing platforms.

.NET is maintained by Microsoft and the .NET community on GitHub.

Microservice challenges

While distributed cloud-native microservices can provide immense

agility and speed, they present many challenges:

Communication

How will front-end client applications communicate with backed-end

core microservices? Will you allow direct communication? Or, might

you abstract the back-end microservices with a gateway facade that

provides flexibility, control, and security?

How will back-end core microservices communicate with each other?

Will you allow direct HTTP calls that can increase coupling and

impact performance and agility? Or might you consider decoupled

messaging with queue and topic technologies?

Communication is covered in the Cloud-native communication patterns

chapter.

Resiliency

A microservices architecture moves your system from in-process to

out-of-process network communication. In a distributed

architecture, what happens when Service B isn’t responding to a

network call from Service A? Or, what happens when Service C

becomes temporarily unavailable and other services calling it

become blocked?

Resiliency is covered in the Cloud-native resiliency chapter.

Distributed Data

By design, each microservice encapsulates its own data, exposing

operations via its public interface. If so, how do you query data

or implement a transaction across multiple services?

Distributed data is covered in the Cloud-native data patterns

chapter.

Secrets

https://www.techempower.com/
https://www.techempower.com/
https://www.techempower.com/benchmarks/#section%3Ddata-r17%26hw%3Dph%26test%3Dplaintext
https://github.com/dotnet/core

How will your microservices securely store and manage secrets and

sensitive configuration data? Secrets are covered in detail Cloud-

native security.

Manage Complexity with Dapr

Dapr is a distributed, open-source application runtime. Through an

architecture of pluggable components, it dramatically simplifies

the plumbing behind distributed applications. It provides a dynamic

glue that binds your application with pre-built infrastructure

capabilities and components from the Dapr runtime. Figure 1-5 shows

Dapr from 20,000 feet.

Figure 1-5. Dapr at 20,000 feet.

In the top row of the figure, note how Dapr provides language-

specific SDKs for popular development platforms. Dapr v1 includes

support for .NET, Go, Node.js, Python, PHP, Java, and JavaScript.

While language-specific SDKs enhance the developer experience, Dapr

is platform agnostic. Under the hood, Dapr’s programming model

exposes capabilities through standard HTTP/gRPC communication

protocols. Any programming platform can call Dapr via its native

HTTP and gRPC APIs.

The blue boxes across the center of the figure represent the Dapr

building blocks. Each exposes pre- built plumbing code for a

distributed application capability that your application can

consume.

The components row represents a large set of pre-defined

infrastructure components that your

application can consume. Think of components as infrastructure code

you don’t have to write.

The bottom row highlights the portability of Dapr and the diverse

environments across which it can run.

Microsoft features a free ebook Dapr for .NET Developers for learning

Dapr.

https://dapr.io/
https://docs.dapr.io/developing-applications/sdks/
https://docs.dapr.io/developing-applications/sdks/
https://docs.microsoft.com/dotnet/architecture/dapr-for-net-developers/

Looking ahead, Dapr has the potential to have a profound impact on

cloud-native application development.

Containers

It’s natural to hear the term container mentioned in any cloud

native conversation. In the book, Cloud Native Patterns, author

Cornelia Davis observes that, “Containers are a great enabler of

cloud-native

https://www.manning.com/books/cloud-native-patterns
https://www.manning.com/books/cloud-native-patterns
https://www.manning.com/books/cloud-native-patterns
https://www.manning.com/books/cloud-native-patterns

software.” The Cloud Native Computing Foundation places microservice

containerization as the first

step in their Cloud-Native Trail Map - guidance for enterprises

beginning their cloud-native journey.

Containerizing a microservice is simple and straightforward. The

code, its dependencies, and runtime are packaged into a binary

called a container image. Images are stored in a container

registry, which acts as a repository or library for images. A

registry can be located on your development computer, in your data

center, or in a public cloud. Docker itself maintains a public

registry via Docker Hub. The Azure cloud features a private

container registry to store container images close to the cloud

applications that will run them.

When an application starts or scales, you transform the container

image into a running container instance. The instance runs on any

computer that has a container runtime engine installed. You can

have as many instances of the containerized service as needed.

Figure 1-6 shows three different microservices, each in its own

container, all running on a single host.

Figure 1-6. Multiple containers running on a container host

Note how each container maintains its own set of dependencies and

runtime, which can be different from one another. Here, we see

different versions of the Product microservice running on the same

host. Each container shares a slice of the underlying host

operating system, memory, and processor, but is isolated from one

another.

Note how well the container model embraces the Dependencies

principle from the Twelve-Factor Application.

Factor #2 specifies that “Each microservice isolates and packages its

https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png
https://docs.docker.com/glossary/?term=image
https://docs.docker.com/glossary/?term=image
https://hub.docker.com/
https://hub.docker.com/
https://azure.microsoft.com/services/container-registry/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/

own dependencies, embracing

changes without impacting the entire system.”

Containers support both Linux and Windows workloads. The Azure

cloud openly embraces both. Interestingly, it’s Linux, not Windows

Server, that has become the more popular operating system in Azure.

While several container vendors exist, Docker has captured the

lion’s share of the market. The company has been driving the

software container movement. It has become the de facto standard

for packaging, deploying, and running cloud-native applications.

Why containers?

Containers provide portability and guarantee consistency across

environments. By encapsulating everything into a single package,

you isolate the microservice and its dependencies from the

underlying infrastructure.

You can deploy the container in any environment that hosts the Docker

runtime engine. Containerized workloads also eliminate the expense of

pre-configuring each environment with frameworks, software libraries,

and runtime engines.

By sharing the underlying operating system and host resources, a

container has a much smaller footprint than a full virtual

machine. The smaller size increases the density, or number of

microservices, that a given host can run at one time.

Container orchestration

While tools such as Docker create images and run containers, you

also need tools to manage them. Container management is done with a

special software program called a container orchestrator. When

operating at scale with many independent running containers,

orchestration is essential.

Figure 1-7 shows management tasks that container orchestrators

automate.

Figure 1-7. What container orchestrators do

The following table describes common orchestration tasks.

Tasks Explanation

Scheduling Automatically provision container instances.

Affinity

/anti-

affinity

Provision containers nearby or far apart from each

other, helping availability and performance.

https://www.docker.com/

Health

monitor

ing

Automatically detect and correct failures.

Failover Automatically reprovision a failed instance to a

healthy machine.

Scaling Automatically add or remove a container instance to

meet demand.

Tasks Explanation

Networking Manage a networking overlay for container

communication.

Service

Discovery

Enable containers to locate each other.

Rolling

Upgrades

Coordinate incremental upgrades with zero downtime

deployment. Automatically roll back problematic

changes.

Note how container orchestrators embrace the Disposability and

Concurrency principles from the Twelve-Factor Application.

Factor #9 specifies that “Service instances should be disposable,

favoring fast startups to increase scalability opportunities and

graceful shutdowns to leave the system in a correct state.” Docker

containers along with an orchestrator inherently satisfy this

requirement."

Factor #8 specifies that “Services scale out across a large number of

small identical processes (copies) as

opposed to scaling-up a single large instance on the most powerful

machine available.”

While several container orchestrators exist, Kubernetes has become

the de facto standard for the cloud-native world. It’s a portable,

extensible, open-source platform for managing containerized

workloads.

You could host your own instance of Kubernetes, but then you’d be

responsible for provisioning and managing its resources - which can

be complex. The Azure cloud features Kubernetes as a managed

service. Both Azure Kubernetes Service (AKS) and Azure Red Hat

OpenShift (ARO) enable you to fully leverage the features and power

of Kubernetes as a managed service, without having to install and

maintain it.

Container orchestration is covered in detail in Scaling Cloud-Native

Applications.

Backing services

Cloud-native systems depend upon many different ancillary

resources, such as data stores, message brokers, monitoring, and

identity services. These services are known as backing services.

Figure 1-8 shows many common backing services that cloud-native

systems consume.

https://12factor.net/
https://12factor.net/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/openshift/
https://azure.microsoft.com/services/openshift/
https://12factor.net/backing-services
https://12factor.net/backing-services

Figure 1-8. Common backing services

You could host your own backing services, but then you’d be

responsible for licensing, provisioning,

and managing those resources.

Cloud providers offer a rich assortment of managed backing

services. Instead of owning the service, you simply consume it. The

cloud provider operates the resource at scale and bears the

responsibility for performance, security, and maintenance.

Monitoring, redundancy, and availability are built into the

service. Providers guarantee service level performance and fully

support their managed services - open a ticket and they fix your

issue.

Cloud-native systems favor managed backing services from cloud

vendors. The savings in time and labor can be significant. The

operational risk of hosting your own and experiencing trouble can

get expensive fast.

A best practice is to treat a backing service as an attached

resource, dynamically bound to a microservice with configuration

information (a URL and credentials) stored in an external

configuration. This guidance is spelled out in the Twelve-Factor

Application, discussed earlier in the chapter.

Factor #4 specifies that backing services “should be exposed via an

addressable URL. Doing so decouples the resource from the

application, enabling it to be interchangeable.”

Factor #3 specifies that “Configuration information is moved out of

the microservice and externalized through a configuration

management tool outside of the code.”

https://12factor.net/
https://12factor.net/
https://12factor.net/

With this pattern, a backing service can be attached and detached

without code changes. You might promote a microservice from QA to

a staging environment. You update the microservice configuration

to point to the backing services in staging and inject the

settings into your container through an environment variable.

Cloud vendors provide APIs for you to communicate with their

proprietary backing services. These libraries encapsulate the

proprietary plumbing and complexity. However, communicating

directly with these APIs will tightly couple your code to that

specific backing service. It’s a widely accepted practice to

insulate the implementation details of the vendor API. Introduce an

intermediation layer, or intermediate API, exposing generic

operations to your service code and wrap the vendor code inside it.

This loose coupling enables you to swap out one backing service for

another or move your code to a different cloud environment without

having to make changes to the mainline service code. Dapr,

discussed earlier, follows this model with its set of prebuilt

building blocks.

On a final thought, backing services also promote the Statelessness

principle from the Twelve-Factor Application, discussed earlier in

the chapter.

Factor #6 specifies that, “Each microservice should execute in its

own process, isolated from other running services. Externalize

required state to a backing service such as a distributed cache or

data store.”

Backing services are discussed in Cloud-native data patterns and

Cloud-native communication patterns.

Automation

As you’ve seen, cloud-native systems embrace microservices,

containers, and modern system design to achieve speed and agility.

But, that’s only part of the story. How do you provision the cloud

environments upon which these systems run? How do you rapidly

deploy app features and updates? How do you round out the full

picture?

Enter the widely accepted practice of Infrastructure as Code, or IaC.

With IaC, you automate platform provisioning and application

deployment. You essentially apply software engineering practices

such as testing and versioning to your DevOps practices. Your

infrastructure and deployments are automated, consistent, and

repeatable.

Automating infrastructure

Tools like Azure Resource Manager, Azure Bicep, Terraform from

HashiCorp, and the Azure CLI, enable you to declaratively script

the cloud infrastructure you require. Resource names, locations,

capacities, and secrets are parameterized and dynamic. The script

is versioned and checked into source control as an artifact of your

project. You invoke the script to provision a consistent and

repeatable infrastructure across system environments, such as QA,

https://docs.dapr.io/developing-applications/building-blocks/
https://docs.dapr.io/developing-applications/building-blocks/
https://docs.dapr.io/developing-applications/building-blocks/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/azure/azure-resource-manager/bicep/overview
https://docs.microsoft.com/azure/azure-resource-manager/bicep/overview
https://www.terraform.io/
https://docs.microsoft.com/cli/azure/
https://docs.microsoft.com/cli/azure/

staging, and production.

Under the hood, IaC is idempotent, meaning that you can run the

same script over and over without side effects. If the team needs

to make a change, they edit and rerun the script. Only the updated

resources are affected.

In the article, What is Infrastructure as Code, Author Sam

Guckenheimer describes how, “Teams who implement IaC can deliver

stable environments rapidly and at scale. They avoid manual

configuration of environments and enforce consistency by

representing the desired state of their environments via code.

Infrastructure deployments with IaC are repeatable and prevent

runtime issues caused by configuration drift or missing

dependencies. DevOps teams can work together with a unified set of

https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code

practices and tools to deliver applications and their supporting

infrastructure rapidly, reliably, and at

scale.”

Automating deployments

The Twelve-Factor Application, discussed earlier, calls for

separate steps when transforming completed code into a

running application.

Factor #5 specifies that “Each release must enforce a strict

separation across the build, release and run stages. Each should be

tagged with a unique ID and support the ability to roll back.”

Modern CI/CD systems help fulfill this principle. They provide

separate build and delivery steps that

help ensure consistent and quality code that’s readily available to

users.

Figure 1-9 shows the separation across the deployment process.

Figure 1-9. Deployment steps in a CI/CD Pipeline

In the previous figure, pay special attention to separation of tasks:

1. The developer constructs a feature in their development

environment, iterating through what is

called the “inner loop” of code, run, and debug.

2. When complete, that code is pushed into a code repository,

such as GitHub, Azure DevOps, or BitBucket.

3. The push triggers a build stage that transforms the code into

a binary artifact. The work is implemented with a Continuous

Integration (CI) pipeline. It automatically builds, tests,

and packages the application.

4. The release stage picks up the binary artifact, applies

https://12factor.net/
https://12factor.net/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html

external application and environment configuration information,

and produces an immutable release. The release is deployed to a

specified environment. The work is implemented with a

Continuous Delivery (CD) pipeline. Each release should be

identifiable. You can say, “This deployment is running Release

2.1.1 of the application.”

https://martinfowler.com/bliki/ContinuousDelivery.html

5. Finally, the released feature is run in the target execution

environment. Releases are immutable meaning that any change

must create a new release.

Applying these practices, organizations have radically evolved how

they ship software. Many have moved from quarterly releases to on-

demand updates. The goal is to catch problems early in the

development cycle when they’re less expensive to fix. The longer

the duration between integrations, the more expensive problems

become to resolve. With consistency in the integration process,

teams can commit code changes more frequently, leading to better

collaboration and software quality.

Infrastructure as code and deployment automation, along with

GitHub and Azure DevOps are discussed in detail in DevOps

Candidate apps for cloud native

Think about the apps your organization needs to build. Then, look

at the existing apps in your portfolio. How many of them warrant a

cloud-native architecture? All of them? Perhaps some?

Applying cost/benefit analysis, there’s a good chance some wouldn’t

support the effort. The cost of

becoming cloud native would far exceed the business

value of the application. What type of application

might be a candidate for cloud native?

• Strategic enterprise systems that need to constantly evolve

business capabilities/features

• An application that requires a high release velocity - with high

confidence

• A system with where individual features must release without a

full redeployment of the entire system

• An application developed by teams with expertise in different

technology stacks

• An application with components that must scale independently

Smaller, less impactful line-of-business applications might fare

well with a simple monolithic architecture hosted in a Cloud PaaS

environment.

Then there are legacy systems. While we’d all like to build new

applications, we’re often responsible

for modernizing legacy workloads that are critical to the business.

Modernizing legacy apps

The free Microsoft e-book Modernize existing .NET applications with

Azure cloud and Windows Containers provides guidance about

migrating on-premises workloads into cloud. Figure 1-10 shows that

there isn’t a single, one-size-fits-all strategy for modernizing

legacy applications.

https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook

Figure 1-10. Strategies for migrating legacy workloads

Monolithic apps that are non-critical might benefit from a quick

lift-and-shift (Cloud Infrastructure- Ready) migration. Here, the

on-premises workload is rehosted to a cloud-based VM, without

changes. This approach uses the IaaS (Infrastructure as a Service)

model. Azure includes several tools such as Azure Migrate, Azure

Site Recovery, and Azure Database Migration Service to help

streamline the move. While this strategy can yield some cost

savings, such applications typically weren’t designed to unlock and

leverage the benefits of cloud computing.

Legacy apps that are critical to the business often benefit from an

enhanced Cloud Optimized migration. This approach includes

deployment optimizations that enable key cloud services - without

changing the core architecture of the application. For example, you

might containerize the application and deploy it to a container

orchestrator, like Azure Kubernetes Services, discussed later in

this book. Once in the cloud, the application can consume cloud

backing services such as databases, message queues, monitoring, and

distributed caching.

Finally, monolithic apps that provide strategic enterprise

functions might best benefit from a Cloud- Native approach, the

subject of this book. This approach provides agility and velocity.

But, it comes at a cost of replatforming, rearchitecting, and

rewriting code. Over time, a legacy application could be decomposed

into microservices, containerized, and ultimately replatformed into

a cloud-native architecture.

If you and your team believe a cloud-native approach is

https://docs.microsoft.com/dotnet/architecture/modernize-with-azure-containers/lift-and-shift-existing-apps-azure-iaas
https://docs.microsoft.com/dotnet/architecture/modernize-with-azure-containers/lift-and-shift-existing-apps-azure-iaas
https://docs.microsoft.com/dotnet/architecture/modernize-with-azure-containers/lift-and-shift-existing-apps-azure-iaas
https://docs.microsoft.com/dotnet/architecture/modernize-with-azure-containers/lift-and-shift-existing-apps-azure-iaas
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/services/azure-migrate/
https://azure.microsoft.com/services/azure-migrate/
https://azure.microsoft.com/services/azure-migrate/
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/campaigns/database-migration/
https://docs.microsoft.com/virtualization/windowscontainers/about/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/

appropriate, it behooves you to rationalize the decision with your

organization. What exactly is the business problem that a cloud-

native approach will solve? How would it align with business

needs?

• Rapid releases of features with increased confidence?

• Fine-grained scalability - more efficient usage of resources?

• Improved system resiliency?

• Improved system performance?

• More visibility into operations?

• Blend development platforms and data stores to arrive at the best

tool for the job?

• Future-proof application investment?

The right migration strategy depends on organizational priorities

and the systems you’re targeting. For many, it may be more cost

effective to cloud-optimize a monolithic application or add

coarse- grained services to an N-Tier app. In these cases, you can

still make full use of cloud PaaS capabilities like the ones

offered by Azure App Service.

Summary

In this chapter, we introduced cloud-native computing. We provided

a definition along with the key capabilities that drive a cloud-

native application. We looked at the types of applications that

might justify this investment and effort.

With the introduction behind, we now dive into a much more detailed

look at cloud native.

References

• Cloud Native Computing Foundation

• .NET Microservices: Architecture for Containerized .NET

applications

• Microsoft Azure Well-Architected Framework

• Modernize existing .NET applications with Azure cloud and Windows

Containers

• Cloud Native Patterns by Cornelia Davis

• Cloud native applications: Ship faster, reduce risk, and grow

your business

• Dapr for .NET Developers

• Dapr documents

• Beyond the Twelve-Factor Application

• What is Infrastructure as Code

• Uber Engin e ering’s M i cro D eplo y: D eplo yi ng Dai ly wit h

Co nfide nc e

• How Netflix Deploys Code

https://www.cncf.io/
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://docs.microsoft.com/azure/architecture/framework/
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://www.manning.com/books/cloud-native-patterns
https://tanzu.vmware.com/cloud-native
https://tanzu.vmware.com/cloud-native
https://docs.microsoft.com/dotnet/architecture/dapr-for-net-developers/
https://dapr.io/
https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://eng.uber.com/micro-deploy/
https://eng.uber.com/micro-deploy/
https://www.infoq.com/news/2013/06/netflix/

• Overload Control for Scaling WeChat Microservices

https://www.cs.columbia.edu/~ruigu/papers/socc18-final100.pdf

CHAPTER 2

Introducing

eShopOnContainers

reference app

Microsoft, in partnership with leading community experts, has

produced a full-featured cloud-native microservices reference

application, eShopOnContainers. This application is built to

showcase using

.NET and Docker, and optionally Azure, Kubernetes, and Visual Studio, to

build an online storefront.

Figure 2-1. eShopOnContainers Sample App Screenshot.

Before starting this chapter, we recommend that you download the

eShopOnContainers reference application. If you do so, it should

be easier for you to follow along with the information presented.

Features and requirements

Let’s start with a review of the application’s features and

requirements. The eShopOnContainers application represents an

online store that sells various physical products like t-shirts

and coffee mugs. If you’ve bought anything online before, the

experience of using the store should be relatively familiar. Here

are some of the basic features the store implements:

• List catalog items

• Filter items by type

• Filter items by brand

• Add items to the shopping basket

• Edit or remove items from the basket

• Checkout

• Register an account

• Sign in

• Sign out

• Review orders

The application also has the following non-functional requirements:

• It needs to be highly available and it must scale

automatically to meet increased traffic (and scale back down

once traffic subsides).

• It should provide easy-to-use monitoring of its health and

diagnostic logs to help troubleshoot any issues it encounters.

• It should support an agile development process, including

support for continuous integration and deployment (CI/CD).

• In addition to the two web front ends (traditional and Single

Page Application), the application must also support mobile

client apps running different kinds of operating systems.

• It should support cross-platform hosting and cross-platform

development.

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

Figure 2-2. eShopOnContainers reference application development

architecture.

The eShopOnContainers application is accessible from web or mobile

clients that access the application over HTTPS targeting either

the ASP.NET Core MVC server application or an appropriate API

Gateway. API Gateways offer several advantages, such as decoupling

back-end services from individual front-end clients and providing

better security. The application also makes use of a related

pattern known as Backends-for-Frontends (BFF), which recommends

creating separate API gateways for each front-end client. The

reference architecture demonstrates breaking up the API gateways

based on whether the request is coming from a web or mobile

client.

The application’s functionality is broken up into many distinct

microservices. There are services responsible for authentication

and identity, listing items from the product catalog, managing

users’ shopping baskets, and placing orders. Each of these separate

services has its own persistent storage. There’s no single primary

data store with which all services interact. Instead, coordination

and communication between the services is done on an as-needed

basis and by using a message bus.

Each of the different microservices is designed differently, based

on their individual requirements. This aspect means their

technology stack may differ, although they’re all built using .NET

and designed for the cloud. Simpler services provide basic Create-

Read-Update-Delete (CRUD) access to the underlying data stores,

while more advanced services use Domain-Driven Design approaches

and patterns to manage business complexity.

Figure 2-3. Different kinds of microservices.

Overview of the code

Because it uses microservices, the eShopOnContainers app includes

quite a few separate projects and solutions in its GitHub

repository. In addition to separate solutions and executable files,

the various services are designed to run inside their own

containers, both during local development and at run time in

production. Figure 2-4 shows the full Visual Studio solution, in

which the various different projects are organized.

Figure 2-4. Projects in Visual Studio solution.

The code is organized to support the different microservices, and

within each microservice, the code is broken up into domain logic,

infrastructure concerns, and user interface or service endpoint. In

many cases, each service’s dependencies can be fulfilled by Azure

services in production, and alternative options for local

development. Let’s examine how the application’s requirements map

to Azure services.

Understanding microservices

This book focuses on cloud-native applications built using Azure

technology. To learn more about microservices best practices and

how to architect microservice-based applications, read the

companion book, .NET Microservices: Architecture for Containerized

.NET Applications.

Mapping eShopOnContainers to Azure

Services

Although not required, Azure is well-suited to supporting the

eShopOnContainers because the project was built to be a cloud-

native application. The application is built with .NET, so it can

run on Linux or Windows containers depending on the Docker host.

The application is made up of multiple autonomous microservices,

each with its own data. The different microservices showcase

different approaches, ranging from simple CRUD operations to more

complex DDD and CQRS patterns.

Microservices communicate with clients over HTTP and with one

another via message-based communication. The application supports

multiple platforms for clients as well, since it adopts HTTP as a

standard communication protocol and includes ASP.NET Core and

Xamarin mobile apps that run on Android, iOS, and Windows

platforms.

The application’s architecture is shown in Figure 2-5. On the left

are the client apps, broken up into mobile, traditional Web, and

Web Single Page Application (SPA) flavors. On the right are the

server- side components that make up the system, each of which can

be hosted in Docker containers and Kubernetes clusters. The

traditional web app is powered by the ASP.NET Core MVC application

shown in yellow. This app and the mobile and web SPA applications

communicate with the individual microservices through one or more

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

API gateways. The API gateways follow the “backends for front ends”

(BFF) pattern, meaning that each gateway is designed to support a

given front-end client. The individual microservices are listed to

the right of the API gateways and include both business logic and

some kind of persistence store. The different services make use of

SQL Server databases, Redis cache instances, and

MongoDB/CosmosDB stores. On the far right is the system’s Event

Bus, which is used for communication between the microservices.

Figure 2-5. The eShopOnContainers Architecture.

The server-side components of this architecture all map easily to

Azure services.

Container orchestration and clustering

The application’s container-hosted services, from ASP.NET Core MVC

apps to individual Catalog and Ordering microservices, can be

hosted and managed in Azure Kubernetes Service (AKS). The

application can run locally on Docker and Kubernetes, and the same

containers can then be deployed to staging and production

environments hosted in AKS. This process can be automated as we’ll

see in the next section.

AKS provides management services for individual clusters of

containers. The application will deploy separate containers for

each microservice in the AKS cluster, as shown in the architecture

diagram above. This approach allows each individual service to

scale independently according to its resource demands. Each

microservice can also be deployed independently, and ideally such

deployments should incur zero system downtime.

API Gateway

The eShopOnContainers application has multiple front-end clients

and multiple different back-end services. There’s no one-to-one

correspondence between the client applications and the

microservices that support them. In such a scenario, there may be a

great deal of complexity when writing client software to interface

with the various back-end services in a secure manner. Each client

would need to address this complexity on its own, resulting in

duplication and many places in which to make updates as services

change or new policies are implemented.

Azure API Management (APIM) helps organizations publish APIs in a

consistent, manageable fashion. APIM consists of three components:

the API Gateway, and administration portal (the Azure portal), and

a developer portal.

The API Gateway accepts API calls and routes them to the

appropriate back-end API. It can also provide additional services

like verification of API keys or JWT tokens and API transformation

on the fly without code modifications (for instance, to

accommodate clients expecting an older interface).

The Azure portal is where you define the API schema and package

different APIs into products. You also configure user access, view

reports, and configure policies for quotas or transformations.

The developer portal serves as the main resource for developers. It

provides developers with API documentation, an interactive test

console, and reports on their own usage. Developers also use the

portal to create and manage their own accounts, including

subscription and API key support.

Using APIM, applications can expose several different groups of

services, each providing a back end for a particular front-end

client. APIM is recommended for complex scenarios. For simpler

needs, the lightweight API Gateway Ocelot can be used. The

eShopOnContainers app uses Ocelot because of its simplicity and

because it can be deployed into the same application environment

as the application itself. Learn more about eShopOnContainers,

APIM, and Ocelot.

Another option if your application is using AKS is to deploy the

Azure Gateway Ingress Controller as a pod within your AKS cluster.

This approach allows your cluster to integrate with an Azure

Application Gateway, allowing the gateway to load-balance traffic

to the AKS pods. Learn more about the Azure Gateway Ingress

Controller for AKS.

Data

The various back-end services used by eShopOnContainers have

different storage requirements. Several microservices use SQL

Server databases. The Basket microservice leverages a Redis cache

for its persistence. The Locations microservice expects a MongoDB

API for its data. Azure supports each of these data formats.

For SQL Server database support, Azure has products for everything

from single databases up to highly scalable SQL Database elastic

pools. Individual microservices can be configured to communicate

with their own individual SQL Server databases quickly and easily.

These databases can be scaled as needed to support each separate

microservice according to its needs.

The eShopOnContainers application stores the user’s current

shopping basket between requests. This aspect is managed by the

Basket microservice that stores the data in a Redis cache. In

development, this cache can be deployed in a container, while in

production it can utilize Azure Cache for Redis.

https://docs.microsoft.com/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern#azure-api-management
https://docs.microsoft.com/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern#azure-api-management
https://github.com/Azure/application-gateway-kubernetes-ingress
https://github.com/Azure/application-gateway-kubernetes-ingress
https://github.com/Azure/application-gateway-kubernetes-ingress
https://github.com/Azure/application-gateway-kubernetes-ingress
https://github.com/Azure/application-gateway-kubernetes-ingress

Azure Cache for Redis is a fully managed service offering high

performance and reliability without the need to deploy and manage

Redis instances or containers on your own.

The Locations microservice uses a MongoDB NoSQL database for its

persistence. During development, the database can be deployed in

its own container, while in production the service can leverage A

z ure Co sm o s DB ’ s A P I fo r M o ngo DB . One of the benefits

of Azure Cosmos DB is its ability to leverage multiple different

communication protocols, including a SQL API and common NoSQL APIs

including MongoDB, Cassandra, Gremlin, and Azure Table Storage.

Azure Cosmos DB offers a fully managed and globally distributed

database as a service that can scale to meet the needs of the

services that use it.

Distributed data in cloud-native applications is covered in more

detail in chapter 5.

https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction
https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction
https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction

Event Bus

The application uses events to communicate changes between

different services. This functionality can be implemented with

various implementations, and locally the eShopOnContainers

application uses RabbitMQ. When hosted in Azure, the application

would leverage Azure Service Bus for its messaging. Azure Service

Bus is a fully managed integration message broker that allows

applications and services to communicate with one another in a

decoupled, reliable, asynchronous manner. Azure Service Bus

supports individual queues as well as separate topics to support

publisher-subscriber scenarios. The eShopOnContainers application

would leverage topics with Azure Service Bus to support

distributing messages from one microservice to any other

microservice that needed to react to a given message.

Resiliency

Once deployed to production, the eShopOnContainers application

would be able to take advantage of several Azure services available

to improve its resiliency. The application publishes health checks,

which can be integrated with Application Insights to provide

reporting and alerts based on the app’s availability. Azure

resources also provide diagnostic logs that can be used to identify

and correct bugs and performance issues. Resource logs provide

detailed information on when and how different Azure resources are

used by the application. You’ll learn more about cloud-native

resiliency features in chapter 6.

Deploying eShopOnContainers to Azure

The eShopOnContainers application can be deployed to various Azure

platforms. The recommended approach is to deploy the application

to Azure Kubernetes Services (AKS). Helm, a Kubernetes deployment

tool, is available to reduce deployment complexity. Optionally,

developers may implement Azure Dev Spaces for Kubernetes to

streamline their development process.

Azure Kubernetes Service

To host eShop in AKS, the first step is to create an AKS cluster.

To do so, you might use the Azure portal, which will walk you

through the required steps. You could also create a cluster from

the Azure CLI, taking care to enable Role-Based Access Control

(RBAC) and application routing. The eShopOnContainers’

documentation details the steps for creating your own AKS cluster.

Once created, you can access and manage the cluster from the

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://docs.microsoft.com/azure/service-bus/

Kubernetes dashboard.

You can now deploy the eShop application to the cluster using Helm.

Deploying to Azure Kubernetes Service using Helm

Helm is an application package manager tool that works directly

with Kubernetes. It helps you define, install, and upgrade

Kubernetes applications. While simple apps can be deployed to AKS

with custom CLI scripts or simple deployment files, complex apps

can contain many Kubernetes objects and benefit from Helm.

Using Helm, applications include text-based configuration files,

called Helm charts, which declaratively describe the application

and configuration in Helm packages. Charts use standard YAML-

formatted

files to describe a related set of Kubernetes resources. They’re

versioned alongside the application code they describe. Helm Charts

range from simple to complex depending on the requirements of the

installation they describe.

Helm is composed of a command-line client tool, which consumes

helm charts and launches commands to a server component named,

Tiller. Tiller communicates with the Kubernetes API to ensure the

correct provisioning of your containerized workloads. Helm is

maintained by the Cloud- native Computing Foundation.

The following yaml file presents a Helm template:

Note how the template describes a dynamic set of key/value pairs.

When the template is invoked, values that enclosed in curly braces

are pulled in from other yaml-based configuration files.

You’ll find the eShopOnContainers helm charts in the /k8s/helm

folder. Figure 2-6 shows how the different components of the

application are organized into a folder structure used by helm to

define and managed deployments.

apiVersion
: v1 kind:
Service
metadata:

name: {{
.Values.app.svc.marketing }}
labels:

app: {{ template "marketing-api.name"
. }} chart: {{ template "marketing-
api.chart" . }} release: {{ .Release.Name
}}
heritage: {{

.Release.Service }} spec:
type: {{

.Values.service.type }}
ports:

- port: {{
.Values.service.port }}
targetPort: http

pro
tocol: TCP
name: http
selector:

app: {{ template "marketing-
api.name" . }} release: {{
.Release.Name }}

Figure 2-6. The eShopOnContainers helm folder.

Each individual component is installed using a helm install

command. eShop includes a “deploy all” script that loops through

and installs the components using their respective helm charts. The

result is a repeatable process, versioned with the application in

source control, that anyone on the team can deploy to an AKS

cluster with a one-line script command.

Note that version 3 of Helm officially removes the need for the

Tiller server component. More information on this enhancement can

be found here.

Azure Functions and Logic Apps (Serverless)

The eShopOnContainers sample includes support for tracking online

https://medium.com/better-programming/why-is-tiller-missing-in-helm-3-2347c446714
https://medium.com/better-programming/why-is-tiller-missing-in-helm-3-2347c446714

marketing campaigns. An Azure Function is used to track marketing

campaign details for a given campaign ID. Rather than creating a

full microservice, a single Azure Function is simpler and

sufficient. Azure Functions have a simple build and deployment

model, especially when configured to run in Kubernetes. Deploying

the function is scripted using Azure Resource Manager (ARM)

templates and the Azure CLI. This campaign service isn’t customer-

facing and invokes a single operation, making it a great candidate

for Azure Functions. The function requires minimal configuration,

including a database connection string data and image base URI

settings. You configure Azure Functions in the Azure portal.

Centralized configuration

Unlike a monolithic app in which everything runs within a single

instance, a cloud-native application consists of independent

services distributed across virtual machines, containers, and

geographic regions. Managing configuration settings for dozens of

interdependent services can be challenging. Duplicate copies of

configuration settings across different locations are error prone

and difficult to manage. Centralized configuration is a critical

requirement for distributed cloud-native applications.

As discussed in Chapter 1, the Twelve-Factor App recommendations

require strict separation between code and configuration.

Configuration must be stored externally from the application and

read-in as needed. Storing configuration values as constants or

literal values in code is a violation. The same configuration

values are often be used by many services in the same application.

Additionally, we must support the same values across multiple

environments, such as dev, testing, and production. The best

practice is store them in a centralized configuration store.

The Azure cloud presents several great options.

Azure App Configuration

Azure App Configuration is a fully managed Azure service that

stores non-secret configuration settings in a secure, centralized

location. Stored values can be shared among multiple services and

applications.

The service is simple to use and provides several benefits:

• Flexible key/value representations and mappings

• Tagging with Azure labels

• Dedicated UI for management

• Encryption of sensitive information

• Querying and batch retrieval

Azure App Configuration maintains changes made to key-value

settings for seven days. The point-in- time snapshot feature

https://docs.microsoft.com/azure/azure-app-configuration/overview

enables you to reconstruct the history of a setting and even

rollback for a failed deployment.

App Configuration automatically caches each setting to avoid

excessive calls to the configuration store. The refresh operation

waits until the cached value of a setting expires to update that

setting, even when its value changes in the configuration store.

The default cache expiration time is 30 seconds. You can override

the expiration time.

App Configuration encrypts all configuration values in transit and at

rest. Key names and labels are

used as indexes for retrieving configuration data and aren’t

encrypted.

Although App Configuration provides hardened security, Azure Key

Vault is still the best place for storing application secrets. Key

Vault provides hardware-level encryption, granular access policies,

and management operations such as certificate rotation. You can

create App Configuration values that reference secrets stored in a

Key Vault.

Azure Key Vault

Key Vault is a managed service for securely storing and accessing

secrets. A secret is anything that you want to tightly control

access to, such as API keys, passwords, or certificates. A vault is

a logical group of secrets.

Key Vault greatly reduces the chances that secrets may be

accidentally leaked. When using Key Vault, application developers

no longer need to store security information in their application.

This practice eliminates the need to store this information inside

your code. For example, an application may need to connect to a

database. Instead of storing the connection string in the app’s

code, you can store it securely in Key Vault.

Your applications can securely access the information they need by

using URIs. These URIs allow the applications to retrieve specific

versions of a secret. There’s no need to write custom code to protect

any of the secret information stored in Key Vault.

Access to Key Vault requires proper caller authentication and

authorization. Typically, each cloud- native microservice uses a

ClientId/ClientSecret combination. It’s important to keep these

credentials outside source control. A best practice is to set them

in the application’s environment. Direct access to Key Vault from

AKS can be achieved using Key Vault FlexVolume.

Configuration in eShop

The eShopOnContainers application includes local application

settings files with each microservice. These files are checked into

source control, but don’t include production secrets such as

connection strings or API keys. In production, individual settings

may be overwritten with per-service environment variables.

Injecting secrets in environment variables is a common practice for

hosted applications, but doesn’t provide a central configuration

store. To support centralized management of configuration settings,

each microservice includes a setting to toggle between its use of

local settings or Azure Key Vault settings.

https://github.com/Azure/kubernetes-keyvault-flexvol
https://github.com/Azure/kubernetes-keyvault-flexvol

References

• The eShopOnContainers Architecture

• Orchestrating microservices and multi-container applications for

high scalability and availability

• Azure API Management

• Azure SQL Database Overview

• Azure Cache for Redis

• A z ure Co sm o s DB ’s A P I fo r M o ngo DB

https://github.com/dotnet-architecture/eShopOnContainers/wiki/Architecture
https://docs.microsoft.com/dotnet/architecture/microservices/architect-microservice-container-applications/scalable-available-multi-container-microservice-applications
https://docs.microsoft.com/dotnet/architecture/microservices/architect-microservice-container-applications/scalable-available-multi-container-microservice-applications
https://docs.microsoft.com/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://azure.microsoft.com/services/cache/
https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction

• Azure Service Bus

• Azure Monitor overview

• eShopOnContainers: Create Kubernetes cluster in AKS

• eShopOnContainers: Azure Dev Spaces

• Azure Dev Spaces

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-overview
https://docs.microsoft.com/azure/azure-monitor/overview
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deploy-to-Azure-Kubernetes-Service-(AKS)#create-kubernetes-cluster-in-aks
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Azure-Dev-Spaces
https://docs.microsoft.com/azure/dev-spaces/about

CHAPTER 3

Scaling cloud-native

applications

One of the most-often touted advantages of moving to a cloud

hosting environment is scalability. Scalability, or the ability for

an application to accept additional user load without compromising

performance for each user. It’s most often achieved by breaking up

an application into small pieces that can each be given whatever

resources they require. Cloud vendors enable massive scalability

anytime and anywhere in the world.

In this chapter, we discuss technologies that enable cloud-native

applications to scale to meet user demand. These technologies

include:

• Containers

• Orchestrators

• Serverless computing

Leveraging containers and orchestrators

Containers and orchestrators are designed to solve problems common

to monolithic deployment approaches.

Challenges with monolithic deployments

Traditionally, most applications have been deployed as a single

unit. Such applications are referred to as a monolith. This general

approach of deploying applications as single units even if they’re

composed of multiple modules or assemblies is known as monolithic

architecture, as shown in Figure 3-1.

Figure 3-1. Monolithic architecture.

Although they have the benefit of simplicity, monolithic

architectures face many challenges:

Deployment

Additionally, they require a restart of the application, which

may temporarily impact availability if zero-downtime techniques

are not applied while deploying.

Scaling

A monolithic application is hosted entirely on a single machine

instance, often requiring high- capability hardware. If any part of

the monolith requires scaling, another copy of the entire

application must be deployed to another machine. With a monolith,

you can’t scale application components individually - it’s all or

nothing. Scaling components that don’t require scaling results in

inefficient and costly resource usage.

Environment

Monolithic applications are typically deployed to a hosting

environment with a pre-installed operating system, runtime, and

library dependencies. This environment may not match that upon

which the application was developed or tested. Inconsistencies

across application environments are a common source of problems for

monolithic deployments.

Coupling

A monolithic application is likely to experience high coupling

across its functional components. Without hard boundaries, system

changes often result in unintended and costly side effects. New

features/fixes become tricky, time-consuming, and expensive to

implement. Updates require extensive testing. Coupling also makes

it difficult to refactor components or swap in alternative

implementations. Even when constructed with a strict separation of

concerns, architectural erosion sets

in as the monolithic code base deteriorates with never-ending

“special cases.”

Platform lock-in

A monolithic application is constructed with a single technology

stack. While offering uniformity, this commitment can become a

barrier to innovation. New features and components will be built

using the application’s current stack - even when more modern

technologies may be a better choice. A longer-term risk is your

technology stack becoming outdated and obsolete. Rearchitecting an

entire application to a new, more modern platform is at best

expensive and risky.

What are the benefits of containers and

orchestrators?

We introduced containers in Chapter 1. We highlighted how the Cloud

Native Computing Foundation (CNCF) ranks containerization as the

first step in their Cloud-Native Trail Map - guidance for

enterprises beginning their cloud-native journey. In this section,

we discuss the benefits of containers.

Docker is the most popular container management platform. It works

with containers on both Linux or Windows. Containers provide

separate but reproducible application environments that run the

same way on any system. This aspect makes them perfect for

developing and hosting cloud-native services. Containers are

isolated from one another. Two containers on the same host hardware

can have different versions of software, without causing conflicts.

Containers are defined by simple text-based files that become

project artifacts and are checked into source control. While full

servers and virtual machines require manual effort to update,

containers are easily version-controlled. Apps built to run in

containers can be developed, tested, and deployed using automated

tools as part of a build pipeline.

Containers are immutable. Once you define a container, you can

recreate and run it exactly the same way. This immutability lends

itself to component-based design. If some parts of an application

evolve differently than others, why redeploy the entire app when

you can just deploy the parts that change most frequently?

Different features and cross-cutting concerns of an app can be

broken up into separate units. Figure 3-2 shows how a monolithic

app can take advantage of containers and microservices by

delegating certain features or functionality. The remaining

functionality in the app itself has also been containerized.

https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png

Figure 3-2. Decomposing a monolithic app to embrace microservices.

Each cloud-native service is built and deployed in a separate

container. Each can update as needed. Individual services can be

hosted on nodes with resources appropriate to each service. The

environment each service runs in is immutable, shared across dev,

test, and production environments, and easily versioned. Coupling

between different areas of the application occurs explicitly as

calls or messages between services, not compile-time dependencies

within the monolith. You can also choose the technology that best

suites a given capability without requiring changes to the rest of

the app.

Containerized services require automated management. It wouldn’t be

feasible to manually administer

a large set of independently deployed containers. For example,

consider the following tasks:

• How will container instances be provisioned across a cluster of

many machines?

• Once deployed, how will containers discover and communicate with

each other?

• How can containers scale in or out on-demand?

• How do you monitor the health of each container?

• How do you protect a container against hardware and software

failures?

• How do upgrade containers for a live

application with zero downtime? Container

orchestrators address and automate these and other

concerns.

In the cloud-native eco-system, Kubernetes has become the de

facto container orchestrator. It’s an open-source platform

managed by the Cloud Native Computing Foundation (CNCF).

Kubernetes automates the deployment, scaling, and operational

concerns of containerized workloads across a machine cluster.

However, installing and managing Kubernetes is notoriously

complex.

A much better approach is to leverage Kubernetes as a managed

service from a cloud vendor. The Azure cloud features a fully

managed Kubernetes platform entitled Azure Kubernetes Service

(AKS). AKS abstracts the complexity and operational overhead of

managing Kubernetes. You consume Kubernetes as a cloud service;

Microsoft takes responsibility for managing and supporting it. AKS

also tightly integrates with other Azure services and dev tools.

AKS is a cluster-based technology. A pool of federated virtual

machines, or nodes, is deployed to the Azure cloud. Together they

form a highly available environment, or cluster. The cluster

appears as a seamless, single entity to your cloud-native

application. Under the hood, AKS deploys your containerized

services across these nodes following a predefined strategy that

evenly distributes the load.

What are the scaling benefits?

Services built on containers can leverage scaling benefits provided

by orchestration tools like Kubernetes. By design containers only

know about themselves. Once you have multiple containers that need

to work together, you should organize them at a higher level.

Organizing large numbers of containers and their shared

dependencies, such as network configuration, is where orchestration

tools come in to save the day! Kubernetes creates an abstraction

layer over groups of containers and organizes them into pods. Pods

run on worker machines referred to as nodes. This organized

structure is referred to as a cluster. Figure 3-3 shows the

different components of a Kubernetes cluster.

Figure 3-3. Kubernetes cluster components.

https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/

Scaling containerized workloads is a key feature of container

orchestrators. AKS supports automatic scaling across two

dimensions: Container instances and compute nodes. Together they

give AKS the ability to quickly and efficiently respond to spikes

in demand and add additional resources. We discuss scaling in AKS

later in this chapter.

Declarative versus imperative

Kubernetes supports both declarative and imperative configuration.

The imperative approach involves running various commands that tell

Kubernetes what to do each step of the way. Run this image.

Delete this pod. Expose this port. With the declarative approach,

you create a configuration file, called a manifest, to describe

what you want instead of what to do. Kubernetes reads the manifest

and transforms your desired end state into actual end state.

Imperative commands are great for learning and interactive

experimentation. However, you’ll want to declaratively create

Kubernetes manifest files to embrace an infrastructure as code

approach, providing for reliable and repeatable deployments. The

manifest file becomes a project artifact and is used in your CI/CD

pipeline for automating Kubernetes deployments.

If you’ve already configured your cluster using imperative

commands, you can export a declarative manifest by using kubectl

get svc SERVICENAME -o yaml > service.yaml. This command produces a

manifest similar to one shown below:

When using declarative configuration, you can preview the changes

that will be made before committing them by using kubectl diff -f

FOLDERNAME against the folder where your configuration files are

located. Once you’re sure you want to apply the changes, run

kubectl apply -f FOLDERNAME. Add -R to recursively process a folder

hierarchy.

You can also use declarative configuration with other Kubernetes

features, one of which being deployments. Declarative deployments

help manage releases, updates, and scaling. They instruct the

apiVersion
: v1 kind:
Service
metadata:

creationTimestamp: "2019-09-
13T13:58:47Z" labels:

component:
apiserver
provider:
kubernetes
name: kubernetes

namespace: default
resourceVersion:
"153"

selfLink:
/api/v1/namespaces/default/services/kubernetes uid:
9b1fac62-d62e-11e9-8968-00155d38010d
spec:

clusterIP:
10.96.0.1 ports:

- name:
https port:
443 protocol:
TCP
targetPort:
6443
sessionAffinity

: None type:
ClusterIP
status:

loadBalancer:
{}

Kubernetes deployment controller on how to deploy new changes,

scale out load, or roll back to a previous revision. If a cluster

is unstable, a declarative deployment will automatically return the

cluster back to a desired state. For example, if a node should

crash, the deployment mechanism will redeploy a replacement to

achieve your desired state

Using declarative configuration allows infrastructure to be

represented as code that can be checked in and versioned alongside

the application code. It provides improved change control and

better support for continuous deployment using a build and deploy

pipeline.

What scenarios are ideal for containers and

orchestrators?

The following scenarios are ideal for using containers and

orchestrators.

Applications requiring high uptime and scalability

Individual applications that have high uptime and scalability

requirements are ideal candidates for cloud-native architectures

using microservices, containers, and orchestrators. They can be

developed in containers, tested across versioned environments, and

deployed into production with zero downtime. The use of Kubernetes

clusters ensures such apps can also scale on demand and recover

automatically from node failures.

Large numbers of applications

Organizations that deploy and maintain large numbers of

applications benefit from containers and orchestrators. The up

front effort of setting up containerized environments and

Kubernetes clusters is primarily a fixed cost. Deploying,

maintaining, and updating individual applications has a cost that

varies with the number of applications. Beyond a few applications,

the complexity of maintaining custom applications manually exceeds

the cost of implementing a solution using containers and

orchestrators.

When should you avoid using containers and

orchestrators?

If you’re unable to build your application following the Twelve-

Factor App principles, you should consider avoiding containers and

orchestrators. In these cases, consider a VM-based hosting

platform, or possibly some hybrid system. With it, you can always

spin off certain pieces of functionality into separate containers

or even serverless functions.

Development resources

This section shows a short list of development resources that may

help you get started using containers and orchestrators for your

next application. If you’re looking for guidance on how to design

your cloud-native microservices architecture app, read this book’s

companion, .NET Microservices: Architecture for Containerized

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

.NET Applications.

Local Kubernetes Development

Kubernetes deployments provide great value in production

environments, but can also run locally on your development

machine. While you may work on individual microservices

independently, there may be times when you’ll need to run the

entire system locally - just as it will run when deployed to

production. There are several tools that can help: Minikube and

Docker Desktop. Visual Studio also provides tooling for Docker

development.

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

Minikube

What is Minikube? The Minikube project says “Minikube implements a

local Kubernetes cluster on macOS, Linux, and Windows.” Its

primary goals are “to be the best tool for local Kubernetes

application development and to support all Kubernetes features

that fit.” Installing Minikube is separate from Docker, but

Minikube supports different hypervisors than Docker Desktop

supports. The following Kubernetes features are currently

supported by Minikube:

• DNS

• NodePorts

• ConfigMaps and secrets

• Dashboards

• Container runtimes: Docker, rkt, CRI-O, and containerd

• Enabling Container Network Interface (CNI)

• Ingress

After installing Minikube, you can quickly start using it by

running the minikube start command, which downloads an image and

start the local Kubernetes cluster. Once the cluster is started,

you interact with it using the standard Kubernetes kubectl commands.

Docker Desktop

You can also work with Kubernetes directly from Docker Desktop on

Windows. It is your only option if you’re using Windows Containers,

and is a great choice for non-Windows containers as well. Figure 3-

4 shows how to enable local Kubernetes support when running Docker

Desktop.

Figure 3-4. Configuring Kubernetes in Docker Desktop.

Docker Desktop is the most popular tool for configuring and running

containerized apps locally. When you work with Docker Desktop, you

can develop locally against the exact same set of Docker container

images that you’ll deploy to production. Docker Desktop is designed

to “build, test, and ship” containerized apps locally. It supports

both Linux and Windows containers. Once you push your images to an

image registry, like Azure Container Registry or Docker Hub, AKS

can pull and deploy them to production.

Visual Studio Docker Tooling

Visual Studio supports Docker development for web-based

applications. When you create a new ASP.NET Core application, you

have an option to configure it with Docker support, as shown in

Figure 3-5.

Figure 3-5. Visual Studio Enable Docker Support

When this option is selected, the project is created with a

Dockerfile in its root, which can be used to build and host the app

in a Docker container. An example Dockerfile is shown in Figure 3-

6.

FROM mcr.microsoft.com/dotnet/aspnet:6.0 AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build
WORKDIR /src
COPY ["eShopWeb/eShopWeb.csproj",

"eShopWeb/"] RUN dotnet restore
"eShopWeb/eShopWeb.csproj" COPY . .
WORKDIR "/src/eShopWeb"
RUN dotnet build "eShopWeb.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "eShopWeb.csproj" -c Release -o /app/publish

Figure 3-6. Visual Studio generated Dockerfile

Once support is added, you can run your application in a Docker

container in Visual Studio. Figure 3-7 shows the different run

options available from a new ASP.NET Core project created with

Docker support added.

Figure 3-7. Visual Studio Docker Run Options

Also, at any time you can add Docker support to an existing ASP.NET

Core application. From the Visual Studio Solution Explorer, right-

click on the project and select Add > Docker Support, as shown

in Figure 3-8.

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "eShopWeb.dll"]

Figure 3-8. Adding Docker support to Visual Studio

Visual Studio Code Docker Tooling

There are many extensions available for Visual Studio Code that

support Docker development.

Microsoft provides the Docker for Visual Studio Code extension.

This extension simplifies the process of adding container support

to applications. It scaffolds required files, builds Docker images,

and enables you to debug your app inside a container. The extension

features a visual explorer that makes it easy to take actions on

containers and images such as start, stop, inspect, remove, and

more. The extension also supports Docker Compose enabling you to

manage multiple running containers as a single unit.

Leveraging serverless functions

In the spectrum from managing physical machines to leveraging cloud

capabilities, serverless lives at the extreme end. Your only

responsibility is your code, and you only pay when your code runs.

Azure Functions provides a way to build serverless capabilities into

your cloud-native applications.

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker

What is serverless?

Serverless is a relatively new service model of cloud computing. It

doesn’t mean that servers are optional - your code still runs on a

server somewhere. The distinction is that the application team no

longer concerns itself with managing server infrastructure.

Instead, the cloud vendor own this responsibility. The development

team increases its productivity by delivering business solutions to

customers, not plumbing.

Serverless computing uses event-triggered stateless containers to

host your services. They can scale out and in to meet demand as-

needed. Serverless platforms like Azure Functions have tight

integration with other Azure services like queues, events, and

storage.

What challenges are solved by serverless?

Serverless platforms address many time-consuming and expensive

concerns:

• Purchasing machines and software licenses

• Housing, securing, configuring, and maintaining the machines

and their networking, power, and A/C requirements

• Patching and upgrading operating systems and software

• Configuring web servers or machine services to host application

software

• Configuring application software within its platform

Many companies allocate large budgets to support hardware

infrastructure concerns. Moving to the cloud can help reduce these

costs; shifting applications to serverless can help eliminate them.

What is the difference between a microservice and

a serverless function?

Typically, a microservice encapsulates a business capability, such

as a shopping cart for an online eCommerce site. It exposes

multiple operations that enable a user to manage their shopping

experience. A function, however, is a small, lightweight block of

code that executes a single-purpose operation in response to an

event. Microservices are typically constructed to respond to

requests, often from an interface. Requests can be HTTP Rest- or

gRPC-based. Serverless services respond to events. Its event-

driven architecture is ideal for processing short-running,

background tasks.

What scenarios are appropriate for serverless?

Serverless exposes individual short-running functions that are

invoked in response to a trigger. This makes them ideal for

processing background tasks.

An application might need to send an email as a step in a workflow.

Instead of sending the notification as part of a microservice

request, place the message details onto a queue. An Azure Function

can dequeue the message and asynchronously send the email. Doing so

could improve the performance and scalability of the microservice.

Queue-based load leveling can be implemented to avoid bottlenecks

related to sending the emails. Additionally, this stand-alone

service could be reused as a utility across many different

applications.

https://docs.microsoft.com/azure/architecture/patterns/queue-based-load-leveling

Asynchronous messaging from queues and topics is a common pattern

to trigger serverless functions. However, Azure Functions can be

triggered by other events, such as changes to Azure Blob Storage. A

service that supports image uploads could have an Azure Function

responsible for optimizing the image size. The function could be

triggered directly by inserts into Azure Blob Storage, keeping

complexity out of the microservice operations.

Many services have long-running processes as part of their

workflows. Often these tasks are done as part of the user’s

interaction with the application. These tasks can force the user

to wait, negatively impacting their experience. Serverless

computing provides a great way to move slower tasks outside of the

user interaction loop. These tasks can scale with demand without

requiring the entire application to scale.

When should you avoid serverless?

Serverless solutions provision and scale on demand. When a new

instance is invoked, cold starts are a common issue. A cold start

is the period of time it takes to provision this instance.

Normally, this delay might be a few seconds, but can be longer

depending on various factors. Once provisioned, a single instance

is kept alive as long as it receives periodic requests. But, if a

service is called less frequently, Azure may remove it from memory

and require a cold start when reinvoked. Cold starts are also

required when a function scales out to a new instance.

Figure 3-9 shows a cold-start pattern. Note the extra steps required

when the app is cold.

Figure 3-9. Cold start versus warm start.

To avoid cold starts entirely, you might switch from a consumption

plan to a dedicated plan. You can also configure one or more pre-

warmed instances with the premium plan upgrade. In these cases,

when you need to add another instance, it’s already up and ready to

go. These options can help mitigate the cold start issue associated

with serverless computing.

https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://docs.microsoft.com/azure/azure-functions/functions-premium-plan#pre-warmed-instances
https://docs.microsoft.com/azure/azure-functions/functions-premium-plan#pre-warmed-instances

Cloud providers bill for serverless based on compute execution time

and consumed memory. Long running operations or high memory

consumption workloads aren’t always the best candidates for

serverless. Serverless functions favor small chunks of work that can

complete quickly. Most serverless platforms require individual

functions to complete within a few minutes. Azure Functions defaults

to a 5-minute time-out duration, which can be configured up to 10

minutes. The Azure Functions premium plan can mitigate this issue as

well, defaulting time-outs to 30 minutes with an unbounded higher

limit that can be configured. Compute time isn’t calendar time. More

advanced functions using the Azure Durable Functions framework may

pause execution over a course of several days. The billing is based

on actual execution time - when the function wakes up and resumes

processing.

Finally, leveraging Azure Functions for application tasks adds

complexity. It’s wise to first architect your application with a

modular, loosely coupled design. Then, identify if there are

benefits serverless would offer that justify the additional

complexity.

Combining containers and serverless

approaches

Cloud-native applications typically implement services leveraging

containers and orchestration. There are often opportunities to

expose some of the application’s services as Azure Functions.

However, with a cloud-native app deployed to Kubernetes, it would

be nice to leverage Azure Functions within this same toolset.

Fortunately, you can wrap Azure Functions inside Docker containers

and deploy them using the same processes and tools as the rest of

your Kubernetes-based app.

When does it make sense to use containers with

serverless?

Your Azure Function has no knowledge of the platform on which it’s

deployed. For some scenarios, you may have specific requirements

and need to customize the environment on which your function code

will run. You’ll need a custom image that supports dependencies or

a configuration not supported by the default image. In these

cases, it makes sense to deploy your function in a custom Docker

container.

When should you avoid using containers with Azure

Functions?

If you want to use consumption billing, you can’t run your function

https://docs.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp

in a container. What’s more, if you deploy your function to a

Kubernetes cluster, you’ll no longer benefit from the built-in

scaling provided by Azure Functions. You’ll need to use Kubernetes’

scaling features, described earlier in this chapter.

How to combine serverless and Docker containers

To wrap an Azure Function in a Docker container, install the Azure

Functions Core Tools and then run the following command:

When the project is created, it will include a Dockerfile and the

worker runtime configured to dotnet. Now, you can create and test

your function locally. Build and run it using the docker build and

func init ProjectName --worker-runtime dotnet --docker

https://github.com/Azure/azure-functions-core-tools
https://github.com/Azure/azure-functions-core-tools

docker run commands. For detailed steps to get started building

Azure Functions with Docker support, see the Create a function on

Linux using a custom image tutorial.

How to combine serverless and Kubernetes with KEDA

In this chapter, you’ve seen that the Azure Functions’ platform

automatically scales out to meet demand. When deploying

containerized functions to AKS, however, you lose the built-in

scaling functionality. To the rescue comes Kubernetes-based Event

Driven (KEDA). It enables fine-grained autoscaling for event-driven

Kubernetes workloads, including containerized functions.

KEDA provides event-driven scaling functionality to the Functions’

runtime in a Docker container. KEDA can scale from zero instances

(when no events are occurring) out to n instances, based on load.

It enables autoscaling by exposing custom metrics to the

Kubernetes autoscaler (Horizontal Pod Autoscaler). Using Functions

containers with KEDA makes it possible to replicate serverless

function capabilities in any Kubernetes cluster.

It’s worth noting that the KEDA project is now managed by the Cloud

Native Computing Foundation

(CNCF).

Deploying containers in Azure

We’ve discussed containers in this chapter and in chapter 1. We’ve

seen that containers provide many benefits to cloud-native

applications, including portability. In the Azure cloud, you can

deploy the same containerized services across staging and

production environments. Azure provides several options for hosting

these containerized workloads:

• Azure Kubernetes Services (AKS)

• Azure Container Instance (ACI)

• Azure Web Apps for Containers

Azure Container Registry

When containerizing a microservice, you first build a container

“image.” The image is a binary representation of the service code,

dependencies, and runtime. While you can manually create an image

using the Docker Build command from the Docker API, a better

approach is to create it as part of an automated build process.

Once created, container images are stored in container registries.

They enable you to build, store, and manage container images. There

are many registries available, both public and private. Azure

Container Registry (ACR) is a fully managed container registry

https://docs.microsoft.com/azure/azure-functions/functions-create-function-linux-custom-image
https://docs.microsoft.com/azure/azure-functions/functions-create-function-linux-custom-image
https://docs.microsoft.com/azure/azure-functions/functions-kubernetes-keda
https://docs.microsoft.com/azure/azure-functions/functions-kubernetes-keda
https://docs.microsoft.com/azure/azure-functions/functions-kubernetes-keda

service in the Azure cloud. It persists your images inside the

Azure network, reducing the time to deploy them to Azure container

hosts.

You can also secure them using the same security and identity

procedures that you use for other Azure resources.

You create an Azure Container Registry using the Azure portal,

Azure CLI, or PowerShell tools. Creating a registry in Azure is

simple. It requires an Azure subscription, resource group, and a

unique

https://docs.microsoft.com/azure/container-registry/container-registry-get-started-portal
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-portal
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-azure-cli
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-azure-cli
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-powershell
https://docs.microsoft.com/azure/container-registry/container-registry-get-started-powershell

name. Figure 3-10 shows the basic options for creating a registry,

which will be hosted at

Figure 3-10. Create container registry

Once you’ve created the registry, you’ll need to authenticate with

it before you can use it. Typically, you’ll log into the registry

using the Azure CLI command:

Once authenticated, you can use docker commands to push container

images to it. Before you can do so, however, you must tag your

image with the fully qualified name (URL) of your ACR login server.

It will have the format registryname.azurecr.io.

After you’ve tagged the image, you use the docker push command to

push the image to your ACR instance.

registryname.azurecr

az acr login --name *registryname*

docker tag mycontainer myregistry.azurecr.io/mycontainer:v1

docker push myregistry.azurecr.io/mycontainer:v1

After you push an image to the registry, it’s a good idea to remove

the image from your local Docker

environment, using this command:

As a best practice, developers shouldn’t manually push images to a

container registry. Instead, a build pipeline defined in a tool

like GitHub or Azure DevOps should be responsible for this process.

Learn more in the Cloud-Native DevOps chapter.

ACR Tasks

ACR Tasks is a set of features available from the Azure Container

Registry. It extends your inner-loop development cycle by

building and managing container images in the Azure cloud. Instead

of invoking a docker build and docker push locally on your

development machine, they’re automatically handled by ACR Tasks in

the cloud.

The following AZ CLI command both builds a container image and pushes

it to ACR:

As you can see from the previous command block, there’s no need to

install Docker Desktop on your development machine. Additionally,

you can configure ACR Task triggers to rebuild containers images on

both source code and base image updates.

Azure Kubernetes Service

We discussed Azure Kubernetes Service (AKS) at length in this chapter.

We’ve seen that it’s the de

facto container orchestrator managing containerized cloud-native

applications.

Once you deploy an image to a registry, such as ACR, you can

configure AKS to automatically pull and deploy it. With a CI/CD

pipeline in place, you might configure a canary release strategy to

minimize the risk involved when rapidly deploying updates. The new

version of the app is initially configured in production with no

traffic routed to it. Then, the system will route a small

percentage of users to the newly deployed version. As the team

gains confidence in the new version, it can roll out more instances

and retire the old. AKS easily supports this style of deployment.

As with most resources in Azure, you can create an Azure Kubernetes

docker rmi myregistry.azurecr.io/mycontainer:v1

create a container registry
az acr create --resource-group myResourceGroup --name myContainerRegistry008 --sku Basic

build container image in ACR and push it into your container registry
az acr build --image sample/hello-world:v1 --registry myContainerRegistry008 --

file Dockerfile .

https://docs.microsoft.com/azure/container-registry/container-registry-tasks-overview
https://docs.microsoft.com/dotnet/architecture/containerized-lifecycle/design-develop-containerized-apps/docker-apps-inner-loop-workflow
https://docs.microsoft.com/dotnet/architecture/containerized-lifecycle/design-develop-containerized-apps/docker-apps-inner-loop-workflow
https://docs.microsoft.com/dotnet/architecture/containerized-lifecycle/design-develop-containerized-apps/docker-apps-inner-loop-workflow
https://martinfowler.com/bliki/CanaryRelease.html

Service cluster using the portal, command-line, or automation tools

like Helm or Terraform. To get started with a new cluster, you need

to provide the following information:

• Azure subscription

• Resource group

• Kubernetes cluster name

• Region

• Kubernetes version

• DNS name prefix

• Node size

• Node count

This information is sufficient to get started. As part of the

creation process in the Azure portal, you can also configure

options for the following features of your cluster:

• Scale

• Authentication

• Networking

• Monitoring

• Tags

This quickstart walks through deploying an AKS cluster using the

Azure portal.

Azure Bridge to Kubernetes

Cloud-native applications can grow large and complex, requiring

significant compute resources to run. In these scenarios, the

entire application can’t be hosted on a development machine

(especially a laptop). Azure Bridge to Kubernetes addresses the

shortcoming. It enables developers to work with a local version of

their service while hosting the entire application in an AKS

development cluster.

When ready, developers test their changes locally while running

against the full application in the AKS cluster - without

replicating dependencies. Under the hood, the bridge merges code

from the local machine with services in AKS. Developers can rapidly

iterate and debug code directly in Kubernetes using Visual Studio

or Visual Studio Code.

Gabe Monroy, former VP of Product Management at Microsoft, describes

it well:

Imagine you’re a new employee trying to fix a bug in a complex

microservices application consisting of dozens of components, each

with their own configuration and backing services. To get started,

you must configure your local development environment so that it

can mimic production including setting up your IDE, building tool

chain, containerized service dependencies, a local Kubernetes

environment, mocks for backing services, and more. With all the

time involved setting up your development environment, fixing that

first bug could take days! Or you could just use Bridge to

Kubernetes and AKS.

Scaling containers and serverless

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal
https://docs.microsoft.com/visualstudio/bridge/overview-bridge-to-kubernetes

applications

There are two ways to scale an application: up or out. The former

refers to adding capacity to a single resource, while the latter

refers to adding more resources to increase capacity.

The simple solution: scaling up

Upgrading an existing host server with increased CPU, memory, disk

I/O speed, and network I/O speed is known as scaling up. Scaling

up a cloud-native application involves choosing more capable

resources from the cloud vendor. For example, you can create a new

node pool with larger VMs in your Kubernetes cluster. Then,

migrate your containerized services to the new pool.

Serverless apps scale up by choosing the premium Functions plan or

premium instance sizes from a dedicated app service plan.

Scaling out cloud-native apps

Cloud-native applications often experience large fluctuations in

demand and require scale on a moment’s notice. They favor scaling

out. Scaling out is done horizontally by adding additional

machines (called nodes) or application instances to an existing

cluster. In Kubernetes, you can scale manually by adjusting

configuration settings for the app (for example, scaling a node

pool), or through autoscaling.

AKS clusters can autoscale in one of two ways:

First, the Horizontal Pod Autoscaler monitors resource demand and

automatically scales your POD replicas to meet it. When traffic

increases, additional replicas are automatically provisioned to

scale out your services. Likewise, when demand decreases, they’re

removed to scale-in your services. You define the metric on which

to scale, for example, CPU usage. You can also specify the minimum

and maximum number of replicas to run. AKS monitors that metric and

scales accordingly.

Next, the AKS Cluster Autoscaler feature enables you to

automatically scale compute nodes across a Kubernetes cluster to

meet demand. With it, you can automatically add new VMs to the

underlying Azure Virtual Machine Scale Set whenever more compute

capacity of is required. It also removes nodes when no longer

required.

Figure 3-11 shows the relationship between these two scaling

services.

https://docs.microsoft.com/azure/azure-functions/functions-scale
https://docs.microsoft.com/azure/aks/use-multiple-node-pools#scale-a-node-pool-manually
https://docs.microsoft.com/azure/aks/use-multiple-node-pools#scale-a-node-pool-manually
https://docs.microsoft.com/azure/aks/tutorial-kubernetes-scale#autoscale-pods
https://docs.microsoft.com/azure/aks/cluster-autoscaler

Figure 3-11. Scaling out an App Service plan.

Working together, both ensure an optimal number of container

instances and compute nodes to support fluctuating demand. The

horizontal pod autoscaler optimizes the number of pods required.

The cluster autoscaler optimizes the number of nodes required.

Scaling Azure Functions

Azure Functions automatically scale out upon demand. Server

resources are dynamically allocated and removed based on the number

of triggered events. You’re only charged for compute resources

consumed when your functions run. Billing is based upon the number

of executions, execution time, and memory used.

While the default consumption plan provides an economical and

scalable solution for most apps, the premium option allows

developers flexibility for custom Azure Functions requirements.

Upgrading to the premium plan provides control over instance sizes,

pre-warmed instances (to avoid cold start delays), and dedicated

VMs.

Other container deployment options

Aside from Azure Kubernetes Service (AKS), you can also deploy

containers to Azure App Service for Containers and Azure Container

Instances.

When does it make sense to deploy to App Service

for Containers?

Simple production applications that don’t require orchestration are

well suited to Azure App Service

for Containers.

How to deploy to App Service for Containers

To deploy to Azure App Service for Containers, you’ll need an Azure

Container Registry (ACR) instance and credentials to access it.

Push your container image to the ACR repository so that your Azure

App Service can pull it when needed. Once complete, you can

configure the app for Continuous Deployment. Doing so will

automatically deploy updates whenever the image changes in ACR.

When does it make sense to deploy to Azure

Container Instances?

Azure Container Instances (ACI) enables you to run Docker

containers in a managed, serverless cloud environment, without

having to set up virtual machines or clusters. It’s a great

solution for short- running workloads that can run in an isolated

container. Consider ACI for simple services, testing scenarios,

task automation, and build jobs. ACI spins-up a container instance,

performs the task, and then spins it down.

How to deploy an app to Azure Container Instances

https://azure.microsoft.com/services/app-service/containers/
https://azure.microsoft.com/services/app-service/containers/
https://azure.microsoft.com/services/container-instances/

To deploy to Azure Container Instances (ACI), you need an Azure

Container Registry (ACR) and credentials for accessing it. Once you

push your container image to the repository, it’s available to pull

into ACI. You can work with ACI using the Azure portal or command-

line interface. ACR provides tight integration with ACI. Figure 3-

12 shows how to push an individual container image to ACR.

https://docs.microsoft.com/azure/container-instances/
https://docs.microsoft.com/azure/container-instances/

Figure 3-12. Azure Container Registry Run Instance

Creating an instance in ACI can be done quickly. Specify the image

registry, Azure resource group information, the amount of memory

to allocate, and the port on which to listen. This quickstart

shows how to deploy a container instance to ACI using the Azure

portal.

Once the deployment completes, find the newly deployed container’s IP

address and communicate

with it over the port you specified.

Azure Container Instances offers the fastest way to run simple

container workloads in Azure. You don’t need to configure an app

service, orchestrator, or virtual machine. For scenarios where you

require full container orchestration, service discovery, automatic

scaling, or coordinated upgrades, we recommend Azure Kubernetes

Service (AKS).

References

• What is Kubernetes?

• Installing Kubernetes with Minikube

https://docs.microsoft.com/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/azure/container-instances/container-instances-quickstart-portal
https://docs.microsoft.com/azure/container-instances/container-instances-quickstart-portal
https://blog.newrelic.com/engineering/what-is-kubernetes/
https://kubernetes.io/docs/setup/learning-environment/minikube/

• MiniKube vs Docker Desktop

• Visual Studio Tools for Docker

https://medium.com/containers-101/local-kubernetes-for-windows-minikube-vs-docker-desktop-25a1c6d3b766
https://docs.microsoft.com/dotnet/standard/containerized-lifecycle-architecture/design-develop-containerized-apps/visual-studio-tools-for-docker

• Understanding serverless cold start

• Pre-warmed Azure Functions instances

• Create a function on Linux using a custom image

• Run Azure Functions in a Docker Container

• Create a function on Linux using a custom image

• Azure Functions with Kubernetes Event Driven Autoscaling

• Canary Release

• Azure Dev Spaces with VS Code

• Azure Dev Spaces with Visual Studio

• AKS Multiple Node Pools

• AKS Cluster Autoscaler

• Tutorial: Scale applications in AKS

• Azure Functions scale and hosting

• Azure Container Instances Docs

• Deploy Container Instance from ACR

https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://docs.microsoft.com/azure/azure-functions/functions-premium-plan#pre-warmed-instances
https://docs.microsoft.com/azure/azure-functions/functions-create-function-linux-custom-image
https://markheath.net/post/azure-functions-docker
https://docs.microsoft.com/azure/azure-functions/functions-create-function-linux-custom-image
https://docs.microsoft.com/azure/azure-functions/functions-kubernetes-keda
https://martinfowler.com/bliki/CanaryRelease.html
https://docs.microsoft.com/azure/dev-spaces/quickstart-netcore
https://docs.microsoft.com/azure/dev-spaces/quickstart-netcore-visualstudio
https://docs.microsoft.com/azure/aks/use-multiple-node-pools
https://docs.microsoft.com/azure/aks/cluster-autoscaler
https://docs.microsoft.com/azure/aks/tutorial-kubernetes-scale
https://docs.microsoft.com/azure/azure-functions/functions-scale
https://docs.microsoft.com/azure/container-instances/
https://docs.microsoft.com/azure/container-instances/container-instances-using-azure-container-registry#deploy-with-azure-portal

CHAPTER 4

Cloud-native

communication

patterns

When constructing a cloud-native system, communication becomes a

significant design decision. How does a front-end client

application communicate with a back-end microservice? How do back-

end microservices communicate with each other? What are the

principles, patterns, and best practices to consider when

implementing communication in cloud-native applications?

Communication considerations

In a monolithic application, communication is straightforward. The

code modules execute together in the same executable space (process)

on a server. This approach can have performance advantages as

everything runs together in shared memory, but results in tightly

coupled code that becomes difficult to maintain, evolve, and scale.

Cloud-native systems implement a microservice-based architecture

with many small, independent microservices. Each microservice

executes in a separate process and typically runs inside a

container that is deployed to a cluster.

A cluster groups a pool of virtual machines together to form a

highly available environment. They’re managed with an

orchestration tool, which is responsible for deploying and

managing the containerized microservices. Figure 4-1 shows a

Kubernetes cluster deployed into the Azure cloud with the fully

managed Azure Kubernetes Services.

https://kubernetes.io/
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://docs.microsoft.com/azure/aks/intro-kubernetes

Figure 4-1. A Kubernetes cluster in Azure

Across the cluster, microservices communicate with each other

through APIs and messaging technologies.

While they provide many benefits, microservices are no free lunch.

Local in-process method calls between components are now replaced

with network calls. Each microservice must communicate over a

network protocol, which adds complexity to your system:

• Network congestion, latency, and transient faults are a constant

concern.

• Resiliency (that is, retrying failed requests) is essential.

• Some calls must be idempotent as to keep consistent state.

• Each microservice must authenticate and authorize calls.

• Each message must be serialized and then deserialized - which can

be expensive.

• Message encryption/decryption becomes important.

The book .NET Microservices: Architecture for Containerized .NET

Applications, available for free from Microsoft, provides an in-

depth coverage of communication patterns for microservice

applications. In this chapter, we provide a high-level overview of

these patterns along with implementation options available in the

Azure cloud.

https://www.restapitutorial.com/lessons/idempotency.html
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

In this chapter, we’ll first address communication between front-end

applications and back-end

microservices. We’ll then look at back-end microservices communicate

with each other. We’ll explore

the up and gRPC communication technology. Finally, we’ll look new

innovative communication patterns using service mesh technology.

We’ll also see how the Azure cloud provides different kinds of

backing services to support cloud-native communication.

Front-end client communication

In a cloud-native system, front-end clients (mobile, web, and

desktop applications) require a communication channel to interact

with independent back-end microservices.

What are the options?

To keep things simple, a front-end client could directly

communicate with the back-end microservices, shown in Figure 4-2.

Figure 4-2. Direct client to service communication

With this approach, each microservice has a public endpoint that

is accessible by front-end clients. In a production environment,

you’d place a load balancer in front of the microservices, routing

traffic proportionately.

While simple to implement, direct client communication would be

acceptable only for simple microservice applications. This pattern

tightly couples front-end clients to core back-end services,

opening the door for many problems, including:

• Client susceptibility to back-end service refactoring.

• A wider attack surface as core back-end services are directly

exposed.

• Duplication of cross-cutting concerns across each microservice.

• Overly complex client code - clients must keep track of multiple

endpoints and handle failures in a resilient way.

Instead, a widely accepted cloud design pattern is to implement an

API Gateway Service between the front-end applications and back-end

services. The pattern is shown in Figure 4-3.

Figure 4-3. API gateway pattern

In the previous figure, note how the API Gateway service abstracts

the back-end core microservices. Implemented as a web API, it acts

as a reverse proxy, routing incoming traffic to the internal

microservices.

The gateway insulates the client from internal service partitioning

and refactoring. If you change a back-end service, you accommodate

for it in the gateway without breaking the client. It’s also your

first line of defense for cross-cutting concerns, such as identity,

caching, resiliency, metering, and throttling. Many of these cross-

cutting concerns can be off-loaded from the back-end core services

to the gateway, simplifying the back-end services.

Care must be taken to keep the API Gateway simple and fast.

Typically, business logic is kept out of the gateway. A complex

gateway risks becoming a bottleneck and eventually a monolith

itself. Larger systems often expose multiple API Gateways segmented

by client type (mobile, web, desktop) or back-end functionality.

The Backend for Frontends pattern provides direction for

implementing multiple gateways. The pattern is shown in Figure 4-4.

https://docs.microsoft.com/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://docs.microsoft.com/azure/architecture/patterns/backends-for-frontends

Figure 4-4. Backend for frontend pattern

Note in the previous figure how incoming traffic is sent to a

specific API gateway - based upon client type: web, mobile, or

desktop app. This approach makes sense as the capabilities of each

device differ significantly across form factor, performance, and

display limitations. Typically mobile applications expose less

functionality than a browser or desktop applications. Each gateway

can be optimized to match the capabilities and functionality of the

corresponding device.

Simple Gateways

To start, you could build your own API Gateway service. A quick

search of GitHub will provide many examples.

For simple .NET cloud-native applications, you might consider the

Ocelot Gateway. Open source and created for .NET microservices,

it’s lightweight, fast, scalable. Like any API Gateway, its primary

functionality is to forward incoming HTTP requests to downstream

services. Additionally, it supports a wide variety of capabilities

that are configurable in a .NET middleware pipeline.

YARP (Yet Another Reverse proxy) is another open source reverse

proxy led by a group of Microsoft product teams. Downloadable as a

NuGet package, YARP plugs into the ASP.NET framework as middleware

and is highly customizable. You’ll find YARP well-documented with

various usage examples.

For enterprise cloud-native applications, there are several

https://github.com/ThreeMammals/Ocelot
https://github.com/ThreeMammals/Ocelot
https://github.com/microsoft/reverse-proxy
https://microsoft.github.io/reverse-proxy/articles/getting-started.html

managed Azure services that can help jump-start your efforts.

Azure Application Gateway

For simple gateway requirements, you may consider Azure Application

Gateway. Available as an Azure PaaS service, it includes basic

gateway features such as URL routing, SSL termination, and a Web

Application Firewall. The service supports Layer-7 load balancing

capabilities. With Layer 7, you can route requests based on the

actual content of an HTTP message, not just low-level TCP network

packets.

Throughout this book, we evangelize hosting cloud-native systems

in Kubernetes. A container orchestrator, Kubernetes automates the

deployment, scaling, and operational concerns of containerized

workloads. Azure Application Gateway can be configured as an API

gateway for Azure Kubernetes Service cluster.

The Application Gateway Ingress Controller enables Azure

Application Gateway to work directly with Azure Kubernetes

Service. Figure 4.5 shows the architecture.

Figure 4-5. Application Gateway Ingress Controller

Kubernetes includes a built-in feature that supports HTTP (Level 7)

load balancing, called Ingress. Ingress defines a set of rules for

how microservice instances inside AKS can be exposed to the outside

world. In the previous image, the ingress controller interprets the

ingress rules configured for the cluster and automatically

configures the Azure Application Gateway. Based on those rules, the

Application Gateway routes traffic to microservices running inside

AKS. The ingress controller listens for changes to ingress rules

and makes the appropriate changes to the Azure Application Gateway.

Azure API Management

https://docs.microsoft.com/azure/application-gateway/overview
https://docs.microsoft.com/azure/application-gateway/overview
https://docs.microsoft.com/azure/application-gateway/overview
https://azure.microsoft.com/overview/what-is-paas/
https://azure.microsoft.com/overview/what-is-paas/
https://azure.microsoft.com/overview/what-is-paas/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://www.infoworld.com/article/3268073/what-is-kubernetes-your-next-application-platform.html
https://www.infoworld.com/article/3268073/what-is-kubernetes-your-next-application-platform.html
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.github.io/application-gateway-kubernetes-ingress/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

For moderate to large-scale cloud-native systems, you may

consider Azure API Management. It’s a cloud-based service that

not only solves your API Gateway needs, but provides a full-

featured developer and administrative experience. API Management

is shown in Figure 4-6.

https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/api-management/

Figure 4-6. Azure API Management

To start, API Management exposes a gateway server that allows

controlled access to back-end services based upon configurable

rules and policies. These services can be in the Azure cloud, your

on-prem data center, or other public clouds. API keys and JWT

tokens determine who can do what. All traffic is logged for

analytical purposes.

For developers, API Management offers a developer portal that

provides access to services, documentation, and sample code for

invoking them. Developers can use Swagger/Open API to inspect

service endpoints and analyze their usage. The service works

across the major development platforms: .NET, Java, Golang, and

more.

The publisher portal exposes a management dashboard where

administrators expose APIs and manage their behavior. Service

access can be granted, service health monitored, and service

telemetry gathered. Administrators apply policies to each endpoint

to affect behavior. Policies are pre-built statements that execute

sequentially for each service call. Policies are configured for an

inbound call, outbound call, or invoked upon an error. Policies can

be applied at different service scopes as to enable deterministic

ordering when combining policies. The product ships with a large

number of prebuilt policies.

Here are examples of how policies can affect the behavior of your

cloud-native services:

• Restrict service access.

https://docs.microsoft.com/azure/api-management/api-management-howto-policies
https://docs.microsoft.com/azure/api-management/api-management-policies
https://docs.microsoft.com/azure/api-management/api-management-policies

• Enforce authentication.

• Throttle calls from a single source, if necessary.

• Enable caching.

• Block calls from specific IP addresses.

• Control the flow of the service.

• Convert requests from SOAP to REST or between different data

formats, such as from XML to JSON.

Azure API Management can expose back-end services that are hosted

anywhere – in the cloud or your data center. For legacy services

that you may expose in your cloud-native systems, it supports both

REST and SOAP APIs. Even other Azure services can be exposed

through API Management. You could place a managed API on top of an

Azure backing service like Azure Service Bus or Azure Logic Apps.

Azure API Management doesn’t include built-in load-balancing

support and should be used in conjunction with a load-balancing

service.

Azure API Management is available across four different tiers:

• Developer

• Basic

• Standard

• Premium

The Developer tier is meant for non-production workloads and

evaluation. The other tiers offer progressively more power,

features, and higher service level agreements (SLAs). The Premium

tier provides Azure Virtual Network and multi-region support. All

tiers have a fixed price per hour.

The Azure cloud also offers a serverless tier for Azure API

Management. Referred to as the consumption pricing tier, the

service is a variant of API Management designed around the

serverless computing model. Unlike the “pre-allocated” pricing

tiers previously shown, the consumption tier provides instant

provisioning and pay-per-action pricing.

It enables API Gateway features for the following use cases:

• Microservices implemented using serverless technologies such

as Azure Functions and Azure Logic Apps.

• Azure backing service resources such as Service Bus queues

and topics, Azure storage, and others.

• Microservices where traffic has occasional large spikes but

remains low most the time.

The consumption tier uses the same underlying service API

Management components, but employs an entirely different

architecture based on dynamically allocated resources. It aligns

perfectly with the serverless computing model:

• No infrastructure to manage.

• No idle capacity.

• High-availability.

• Automatic scaling.

https://azure.microsoft.com/services/service-bus/
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/pricing/details/api-management/
https://azure.microsoft.com/pricing/details/api-management/
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/api-management/api-management-howto-deploy-multi-region
https://docs.microsoft.com/azure/api-management/api-management-howto-deploy-multi-region
https://azure.microsoft.com/blog/announcing-azure-api-management-for-serverless-architectures/
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/logic-apps/

• Cost is based on actual usage.

The new consumption tier is a great choice for cloud-native

systems that expose serverless resources as APIs.

Real-time communication

Real-time, or push, communication is another option for front-end

applications that communicate with back-end cloud-native systems

over HTTP. Applications, such as financial-tickers, online

education, gaming, and job-progress updates, require instantaneous,

real-time responses from the back-end. With normal HTTP

communication, there’s no way for the client to know when new data

is available. The client must continually poll or send requests to

the server. With real-time communication, the server can push new

data to the client at any time.

Real-time systems are often characterized by high-frequency data

flows and large numbers of concurrent client connections. Manually

implementing real-time connectivity can quickly become complex,

requiring non-trivial infrastructure to ensure scalability and

reliable messaging to connected clients. You could find yourself

managing an instance of Azure Redis Cache and a set of load

balancers configured with sticky sessions for client affinity.

Azure SignalR Service is a fully managed Azure service that

simplifies real-time communication for your cloud-native

applications. Technical implementation details like capacity

provisioning, scaling, and persistent connections are abstracted

away. They’re handled for you with a 99.9% service-level agreement.

You focus on application features, not infrastructure plumbing.

Once enabled, a cloud-based HTTP service can push content updates

directly to connected clients, including browser, mobile and

desktop applications. Clients are updated without the need to poll

the server. Azure SignalR abstracts the transport technologies that

create real-time connectivity, including WebSockets, Server-Side

Events, and Long Polling. Developers focus on sending messages to

all or specific subsets of connected clients.

Figure 4-7 shows a set of HTTP Clients connecting to a Cloud-native

application with Azure SignalR enabled.

https://azure.microsoft.com/services/signalr-service/

Figure 4-7. Azure SignalR

Another advantage of Azure SignalR Service comes with implementing

Serverless cloud-native services. Perhaps your code is executed on

demand with Azure Functions triggers. This scenario can be tricky

because your code doesn’t maintain long connections with clients.

Azure SignalR Service can handle this situation since the service

already manages connections for you.

Azure SignalR Service closely integrates with other Azure

services, such as Azure SQL Database, Service Bus, or Redis Cache,

opening up many possibilities for your cloud-native applications.

Service-to-service communication

Moving from the front-end client, we now address back-end

microservices communicate with each other.

When constructing a cloud-native application, you’ll want to be

sensitive to how back-end services communicate with each other.

Ideally, the less inter-service communication, the better. However,

avoidance isn’t always possible as back-end services often rely on

one another to complete an operation.

There are several widely accepted approaches to implementing cross-

service communication. The type of communication interaction will

often determine the best approach.

Consider the following interaction types:

• Query – when a calling microservice requires a response from a

called microservice, such as,

“Hey, give me the buyer information for a given customer Id.”

• Command – when the calling microservice needs another

microservice to execute an action but

doesn’t require a response, such as, “Hey, just ship this order.”

• Event – when a microservice, called the publisher, raises an

event that state has changed or an action has occurred. Other

microservices, called subscribers, who are interested, can

react to the event appropriately. The publisher and the

subscribers aren’t aware of each other.

Microservice systems typically use a combination of these

interaction types when executing operations that require cross-

service interaction. Let’s take a close look at each and how you

might implement them.

Queries

Many times, one microservice might need to query another, requiring

an immediate response to complete an operation. A shopping basket

microservice may need product information and a price to add an

item to its basket. There are many approaches for implementing

query operations.

Request/Response Messaging

One option for implementing this scenario is for the calling back-

end microservice to make direct HTTP requests to the microservices

it needs to query, shown in Figure 4-8.

Figure 4-8. Direct HTTP communication

While direct HTTP calls between microservices are relatively

simple to implement, care should be taken to minimize this

practice. To start, these calls are always synchronous and will

block the operation until a result is returned or the request

times outs. What were once self-contained, independent services,

able to evolve independently and deploy frequently, now become

coupled to each other. As coupling among microservices increase,

their architectural benefits diminish.

Executing an infrequent request that makes a single direct HTTP

call to another microservice might be acceptable for some systems.

However, high-volume calls that invoke direct HTTP calls to

multiple microservices aren’t advisable. They can increase latency

and negatively impact the performance, scalability, and

availability of your system. Even worse, a long series of direct

HTTP communication can lead to deep and complex chains of

synchronous microservices calls, shown in Figure 4-9:

Figure 4-9. Chaining HTTP queries

You can certainly imagine the risk in the design shown in the

previous image. What happens if Step

#3 fails? Or Step #8 fails? How do you recover? What if Step #6 is

slow because the underlying service is busy? How do you continue?

Even if all works correctly, think of the latency this call would

incur, which is the sum of the latency of each step.

The large degree of coupling in the previous image suggests the

services weren’t optimally modeled.

It would behoove the team to revisit their design.

Materialized View pattern

A popular option for removing microservice coupling is the

Materialized View pattern. With this pattern, a microservice stores

its own local, denormalized copy of data that’s owned by other

services. Instead of the Shopping Basket microservice querying the

Product Catalog and Pricing microservices, it maintains its own

local copy of that data. This pattern eliminates unnecessary

coupling and improves reliability and response time. The entire

https://docs.microsoft.com/azure/architecture/patterns/materialized-view
https://docs.microsoft.com/azure/architecture/patterns/materialized-view

operation executes inside a single process. We explore this pattern

and other data concerns in Chapter 5.

Service Aggregator Pattern

Another option for eliminating microservice-to-microservice

coupling is an Aggregator microservice, shown in purple in Figure

4-10.

https://devblogs.microsoft.com/cesardelatorre/designing-and-implementing-api-gateways-with-ocelot-in-a-microservices-and-container-based-architecture/
https://devblogs.microsoft.com/cesardelatorre/designing-and-implementing-api-gateways-with-ocelot-in-a-microservices-and-container-based-architecture/

Figure 4-10. Aggregator microservice

The pattern isolates an operation that makes calls to multiple

back-end microservices, centralizing its logic into a specialized

microservice. The purple checkout aggregator microservice in the

previous figure orchestrates the workflow for the Checkout

operation. It includes calls to several back-end microservices in a

sequenced order. Data from the workflow is aggregated and returned

to the caller. While it still implements direct HTTP calls, the

aggregator microservice reduces direct dependencies among back-end

microservices.

Request/Reply Pattern

Another approach for decoupling synchronous HTTP messages is a

Request-Reply Pattern, which uses queuing communication.

Communication using a queue is always a one-way channel, with a

producer sending the message and consumer receiving it. With this

pattern, both a request queue and response queue are implemented,

shown in Figure 4-11.

https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html

Figure 4-11. Request-reply pattern

Here, the message producer creates a query-based message that

contains a unique correlation ID and places it into a request queue.

The consuming service dequeues the messages, processes it and places

the response into the response queue with the same correlation ID.

The producer service dequeues the message, matches it with the

correlation ID and continues processing. We cover queues in detail

in the next section.

Commands

Another type of communication interaction is a command. A

microservice may need another microservice to perform an action.

The Ordering microservice may need the Shipping microservice to

create a shipment for an approved order. In Figure 4-12, one

microservice, called a Producer, sends a message to another

microservice, the Consumer, commanding it to do something.

Figure 4-12. Command interaction with a queue

Most often, the Producer doesn’t require a response and can fire-

and-forget the message. If a reply is needed, the Consumer sends a

separate message back to Producer on another channel. A command

message is best sent asynchronously with a message queue. supported

by a lightweight message broker. In the previous diagram, note how

a queue separates and decouples both services.

A message queue is an intermediary construct through which a

producer and consumer pass a message. Queues implement an

asynchronous, point-to-point messaging pattern. The Producer knows

where a command needs to be sent and routes appropriately. The

queue guarantees that a message is processed by exactly one of the

consumer instances that are reading from the channel. In this

scenario, either the producer or consumer service can scale out

without affecting the other. As well, technologies can be

disparate on each side, meaning that we might have a Java

microservice calling a Golang microservice.

In chapter 1, we talked about backing services. Backing services

are ancillary resources upon which cloud-native systems depend.

Message queues are backing services. The Azure cloud supports two

types of message queues that your cloud-native systems can

consume to implement command messaging: Azure Storage Queues and

Azure Service Bus Queues.

Azure Storage Queues

Azure storage queues offer a simple queueing infrastructure that is

fast, affordable, and backed by Azure storage accounts.

Azure Storage Queues feature a REST-based queuing mechanism with

https://golang.org/
https://docs.microsoft.com/azure/storage/queues/storage-queues-introduction

reliable and persistent messaging. They provide a minimal feature

set, but are inexpensive and store millions of messages. Their

capacity ranges up to 500 TB. A single message can be up to 64 KB

in size.

You can access messages from anywhere in the world via

authenticated calls using HTTP or HTTPS. Storage queues can scale

out to large numbers of concurrent clients to handle traffic

spikes.

That said, there are limitations with the service:

• Message order isn’t guaranteed.

• A message can only persist for seven days before it’s

automatically removed.

• Support for state management, duplicate detection, or

transactions isn’t available.

Figure 4-13 shows the hierarchy of an Azure Storage Queue.

Figure 4-13. Storage queue hierarchy

In the previous figure, note how storage queues store their

messages in the underlying Azure Storage account.

For developers, Microsoft provides several client and server-side

libraries for Storage queue processing. Most major platforms are

supported including .NET, Java, JavaScript, Ruby, Python, and Go.

Developers should never communicate directly with these libraries.

Doing so will tightly couple your microservice code to the

Azure Storage Queue service. It’s a better practice to insulate the

implementation details of the API. Introduce an intermediation

layer, or intermediate API, that exposes generic operations and

encapsulates the concrete library. This loose coupling enables you

to swap out one queuing service for another without having to make

changes to the mainline service code.

Azure Storage queues are an economical option to implement command

messaging in your cloud- native applications. Especially when a

queue size will exceed 80 GB, or a simple feature set is

acceptable. You only pay for the storage of the messages; there are

no fixed hourly charges.

Azure Service Bus Queues

For more complex messaging requirements, consider Azure Service Bus

queues.

Sitting atop a robust message infrastructure, Azure Service Bus

supports a brokered messaging model. Messages are reliably stored

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-overview
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-overview

in a broker (the queue) until received by the consumer. The queue

guarantees First-In/First-Out (FIFO) message delivery, respecting

the order in which messages were added to the queue.

The size of a message can be much larger, up to 256 KB. Messages

are persisted in the queue for an unlimited period of time. Service

Bus supports not only HTTP-based calls, but also provides full

support for the AMQP protocol. AMQP is an open-standard across

vendors that supports a binary protocol and higher degrees of

reliability.

Service Bus provides a rich set of features, including transaction

support and a duplicate detection feature. The queue guarantees

“at most once delivery” per message. It automatically discards a

message that has already been sent. If a producer is in doubt, it

can resend the same message, and Service Bus guarantees that only

one copy will be processed. Duplicate detection frees you from

having to build additional infrastructure plumbing.

Two more enterprise features are partitioning and sessions. A

conventional Service Bus queue is handled by a single message

broker and stored in a single message store. But, Service Bus

Partitioning spreads the queue across multiple message brokers and

message stores. The overall throughput is no longer limited by the

performance of a single message broker or messaging store. A

temporary outage of a messaging store doesn’t render a partitioned

queue unavailable.

Service Bus Sessions provide a way to group-related messages.

Imagine a workflow scenario where messages must be processed

together and the operation completed at the end. To take advantage,

sessions must be explicitly enabled for the queue and each related

messaged must contain the same session ID.

However, there are some important caveats: Service Bus queues size

is limited to 80 GB, which is much smaller than what’s available

from store queues. Additionally, Service Bus queues incur a base

cost and charge per operation.

Figure 4-14 outlines the high-level architecture of a Service Bus

queue.

Figure 4-14. Service Bus queue

In the previous figure, note the point-to-point relationship. Two

instances of the same provider are enqueuing messages into a single

Service Bus queue. Each message is consumed by only one of three

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-transactions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-transactions
https://docs.microsoft.com/azure/service-bus-messaging/duplicate-detection
https://docs.microsoft.com/azure/service-bus-messaging/duplicate-detection
https://docs.microsoft.com/azure/service-bus-messaging/duplicate-detection
https://docs.microsoft.com/azure/service-bus-messaging/duplicate-detection
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-partitioning
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-partitioning
https://codingcanvas.com/azure-service-bus-sessions/

consumer instances on the right. Next, we discuss how to implement

messaging where different consumers may all be interested the same

message.

Events

Message queuing is an effective way to implement communication

where a producer can asynchronously send a consumer a message.

However, what happens when many different consumers

are interested in the same message? A dedicated message queue for

each consumer wouldn’t scale

well and would become difficult to manage.

To address this scenario, we move to the third type of message

interaction, the event. One microservice announces that an action

had occurred. Other microservices, if interested, react to the

action, or event.

Eventing is a two-step process. For a given state change, a

microservice publishes an event to a message broker, making it

available to any other interested microservice. The interested

microservice is notified by subscribing to the event in the

message broker. You use the Publish/Subscribe pattern to implement

event-based communication.

Figure 4-15 shows a shopping basket microservice publishing an

event with two other microservices subscribing to it.

Figure 4-15. Event-Driven messaging

Note the event bus component that sits in the middle of the

communication channel. It’s a custom class that encapsulates the

message broker and decouples it from the underlying application.

The ordering and inventory microservices independently operate the

event with no knowledge of each other, nor the shopping basket

microservice. When the registered event is published to the event

bus, they act upon it.

With eventing, we move from queuing technology to topics. A topic

is similar to a queue, but supports a one-to-many messaging

pattern. One microservice publishes a message. Multiple subscribing

microservices can choose to receive and act upon that message.

Figure 4-16 shows a topic architecture.

https://docs.microsoft.com/azure/architecture/patterns/publisher-subscriber
https://docs.microsoft.com/dotnet/standard/microservices-architecture/multi-container-microservice-net-applications/integration-event-based-microservice-communications
https://docs.microsoft.com/dotnet/standard/microservices-architecture/multi-container-microservice-net-applications/integration-event-based-microservice-communications
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions

Figure 4-16. Topic architecture

In the previous figure, publishers send messages to the topic. At

the end, subscribers receive messages from subscriptions. In the

middle, the topic forwards messages to subscriptions based on a

set of rules, shown in dark blue boxes. Rules act as a filter that

forward specific messages to a subscription. Here, a “GetPrice”

event would be sent to the price and logging subscriptions as the

logging subscription has chosen to receive all messages. A

“GetInformation” event would be sent to the information and

logging subscriptions.

The Azure cloud supports two different topic services: Azure Service

Bus Topics and Azure EventGrid.

Azure Service Bus Topics

Sitting on top of the same robust brokered message model of Azure

Service Bus queues are Azure Service Bus Topics. A topic can

receive messages from multiple independent publishers and send

messages to up to 2,000 subscribers. Subscriptions can be

dynamically added or removed at run time without stopping the

system or recreating the topic.

Many advanced features from Azure Service Bus queues are also

available for topics, including Duplicate Detection and

Transaction support. By default, Service Bus topics are handled by

a single message broker and stored in a single message store. But,

Service Bus Partitioning scales a topic by spreading it across many

message brokers and message stores.

Scheduled Message Delivery tags a message with a specific time for

processing. The message won’t appear in the topic before that

time. Message Deferral enables you to defer a retrieval of a

message to a later time. Both are commonly used in workflow

processing scenarios where operations are processed in a

particular order. You can postpone processing of received messages

until prior work has been completed.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/azure/service-bus-messaging/duplicate-detection
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-transactions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-transactions
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-partitioning
https://docs.microsoft.com/azure/service-bus-messaging/message-sequencing
https://docs.microsoft.com/azure/service-bus-messaging/message-deferral

Service Bus topics are a robust and proven technology for enabling

publish/subscribe communication in your cloud-native systems.

Azure Event Grid

While Azure Service Bus is a battle-tested messaging broker with a

full set of enterprise features, Azure Event Grid is the new kid

on the block.

https://docs.microsoft.com/azure/event-grid/overview

At first glance, Event Grid may look like just another topic-based

messaging system. However, it’s different in many ways. Focused on

event-driven workloads, it enables real-time event processing,

deep Azure integration, and an open-platform - all on serverless

infrastructure. It’s designed for contemporary cloud-native and

serverless applications

As a centralized eventing backplane, or pipe, Event Grid reacts to

events inside Azure resources and from your own services.

Event notifications are published to an Event Grid Topic, which,

in turn, routes each event to a subscription. Subscribers map to

subscriptions and consume the events. Like Service Bus, Event Grid

supports a filtered subscriber model where a subscription sets

rule for the events it wishes to receive. Event Grid provides fast

throughput with a guarantee of 10 million events per second

enabling near real-time delivery - far more than what Azure

Service Bus can generate.

A sweet spot for Event Grid is its deep integration into the fabric

of Azure infrastructure. An Azure resource, such as Cosmos DB, can

publish built-in events directly to other interested Azure

resources - without the need for custom code. Event Grid can

publish events from an Azure Subscription, Resource Group, or

Service, giving developers fine-grained control over the lifecycle

of cloud resources. However, Event Grid isn’t

limited to Azure. It’s an open platform that can consume custom

HTTP events published from applications or third-party services and

route events to external subscribers.

When publishing and subscribing to native events from Azure

resources, no coding is required. With simple configuration, you

can integrate events from one Azure resource to another leveraging

built-in plumbing for Topics and Subscriptions. Figure 4-17 shows

the anatomy of Event Grid.

Figure 4-17. Event Grid anatomy

A major difference between EventGrid and Service Bus is the

underlying message exchange pattern.

Service Bus implements an older style pull model in which the

downstream subscriber actively polls the topic subscription for new

messages. On the upside, this approach gives the subscriber full

control of the pace at which it processes messages. It controls when

and how many messages to process at any given time. Unread messages

remain in the subscription until processed. A significant

shortcoming is the latency between the time the event is generated

and the polling operation that pulls that message to the subscriber

for processing. Also, the overhead of constant polling for the next

event consumes resources and money.

EventGrid, however, is different. It implements a push model in

which events are sent to the EventHandlers as received, giving

near real-time event delivery. It also reduces cost as the service

is triggered only when it’s needed to consume an event – not

continually as with polling. That said, an event handler must

handle the incoming load and provide throttling mechanisms to

protect itself from becoming overwhelmed. Many Azure services that

consume these events, such as Azure Functions and Logic Apps

provide automatic autoscaling capabilities to handle increased

loads.

Event Grid is a fully managed serverless cloud service. It

dynamically scales based on your traffic and charges you only for

your actual usage, not pre-purchased capacity. The first 100,000

operations per month are free – operations being defined as event

ingress (incoming event notifications), subscription delivery

attempts, management calls, and filtering by subject. With 99.99%

availability, EventGrid guarantees the delivery of an event within a

24-hour period, with built-in retry functionality for unsuccessful

delivery. Undelivered messages can be moved to a “dead-letter” queue

for resolution. Unlike Azure Service Bus, Event Grid is tuned for

fast performance and doesn’t support features like ordered

messaging, transactions, and sessions.

Streaming messages in the Azure cloud

Azure Service Bus and Event Grid provide great support for

applications that expose single, discrete events like a new

document has been inserted into a Cosmos DB. But, what if your

cloud-native system needs to process a stream of related events?

Event streams are more complex. They’re typically time-ordered,

interrelated, and must be processed as a group.

Azure Event Hub is a data streaming platform and event ingestion

service that collects, transforms, and stores events. It’s fine-

tuned to capture streaming data, such as continuous event

notifications emitted from a telemetry context. The service is

https://docs.microsoft.com/archive/msdn-magazine/2015/february/microsoft-azure-the-rise-of-event-stream-oriented-systems
https://azure.microsoft.com/services/event-hubs/

highly scalable and can store and process millions of events per

second. Shown in Figure 4-18, it’s often a front door for an event

pipeline, decoupling ingest stream from event consumption.

https://docs.microsoft.com/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/azure/event-hubs/event-hubs-about

Figure 4-18. Azure Event Hub

Event Hub supports low latency and configurable time retention.

Unlike queues and topics, Event Hubs keep event data after it’s

been read by a consumer. This feature enables other data analytic

services, both internal and external, to replay the data for

further analysis. Events stored in event hub are only deleted upon

expiration of the retention period, which is one day by default,

but configurable.

Event Hub supports common event publishing protocols including

HTTPS and AMQP. It also supports Kafka 1.0. Existing Kafka

applications can communicate with Event Hub using the Kafka

protocol providing an alternative to managing large Kafka clusters.

Many open-source cloud-native systems embrace Kafka.

Event Hubs implements message streaming through a partitioned

consumer model in which each consumer only reads a specific subset,

or partition, of the message stream. This pattern enables

tremendous horizontal scale for event processing and provides other

stream-focused features that are unavailable in queues and topics.

A partition is an ordered sequence of events that is held in an

event hub. As newer events arrive, they’re added to the end of this

sequence. Figure 4-19 shows partitioning in an Event Hub.

Figure 4-19. Event Hub partitioning

https://docs.microsoft.com/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview
https://docs.microsoft.com/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview
https://docs.microsoft.com/azure/event-hubs/event-hubs-features
https://docs.microsoft.com/azure/event-hubs/event-hubs-features

Instead of reading from the same resource, each consumer group

reads across a subset, or partition, of the message stream.

For cloud-native applications that must stream large numbers of

events, Azure Event Hub can be a robust and affordable solution.

gRPC

So far in this book, we’ve focused on REST-based communication.

We’ve seen that REST is a flexible architectural style that defines

CRUD-based operations against entity resources. Clients interact

with resources across HTTP with a request/response communication

model. While REST is widely implemented, a newer communication

technology, gRPC, has gained tremendous momentum across the cloud-

native community.

What is gRPC?

gRPC is a modern, high-performance framework that evolves the age-

old remote procedure call (RPC) protocol. At the application level,

gRPC streamlines messaging between clients and back-end services.

Originating from Google, gRPC is open source and part of the Cloud

Native Computing Foundation (CNCF) ecosystem of cloud-native

offerings. CNCF considers gRPC an incubating project. Incubating

means end users are using the technology in production

applications, and the project has a healthy number of contributors.

A typical gRPC client app will expose a local, in-process function

that implements a business operation. Under the covers, that local

function invokes another function on a remote machine. What

appears to be a local call essentially becomes a transparent out-

of-process call to a remote service. The RPC plumbing abstracts

the point-to-point networking communication, serialization, and

execution between computers.

In cloud-native applications, developers often work across

programming languages, frameworks, and technologies. This

interoperability complicates message contracts and the plumbing

required for cross-platform communication. gRPC provides a “uniform

horizontal layer” that abstracts these concerns. Developers code in

their native platform focused on business functionality, while gRPC

handles communication plumbing.

gRPC offers comprehensive support across most popular development

stacks, including Java, JavaScript, C#, Go, Swift, and NodeJS.

gRPC Benefits

gRPC uses HTTP/2 for its transport protocol. While compatible with

HTTP 1.1, HTTP/2 features many advanced capabilities:

• A binary framing protocol for data transport - unlike HTTP 1.1,

which is text based.

• Multiplexing support for sending multiple parallel requests over

https://docs.microsoft.com/azure/architecture/best-practices/api-design
https://en.wikipedia.org/wiki/Remote_procedure_call
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://www.cncf.io/
https://github.com/cncf/toc/blob/master/process/graduation_criteria.adoc
https://github.com/cncf/toc/blob/master/process/graduation_criteria.adoc

the same connection - HTTP 1.1 limits processing to one

request/response message at a time.

• Bidirectional full-duplex communication for sending both

client requests and server responses simultaneously.

• Built-in streaming enabling requests and responses to

asynchronously stream large data sets.

• Header compression that reduces network usage.

gRPC is lightweight and highly performant. It can be up to 8x

faster than JSON serialization with messages 60-80% smaller. In

Microsoft Windows Communication Foundation (WCF) parlance, gRPC

performance exceeds the speed and efficiency of the highly

optimized NetTCP bindings. Unlike NetTCP, which favors the

Microsoft stack, gRPC is cross-platform.

Protocol Buffers

gRPC embraces an open-source technology called Protocol Buffers.

They provide a highly efficient and platform-neutral serialization

format for serializing structured messages that services send to

each other. Using a cross-platform Interface Definition Language

(IDL), developers define a service contract for each microservice.

The contract, implemented as a text-based .proto file, describes the

methods, inputs, and outputs for each service. The same contract

file can be used for gRPC clients and services built on different

development platforms.

Using the proto file, the Protobuf compiler, protoc, generates both

client and service code for your target platform. The code includes

the following components:

• Strongly typed objects, shared by the client and service,

that represent the service operations and data elements for a

message.

• A strongly typed base class with the required network plumbing

that the remote gRPC service can inherit and extend.

• A client stub that contains the required plumbing to invoke the

remote gRPC service.

At run time, each message is serialized as a standard Protobuf

representation and exchanged between the client and remote service.

Unlike JSON or XML, Protobuf messages are serialized as compiled

binary bytes.

The book, gRPC for WCF Developers, available from the Microsoft

Architecture site, provides in-depth coverage of gRPC and Protocol

Buffers.

gRPC support in .NET

gRPC is integrated into .NET Core 3.0 SDK and later. The following

tools support it:

• Visual Studio 2022 with the ASP.NET and web development workload

installed

• Visual Studio Code

• the dotnet CLI

The SDK includes tooling for endpoint routing, built-in IoC, and

logging. The open-source Kestrel web server supports HTTP/2

https://docs.microsoft.com/dotnet/framework/wcf/whats-wcf
https://docs.microsoft.com/dotnet/api/system.servicemodel.nettcpbinding?view=netframework-4.8&preserve-view=true
https://docs.microsoft.com/dotnet/api/system.servicemodel.nettcpbinding?view=netframework-4.8&preserve-view=true
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://docs.microsoft.com/dotnet/architecture/grpc-for-wcf-developers/
https://docs.microsoft.com/dotnet/architecture/grpc-for-wcf-developers/

connections. Figure 4-20 shows a Visual Studio 2022 template that

scaffolds a skeleton project for a gRPC service. Note how .NET fully

supports Windows, Linux, and macOS.

Figure 4-20. gRPC support in Visual Studio 2022

Figure 4-21 shows the skeleton gRPC service generated from the

built-in scaffolding included in Visual Studio 2022.

Figure 4-21. gRPC project in Visual Studio 2022

In the previous figure, note the proto description file and service

code. As you’ll see shortly, Visual

Studio generates additional configuration in both the Startup class

and underlying project file.

gRPC usage

Favor gRPC for the following scenarios:

• Synchronous backend microservice-to-microservice

communication where an immediate response is required to

continue processing.

• Polyglot environments that need to support mixed programming

platforms.

• Low latency and high throughput communication where performance

is critical.

• Point-to-point real-time communication - gRPC can push messages

in real time without polling and has excellent support for bi-

directional streaming.

• Network constrained environments – binary gRPC messages

are always smaller than an equivalent text-based JSON

message.

At the time, of this writing, gRPC is primarily used with backend

services. Modern browsers can’t provide the level of HTTP/2

control required to support a front-end gRPC client. That said,

there’s support for gRPC-Web with .NET that enables gRPC

communication from browser-based apps built with JavaScript or

Blazor WebAssembly technologies. gRPC-Web enables an ASP.NET Core

gRPC app to support gRPC features in browser apps:

• Strongly typed, code-generated clients

• Compact Protobuf messages

• Server streaming

gRPC implementation

The microservice reference architecture, eShop on Containers, from

Microsoft, shows how to implement gRPC services in .NET

applications. Figure 4-22 presents the back-end architecture.

Figure 4-22. Backend architecture for eShop on Containers

https://devblogs.microsoft.com/aspnet/grpc-web-for-net-now-available/
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-WEB.md
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

In the previous figure, note how eShop embraces the Backend for

Frontends pattern (BFF) by exposing multiple API gateways. We

discussed the BFF pattern earlier in this chapter. Pay close

https://docs.microsoft.com/azure/architecture/patterns/backends-for-frontends
https://docs.microsoft.com/azure/architecture/patterns/backends-for-frontends

attention to the Aggregator microservice (in gray) that sits

between the Web-Shopping API Gateway and backend Shopping

microservices. The Aggregator receives a single request from a

client, dispatches it to various microservices, aggregates the

results, and sends them back to the requesting client. Such

operations typically require synchronous communication as to

produce an immediate response. In eShop, backend calls from the

Aggregator are performed using gRPC as shown in Figure 4-23.

Figure 4-23. gRPC in eShop on Containers

gRPC communication requires both client and server components. In

the previous figure, note how the Shopping Aggregator implements a

gRPC client. The client makes synchronous gRPC calls (in red) to

backend microservices, each of which implement a gRPC server. Both

the client and server take advantage of the built-in gRPC plumbing

from the .NET SDK. Client-side stubs provide the plumbing to invoke

remote gRPC calls. Server-side components provide gRPC plumbing

that custom service classes can inherit and consume.

Microservices that expose both a RESTful API and gRPC communication

require multiple endpoints to manage traffic. You would open an

endpoint that listens for HTTP traffic for the RESTful calls and

another for gRPC calls. The gRPC endpoint must be configured for

the HTTP/2 protocol that is required for gRPC communication.

While we strive to decouple microservices with asynchronous

communication patterns, some operations require direct calls. gRPC

should be the primary choice for direct synchronous communication

between microservices. Its high-performance communication protocol,

based on HTTP/2 and protocol buffers, make it a perfect choice.

Looking ahead

Looking ahead, gRPC will continue to gain traction for cloud-native

systems. The performance benefits and ease of development are

compelling. However, REST will likely be around for a long time.

It excels for publicly exposed APIs and for backward compatibility

reasons.

Service Mesh communication

infrastructure

Throughout this chapter, we’ve explored the challenges of

microservice communication. We said that

development teams need to be sensitive to how back-end services

communicate with each other. Ideally, the less inter-service

communication, the better. However, avoidance isn’t always

possible as back-end services often rely on one another to

complete operations.

We explored different approaches for implementing synchronous HTTP

communication and asynchronous messaging. In each of the cases,

the developer is burdened with implementing communication code.

Communication code is complex and time intensive. Incorrect

decisions can lead to significant performance issues.

A more modern approach to microservice communication centers

around a new and rapidly evolving technology entitled Service

Mesh. A service mesh is a configurable infrastructure layer with

built-in capabilities to handle service-to-service communication,

resiliency, and many cross-cutting concerns. It moves the

responsibility for these concerns out of the microservices and

into service mesh layer.

Communication is abstracted away from your microservices.

A key component of a service mesh is a proxy. In a cloud-native

application, an instance of a proxy is typically colocated with

each microservice. While they execute in separate processes, the

two are closely linked and share the same lifecycle. This pattern,

known as the Sidecar pattern, and is shown in Figure 4-24.

https://www.nginx.com/blog/what-is-a-service-mesh/
https://docs.microsoft.com/azure/architecture/patterns/sidecar
https://docs.microsoft.com/azure/architecture/patterns/sidecar

Figure 4-24. Service mesh with a side car

Note in the previous figure how messages are intercepted by a

proxy that runs alongside each microservice. Each proxy can be

configured with traffic rules specific to the microservice. It

understands messages and can route them across your services and

the outside world.

Along with managing service-to-service communication, the Service

Mesh provides support for service discovery and load balancing.

Once configured, a service mesh is highly functional. The mesh

retrieves a corresponding pool of instances from a service

discovery endpoint. It sends a request to a specific service

instance, recording the latency and response type of the result. It

chooses the instance most likely to return a fast response based on

different factors, including the observed latency for recent

requests.

A service mesh manages traffic, communication, and networking

concerns at the application level. It understands messages and

requests. A service mesh typically integrates with a container

orchestrator. Kubernetes supports an extensible architecture in

which a service mesh can be added.

In chapter 6, we deep-dive into Service Mesh technologies

including a discussion on its architecture and available open-

source implementations.

Summary

In this chapter, we discussed cloud-native communication patterns.

We started by examining how front-end clients communicate with

back-end microservices. Along the way, we talked about API Gateway

platforms and real-time communication. We then looked at how

microservices communicate with other back-end services. We looked

at both synchronous HTTP communication and asynchronous messaging

across services. We covered gRPC, an upcoming technology in the

cloud- native world. Finally, we introduced a new and

rapidly evolving technology entitled Service Mesh that can

streamline microservice communication.

Special emphasis was on managed Azure services that can help

implement communication in cloud- native systems:

• Azure Application Gateway

• Azure API Management

• Azure SignalR Service

• Azure Storage Queues

• Azure Service Bus

• Azure Event Grid

• Azure Event Hub

We next move to distributed data in cloud-native systems and the

https://docs.microsoft.com/azure/application-gateway/overview
https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/signalr-service/
https://docs.microsoft.com/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-overview
https://docs.microsoft.com/azure/event-grid/overview
https://azure.microsoft.com/services/event-hubs/

benefits and challenges that it presents.

References

• .NET Microservices: Architecture for Containerized .NET

applications

• Designing Interservice Communication for Microservices

• Azure SignalR Service, a fully managed service to add real-time

functionality

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://docs.microsoft.com/azure/architecture/microservices/design/interservice-communication
https://azure.microsoft.com/blog/azure-signalr-service-a-fully-managed-service-to-add-real-time-functionality/
https://azure.microsoft.com/blog/azure-signalr-service-a-fully-managed-service-to-add-real-time-functionality/

• Azure API Gateway Ingress Controller

• About Ingress in Azure Kubernetes Service (AKS)

• gRPC Documentation

• gRPC for WCF Developers

• Comparing gRPC Services with HTTP APIs

• Building gRPC Services with .NET video

https://azure.github.io/application-gateway-kubernetes-ingress/
https://vincentlauzon.com/2018/10/10/about-ingress-in-azure-kubernetes-service-aks/
https://grpc.io/docs/guides/
https://docs.microsoft.com/dotnet/architecture/grpc-for-wcf-developers/
https://docs.microsoft.com/aspnet/core/grpc/comparison?view=aspnetcore-3.0&preserve-view=false
https://docs.microsoft.com/Shows/The-Cloud-Native-Show/Building-Microservices-with-gRPC-and-NET

CHAPTER 5

Cloud-native

data patterns

As we’ve seen throughout this book, a cloud-native approach

changes the way you design, deploy, and manage applications. It

also changes the way you manage and store data.

Figure 5-1 contrasts the differences.

Figure 5-1. Data management in cloud-native applications

Experienced developers will easily recognize the architecture on

the left-side of figure 5-1. In this monolithic application,

business service components collocate together in a shared

services tier, sharing data from a single relational database.

In many ways, a single database keeps data management simple.

Querying data across multiple tables is straightforward. Changes to

data update together or they all rollback. ACID transactions

guarantee strong and immediate consistency.

Designing for cloud-native, we take a different approach. On the

right-side of Figure 5-1, note how business functionality

segregates into small, independent microservices. Each microservice

https://docs.microsoft.com/windows/desktop/cossdk/acid-properties
https://docs.microsoft.com/windows/desktop/cossdk/acid-properties

encapsulates a specific business capability and its own data. The

monolithic database decomposes

into a distributed data model with many smaller databases, each

aligning with a microservice. When the smoke clears, we emerge

with a design that exposes a database per microservice.

Database-per-microservice, why?

This database per microservice provides many benefits, especially for

systems that must evolve rapidly

and support massive scale. With this model…

• Domain data is encapsulated within the service

• Data schema can evolve without directly impacting other services

• Each data store can independently scale

• A data store failure in one service won’t directly impact other

services

Segregating data also enables each microservice to implement

the data store type that is best optimized for its workload,

storage needs, and read/write patterns. Choices include

relational, document, key-value, and even graph-based data

stores.

Figure 5-2 presents the principle of polyglot persistence in a cloud-

native system.

Figure 5-2. Polyglot data persistence

Note in the previous figure how each microservice supports a

different type of data store.

• The product catalog microservice consumes a relational

database to accommodate the rich relational structure of its

underlying data.

• The shopping cart microservice consumes a distributed cache that

supports its simple, key-value data store.

• The ordering microservice consumes both a NoSql document

database for write operations along with a highly

denormalized key/value store to accommodate high-volumes of

read operations.

While relational databases remain relevant for microservices with

complex data, NoSQL databases have gained considerable popularity.

They provide massive scale and high availability. Their schemaless

nature allows developers to move away from an architecture of

typed data classes and ORMs that make change expensive and time-

consuming. We cover NoSQL databases later in this chapter.

While encapsulating data into separate microservices can increase

agility, performance, and scalability, it also presents many

challenges. In the next section, we discuss these challenges along

with patterns and practices to help overcome them.

Cross-service queries

While microservices are independent and focus on specific

functional capabilities, like inventory, shipping, or ordering,

they frequently require integration with other microservices. Often

the integration involves one microservice querying another for

data. Figure 5-3 shows the scenario.

Figure 5-3. Querying across microservices

In the preceding figure, we see a shopping basket microservice that

adds an item to a user’s shopping basket. While the data store for

this microservice contains basket and line item data, it doesn’t

maintain product or pricing data. Instead, those data items are

owned by the catalog and pricing microservices. This aspect

presents a problem. How can the shopping basket microservice add a

product to the user’s shopping basket when it doesn’t have product

nor pricing data in its database?

One option discussed in Chapter 4 is a direct HTTP call from the

shopping basket to the catalog and pricing microservices. However,

in chapter 4, we said synchronous HTTP calls couple microservices

together, reducing their autonomy and diminishing their

architectural benefits.

We could also implement a request-reply pattern with separate

inbound and outbound queues for each service. However, this

pattern is complicated and requires plumbing to correlate request

and response messages. While it does decouple the backend

microservice calls, the calling service must still synchronously

wait for the call to complete. Network congestion, transient

faults, or an overloaded microservice and can result in long-

running and even failed operations.

Instead, a widely accepted pattern for removing cross-service

dependencies is the Materialized View Pattern, shown in Figure 5-

4.

Figure 5-4. Materialized View Pattern

With this pattern, you place a local data table (known as a read

model) in the shopping basket service. This table contains a

denormalized copy of the data needed from the product and pricing

microservices. Copying the data directly into the shopping basket

microservice eliminates the need for expensive cross-service calls.

With the data local to the service, you improve the service’s

response time and reliability. Additionally, having its own copy of

the data makes the shopping basket service more resilient. If the

catalog service should become unavailable, it wouldn’t directly

impact the shopping basket service. The shopping basket can

continue operating with the data from its own store.

The catch with this approach is that you now have duplicate data in

your system. However, strategically duplicating data in cloud-

native systems is an established practice and not considered an

anti-pattern, or bad practice. Keep in mind that one and only one

service can own a data set and have authority over it. You’ll need

to synchronize the read models when the system of record is

updated.

Synchronization is typically implemented via asynchronous

messaging with a publish/subscribe pattern, as shown in Figure

5.4.

Distributed transactions

https://docs.microsoft.com/azure/architecture/patterns/materialized-view
https://docs.microsoft.com/azure/architecture/patterns/materialized-view
https://docs.microsoft.com/azure/architecture/patterns/materialized-view
https://docs.microsoft.com/azure/architecture/patterns/materialized-view

While querying data across microservices is difficult, implementing

a transaction across several microservices is even more complex.

The inherent challenge of maintaining data consistency across

independent data sources in different microservices can’t be

understated. The lack of distributed transactions in cloud-native

applications means that you must manage distributed transactions

programmatically. You move from a world of immediate consistency to

that of eventual consistency.

Figure 5-5 shows the problem.

Figure 5-5. Implementing a transaction across microservices

In the preceding figure, five independent microservices

participate in a distributed transaction that creates an order.

Each microservice maintains its own data store and implements a

local transaction for its store. To create the order, the local

transaction for each individual microservice must succeed, or all

must abort and roll back the operation. While built-in

transactional support is available inside each of the

microservices, there’s no support for a distributed transaction

that would span across all five services to keep data consistent.

Instead, you must construct this distributed transaction

programmatically.

A popular pattern for adding distributed transactional support is

the Saga pattern. It’s implemented by grouping local transactions

together programmatically and sequentially invoking each one. If

any of the local transactions fail, the Saga aborts the operation

and invokes a set of compensating transactions. The compensating

transactions undo the changes made by the preceding local

transactions and restore data consistency. Figure 5-6 shows a

failed transaction with the Saga pattern.

https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction
https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction

Figure 5-6. Rolling back a transaction

In the previous figure, the Update Inventory operation has failed

in the Inventory microservice. The Saga invokes a set of

compensating transactions (in red) to adjust the inventory counts,

cancel the payment and the order, and return the data for each

microservice back to a consistent state.

Saga patterns are typically choreographed as a series of related

events, or orchestrated as a set of related commands. In Chapter 4,

we discussed the service aggregator pattern that would be the

foundation for an orchestrated saga implementation. We also

discussed eventing along with Azure Service Bus and Azure Event

Grid topics that would be a foundation for a choreographed saga

implementation.

High volume data

Large cloud-native applications often support high-volume data

requirements. In these scenarios, traditional data storage

techniques can cause bottlenecks. For complex systems that deploy

on a large scale, both Command and Query Responsibility Segregation

(CQRS) and Event Sourcing may improve application performance.

CQRS

CQRS, is an architectural pattern that can help maximize

performance, scalability, and security. The pattern separates

operations that read data from those operations that write data.

For normal scenarios, the same entity model and data repository

object are used for both read and write operations.

However, a high volume data scenario can benefit from separate

models and data tables for reads and writes. To improve

performance, the read operation could query against a highly

denormalized representation of the data to avoid expensive

repetitive table joins and table locks. The write operation, known

as a command, would update against a fully normalized

representation of the data that would guarantee consistency. You

then need to implement a mechanism to keep both representations in

sync. Typically, whenever the write table is modified, it

publishes an event that replicates the modification to the read

table.

Figure 5-7 shows an implementation of the CQRS pattern.

https://docs.microsoft.com/azure/architecture/patterns/cqrs
https://docs.microsoft.com/azure/architecture/patterns/cqrs

Figure 5-7. CQRS implementation

In the previous figure, separate command and query models are

implemented. Each data write operation is saved to the write store

and then propagated to the read store. Pay close attention to how

the data propagation process operates on the principle of eventual

consistency. The read model eventually synchronizes with the write

model, but there may be some lag in the process. We discuss

eventual consistency in the next section.

This separation enables reads and writes to scale independently.

Read operations use a schema optimized for queries, while the

writes use a schema optimized for updates. Read queries go against

denormalized data, while complex business logic can be applied to

the write model. As well, you might impose tighter security on

write operations than those exposing reads.

Implementing CQRS can improve application performance for cloud-

native services. However, it does result in a more complex design.

Apply this principle carefully and strategically to those sections

of your cloud-native application that will benefit from it. For

more on CQRS, see the Microsoft book .NET Microservices:

Architecture for Containerized .NET Applications.

Event sourcing

Another approach to optimizing high volume data scenarios involves

Event Sourcing.

A system typically stores the current state of a data entity. If a

user changes their phone number, for example, the customer record

is updated with the new number. We always know the current state of

a data entity, but each update overwrites the previous state.

In most cases, this model works fine. In high volume systems,

however, overhead from transactional locking and frequent update

operations can impact database performance, responsiveness, and

limit scalability.

Event Sourcing takes a different approach to capturing data. Each

operation that affects data is persisted to an event store. Instead

of updating the state of a data record, we append each change to a

sequential list of past events - similar to an accountant’s ledger.

The Event Store becomes the system of record for the data. It’s

used to propagate various materialized views within the bounded

context of a microservice. Figure 5.8 shows the pattern.

https://www.cloudcomputingpatterns.org/eventual_consistency/
https://www.cloudcomputingpatterns.org/eventual_consistency/
https://www.cloudcomputingpatterns.org/eventual_consistency/
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://docs.microsoft.com/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing

Figure 5-8. Event Sourcing

In the previous figure, note how each entry (in blue) for a user’s

shopping cart is appended to an underlying event store. In the

adjoining materialized view, the system projects the current state

by replaying all the events associated with each shopping cart.

This view, or read model, is then exposed back to the UI. Events

can also be integrated with external systems and applications or

queried to determine the current state of an entity. With this

approach, you maintain history. You know not only the current state

of an entity, but also how you reached this state.

Mechanically speaking, event sourcing simplifies the write model.

There are no updates or deletes. Appending each data entry as an

immutable event minimizes contention, locking, and concurrency

conflicts associated with relational databases. Building read

models with the materialized view pattern enables you to decouple

the view from the write model and choose the best data store to

optimize the needs of your application UI.

For this pattern, consider a data store that directly supports

event sourcing. Azure Cosmos DB, MongoDB, Cassandra, CouchDB, and

RavenDB are good candidates.

As with all patterns and technologies, implement strategically and

when needed. While event sourcing can provide increased performance

and scalability, it comes at the expense of complexity and a

learning curve.

Relational vs. NoSQL data

Relational and NoSQL are two types of database systems commonly

implemented in cloud-native apps. They’re built differently, store

data differently, and accessed differently. In this section, we’ll

look at both. Later in this chapter, we’ll look at an emerging

database technology called NewSQL.

Relational databases have been a prevalent technology for decades.

They’re mature, proven, and widely implemented. Competing database

products, tooling, and expertise abound. Relational databases

provide a store of related data tables. These tables have a fixed

schema, use SQL (Structured Query Language) to manage data, and

support ACID guarantees.

No-SQL databases refer to high-performance, non-relational data

stores. They excel in their ease-of- use, scalability, resilience,

and availability characteristics. Instead of joining tables of

normalized data, NoSQL stores unstructured or semi-structured data,

often in key-value pairs or JSON documents. No- SQL databases

typically don’t provide ACID guarantees beyond the scope of a

single database partition. High volume services that require sub

second response time favor NoSQL datastores.

The impact of NoSQL technologies for distributed cloud-native

systems can’t be overstated. The proliferation of new data

technologies in this space has disrupted solutions that once

exclusively relied on relational databases.

NoSQL databases include several different models for accessing and

managing data, each suited to specific use cases. Figure 5-9

presents four common models.

Figure 5-9: Data models for NoSQL databases

Model Characteristics

Document

Store

Data and metadata are stored hierarchically in JSON-

based documents inside the database.

https://www.geeksforgeeks.org/introduction-to-nosql/

Key Value

Store

The simplest of the NoSQL databases, data is

represented as a collection of key- value pairs.

Wide-

Column

Store

Related data is stored as a set of nested-key/value

pairs within a single column.

Graph Store Data is stored in a graph structure as node, edge, and

data properties.

The CAP theorem

As a way to understand the differences between these types of

databases, consider the CAP theorem, a set of principles applied to

distributed systems that store state. Figure 5-10 shows the three

properties of the CAP theorem.

Figure 5-10. The CAP theorem

The theorem states that distributed data systems will offer a

trade-off between consistency, availability, and partition

tolerance. And, that any database can only guarantee two of the

three properties:

• Consistency. Every node in the cluster responds with the most

recent data, even if the system must block the request until

all replicas update. If you query a “consistent system” for an

item that is currently updating, you’ll wait for that response

until all replicas successfully update. However, you’ll

receive the most current data.

• Availability. Every node returns an immediate response, even

if that response isn’t the most recent data. If you query an

“available system” for an item that is updating, you’ll get

the best possible answer the service can provide at that

moment.

• Partition Tolerance. Guarantees the system continues to

operate even if a replicated data node fails or loses

connectivity with other replicated data nodes.

CAP theorem explains the tradeoffs associated with managing

consistency and availability during a network partition; however

tradeoffs with respect to consistency and performance also exist

with the absence of a network partition. CAP theorem is often

further extended to PACELC to explain the tradeoffs more

comprehensively.

Relational databases typically provide consistency and availability,

but not partition tolerance. They’re

typically provisioned to a single server and scale vertically by

adding more resources to the machine.

http://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

Many relational database systems support built-in replication

features where copies of the primary database can be made to other

secondary server instances. Write operations are made to the

primary instance and replicated to each of the secondaries. Upon a

failure, the primary instance can fail over to a secondary to

provide high availability. Secondaries can also be used to

distribute read operations. While writes operations always go

against the primary replica, read operations can be routed to any

of the secondaries to reduce system load.

Data can also be horizontally partitioned across multiple nodes,

such as with sharding. But, sharding dramatically increases

operational overhead by spitting data across many pieces that

cannot easily communicate. It can be costly and time consuming to

manage. Relational features that include table joins, transactions,

and referential integrity require steep performance penalties in

sharded deployments.

Replication consistency and recovery point objectives can be tuned

by configuring whether replication occurs synchronously or

asynchronously. If data replicas were to lose network connectivity

in a “highly consistent” or synchronous relational database

cluster, you wouldn’t be able to write to the database. The system

would reject the write operation as it can’t replicate that change

to the other data replica. Every data replica has to update before

the transaction can complete.

NoSQL databases typically support high availability and partition

tolerance. They scale out horizontally, often across commodity

servers. This approach provides tremendous availability, both

within and across geographical regions at a reduced cost. You

partition and replicate data across these machines, or nodes,

providing redundancy and fault tolerance. Consistency is typically

tuned through consensus protocols or quorum mechanisms. They

provide more control when navigating tradeoffs between tuning

synchronous versus asynchronous replication in relational systems.

If data replicas were to lose connectivity in a “highly available”

NoSQL database cluster, you could still complete a write operation

to the database. The database cluster would allow the write

operation and update each data replica as it becomes available.

NoSQL databases that support multiple writable replicas can further

strengthen high availability by avoiding the need for failover when

optimizing recovery time objective.

Modern NoSQL databases typically implement partitioning

capabilities as a feature of their system design. Partition

management is often built-in to the database, and routing is

achieved through placement hints - often called partition keys. A

flexible data models enables the NoSQL databases to lower the

burden of schema management and improve availability when

https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction

deploying application updates that require data model changes.

High availability and massive scalability are often more critical

to the business than relational table joins and referential

integrity. Developers can implement techniques and patterns such

as Sagas, CQRS, and asynchronous messaging to embrace eventual

consistency.

Nowadays, care must be taken when considering the CAP theorem

constraints. A new type of database, called NewSQL, has emerged

which extends the relational database engine to support both

horizontal scalability and the scalable performance of NoSQL

systems.

Considerations for relational vs. NoSQL systems

Based upon specific data requirements, a cloud-native-based

microservice can implement a relational, NoSQL datastore or both.

Consider a NoSQL datastore when:

Consider a relational

database

when:

You have high volume workloads that

require predictable latency at large

scale (e.g. latency measured in

milliseconds while performing millions

of transactions per second)

Your workload volume

generally fits within

thousands of

transactions per second

Your data is dynamic and frequently changes Your data is highly

structured and

requires referential

integrity

Relationships can be de-normalized data

models

Relationships are

expressed through

table joins on

normalized data models

Data retrieval is simple and expressed

without table joins

You work with complex

queries and reports

Data is typically replicated across

geographies and requires finer control

over consistency, availability, and

performance

Data is typically

centralized, or can be

replicated regions

asynchronously

Your application will be deployed to

commodity hardware, such as with public

clouds

Your application will be

deployed to large, high-

end hardware

In the next sections, we’ll explore the options available in the

Azure cloud for storing and managing

your cloud-native data.

Database as a Service

To start, you could provision an Azure virtual machine and install

your database of choice for each service. While you’d have full

control over the environment, you’d forgo many built-in features of

the cloud platform. You’d also be responsible for managing the

virtual machine and database for each service. This approach could

quickly become time-consuming and expensive.

Instead, cloud-native applications favor data services exposed as a

Database as a Service (DBaaS). Fully managed by a cloud vendor,

these services provide built-in security, scalability, and

monitoring. Instead of owning the service, you simply consume it as

a backing service. The provider operates the resource at scale and

bears the responsibility for performance and maintenance.

https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/
https://www.stratoscale.com/blog/dbaas/what-is-database-as-a-service/

They can be configured across cloud availability zones and regions

to achieve high availability. They all support just-in-time

capacity and a pay-as-you-go model. Azure features different kinds

of managed data service options, each with specific benefits.

We’ll first look at relational DBaaS services available in Azure.

You’ll see that Microsoft’s flagship SQL Server database is

available along with several open-source options. Then, we’ll talk

about the NoSQL data services in Azure.

Azure relational databases

For cloud-native microservices that require relational data, Azure

offers four managed relational databases as a service (DBaaS)

offerings, shown in Figure 5-11.

Figure 5-11. Managed relational databases available in Azure

In the previous figure, note how each sits upon a common DBaaS

infrastructure which features key capabilities at no additional

cost.

These features are especially important to organizations who

provision large numbers of databases, but have limited resources

to administer them. You can provision an Azure database in minutes

by selecting the amount of processing cores, memory, and

underlying storage. You can scale the database on-the-fly and

dynamically adjust resources with little to no downtime.

Azure SQL Database

Development teams with expertise in Microsoft SQL Server should

consider Azure SQL Database. It’s a fully managed relational

database-as-a-service (DBaaS) based on the Microsoft SQL Server

Database Engine. The service shares many features found in the on-

premises version of SQL Server and runs the latest stable version

of the SQL Server Database Engine.

For use with a cloud-native microservice, Azure SQL Database is

available with three deployment options:

• A Single Database represents a fully managed SQL Database

running on an Azure SQL Database server in the Azure cloud.

The database is considered contained as it has no configuration

dependencies on the underlying database server.

https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/sql-database/sql-database-servers
https://docs.microsoft.com/azure/sql-database/sql-database-servers
https://docs.microsoft.com/azure/sql-database/sql-database-servers
https://docs.microsoft.com/sql/relational-databases/databases/contained-databases

• A Managed Instance is a fully managed instance of the

Microsoft SQL Server Database Engine that provides near-100%

compatibility with an on-premises SQL Server. This option

supports larger databases, up to 35 TB and is placed in an

Azure Virtual Network for better isolation.

https://docs.microsoft.com/azure/sql-database/sql-database-managed-instance
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview

• Azure SQL Database serverless is a compute tier for a single

database that automatically scales based on workload demand. It

bills only for the amount of compute used per second. The

service is well suited for workloads with intermittent,

unpredictable usage patterns, interspersed with periods of

inactivity. The serverless compute tier also automatically

pauses databases during inactive periods so that only storage

charges are billed. It automatically resumes when activity

returns.

Beyond the traditional Microsoft SQL Server stack, Azure also

features managed versions of three popular open-source databases.

Open-source databases in Azure

Open-source relational databases have become a popular choice for

cloud-native applications. Many enterprises favor them over

commercial database products, especially for cost savings. Many

development teams enjoy their flexibility, community-backed

development, and ecosystem of tools and extensions. Open-source

databases can be deployed across multiple cloud providers, helping

minimize the concern of “vendor lock-in.”

Developers can easily self-host any open-source database on an

Azure VM. While providing full control, this approach puts you on

the hook for the management, monitoring, and maintenance of the

database and VM.

However, Microsoft continues its commitment to keeping Azure an “open

platform” by offering

several popular open-source databases as fully managed DBaaS

services.

Azure Database for MySQL

MySQL is an open-source relational database and a pillar for

applications built on the LAMP software stack. Widely chosen for

read heavy workloads, it’s used by many large organizations,

including Facebook, Twitter, and YouTube. The community edition is

available for free, while the enterprise edition requires a license

purchase. Originally created in 1995, the product was purchased by

Sun Microsystems in 2008. Oracle acquired Sun and MySQL in 2010.

Azure Database for MySQL is a managed relational database service

based on the open-source MySQL Server engine. It uses the MySQL

Community edition. The Azure MySQL server is the administrative

point for the service. It’s the same MySQL server engine used for

on-premises deployments. The engine can create a single database

per server or multiple databases per server that share resources.

You can continue to manage data using the same open-source tools

without having to learn new skills or manage virtual machines.

https://docs.microsoft.com/azure/sql-database/sql-database-serverless
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://azure.microsoft.com/services/mysql/

Azure Database for MariaDB

MariaDB Server is another popular open-source database server. It

was created as a fork of MySQL when Oracle purchased Sun

Microsystems, who owned MySQL. The intent was to ensure that

MariaDB remained open-source. As MariaDB is a fork of MySQL, the

data and table definitions are compatible, and the client

protocols, structures, and APIs, are close-knit.

https://mariadb.com/

MariaDB has a strong community and is used by many large

enterprises. While Oracle continues to maintain, enhance, and

support MySQL, the MariaDB foundation manages MariaDB, allowing

public contributions to the product and documentation.

Azure Database for MariaDB is a fully managed relational database

as a service in the Azure cloud. The service is based on the

MariaDB community edition server engine. It can handle mission-

critical workloads with predictable performance and dynamic

scalability.

Azure Database for PostgreSQL

PostgreSQL is an open-source relational database with over 30 years

of active development. PostgresSQL has a strong reputation for

reliability and data integrity. It’s feature rich, SQL compliant,

and considered more performant than MySQL - especially for

workloads with complex queries and heavy writes. Many large

enterprises including Apple, Red Hat, and Fujitsu have built

products using PostgreSQL.

Azure Database for PostgreSQL is a fully managed relational

database service, based on the open- source Postgres database

engine. The service supports many development platforms, including

C++, Java, Python, Node, C#, and PHP. You can migrate PostgreSQL

databases to it using the command- line interface tool or Azure

Data Migration Service.

Azure Database for PostgreSQL is available with two deployment

options:

• The Single Server deployment option is a central administrative

point for multiple databases to which you can deploy many

databases. The pricing is structured per-server based upon

cores and storage.

• The Hyperscale (Citus) option is powered by Citus Data

technology. It enables high performance by horizontally scaling

a single database across hundreds of nodes to deliver fast

performance and scale. This option allows the engine to fit

more data in memory, parallelize queries across hundreds of

nodes, and index data faster.

NoSQL data in Azure

Cosmos DB is a fully managed, globally distributed NoSQL database

service in the Azure cloud. It has been adopted by many large

companies across the world, including Coca-Cola, Skype,

ExxonMobil, and Liberty Mutual.

If your services require fast response from anywhere in the

world, high availability, or elastic scalability, Cosmos DB

https://azure.microsoft.com/services/mariadb/
https://www.postgresql.org/
https://azure.microsoft.com/services/postgresql/
https://datamigration.microsoft.com/scenario/postgresql-to-azurepostgresql?step=1
https://datamigration.microsoft.com/scenario/postgresql-to-azurepostgresql?step=1
https://datamigration.microsoft.com/scenario/postgresql-to-azurepostgresql?step=1
https://docs.microsoft.com/azure/postgresql/concepts-servers
https://azure.microsoft.com/blog/get-high-performance-scaling-for-your-azure-database-workloads-with-hyperscale/

is a great choice. Figure 5-12 shows Cosmos DB.

Figure 5-12: Overview of Azure Cosmos DB

The previous figure presents many of the built-in cloud-native

capabilities available in Cosmos DB. In

this section, we’ll take a closer look at them.

Global support

Cloud-native applications often have a global audience and require

global scale.

You can distribute Cosmos databases across regions or around the

world, placing data close to your users, improving response time,

and reducing latency. You can add or remove a database from a

region without pausing or redeploying your services. In the

background, Cosmos DB transparently replicates the data to each of

the configured regions.

Cosmos DB supports active/active clustering at the global level,

enabling you to configure any of your database regions to support

both writes and reads.

The Multi-region write protocol is an important feature in Cosmos

DB that enables the following functionality:

• Unlimited elastic write and read scalability.

• 99.999% read and write availability all around the world.

• Guaranteed reads and writes served in less than 10

milliseconds at the 99th percentile. With the Cosmos DB Multi-

Homing APIs, your microservice is automatically aware of the

nearest

Azure region and sends requests to it. The nearest region is

identified by Cosmos DB without any

configuration changes. Should a region become unavailable, the

https://kemptechnologies.com/white-papers/unfog-confusion-active-passive-activeactive-load-balancing/
https://docs.microsoft.com/azure/cosmos-db/conflict-resolution-policies
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally

Multi-Homing feature will automatically route requests to the next

nearest available region.

Multi-model support

When replatforming monolithic applications to a cloud-native

architecture, development teams sometimes have to migrate open-

source, NoSQL data stores. Cosmos DB can help you preserve your

investment in these NoSQL datastores with its multi-model data

platform. The following table shows the supported NoSQL

compatibility APIs.

Provider Description

SQL API Proprietary API that supports JSON documents and SQL-

based queries

Mongo DB

API

Supports Mongo DB APIs and JSON documents

Gremlin API Supports Gremlin API with graph-based nodes and edge

data representations

Cassandra

API

Supports Casandra API for wide-column data

representations

Table API Supports Azure Table Storage with premium enhancements

etcd API Enables Cosmos DB as a backing store for Azure

Kubernetes Service clusters

Development teams can migrate existing Mongo, Gremlin, or Cassandra

databases into Cosmos DB with minimal changes to data or code. For

new apps, development teams can choose among open- source options

or the built-in SQL API model.

Internally, Cosmos stores the data in a simple struct format made

up of primitive data types. For each request, the database engine

translates the primitive data into the model representation you’ve

selected.

In the previous table, note the Table API option. This API is an

evolution of Azure Table Storage. Both share the same underlying

table model, but the Cosmos DB Table API adds premium enhancements

not available in the Azure Storage API. The following table

contrasts the features.

Feature Azure Table Storage Azure Cosmos DB

Latency Fast Single-digit millisecond

latency for reads and

writes anywhere in the

world

Throughput Limit of 20,000

operations per table

Unlimited operations per table

Global

Distrib

ution

Single region with

optional single

secondary read region

Turnkey distributions to

all regions with automatic

failover

Indexing Available for

partition and row key

properties only

Automatic indexing of all

properties

Pricing Optimized for cold

workloads (low

throughput : storage

Optimized for hot

workloads (high

throughput : storage

https://www.wikiwand.com/en/Cosmos_DB
https://www.wikiwand.com/en/Cosmos_DB
https://docs.microsoft.com/azure/cosmos-db/table-introduction

ratio) ratio)

Microservices that consume Azure Table storage can easily migrate

to the Cosmos DB Table API. No code changes are required.

Tunable consistency

Earlier in the Relational vs. NoSQL section, we discussed the

subject of data consistency. Data consistency refers to the

integrity of your data. Cloud-native services with distributed data

rely on replication and must make a fundamental tradeoff between

read consistency, availability, and latency.

Most distributed databases allow developers to choose between two

consistency

models: strong consistency and eventual consistency. Strong

consistency is the gold standard of data

programmability. It guarantees that a query will always return the

most current data - even if the system must incur latency waiting

for an update to replicate across all database copies. While a

database configured for eventual consistency will return data

immediately, even if that data isn’t the most current copy. The

latter option enables higher availability, greater scale, and

increased performance.

Azure Cosmos DB offers five well-defined consistency models shown in

Figure 5-13.

Figure 5-13: Cosmos DB Consistency Levels

These options enable you to make precise choices and granular

tradeoffs for consistency, availability, and the performance for

your data. The levels are presented in the following table.

Consiste

ncy

Level

Description

Eventual No ordering guarantee for reads. Replicas will

eventually converge.

Constant

Prefix

Reads are still eventual, but data is returned in the

ordering in which it is written.

Session Guarantees you can read any data written during the

current session. It is the default consistency

level.

Bounde

d

Stalen

ess

Reads trail writes by interval that you specify.

Strong Reads are guaranteed to return most recent committed

version of an item. A client never sees an uncommitted

or partial read.

In the article Getting Behind the 9-Ball: Cosmos DB Consistency

Levels Explained, Microsoft Program Manager Jeremy Likness provides

an excellent explanation of the five models.

Partitioning

Azure Cosmos DB embraces automatic partitioning to scale a database

to meet the performance needs of your cloud-native services.

You manage data in Cosmos DB data by creating databases, containers,

and items.

Containers live in a Cosmos DB database and represent a schema-

https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://docs.microsoft.com/azure/cosmos-db/partitioning-overview

agnostic grouping of items. Items are the data that you add to the

container. They’re represented as documents, rows, nodes, or edges.

All items added to a container are automatically indexed.

To partition the container, items are divided into distinct subsets

called logical partitions. Logical partitions are populated based

on the value of a partition key that is associated with each item

in a container. Figure 5-14 shows two containers each with a

logical partition based on a partition key value.

Figure 5-14: Cosmos DB partitioning mechanics

Note in the previous figure how each item includes a partition key

of either ‘city’ or ‘airport’. The key determines the item’s

logical partition. Items with a city code are assigned to the

container on the left, and items with an airport code, to the

container on the right. Combining the partition key value with the

ID value creates an item’s index, which uniquely identifies the

item.

Internally, Cosmos DB automatically manages the placement of

logical partitions on physical partitions to satisfy the

scalability and performance needs of the container. As application

throughput and storage requirements increase, Azure Cosmos DB

redistributes logical partitions across a greater number of

servers. Redistribution operations are managed by Cosmos DB and

invoked without interruption or downtime.

NewSQL databases

NewSQL is an emerging database technology that combines the

distributed scalability of NoSQL with the ACID guarantees of a

relational database. NewSQL databases are important for business

systems that must process high-volumes of data, across distributed

environments, with full transactional support and ACID compliance.

While a NoSQL database can provide massive scalability, it does not

guarantee data consistency. Intermittent problems from inconsistent

data can place a burden on the development team. Developers must

construct safeguards into their microservice code to manage

problems caused by inconsistent data.

The Cloud Native Computing Foundation (CNCF) features several NewSQL

database projects.

Project Characteristics

https://docs.microsoft.com/azure/cosmos-db/partition-data

Cockroa

ch DB

An ACID-compliant, relational database that scales

globally. Add a new node to a cluster and CockroachDB

takes care of balancing the data across instances and

geographies. It creates, manages, and distributes

replicas to ensure reliability. It’s open source and

freely available.

Project Characteristics

TiDB An open-source database that supports Hybrid

Transactional and Analytical Processing (HTAP) workloads.

It is MySQL-compatible and features horizontal

scalability, strong consistency, and high availability.

TiDB acts like a MySQL server. You can continue to use

existing MySQL client libraries, without requiring

extensive code changes to your application.

YugabyteD

B

An open source, high-performance, distributed SQL

database. It supports low query latency, resilience

against failures, and global data distribution.

YugabyteDB is PostgressSQL-compatible and handles

scale-out RDBMS and internet-scale OLTP workloads. The

product also supports NoSQL and is compatible with

Cassandra.

Vitess Vitess is a database solution for deploying, scaling, and

managing large clusters of MySQL instances. It can run in

a public or private cloud architecture. Vitess combines

and extends many important MySQL features and features

both vertical and horizontal sharding support. Originated

by YouTube, Vitess has been serving all YouTube database

traffic since 2011.

The open-source projects in the previous figure are available from

the Cloud Native Computing Foundation. Three of the offerings are

full database products, which include .NET support. The other,

Vitess, is a database clustering system that horizontally scales

large clusters of MySQL instances.

A key design goal for NewSQL databases is to work natively in

Kubernetes, taking advantage of the

platform’s resiliency and scalability.

NewSQL databases are designed to thrive in ephemeral cloud

environments where underlying virtual machines can be restarted or

rescheduled at a moment’s notice. The databases are designed to

survive node failures without data loss nor downtime. CockroachDB,

for example, is able to survive a machine loss by maintaining three

consistent replicas of any data across the nodes in a cluster.

Kubernetes uses a Services construct to allow a client to address a

group of identical NewSQL databases processes from a single DNS

entry. By decoupling the database instances from the address of the

service with which it’s associated, we can scale without disrupting

existing application instances. Sending a request to any service at

a given time will always yield the same result.

In this scenario, all database instances are equal. There are no

primary or secondary relationships. Techniques like consensus

replication found in CockroachDB allow any database node to handle

any request. If the node that receives a load-balanced request has

the data it needs locally, it responds immediately. If not, the

node becomes a gateway and forwards the request to the appropriate

nodes to get the correct answer. From the client’s perspective,

every database node is the same: They appear as a single logical

database with the consistency guarantees of a single-machine

system, despite having dozens or even hundreds of nodes that are

working behind the scenes.

For a detailed look at the mechanics behind NewSQL databases, see

the DASH: Four Properties of Kubernetes-Native Databases

article.

Data migration to the cloud

One of the more time-consuming tasks is migrating data from one

data platform to another. The Azure Data Migration Service can

help expedite such efforts. It can migrate data from several

external

https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://azure.microsoft.com/services/database-migration/

database sources into Azure Data platforms with minimal downtime.

Target platforms include the following services:

• Azure SQL Database

• Azure Database for MySQL

• Azure Database for MariaDB

• Azure Database for PostgreSQL

• Azure Cosmos DB

The service provides recommendations to guide you through the

changes required to execute a migration, both small or large.

Caching in a cloud-native app

The benefits of caching are well understood. The technique works by

temporarily copying frequently accessed data from a backend data

store to fast storage that’s located closer to the application.

Caching is often implemented where…

• Data remains relatively static.

• Data access is slow, especially compared to the speed of the

cache.

• Data is subject to high levels of contention.

Why?

As discussed in the Microsoft caching guidance, caching can

increase performance, scalability, and availability for individual

microservices and the system as a whole. It reduces the latency

and contention of handling large volumes of concurrent requests to

a data store. As data volume and the number of users increase, the

greater the benefits of caching become.

Caching is most effective when a client repeatedly reads data that

is immutable or that changes infrequently. Examples include

reference information such as product and pricing information, or

shared static resources that are costly to construct.

While microservices should be stateless, a distributed cache can

support concurrent access to session state data when absolutely

required.

Also consider caching to avoid repetitive computations. If an

operation transforms data or performs a complicated calculation,

cache the result for subsequent requests.

Caching architecture

Cloud native applications typically implement a distributed caching

architecture. The cache is hosted as a cloud-based backing service,

separate from the microservices. Figure 5-15 shows the

https://docs.microsoft.com/azure/architecture/best-practices/caching
https://docs.microsoft.com/azure/architecture/best-practices/caching

architecture.

Figure 5-15: Caching in a cloud native app

In the previous figure, note how the cache is independent of and

shared by the microservices. In this scenario, the cache is

invoked by the API Gateway. As discussed in chapter 4, the gateway

serves as a front end for all incoming requests. The distributed

cache increases system responsiveness by returning cached data

whenever possible. Additionally, separating the cache from the

services allows the cache to scale up or out independently to meet

increased traffic demands.

The previous figure presents a common caching pattern known as the

cache-aside pattern. For an incoming request, you first query the

cache (step #1) for a response. If found, the data is returned

immediately. If the data doesn’t exist in the cache (known as a

cache miss), it’s retrieved from a local database in a downstream

service (step #2). It’s then written to the cache for future

requests (step #3), and returned to the caller. Care must be taken

to periodically evict cached data so that the system remains timely

and consistent.

As a shared cache grows, it might prove beneficial to partition its

data across multiple nodes. Doing so can help minimize contention

and improve scalability. Many Caching services support the ability

to dynamically add and remove nodes and rebalance data across

partitions. This approach typically involves clustering. Clustering

exposes a collection of federated nodes as a seamless, single

cache.

Internally, however, the data is dispersed across the nodes

following a predefined distribution strategy that balances the load

evenly.

Azure Cache for Redis

https://docs.microsoft.com/azure/architecture/patterns/cache-aside
https://docs.microsoft.com/azure/architecture/patterns/cache-aside
https://www.techopedia.com/definition/6308/cache-miss

Azure Cache for Redis is a secure data caching and messaging broker

service, fully managed by Microsoft. Consumed as a Platform as a

Service (PaaS) offering, it provides high throughput and low-

latency access to data. The service is accessible to any

application within or outside of Azure.

The Azure Cache for Redis service manages access to open-source

Redis servers hosted across Azure data centers. The service acts as

a facade providing management, access control, and security. The

https://azure.microsoft.com/services/cache/

service natively supports a rich set of data structures, including

strings, hashes, lists, and sets. If your application already uses

Redis, it will work as-is with Azure Cache for Redis.

Azure Cache for Redis is more than a simple cache server. It can

support a number of scenarios to enhance a microservices

architecture:

• An in-memory data store

• A distributed non-relational database

• A message broker

• A configuration or discovery server

For advanced scenarios, a copy of the cached data can be persisted

to disk. If a catastrophic event disables both the primary and

replica caches, the cache is reconstructed from the most recent

snapshot.

Azure Redis Cache is available across a number of predefined

configurations and pricing tiers. The Premium tier features many

enterprise-level features such as clustering, data persistence,

geo- replication, and virtual-network isolation.

Elasticsearch in a cloud-native app

Elasticsearch is a distributed search and analytics system that

enables complex search capabilities across diverse types of data.

It’s open source and widely popular. Consider how the following

companies integrate Elasticsearch into their application:

• Wikipedia for full-text and incremental (search as you type)

searching.

• GitHub to index and expose over 8 million code repositories.

• Docker for making its container library discoverable.

Elasticsearch is built on top of the Apache Lucene full-text search

engine. Lucene provides high- performance document indexing and

querying. It indexes data with an inverted indexing scheme –

instead of mapping pages to keywords, it maps keywords to pages

just like a glossary at the end of a book. Lucene has powerful

query syntax capabilities and can query data by:

• Term (a full word)

• Prefix (starts-with word)

• Wildcard (using “*” or “?” filters)

• Phrase (a sequence of text in a document)

• Boolean value (complex searches combining queries)

While Lucene provides low-level plumbing for searching,

Elasticsearch provides the server that sits on top of Lucene.

https://docs.microsoft.com/azure/azure-cache-for-redis/cache-how-to-premium-persistence
https://docs.microsoft.com/azure/azure-cache-for-redis/cache-how-to-premium-persistence
https://docs.microsoft.com/azure/azure-cache-for-redis/cache-how-to-premium-persistence
https://docs.microsoft.com/azure/azure-cache-for-redis/cache-overview#service-tiers
https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://www.elastic.co/customers/github
https://www.elastic.co/customers/docker
https://lucene.apache.org/core/

Elasticsearch adds higher-level functionality to simplify working

Lucene, including a RESTful API to access Lucene’s indexing and

searching functionality. It also provides a distributed

infrastructure capable of massive scalability, fault tolerance, and

high availability.

For larger cloud-native applications with complex search

requirements, Elasticsearch is available as managed service in

Azure. The Microsoft Azure Marketplace features preconfigured

templates which developers can use to deploy an Elasticsearch

cluster on Azure.

From the Microsoft Azure Marketplace, developers can use

preconfigured templates built to quickly deploy an Elasticsearch

cluster on Azure. Using the Azure-managed offering, you can deploy

up to 50 data nodes, 20 coordinating nodes, and three dedicated

master nodes.

Summary

This chapter presented a detailed look at data in cloud-native

systems. We started by contrasting data storage in monolithic

applications with data storage patterns in cloud-native systems. We

looked at data patterns implemented in cloud-native systems,

including cross-service queries, distributed transactions, and

patterns to deal with high-volume systems. We contrasted SQL with

NoSQL data.

We looked at data storage options available in Azure that include

both Microsoft-centric and open- source options. Finally, we

discussed caching and Elasticsearch in a cloud-native application.

References

• Command and Query Responsibility Segregation (CQRS) pattern

• Event Sourcing pattern

• W hy isn’t R DBM S P art itio n T o lerant in CA P T heo rem a

nd why is it A va ilabl e?

• Materialized View

• All you really need to know about open source databases

• Compensating Transaction pattern

• Saga Pattern

• Saga Patterns | How to implement business transactions using

microservices

• Compensating Transaction pattern

• Getting Behind the 9-Ball: Cosmos DB Consistency Levels Explained

• Exploring the different types of NoSQL Databases Part II

• On RDBMS, NoSQL and NewSQL databases. Interview with John Ryan

• SQL vs NoSQL vs NewSQL: The Full Comparison

https://docs.microsoft.com/azure/architecture/patterns/cqrs
https://docs.microsoft.com/azure/architecture/patterns/event-sourcing
https://stackoverflow.com/questions/36404765/why-isnt-rdbms-partition-tolerant-in-cap-theorem-and-why-is-it-available
https://stackoverflow.com/questions/36404765/why-isnt-rdbms-partition-tolerant-in-cap-theorem-and-why-is-it-available
https://docs.microsoft.com/azure/architecture/patterns/materialized-view
https://www.ibm.com/blogs/systems/all-you-really-need-to-know-about-open-source-databases/
https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction
https://microservices.io/patterns/data/saga.html
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
https://docs.microsoft.com/azure/architecture/patterns/compensating-transaction
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases
http://www.odbms.org/blog/2018/03/on-rdbms-nosql-and-newsql-databases-interview-with-john-ryan/
https://www.xenonstack.com/blog/sql-vs-nosql-vs-newsql/

• DASH: Four Properties of Kubernetes-Native Databases

• CockroachDB

• TiDB

• YugabyteDB

• Vitess

https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://www.cockroachlabs.com/
https://pingcap.com/en/
https://www.yugabyte.com/
https://vitess.io/

• Elasticsearch: The Definitive Guide

• Introduction to Apache Lucene

https://shop.oreilly.com/product/0636920028505.do
https://www.baeldung.com/lucene

CHAPTER 6

Cloud-native

resiliency

Resiliency is the ability of your system to react to failure and

still remain functional. It’s not about avoiding failure, but

accepting failure and constructing your cloud-native services to

respond to it. You want to return to a fully functioning state

quickly as possible.

Unlike traditional monolithic applications, where everything runs

together in a single process, cloud- native systems embrace a

distributed architecture as shown in Figure 6-1:

Figure 6-1. Distributed cloud-native environment

In the previous figure, each microservice and cloud-based backing

service execute in a separate process, across server

infrastructure, communicating via network-based calls.

Operating in this environment, a service must be sensitive to many

different challenges:

• Unexpected network latency - the time for a service request to travel

to the receiver and back.

• Transient faults - short-lived network connectivity errors.

• Blockage by a long-running synchronous operation.

• A host process that has crashed and is being restarted or moved.

• An overloaded microservice that can’t respond for a short time.

• An in-flight orchestrator operation such as a rolling upgrade

or moving a service from one node to another.

https://12factor.net/backing-services
https://12factor.net/backing-services
https://docs.microsoft.com/azure/architecture/best-practices/transient-faults

• Hardware failures.

Cloud platforms can detect and mitigate many of these infrastructure

issues. It may restart, scale out, and even redistribute your service

to a different node. However, to take full advantage of this built-

in protection, you must design your services to react to it and

thrive in this dynamic environment.

In the following sections, we’ll explore defensive techniques that

your service and managed cloud resources can leverage to minimize

downtime and disruption.

Application resiliency patterns

The first line of defense is application resiliency.

While you could invest considerable time writing your own

resiliency framework, such products already exist. Polly is a

comprehensive .NET resilience and transient-fault-handling library

that allows developers to express resiliency policies in a fluent

and thread-safe manner. Polly targets applications built with

either the .NET Framework or .NET 6. The following table describes

the resiliency features, called policies, available in the Polly

Library. They can be applied individually or grouped together.

Policy Experience

Retry Configures retry operations on designated operations.

Circu

it

Break

er

Blocks requested operations for a predefined period when

faults exceed a configured threshold

Timeout Places limit on the duration for which a caller can wait

for a response.

Bulkhead Constrains actions to fixed-size resource pool to

prevent failing calls from swamping a resource.

Cache Stores responses automatically.

Fallback Defines structured behavior upon a failure.

Note how in the previous figure the resiliency policies apply to

request messages, whether coming from an external client or back-

end service. The goal is to compensate the request for a service

that might be momentarily unavailable. These short-lived

interruptions typically manifest themselves with the HTTP status

codes shown in the following table.

HTTP Status

Code

Cause

404 Not Found

https://dotnetfoundation.org/projects/polly

408 Request timeout

429 Too many requests (you’ve most

likely been throttled)

502 Bad gateway

503 Service unavailable

504 Gateway timeout

Question: Would you retry an HTTP Status Code of 403 - Forbidden?

No. Here, the system is functioning properly, but informing the

caller that they aren’t authorized to perform the requested

operation. Care must be taken to retry only those operations

caused by failures.

As recommended in Chapter 1, Microsoft developers constructing

cloud-native applications should target the .NET platform. Version

2.1 introduced the HTTPClientFactory library for creating HTTP

Client instances for interacting with URL-based resources.

Superseding the original HTTPClient class, the factory class

supports many enhanced features, one of which is tight integration

with the Polly resiliency library. With it, you can easily define

resiliency policies in the application Startup class to handle

partial failures and connectivity issues.

Next, let’s expand on retry and circuit breaker patterns.

Retry pattern

In a distributed cloud-native environment, calls to services and

cloud resources can fail because of transient (short-lived)

failures, which typically correct themselves after a brief period

of time.

Implementing a retry strategy helps a cloud-native service mitigate

these scenarios.

The Retry pattern enables a service to retry a failed request

operation a (configurable) number of times with an exponentially

increasing wait time. Figure 6-2 shows a retry in action.

Figure 6-2. Retry pattern in action

In the previous figure, a retry pattern has been implemented for a

request operation. It’s configured to allow up to four retries

https://www.stevejgordon.co.uk/introduction-to-httpclientfactory-aspnetcore
https://docs.microsoft.com/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly
https://docs.microsoft.com/azure/architecture/patterns/retry

before failing with a backoff interval (wait time) starting at two

seconds, which exponentially doubles for each subsequent attempt.

• The first invocation fails and returns an HTTP status code of

500. The application waits for two seconds and retries the

call.

• The second invocation also fails and returns an HTTP status

code of 500. The application now doubles the backoff interval

to four seconds and retries the call.

• Finally, the third call succeeds.

• In this scenario, the retry operation would have attempted up

to four retries while doubling the backoff duration before

failing the call.

• Had the 4th retry attempt failed, a fallback policy would be

invoked to gracefully handle the problem.

It’s important to increase the backoff period before retrying the

call to allow the service time to self- correct. It’s a best practice

to implement an exponentially increasing backoff (doubling the period

on each retry) to allow adequate correction time.

Circuit breaker pattern

While the retry pattern can help salvage a request entangled in a

partial failure, there are situations where failures can be caused

by unanticipated events that will require longer periods of time to

resolve. These faults can range in severity from a partial loss of

connectivity to the complete failure of a service. In these

situations, it’s pointless for an application to continually retry

an operation that is unlikely to succeed.

To make things worse, executing continual retry operations on a

non-responsive service can move you into a self-imposed denial of

service scenario where you flood your service with continual calls

exhausting resources such as memory, threads and database

connections, causing failure in unrelated parts of the system that

use the same resources.

In these situations, it would be preferable for the operation to

fail immediately and only attempt to invoke the service if it’s

likely to succeed.

The Circuit Breaker pattern can prevent an application from

repeatedly trying to execute an operation

that’s likely to fail. After a pre-defined number of failed calls,

it blocks all traffic to the service. Periodically, it will allow a

trial call to determine whether the fault has resolved. Figure 6-3

shows the Circuit Breaker pattern in action.

https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker

Figure 6-3. Circuit breaker pattern in action

In the previous figure, a Circuit Breaker pattern has been added to

the original retry pattern. Note how after 100 failed requests, the

circuit breakers opens and no longer allows calls to the service.

The CheckCircuit value, set at 30 seconds, specifies how often the

library allows one request to proceed to the service. If that call

succeeds, the circuit closes and the service is once again

available to traffic.

Keep in mind that the intent of the Circuit Breaker pattern is

different than that of the Retry pattern. The Retry pattern

enables an application to retry an operation in the expectation

that it will succeed. The Circuit Breaker pattern prevents an

application from doing an operation that is likely to fail.

Typically, an application will combine these two patterns by using

the Retry pattern to invoke an operation through a circuit breaker.

Testing for resiliency

Testing for resiliency cannot always be done the same way that you

test application functionality (by running unit tests, integration

tests, and so on). Instead, you must test how the end-to-end

workload performs under failure conditions, which only occur

intermittently. For example: inject failures by crashing processes,

expired certificates, make dependent services unavailable etc.

Frameworks like chaos-monkey can be used for such chaos testing.

Application resiliency is a must for handling problematic requested

operations. But, it’s only half of the

story. Next, we cover resiliency features available in the Azure

cloud.

Azure platform resiliency

Building a reliable application in the cloud is different from

traditional on-premises application development. While

historically you purchased higher-end hardware to scale up, in a

cloud environment you scale out. Instead of trying to prevent

failures, the goal is to minimize their effects and keep the

system stable.

That said, reliable cloud applications display distinct

characteristics:

• They’re resilient, recover gracefully from problems, and continue

to function.

• They’re highly available (HA) and run as designed in a healthy

state with no significant

downtime.

https://github.com/Netflix/chaosmonkey

Understanding how these characteristics work together - and how

they affect cost - is essential to building a reliable cloud-native

application. We’ll next look at ways that you can build resiliency

and availability into your cloud-native applications leveraging

features from the Azure cloud.

Design with resiliency

We’ve said resiliency enables your application to react to failure

and still remain functional. The whitepaper, Resilience in Azure

whitepaper, provides guidance for achieving resilience in the Azure

platform. Here are some key recommendations:

• Hardware failure. Build redundancy into the application by

deploying components across different fault domains. For

example, ensure that Azure VMs are placed in different racks

by

https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf

• Datacenter failure. Build redundancy into the application

with fault isolation zones across datacenters. For example,

ensure that Azure VMs are placed in different fault-

isolated datacenters by using Azure Availability Zones.

• Regional failure. Replicate the data and components into another

region so that applications can be quickly recovered. For

example, use Azure Site Recovery to replicate Azure VMs to

another Azure region.

• Heavy load. Load balance across instances to handle spikes in

usage. For example, put two or more Azure VMs behind a load

balancer to distribute traffic to all VMs.

• Accidental data deletion or corruption. Back up data so it can be

restored if there’s any deletion

or corruption. For example, use Azure Backup to periodically back

up your Azure VMs.

Design with redundancy

Failures vary in scope of impact. A hardware failure, such as a

failed disk, can affect a single node in a cluster. A failed

network switch could affect an entire server rack. Less common

failures, such as loss of power, could disrupt a whole datacenter.

Rarely, an entire region becomes unavailable.

Redundancy is one way to provide application resilience. The exact

level of redundancy needed depends upon your business requirements

and will affect both the cost and complexity of your system. For

example, a multi-region deployment is more expensive and more

complex to manage than a single-region deployment. You’ll need

operational procedures to manage failover and failback. The

additional cost and complexity might be justified for some business

scenarios, but not others.

To architect redundancy, you need to identify the critical paths in

your application, and then determine if there’s redundancy at each

point in the path? If a subsystem should fail, will the application

fail over to something else? Finally, you need a clear

understanding of those features built into the Azure cloud platform

that you can leverage to meet your redundancy requirements. Here

are recommendations for architecting redundancy:

• Deploy multiple instances of services. If your application

depends on a single instance of a service, it creates a

single point of failure. Provisioning multiple instances

improves both resiliency and scalability. When hosting in

Azure Kubernetes Service, you can declaratively configure

redundant instances (replica sets) in the Kubernetes manifest

file. The replica count value can be managed

programmatically, in the portal, or through autoscaling

https://docs.microsoft.com/azure/architecture/guide/design-principles/redundancy

features.

• Leveraging a load balancer. Load-balancing distributes your

application’s requests to healthy service instances and

automatically removes unhealthy instances from rotation. When

deploying to Kubernetes, load balancing can be specified in the

Kubernetes manifest file in the Services section.

• Plan for multiregion deployment. If you deploy your

application to a single region, and that region becomes

unavailable, your application will also become unavailable.

This may be unacceptable under the terms of your application’s

service level agreements. Instead, consider deploying your

application and its services across multiple regions. For

example, an Azure Kubernetes Service (AKS) cluster is deployed

to a single region. To protect your system from a regional

failure, you might deploy your application to multiple AKS

clusters across different

regions and use the Paired Regions feature to coordinate

platform updates and prioritize recovery efforts.

• Enable geo-replication. Geo-replication for services such as

Azure SQL Database and Cosmos DB will create secondary replicas

of your data across multiple regions. While both services will

automatically replicate data within the same region, geo-

replication protects you against a regional outage by enabling

you to fail over to a secondary region. Another best practice

for geo-replication centers around storing container images. To

deploy a service in AKS, you need to store and pull the image

from a repository. Azure Container Registry integrates with AKS

and can securely store container images. To improve performance

and availability, consider geo- replicating your images to a

registry in each region where you have an AKS cluster. Each AKS

cluster then pulls container images from the local container

registry in its region as shown in Figure 6-4:

Figure 6-4. Replicated resources across regions

• Implement a DNS traffic load balancer. Azure Traffic Manager

provides high-availability for critical applications by load-

balancing at the DNS level. It can route traffic to different

regions based on geography, cluster response time, and even

application endpoint health. For example, Azure Traffic Manager

can direct customers to the closest AKS cluster and application

instance. If you have multiple AKS clusters in different

regions, use Traffic Manager to control how traffic flows to the

applications that run in each cluster. Figure 6-5 shows this

scenario.

https://buildazure.com/2017/01/06/azure-region-pairs-explained/
https://docs.microsoft.com/azure/sql-database/sql-database-active-geo-replication
https://docs.microsoft.com/azure/sql-database/sql-database-active-geo-replication
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview

Figure 6-5. AKS and Azure Traffic Manager

Design for scalability

The cloud thrives on scaling. The ability to increase/decrease

system resources to address increasing/decreasing system load is a

key tenet of the Azure cloud. But, to effectively scale an

application, you need an understanding of the scaling features of

each Azure service that you include in your application. Here are

recommendations for effectively implementing scaling in your

system.

• Design for scaling. An application must be designed for

scaling. To start, services should be stateless so that

requests can be routed to any instance. Having stateless

services also means that adding or removing an instance

doesn’t adversely impact current users.

• Partition workloads. Decomposing domains into independent,

self-contained microservices enable each service to scale

independently of others. Typically, services will have

different scalability needs and requirements. Partitioning

enables you to scale only what needs to be scaled without

the unnecessary cost of scaling an entire application.

• Favor scale-out. Cloud-based applications favor scaling out

resources as opposed to scaling up. Scaling out (also known as

horizontal scaling) involves adding more service resources to an

existing system to meet and share a desired level of

performance. Scaling up (also known as vertical scaling)

involves replacing existing resources with more powerful

hardware (more disk, memory, and processing cores). Scaling out

can be invoked automatically with the autoscaling features

available in some Azure cloud resources. Scaling out across

multiple resources also adds redundancy to the overall system.

Finally scaling up a single resource is typically more expensive

than scaling out across many smaller resources. Figure 6-6 shows

the two approaches:

Figure 6-6. Scale up versus scale out

• Scale proportionally. When scaling a service, think in terms of

resource sets. If you were to dramatically scale out a specific

service, what impact would that have on back-end data stores,

caches and dependent services? Some resources such as Cosmos DB

can scale out proportionally, while many others can’t. You want

to ensure that you don’t scale out a resource to a point where

it will exhaust other associated resources.

• Avoid affinity. A best practice is to ensure a node doesn’t

require local affinity, often referred to as a sticky session.

A request should be able to route to any instance. If you need

to persist state, it should be saved to a distributed cache,

such as Azure Redis cache.

• Take advantage of platform autoscaling features. Use built-in

autoscaling features whenever possible, rather than custom or

third-party mechanisms. Where possible, use scheduled scaling

rules to ensure that resources are available without a startup

delay, but add reactive autoscaling to the rules as

appropriate, to cope with unexpected changes in demand. For

more information, see Autoscaling guidance.

• Scale out aggressively. A final practice would be to scale out

aggressively so that you can quickly meet immediate spikes in

traffic without losing business. And, then scale in (that is,

remove unneeded instances) conservatively to keep the system

stable. A simple way to implement this is to set the cool down

period, which is the time to wait between scaling operations,

to five minutes for adding resources and up to 15 minutes for

removing instances.

Built-in retry in services

We encouraged the best practice of implementing programmatic retry

operations in an earlier section. Keep in mind that many Azure

services and their corresponding client SDKs also include retry

https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cache/
https://docs.microsoft.com/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/azure/architecture/best-practices/auto-scaling

mechanisms. The following list summarizes retry features in the

many of the Azure services that are discussed in this book:

• Azure Cosmos DB. The DocumentClient class from the client API

automatically retires failed attempts. The number of retries

and maximum wait time are configurable. Exceptions thrown by

the client API are either requests that exceed the retry policy

or non-transient errors.

https://docs.microsoft.com/dotnet/api/microsoft.azure.documents.client.documentclient

• Azure Redis Cache. The Redis StackExchange client uses a

connection manager class that includes retries on failed

attempts. The number of retries, specific retry policy and wait

time are all configurable.

• Azure Service Bus. The Service Bus client exposes a RetryPolicy

class that can be configured with a back-off interval, retry

count, and TerminationTimeBuffer, which specifies the maximum

time an operation can take. The default policy is nine maximum

retry attempts with a 30-second backoff period between

attempts.

• Azure SQL Database. Retry support is provided when using the

Entity Framework Core library.

• Azure Storage. The storage client library support retry

operations. The strategies vary across Azure storage tables,

blobs, and queues. As well, alternate retries switch between

primary and secondary storage services locations when the geo-

redundancy feature is enabled.

• Azure Event Hubs. The Event Hub client library features a

RetryPolicy property, which includes a configurable exponential

backoff feature.

Resilient communications

Throughout this book, we’ve embraced a microservice-based

architectural approach. While such an architecture provides

important benefits, it presents many challenges:

• Out-of-process network communication. Each microservice

communicates over a network protocol that introduces

network congestion, latency, and transient faults.

• Service discovery. How do microservices discover and

communicate with each other when running across a cluster

of machines with their own IP addresses and ports?

• Resiliency. How do you manage short-lived failures and keep the

system stable?

• Load balancing. How does inbound traffic get distributed

across multiple instances of a microservice?

• Security. How are security concerns such as transport-

level encryption and certificate management enforced?

• Distributed Monitoring. - How do you correlate and capture

traceability and monitoring for a single request across

multiple consuming microservices?

You can address these concerns with different libraries and

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.retryexponential.terminationtimebuffer
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.retryexponential.terminationtimebuffer
https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency

frameworks, but the implementation can be expensive, complex, and

time-consuming. You also end up with infrastructure concerns

coupled to business logic.

Service mesh

A better approach is an evolving technology entitled Service

Mesh. A service mesh is a configurable infrastructure layer with

built-in capabilities to handle service communication and the

other challenges mentioned above. It decouples these concerns by

moving them into a service proxy. The

https://www.nginx.com/blog/what-is-a-service-mesh/

proxy is deployed into a separate process (called a sidecar) to

provide isolation from business code. However, the sidecar is

linked to the service - it’s created with it and shares its

lifecycle. Figure 6-7 shows this scenario.

Figure 6-7. Service mesh with a side car

In the previous figure, note how the proxy intercepts and manages

communication among the microservices and the cluster.

A service mesh is logically split into two disparate components: A

data plane and control plane. Figure 6-8 shows these components and

their responsibilities.

Figure 6-8. Service mesh control and data plane

Once configured, a service mesh is highly functional. It can

retrieve a corresponding pool of instances from a service discovery

endpoint. The mesh can then send a request to a specific instance,

https://docs.microsoft.com/azure/architecture/patterns/sidecar
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc

recording

the latency and response type of the result. A mesh can choose the

instance most likely to return a fast response based on many

factors, including its observed latency for recent requests.

If an instance is unresponsive or fails, the mesh will retry the

request on another instance. If it returns errors, a mesh will

evict the instance from the load-balancing pool and restate it

after it heals. If a request times out, a mesh can fail and then

retry the request. A mesh captures and emits metrics and

distributed tracing to a centralized metrics system.

Istio and Envoy

While a few service mesh options currently exist, Istio is the most

popular at the time of this writing. Istio is a joint venture from

IBM, Google, and Lyft. It’s an open-source offering that can be

integrated into a new or existing distributed application. The

technology provides a consistent and complete solution to secure,

connect, and monitor microservices. Its features include:

• Secure service-to-service communication in a cluster with

strong identity-based authentication and authorization.

• Automatic load balancing for HTTP, gRPC, WebSocket, and TCP

traffic.

• Fine-grained control of traffic behavior with rich routing

rules, retries, failovers, and fault injection.

• A pluggable policy layer and configuration API supporting

access controls, rate limits, and quotas.

• Automatic metrics, logs, and traces for all traffic within a

cluster, including cluster ingress and egress.

A key component for an Istio implementation is a proxy service

entitled the Envoy proxy. It runs alongside each service and

provides a platform-agnostic foundation for the following features:

• Dynamic service discovery.

• Load balancing.

• TLS termination.

• HTTP and gRPC proxies.

• Circuit breaker resiliency.

• Health checks.

• Rolling updates with canary deployments.

As previously discussed, Envoy is deployed as a sidecar to each

microservice in the cluster.

Integration with Azure Kubernetes Services

The Azure cloud embraces Istio and provides direct support for it

within Azure Kubernetes Services. The following links can help you

get started:

https://istio.io/docs/concepts/what-is-istio/
https://grpc.io/
https://grpc.io/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://martinfowler.com/bliki/CanaryRelease.html

• Installing Istio in AKS

• Using AKS and Istio

https://docs.microsoft.com/azure/aks/istio-install
https://docs.microsoft.com/azure/aks/istio-scenario-routing

References

• Polly

• Retry pattern

• Circuit Breaker pattern

• Resilience in Azure whitepaper

• network latency

• Redundancy

• geo-replication

• Azure Traffic Manager

• Autoscaling guidance

• Istio

• Envoy proxy

https://dotnetfoundation.org/projects/polly
https://docs.microsoft.com/azure/architecture/patterns/retry
https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker
https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://www.techopedia.com/definition/8553/network-latency
https://docs.microsoft.com/azure/architecture/guide/design-principles/redundancy
https://docs.microsoft.com/azure/sql-database/sql-database-active-geo-replication
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/azure/architecture/best-practices/auto-scaling
https://istio.io/docs/concepts/what-is-istio/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy

CHAPTER 7

Monitoring and

health

Microservices and cloud-native applications go hand in hand with

good DevOps practices. DevOps is many things to many people but

perhaps one of the better definitions comes from cloud advocate

and DevOps evangelist Donovan Brown:

“DevOps is the union of people, process, and products to enable continuous

delivery of value to our

end users.”

Unfortunately, with terse definitions, there’s always room to say

more things. One of the key components of DevOps is ensuring that

the applications running in production are functioning properly and

efficiently. To gauge the health of the application in production,

it’s necessary to monitor the various logs and metrics being

produced from the servers, hosts, and the application proper. The

number of different services running in support of a cloud-native

application makes monitoring the health of individual components and

the application as a whole a critical challenge.

Observability patterns

Just as patterns have been developed to aid in the layout of code

in applications, there are patterns for operating applications in

a reliable way. Three useful patterns in maintaining applications

have emerged: logging, monitoring, and alerts.

When to use logging

No matter how careful we are, applications almost always behave in

unexpected ways in production. When users report problems with an

application, it’s useful to be able to see what was going on with

the app when the problem occurred. One of the most tried and true

ways of capturing information about what an application is doing

while it’s running is to have the application write down what it’s

doing. This process is known as logging. Anytime failures or

problems occur in production, the goal should be to reproduce the

conditions under which the failures occurred, in a non-production

environment. Having good logging in place provides a roadmap for

developers to follow in order to duplicate problems in an

environment that can be tested and experimented with.

Challenges when logging with cloud-native applications

In traditional applications, log files are typically stored on the local

machine. In fact, on Unix-like

operating systems, there’s a folder structure defined to hold any logs,

typically under /var/log.

Figure 7-1. Logging to a file in a monolithic app.

The usefulness of logging to a flat file on a single machine is

vastly reduced in a cloud environment. Applications producing logs

may not have access to the local disk or the local disk may be

highly transient as containers are shuffled around physical

machines. Even simple scaling up of monolithic applications across

multiple nodes can make it challenging to locate the appropriate

file-based log file.

Figure 7-2. Logging to files in a scaled monolithic app.

Cloud-native applications developed using a microservices

architecture also pose some challenges for file-based loggers. User

requests may now span multiple services that are run on different

machines

and may include serverless functions with no access to a local file

system at all. It would be very challenging to correlate the logs

from a user or a session across these many services and machines.

Figure 7-3. Logging to local files in a microservices app.

Finally, the number of users in some cloud-native applications is

high. Imagine that each user generates a hundred lines of log

messages when they log into an application. In isolation, that is

manageable, but multiply that over 100,000 users and the volume of

logs becomes large enough that specialized tools are needed to

support effective use of the logs.

Logging in cloud-native applications

Every programming language has tooling that permits writing logs,

and typically the overhead for writing these logs is low. Many of

the logging libraries provide logging different kinds of

criticalities, which can be tuned at run time. For instance, the

Serilog library is a popular structured logging library for .NET

that provides the following logging levels:

• Verbose

• Debug

• Information

• Warning

• Error

• Fatal

https://serilog.net/

These different log levels provide granularity in logging. When the

application is functioning properly in production, it may be

configured to only log important messages. When the application is

misbehaving, then the log level can be increased so more verbose

logs are gathered. This balances performance against ease of

debugging.

The high performance of logging tools and the tunability of

verbosity should encourage developers to log frequently. Many favor

a pattern of logging the entry and exit of each method. This

approach may sound like overkill, but it’s infrequent that

developers will wish for less logging. In fact, it’s not uncommon

to perform deployments for the sole purpose of adding logging

around a problematic method. Err on the side of too much logging

and not on too little. Some tools can be used to automatically

provide this kind of logging.

Because of the challenges associated with using file-based logs in

cloud-native apps, centralized logs are preferred. Logs are

collected by the applications and shipped to a central logging

application which indexes and stores the logs. This class of system

can ingest tens of gigabytes of logs every day.

It’s also helpful to follow some standard practices when building

logging that spans many services.

For instance, generating a correlation ID at the start of a lengthy

interaction, and then logging it in each message that is related to

that interaction, makes it easier to search for all related

messages. One need only find a single message and extract the

correlation ID to find all the related messages.

Another example is ensuring that the log format is the same for

every service, whatever the language or logging library it uses.

This standardization makes reading logs much easier. Figure 7-4

demonstrates how a microservices architecture can leverage

centralized logging as part of its workflow.

https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/

Figure 7-4. Logs from various sources are ingested into a centralized log

store.

Challenges with detecting and responding to

potential app health issues

Some applications aren’t mission critical. Maybe they’re only used

internally, and when a problem occurs, the user can contact the

team responsible and the application can be restarted. However,

customers often have higher expectations for the applications they

consume. You should know when problems occur with your application

before users do, or before users notify you. Otherwise, the first

you know about a problem may be when you notice an angry deluge of

social media posts deriding your application or even your

organization.

Some scenarios you may need to consider include:

• One service in your application keeps failing and

restarting, resulting in intermittent slow responses.

• At some times of the day, your application’s response time is

slow.

• After a recent deployment, load on the database has tripled.

Implemented properly, monitoring can let you know about conditions

that will lead to problems, letting you address underlying

conditions before they result in any significant user impact.

Monitoring cloud-native apps

Some centralized logging systems take on an additional role of

collecting telemetry outside of pure logs. They can collect

metrics, such as time to run a database query, average response

time from a web server, and even CPU load averages and memory

pressure as reported by the operating system. In conjunction with

the logs, these systems can provide a holistic view of the health

of nodes in the system and the application as a whole.

The metric-gathering capabilities of the monitoring tools can also

be fed manually from within the application. Business flows that

are of particular interest such as new users signing up or orders

being placed, may be instrumented such that they increment a

counter in the central monitoring system.

This aspect unlocks the monitoring tools to not only monitor the

health of the application but the health of the business.

Queries can be constructed in the log aggregation tools to look for

certain statistics or patterns, which can then be displayed in

graphical form, on custom dashboards. Frequently, teams will invest

in large, wall-mounted displays that rotate through the statistics

related to an application. This way, it’s simple to see the problems

as they occur.

Cloud-native monitoring tools provide real-time telemetry and

insight into apps regardless of whether they’re single-process

monolithic applications or distributed microservice architectures.

They include tools that allow collection of data from the app as

well as tools for querying and displaying information about the

app’s health.

Challenges with reacting to critical problems in

cloud-native apps

If you need to react to problems with your application, you need

some way to alert the right personnel. This is the third cloud-

native application observability pattern and depends on logging and

monitoring. Your application needs to have logging in place to

allow problems to be diagnosed, and

in some cases to feed into monitoring tools. It needs monitoring to

aggregate application metrics and health data in one place. Once

this has been established, rules can be created that will trigger

alerts when certain metrics fall outside of acceptable levels.

Generally, alerts are layered on top of monitoring such that

certain conditions trigger appropriate alerts to notify team

members of urgent problems. Some scenarios that may require alerts

include:

• One of your application’s services is not responding after 1

minute of downtime.

• Your application is returning unsuccessful HTTP responses to more

than 1% of requests.

• Your application’s average response time for key endpoints exceeds

2000 ms.

Alerts in cloud-native apps

You can craft queries against the monitoring tools to look for

known failure conditions. For instance, queries could search

through the incoming logs for indications of HTTP status code 500,

which indicates a problem on a web server. As soon as one of these

is detected, then an e-mail or an SMS could be sent to the owner

of the originating service who can begin to investigate.

Typically, though, a single 500 error isn’t enough to determine

that a problem has occurred. It could mean that a user mistyped

their password or entered some malformed data. The alert queries

can be crafted to only fire when a larger than average number of

500 errors are detected.

One of the most damaging patterns in alerting is to fire too many

alerts for humans to investigate. Service owners will rapidly

become desensitized to errors that they’ve previously investigated

and found to be benign. Then, when true errors occur, they’ll be

lost in the noise of hundreds of false positives. The parable of

the Boy Who Cried Wolf is frequently told to children to warn them

of this very danger. It’s important to ensure that the alerts that

do fire are indicative of a real problem.

Logging with Elastic Stack

There are many good centralized logging tools and they vary in cost

from being free, open-source tools, to more expensive options. In

many cases, the free tools are as good as or better than the paid

offerings. One such tool is a combination of three open-source

components: Elasticsearch, Logstash, and Kibana.

Collectively these tools are known as the Elastic Stack or ELK stack.

https://en.wikipedia.org/wiki/The_Boy_Who_Cried_Wolf

Elastic Stack

The Elastic Stack is a powerful option for gathering information

from a Kubernetes cluster. Kubernetes supports sending logs to an

Elasticsearch endpoint, and for the most part, all you need to get

started is to set the environment variables as shown in Figure 7-5:

Figure 7-5. Configuration variables for Kubernetes

This step will install Elasticsearch on the cluster and target sending

all the cluster logs to it.

KUBE_LOGGING_DESTINATION=elasticse
arch KUBE_ENABLE_NODE_LOGGING=true

https://v1-19.docs.kubernetes.io/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/
https://v1-19.docs.kubernetes.io/docs/tasks/debug-application-cluster/logging-elasticsearch-kibana/

Figure 7-6. An example of a Kibana dashboard showing the results of a

query against logs that are ingested from Kubernetes

What are the advantages of Elastic Stack?

Elastic Stack provides centralized logging in a low-cost,

scalable, cloud-friendly manner. Its user interface streamlines

data analysis so you can spend your time gleaning insights from

your data instead of fighting with a clunky interface. It supports

a wide variety of inputs so as your distributed application spans

more and different kinds of services, you can expect to continue

to be able to feed log and metric data into the system. The

Elastic Stack also supports fast searches even across large data

sets, making it possible even for large applications to log

detailed data and still be able to have visibility into it in a

performant fashion.

Logstash

The first component is Logstash. This tool is used to gather log

information from a large variety of different sources. For

instance, Logstash can read logs from disk and also receive

messages from logging libraries like Serilog. Logstash can do some

basic filtering and expansion on the logs as they arrive. For

instance, if your logs contain IP addresses then Logstash may be

configured to do a geographical lookup and obtain a country or

even city of origin for that message.

Serilog is a logging library for .NET languages, which allows for

parameterized logging. Instead of generating a textual log message

that embeds fields, parameters are kept separate. This library

allows for more intelligent filtering and searching. A sample

Serilog configuration for writing to Logstash appears in Figure 7-

https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://serilog.net/
https://serilog.net/

7.

Figure 7-7. Serilog config for writing log information directly to logstash

over HTTP

Logstash would use a configuration like the one shown in Figure 7-8.

var log = new
LoggerConfiguration()

.WriteTo.Http("http://localhost:8080")

.CreateLogger();

Figure 7-8. A Logstash configuration for consuming logs from Serilog

For scenarios where extensive log manipulation isn’t needed there’s

an alternative to Logstash known as Beats. Beats is a family of

tools that can gather a wide variety of data from logs to network

data and uptime information. Many applications will use both

Logstash and Beats.

Once the logs have been gathered by Logstash, it needs somewhere

to put them. While Logstash supports many different outputs, one

of the more exciting ones is Elasticsearch.

Elasticsearch

Elasticsearch is a powerful search engine that can index logs as

they arrive. It makes running queries against the logs quick.

Elasticsearch can handle huge quantities of logs and, in extreme

cases, can be scaled out across many nodes.

Log messages that have been crafted to contain parameters or that

have had parameters split from them through Logstash processing,

can be queried directly as Elasticsearch preserves this

information.

A query that searches for the top 10 pages visited by

jill@example.com, appears in Figure 7-9.

Figure 7-9. An Elasticsearch query for finding top 10 pages visited by a user

input {
http {

#default host
0.0.0.0:8080 codec =>
json
}

}

output {
elasticsearch {

hosts =>
"elasticsearch:9200"
index=>"sales-%{+xxxx.ww}"
}

}

"query":
{

"match": {
"user": "jill@example.com"

}
},
"aggregatio

ns": {
"top_10_pages"
: {

"terms
": { "field":
"page",
"size": 10

}
}

}

https://www.elastic.co/products/beats
https://www.elastic.co/products/beats
mailto:jill@example.com
mailto:jill@example.com

Visualizing information with Kibana web dashboards

The final component of the stack is Kibana. This tool is used to

provide interactive visualizations in a web dashboard. Dashboards

may be crafted even by users who are non-technical. Most data that

is resident in the Elasticsearch index, can be included in the Kibana

dashboards. Individual users may

have different dashboard desires and Kibana enables this

customization through allowing user- specific dashboards.

Installing Elastic Stack on Azure

The Elastic stack can be installed on Azure in many ways. As

always, it’s possible to provision virtual machines and install

Elastic Stack on them directly. This option is preferred by some

experienced users as it offers the highest degree of

customizability. Deploying on infrastructure as a service

introduces significant management overhead forcing those who take

that path to take ownership of all the tasks associated with

infrastructure as a service such as securing the machines and

keeping up-to-date with patches.

An option with less overhead is to make use of one of the many

Docker containers on which the Elastic Stack has already been

configured. These containers can be dropped into an existing

Kubernetes cluster and run alongside application code. The

sebp/elk container is a well-documented and tested Elastic Stack

container.

Another option is a recently announced ELK-as-a-service offering.

References

• Install Elastic Stack on Azure

Monitoring in Azure Kubernetes

Services

The built-in logging in Kubernetes is primitive. However, there are

some great options for getting the logs out of Kubernetes and into a

place where they can be properly analyzed. If you need to monitor

your AKS clusters, configuring Elastic Stack for Kubernetes is a

great solution.

Azure Monitor for Containers

Azure Monitor for Containers supports consuming logs from not just

Kubernetes but also from other orchestration engines such as DC/OS,

Docker Swarm, and Red Hat OpenShift.

https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-elasticsearch
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-elasticsearch
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-elasticsearch
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-elasticsearch
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-elasticsearch
https://elk-docker.readthedocs.io/
https://devops.com/logz-io-unveils-azure-open-source-elk-monitoring-solution/
https://devops.com/logz-io-unveils-azure-open-source-elk-monitoring-solution/
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-elasticsearch
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-overview

Figure 7-10. Consuming logs from various containers

Prometheus is a popular open source metric monitoring solution. It

is part of the Cloud Native Compute Foundation. Typically, using

Prometheus requires managing a Prometheus server with its own

store. However, Azure Monitor for Containers provides direct

integration with Prometheus metrics endpoints, so a separate

server is not required.

Log and metric information is gathered not just from the

containers running in the cluster but also from the cluster hosts

themselves. It allows correlating log information from the two

making it much easier to track down an error.

Installing the log collectors differs on Windows and Linux

clusters. But in both cases the log collection is implemented as a

Kubernetes DaemonSet, meaning that the log collector is run as a

container on each of the nodes.

No matter which orchestrator or operating system is running the

Azure Monitor daemon, the log information is forwarded to the same

Azure Monitor tools with which users are familiar. This approach

ensures a parallel experience in environments that mix different

log sources such as a hybrid Kubernetes/Azure Functions

environment.

https://prometheus.io/
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-prometheus-integration
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-prometheus-integration
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-prometheus-integration
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-prometheus-integration
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-prometheus-integration
https://docs.microsoft.com/azure/azure-monitor/insights/containers#configure-a-log-analytics-windows-agent-for-kubernetes
https://docs.microsoft.com/azure/azure-monitor/insights/containers#configure-a-log-analytics-linux-agent-for-kubernetes
https://docs.microsoft.com/azure/azure-monitor/insights/containers#configure-a-log-analytics-linux-agent-for-kubernetes
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Figure 7-11. A sample dashboard showing logging and metric information from

many running containers.

Log.Finalize()

Logging is one of the most overlooked and yet most important parts

of deploying any application at scale. As the size and complexity

of applications increase, then so does the difficulty of debugging

them. Having top quality logs available makes debugging much easier

and moves it from the realm of “nearly impossible” to “a pleasant

experience”.

Azure Monitor

No other cloud provider has as mature of a cloud application

monitoring solution than that found in Azure. Azure Monitor is an

umbrella name for a collection of tools designed to provide

visibility into the state of your system. It helps you understand

how your cloud-native services are performing and proactively

identifies issues affecting them. Figure 7-12 presents a high level

of view of Azure Monitor.

Figure 7-12. High-level view of Azure Monitor.

Gathering logs and metrics

The first step in any monitoring solution is to gather as much

data as possible. The more data gathered, the deeper the insights.

Instrumenting systems has traditionally been difficult. Simple

Network Management Protocol (SNMP) was the gold standard protocol

for collecting machine level information, but it required a great

deal of knowledge and configuration. Fortunately, much of this

hard work has been eliminated as the most common metrics are

gathered automatically by Azure Monitor.

Application level metrics and events aren’t possible to instrument

automatically because they’re specific to the application being

deployed. In order to gather these metrics, there are SDKs and APIs

available to directly report such information, such as when a

customer signs up or completes an order. Exceptions can also be

captured and reported back into Azure Monitor via Application

Insights. The SDKs support most every language found in Cloud

Native Applications including Go, Python, JavaScript, and the .NET

languages.

The ultimate goal of gathering information about the state of your

application is to ensure that your end users have a good

experience. What better way to tell if users are experiencing

issues than doing outside-in web tests? These tests can be as

simple as pinging your website from locations around the world or

as involved as having agents log into the site and simulate user

actions.

https://docs.microsoft.com/azure/azure-monitor/app/api-custom-events-metrics
https://docs.microsoft.com/azure/azure-monitor/app/api-custom-events-metrics
https://docs.microsoft.com/azure/azure-monitor/app/api-custom-events-metrics
https://docs.microsoft.com/azure/azure-monitor/app/api-custom-events-metrics
https://docs.microsoft.com/azure/azure-monitor/app/monitor-web-app-availability

Reporting data

Once the data is gathered, it can be manipulated, summarized, and

plotted into charts, which allow users to instantly see when there

are problems. These charts can be gathered into dashboards or into

Workbooks, a multi-page report designed to tell a story about some

aspect of the system.

No modern application would be complete without some artificial

intelligence or machine learning. To this end, data can be passed

to the various machine learning tools in Azure to allow you to

extract trends and information that would otherwise be hidden.

Application Insights provides a powerful (SQL-like) query language

called Kusto that can query records, summarize them, and even plot

charts. For example, the following query will locate all records

for the month of November 2007, group them by state, and plot

the top 10 as a pie chart.

Figure 7-13 shows the results of this Application Insights Query.

Figure 7-13. Application Insights query results.

There is a playground for experimenting with Kusto queries.

Reading sample queries can also be instructive.

Dashboards

There are several different dashboard technologies that may be used

to surface the information from Azure Monitor. Perhaps the simplest

is to just run queries in Application Insights and plot the data

into a chart.

StormEvents
| where StartTime >= datetime(2007-11-01) and StartTime < datetime(2007-12-01)
| summarize count() by State
| top 10 by count_
| render piechart

https://www.youtube.com/watch?v=Cuza-I1g9tw
https://www.youtube.com/watch?v=Cuza-I1g9tw
https://dataexplorer.azure.com/clusters/help/databases/Samples
https://docs.microsoft.com/azure/kusto/query/samples
https://docs.microsoft.com/azure/azure-monitor/learn/tutorial-app-dashboards
https://docs.microsoft.com/azure/azure-monitor/learn/tutorial-app-dashboards
https://docs.microsoft.com/azure/azure-monitor/learn/tutorial-app-dashboards
https://docs.microsoft.com/azure/azure-monitor/learn/tutorial-app-dashboards
https://docs.microsoft.com/azure/azure-monitor/learn/tutorial-app-dashboards

Figure 7-14. An example of Application Insights charts embedded in the main

Azure Dashboard.

These charts can then be embedded in the Azure portal proper

through use of the dashboard feature. For users with more exacting

requirements, such as being able to drill down into several tiers

of data, Azure Monitor data is available to Power BI. Power BI is

an industry-leading, enterprise class, business intelligence tool

that can aggregate data from many different data sources.

https://powerbi.microsoft.com/
https://powerbi.microsoft.com/

Figure 7-15. An example Power BI dashboard.

Alerts

Sometimes, having data dashboards is insufficient. If nobody is

awake to watch the dashboards, then it can still be many hours

before a problem is addressed, or even detected. To this end, Azure

Monitor also provides a top notch alerting solution. Alerts can be

triggered by a wide range of conditions including:

• Metric values

• Log search queries

• Activity Log events

• Health of the underlying Azure platform

• Tests for web site availability

When triggered, the alerts can perform a wide variety of tasks. On

the simple side, the alerts may just send an e-mail notification to

a mailing list or a text message to an individual. More involved

https://docs.microsoft.com/azure/azure-monitor/platform/alerts-overview
https://docs.microsoft.com/azure/azure-monitor/platform/alerts-overview

alerts

might trigger a workflow in a tool such as PagerDuty, which is

aware of who is on call for a particular application. Alerts can

trigger actions in Microsoft Flow unlocking near limitless

possibilities for workflows.

As common causes of alerts are identified, the alerts can be

enhanced with details about the common causes of the alerts and the

steps to take to resolve them. Highly mature cloud-native

application deployments may opt to kick off self-healing tasks,

which perform actions such as removing failing nodes from a scale

set or triggering an autoscaling activity. Eventually it may no

longer be necessary to wake up on-call personnel at 2AM to resolve

a live-site issue as the system will be able to adjust itself to

compensate or at least limp along until somebody arrives at work

the next morning.

Azure Monitor automatically leverages machine learning to

understand the normal operating parameters of deployed

applications. This approach enables it to detect services that are

operating outside of their normal parameters. For instance, the

typical weekday traffic on the site might be 10,000 requests per

minute. And then, on a given week, suddenly the number of requests

hits a highly unusual 20,000 requests per minute. Smart Detection

will notice this deviation from the norm and trigger an alert. At

the same time, the trend analysis is smart enough to avoid firing

false positives when the traffic load is expected.

References

• Azure Monitor

https://flow.microsoft.com/
https://docs.microsoft.com/azure/azure-monitor/app/proactive-diagnostics
https://docs.microsoft.com/azure/azure-monitor/app/proactive-diagnostics
https://docs.microsoft.com/azure/azure-monitor/overview

CHAPTER 8

Cloud-native

identity

Most software applications need to have some knowledge of the user

or process that is calling them. The user or process interacting

with an application is known as a security principal, and the

process of authenticating and authorizing these principals is known

as identity management, or simply identity. Simple applications may

include all of their identity management within the application,

but this approach doesn’t scale well with many applications and

many kinds of security principals. Windows supports the use of

Active Directory to provide centralized authentication and

authorization.

While this solution is effective within corporate networks, it

isn’t designed for use by users or applications that are outside

of the AD domain. With the growth of Internet-based applications

and the rise of cloud-native apps, security models have evolved.

In today’s cloud-native identity model, architecture is assumed to

be distributed. Apps can be deployed anywhere and may communicate

with other apps anywhere. Clients may communicate with these apps

from anywhere, and in fact, clients may consist of any combination

of platforms and devices. Cloud-native identity solutions use open

standards to achieve secure application access from clients. These

clients range from human users on PCs or phones, to other apps

hosted anywhere online, to set-top boxes and IOT devices running

any software platform anywhere in the world.

Modern cloud-native identity solutions typically use access tokens

that are issued by a secure token service/server (STS) to a

security principal once their identity is determined. The access

token, typically a JSON Web Token (JWT), includes claims about the

security principal. These claims will minimally include the user’s

identity but may also include other claims that can be used by

applications to determine the level of access to grant the

principal.

Typically, the STS is only responsible for authenticating the

principal. Determining their level of access to resources is left

to other parts of the application.

References

• Microsoft identity platform

Authentication and authorization in

cloud-native apps

Authentication is the process of determining the identity of a

security principal. Authorization is the act of granting an

authenticated principal permission to perform an action or access a

resource.

Sometimes authentication is shortened to AuthN and authorization is

shortened to AuthZ. Cloud-

https://docs.microsoft.com/azure/active-directory/develop/

native applications need to rely on open HTTP-based protocols to

authenticate security principals since both clients and

applications could be running anywhere in the world on any platform

or device. The only common factor is HTTP.

Many organizations still rely on local authentication services like

Active Directory Federation Services (ADFS). While this approach

has traditionally served organizations well for on premises

authentication needs, cloud-native applications benefit from

systems designed specifically for the cloud. A recent 2019 United

Kingdom National Cyber Security Centre (NCSC) advisory states that

“organizations using Azure AD as their primary authentication

source will actually lower their risk compared to ADFS.”

Some reasons outlined in this analysis include:

• Access to full set of Microsoft credential protection

technologies.

• Most organizations are already relying on Azure AD to some

extent.

• Double hashing of NTLM hashes ensures compromise won’t allow

credentials that work in local

Active Directory.

References

• Authentication basics

• Access tokens and claims

• It may be time to ditch your on premises authentication services

Azure Active Directory

Microsoft Azure Active Directory (Azure AD) offers identity and

access management as a service. Customers use it to configure and

maintain who users are, what information to store about them, who

can access that information, who can manage it, and what apps can

access it. AAD can authenticate users for applications configured

to use it, providing a single sign-on (SSO) experience. It can be

used on its own or be integrated with Windows AD running on

premises.

Azure AD is built for the cloud. It’s truly a cloud-native identity

solution that uses a REST-based Graph API and OData syntax for

queries, unlike Windows AD, which uses LDAP. On premises Active

Directory can sync user attributes to the cloud using Identity Sync

Services, allowing all authentication to take place in the cloud

using Azure AD. Alternately, authentication can be configured via

Connect to pass back to local Active Directory via ADFS to be

completed by Windows AD on premises.

https://oxfordcomputergroup.com/resources/o365-security-native-cloud-authentication/
https://docs.microsoft.com/azure/active-directory/develop/authentication-scenarios
https://docs.microsoft.com/azure/active-directory/develop/access-tokens
https://oxfordcomputergroup.com/resources/o365-security-native-cloud-authentication/

Azure AD supports company branded sign-in screens, multi-factory

authentication, and cloud-based application proxies that are used

to provide SSO for applications hosted on premises. It offers

different kinds of security reporting and alert capabilities.

References

• Microsoft identity platform

https://docs.microsoft.com/azure/active-directory/develop/

IdentityServer for cloud-native

applications

IdentityServer is an authentication server that implements OpenID

Connect (OIDC) and OAuth 2.0 standards for ASP.NET Core. It’s

designed to provide a common way to authenticate requests to all of

your applications, whether they’re web, native, mobile, or API

endpoints. IdentityServer can be used to implement Single Sign-On

(SSO) for multiple applications and application types. It can be

used to authenticate actual users via sign-in forms and similar

user interfaces as well as service-based authentication that

typically involves token issuance, verification, and renewal

without any user interface. IdentityServer is designed to be a

customizable solution. Each instance is typically customized to

suit an individual organization and/or set of applications’ needs.

Common web app scenarios

Typically, applications need to support some or all of the following

scenarios:

• Human users accessing web applications with a browser.

• Human users accessing back-end Web APIs from browser-based apps.

• Human users on mobile/native clients accessing back-end Web APIs.

• Other applications accessing back-end Web APIs (without an active

user or user interface).

• Any application may need to interact with other Web APIs, using

its own identity or delegating

to the user’s identity.

Figure 8-1. Application types and scenarios.

In each of these scenarios, the exposed functionality needs to be

secured against unauthorized use. At a minimum, this typically

requires authenticating the user or principal making a request for

a resource. This authentication may use one of several common

protocols such as SAML2p, WS-Fed, or OpenID Connect. Communicating

with APIs typically uses the OAuth2 protocol and its support for

security tokens. Separating these critical cross-cutting security

concerns and their implementation details from the applications

themselves ensures consistency and improves security and

maintainability.

Outsourcing these concerns to a dedicated product like

IdentityServer helps the requirement for every application to solve

these problems itself.

IdentityServer provides middleware that runs within an ASP.NET Core

application and adds support for OpenID Connect and OAuth2 (see

supported specifications). Organizations would create their own

ASP.NET Core app using IdentityServer middleware to act as the STS

for all of their token-based security protocols. The IdentityServer

middleware exposes endpoints to support standard functionality,

including:

• Authorize (authenticate the end user)

• Token (request a token programmatically)

• Discovery (metadata about the server)

• User Info (get user information with a valid access token)

• Device Authorization (used to start device flow authorization)

• Introspection (token validation)

• Revocation (token revocation)

• End Session (trigger single sign-out across all apps)

Getting started

IdentityServer4 is available under dual license:

• RPL - let’s you use the IdentityServer4 free if used in open

source work

• Paid - let’s you use the IdentityServer4 in a commercial scenario

Please reach out to official P ro duct’s pric ing page.

You can add it to your applications using its NuGet packages. The

main package is IdentityServer4 that has been downloaded over four

million times. The base package doesn’t include any user interface

code and only supports in memory configuration. To use it with a

database, you’ll also want a data provider like

IdentityServer4.EntityFramework that uses Entity Framework Core to

store configuration and operational data for IdentityServer. For

user interface, you can copy files from the Quickstart UI

repository into your ASP.NET Core MVC application to add support

for sign in and sign out using IdentityServer middleware.

Configuration

IdentityServer supports different kinds of protocols and social

authentication providers that can be configured as part of each

custom installation. This is typically done in the ASP.NET Core

application’s Startup class in the ConfigureServices method. The

configuration involves specifying the supported protocols and the

paths to the servers and endpoints that will be used. Figure 8-2

shows an example configuration taken from the IdentityServer4

https://docs.identityserver.io/en/latest/intro/specs.html
https://duendesoftware.com/products/identityserver
https://www.nuget.org/packages/IdentityServer4/
https://www.nuget.org/packages/IdentityServer4.EntityFramework
https://github.com/IdentityServer/IdentityServer4.Quickstart.UI
https://github.com/IdentityServer/IdentityServer4.Quickstart.UI
https://github.com/IdentityServer/IdentityServer4.Quickstart.UI

Quickstart UI project:

public class Startup
{

public void ConfigureServices(IServiceCollection services)
{

services.AddMvc();

Figure 8-2. Configuring IdentityServer.

IdentityServer also hosts a public demo site that can be used to

test various protocols and configurations. It’s located at

https://demo.identityserver.io/ and includes information on how to

configure its behavior based on the client_id provided to it.

JavaScript clients

Many cloud-native applications leverage server-side APIs and rich

client single page applications (SPAs) on the front end.

IdentityServer ships a JavaScript client (oidc-client.js) via NPM

that can be added to SPAs to enable them to use IdentityServer for

sign in, sign out, and token-based authentication of web APIs.

References

• IdentityServer documentation

• Application types

• JavaScript OIDC client

// some details
omitted
services.AddIdentityServer
();

services.AddAuthentication()

.AddGoogle("Google", options =>
{

options.SignInScheme =
IdentityServerConstants.ExternalCookieAuthenticationSche
me;

options.ClientId =

"<insert here>";
options.ClientSecret = "<insert
here>";

})
.AddOpenIdConnect("demoidsrv", "IdentityServer", options =>
{

options.SignInScheme =
IdentityServerConstants.ExternalCookieAuthenticationSche
me;

options.SignOutScheme =
IdentityServerConstants.SignoutScheme;

options.Authority =

"https://demo.identityserver.io/"; options.ClientId

https://demo.identityserver.io/
https://docs.identityserver.io/en/latest/quickstarts/4_javascript_client.html
https://docs.identityserver.io/en/latest/
https://docs.microsoft.com/azure/active-directory/develop/app-types
https://docs.identityserver.io/en/latest/quickstarts/4_javascript_client.html

CHAPTER 9

Cloud-native

security

Not a day goes by where the news doesn’t contain some story about a

company being hacked or somehow losing their customers’ data. Even

countries aren’t immune to the problems created by treating

security as an afterthought. For years, companies have treated the

security of customer data and, in fact, their entire networks as

something of a “nice to have”. Windows servers were left unpatched,

ancient versions of PHP kept running, and MongoDB databases left

wide open to the world.

However, there are starting to be real-world consequences for not

maintaining a security mindset when building and deploying

applications. Many companies learned the hard way what can happen

when servers and desktops aren’t patched during the 2017 outbreak

of NotPetya. The cost of these attacks has easily reached into the

billions, with some estimates putting the losses from this single

attack at 10 billion US dollars.

Even governments aren’t immune to hacking incidents. The city of Baltimore

was held ransom by

criminals making it impossible for citizens to pay their bills or use city

services.

There has also been an increase in legislation that mandates

certain data protections for personal data. In Europe, GDPR has

been in effect for more than a year and, more recently, California

passed their own version called CCDA, which comes into effect

January 1, 2020. The fines under GDPR can be so punishing as to put

companies out of business. Google has already been fined 50 million

Euros for violations, but that’s just a drop in the bucket compared

with the potential fines.

In short, security is serious business.

Azure security for cloud-native apps

Cloud-native applications can be both easier and more difficult to

secure than traditional applications. On the downside, you need to

secure more smaller applications and dedicate more energy to build

out the security infrastructure. The heterogeneous nature of

programming languages and styles in most service deployments also

means you need to pay more attention to security bulletins from

many different providers.

On the flip side, smaller services, each with their own data store,

limit the scope of an attack. If an attacker compromises one

system, it’s probably more difficult for the attacker to make the

jump to another system than it is in a monolithic application.

Process boundaries are strong boundaries. Also, if a database

backup gets exposed, then the damage is more limited, as that

database contains only a subset of data and is unlikely to contain

personal data.

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.vox.com/recode/2019/5/21/18634505/baltimore-ransom-robbinhood-mayor-jack-young-hackers

Threat modeling

No matter if the advantages outweigh the disadvantages of cloud-

native applications, the same holistic security mindset must be

followed. Security and secure thinking must be part of every step

of the development and operations story. When planning an

application ask questions like:

• What would be the impact of this data being lost?

• How can we limit the damage from bad data being injected into

this service?

• Who should have access to this data?

• Are there auditing policies in place around the development and

release process?

All these questions are part of a process called threat modeling.

This process tries to answer the question of what threats there are

to the system, how likely the threats are, and the potential damage

from them.

Once the list of threats has been established, you need to decide

whether they’re worth mitigating. Sometimes a threat is so

unlikely and expensive to plan for that it isn’t worth spending

energy on it. For instance, some state level actor could inject

changes into the design of a process that is used by millions of

devices. Now, instead of running a certain piece of code in Ring

3, that code is run in Ring

0. This process allows an exploit that can bypass the hypervisor

and run the attack code on the bare metal machines, allowing

attacks on all the virtual machines that are running on that

hardware.

The altered processors are difficult to detect without a microscope

and advanced knowledge of the on silicon design of that processor.

This scenario is unlikely to happen and expensive to mitigate, so

probably no threat model would recommend building exploit

protection for it.

More likely threats, such as broken access controls permitting Id

incrementing attacks (replacing Id=2 with Id=3 in the URL) or SQL

injection, are more attractive to build protections against. The

mitigations for these threats are quite reasonable to build and

prevent embarrassing security holes that smear

the company’s reputation.

Principle of least privilege

One of the founding ideas in computer security is the Principle of

Least Privilege (POLP). It’s actually a foundational idea in most

any form of security be it digital or physical. In short, the

principle is that any user or process should have the smallest

https://docs.microsoft.com/azure/security/azure-security-threat-modeling-tool
https://docs.microsoft.com/azure/security/azure-security-threat-modeling-tool
https://en.wikipedia.org/wiki/Protection_ring
https://en.wikipedia.org/wiki/Protection_ring
https://en.wikipedia.org/wiki/Protection_ring

number of rights possible to execute its task.

As an example, think of the tellers at a bank: accessing the safe

is an uncommon activity. So, the average teller can’t open the

safe themselves. To gain access, they need to escalate their

request through a bank manager, who performs additional security

checks.

In a computer system, a fantastic example is the rights of a user

connecting to a database. In many cases, there’s a single user

account used to both build the database structure and run the

application. Except in extreme cases, the account running the

application doesn’t need the ability to update schema information.

There should be several accounts that provide different levels of

privilege. The application should only use the permission level

that grants read and writes access to the data in the tables. This

kind of protection would eliminate attacks that aimed to drop

database tables or introduce malicious triggers.

Almost every part of building a cloud-native application can benefit

from remembering the principle of least privilege. You can find it

at play when setting up firewalls, network security groups, roles,

and scopes in Role-based access control (RBAC).

Penetration testing

As applications become more complicated the number of attack

vectors increases at an alarming rate. Threat modeling is flawed in

that it tends to be executed by the same people building the

system. In the same way that many developers have trouble

envisioning user interactions and then build unusable user

interfaces, most developers have difficulty seeing every attack

vector. It’s also possible that the developers building the system

aren’t well versed in attack methodologies and miss something

crucial.

Penetration testing or “pen testing” involves bringing in

external actors to attempt to attack the system. These attackers

may be an external consulting company or other developers with

good security knowledge from another part of the business. They’re

given carte blanche to attempt to subvert the system. Frequently,

they’ll find extensive security holes that need to be patched.

Sometimes the attack vector will be something totally unexpected

like exploiting a phishing attack against the CEO.

Azure itself is constantly undergoing attacks from a team of

hackers inside Microsoft. Over the years, they’ve been the first

to find dozens of potentially catastrophic attack vectors, closing

them before they can be exploited externally. The more tempting a

target, the more likely that eternal actors will attempt to

exploit it and there are a few targets in the world more tempting

than Azure.

Monitoring

Should an attacker attempt to penetrate an application, there

should be some warning of it. Frequently, attacks can be spotted

by examining the logs from services. Attacks leave telltale signs

that can be spotted before they succeed. For instance, an attacker

attempting to guess a password will make many requests to a login

system. Monitoring around the login system can detect weird

patterns that are out of line with the typical access pattern.

This monitoring can be turned into an alert that can, in turn,

alert an operations person to activate some sort of

countermeasure. A highly mature monitoring system might even take

action based on these deviations proactively adding rules to block

requests or throttle responses.

Securing the build

https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/

One place where security is often overlooked is around the build

process. Not only should the build run security checks, such as

scanning for insecure code or checked-in credentials, but the build

itself should be secure. If the build server is compromised, then

it provides a fantastic vector for introducing arbitrary code into

the product.

Imagine that an attacker is looking to steal the passwords of

people signing into a web application. They could introduce a build

step that modifies the checked-out code to mirror any login request

to another server. The next time code goes through the build, it’s

silently updated. The source code vulnerability scanning won’t

catch this vulnerability as it runs before the build. Equally,

nobody will

catch it in a code review because the build steps live on the build

server. The exploited code will go to production where it can

harvest passwords. Probably there’s no audit log of the build

process changes, or at least nobody monitoring the audit.

This scenario is a perfect example of a seemingly low-value target

that can be used to break into the system. Once an attacker

breaches the perimeter of the system, they can start working on

finding ways to elevate their permissions to the point that they

can cause real harm anywhere they like.

Building secure code

.NET Framework is already a quite secure framework. It avoids some

of the pitfalls of unmanaged code, such as walking off the ends of

arrays. Work is actively done to fix security holes as they’re

discovered. There’s even a bug bounty program that pays

researchers to find issues in the framework and report them

instead of exploiting them.

There are many ways to make .NET code more secure. Following

guidelines such as the Secure coding guidelines for .NET article

is a reasonable step to take to ensure that the code is secure from

the ground up. The OWASP top 10 is another invaluable guide to

build secure code.

The build process is a good place to put scanning tools to detect

problems in source code before they make it into production. Most

every project has dependencies on some other packages. A tool that

can scan for outdated packages will catch problems in a nightly

build. Even when building Docker images, it’s useful to check and

make sure that the base image doesn’t have known vulnerabilities.

Another thing to check is that nobody has accidentally checked in

credentials.

Built-in security

Azure is designed to balance usability and security for most

users. Different users are going to have different security

requirements, so they need to fine-tune their approach to cloud

security. Microsoft publishes a great deal of security information

in the Trust Center. This resource should be the first stop for

those professionals interested in understanding how the built-in

attack mitigation technologies work.

Within the Azure portal, the Azure Advisor is a system that is

constantly scanning an environment and making recommendations. Some

of these recommendations are designed to save users money, but

others are designed to identify potentially insecure

configurations, such as having a storage container open to the

world and not protected by a Virtual Network.

https://www.microsoft.com/msrc/bounty
https://docs.microsoft.com/dotnet/standard/security/secure-coding-guidelines
https://docs.microsoft.com/dotnet/standard/security/secure-coding-guidelines
https://docs.microsoft.com/dotnet/standard/security/secure-coding-guidelines
https://owasp.org/www-project-top-ten/
https://azure.microsoft.com/support/trust-center/
https://azure.microsoft.com/support/trust-center/
https://azure.microsoft.com/services/advisor/

Azure network infrastructure

In an on-premises deployment environment, a great deal of energy is

dedicated to setting up networking. Setting up routers, switches,

and the such is complicated work. Networks allow certain resources

to talk to other resources and prevent access in some cases. A

frequent network rule is to restrict access to the production

environment from the development environment on the off chance that

a half-developed piece of code runs awry and deletes a swath of

data.

Out of the box, most PaaS Azure resources have only the most basic

and permissive networking setup. For instance, anybody on the

Internet can access an app service. New SQL Server instances

typically

come restricted, so that external parties can’t access them, but

the IP address ranges used by Azure itself are permitted through.

So, while the SQL server is protected from external threats, an

attacker only needs to set up an Azure bridgehead from where they

can launch attacks against all SQL instances on Azure.

Fortunately, most Azure resources can be placed into an Azure

Virtual Network that allows fine- grained access control. Similar

to the way that on-premises networks establish private networks

that are protected from the wider world, virtual networks are

islands of private IP addresses that are located within the Azure

network.

Figure 9-1. A virtual network in Azure.

In the same way that on-premises networks have a firewall governing

access to the network, you can establish a similar firewall at the

boundary of the virtual network. By default, all the resources on a

virtual network can still talk to the Internet. It’s only incoming

connections that require some form of explicit firewall exception.

With the network established, internal resources like storage

accounts can be set up to only allow for access by resources that

are also on the Virtual Network. This firewall provides an extra

level of security, should the keys for that storage account be

leaked, attackers wouldn’t be able to connect to it to exploit the

leaked keys. This scenario is another example of the principle of

least privilege.

The nodes in an Azure Kubernetes cluster can participate in a

virtual network just like other resources that are more native to

Azure. This functionality is called Azure Container Networking

Interface. In effect, it allocates a subnet within the virtual

network on which virtual machines and container images are

allocated.

Continuing down the path of illustrating the principle of least

privilege, not every resource within a Virtual Network needs to

talk to every other resource. For instance, in an application that

provides a

https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md
https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md
https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md

web API over a storage account and a SQL database, it’s unlikely

that the database and the storage account need to talk to one

another. Any data sharing between them would go through the web

application. So, a network security group (NSG) could be used to

deny traffic between the two services.

A policy of denying communication between resources can be annoying

to implement, especially coming from a background of using Azure

without traffic restrictions. On some other clouds, the concept of

network security groups is much more prevalent. For instance, the

default policy on AWS is that resources can’t communicate among

themselves until enabled by rules in an NSG. While slower

to develop this, a more restrictive environment provides a more

secure default. Making use of proper DevOps practices, especially

using Azure Resource Manager or Terraform to manage permissions can

make controlling the rules easier.

Virtual Networks can also be useful when setting up communication

between on-premises and cloud resources. A virtual private network

can be used to seamlessly attach the two networks together. This

approach allows running a virtual network without any sort of

gateway for scenarios where all the users are on-site. There are a

number of technologies that can be used to establish this network.

The simplest is to use a site-to-site VPN that can be established

between many routers and Azure. Traffic is encrypted and tunneled

over the Internet at the same cost per byte as any other traffic.

For scenarios where more bandwidth or more security is desirable,

Azure offers a service called Express Route that uses a private

circuit between an on-premises network and Azure. It’s more costly

and difficult to establish but also more secure.

Role-based access control for restricting access

to Azure resources

RBAC is a system that provides an identity to applications running

in Azure. Applications can access resources using this identity

instead of or in addition to using keys or passwords.

Security Principals

The first component in RBAC is a security principal. A security

principal can be a user, group, service principal, or managed

identity.

https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%252fazure%252fvirtual-network%252ftoc.json&s2smulti
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%252fazure%252fvirtual-network%252ftoc.json&ExpressRoute
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%252fazure%252fvirtual-network%252ftoc.json&ExpressRoute
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%252fazure%252fvirtual-network%252ftoc.json&ExpressRoute

Figure 9-2. Different types of security principals.

• User - Any user who has an account in Azure Active Directory is a

user.

• Group - A collection of users from Azure Active Directory. As a

member of a group, a user takes on the roles of that group in

addition to their own.

• Service principal - A security identity under which services or

applications run.

• Managed identity - An Azure Active Directory identity managed

by Azure. Managed identities are typically used when

developing cloud applications that manage the credentials for

authenticating to Azure services.

The security principal can be applied to most any resource. This

aspect means that it’s possible to assign a security principal to a

container running within Azure Kubernetes, allowing it to access

secrets stored in Key Vault. An Azure Function could take on a

permission allowing it to talk to an Active Directory instance to

validate a JWT for a calling user. Once services are enabled with a

service principal, their permissions can be managed granularly

using roles and scopes.

Roles

A security principal can take on many roles or, using a more

sartorial analogy, wear many hats. Each role defines a series of

permissions such as “Read messages from Azure Service Bus

endpoint”. The effective permission set of a security principal is

the combination of all the permissions assigned to all the roles

that a security principal has. Azure has a large number of built-in

roles and users can define their own roles.

Figure 9-3. RBAC role definitions.

Built into Azure are also a number of high-level roles such as

Owner, Contributor, Reader, and User Account Administrator. With

the Owner role, a security principal can access all resources and

assign permissions to others. A contributor has the same level of

access to all resources but they can’t assign permissions. A Reader

can only view existing Azure resources and a User Account

Administrator can manage access to Azure resources.

More granular built-in roles such as DNS Zone Contributor have

rights limited to a single service. Security principals can take on

any number of roles.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#dns-zone-contributor

Scopes

Roles can be applied to a restricted set of resources within Azure.

For instance, applying scope to the previous example of reading

from a Service Bus queue, you can narrow the permission to a single

queue: “Read messages from Azure Service Bus endpoint

blah.servicebus.windows.net/queue1”

The scope can be as narrow as a single resource or it can be

applied to an entire resource group, subscription, or even

management group.

When testing if a security principal has certain permission, the

combination of role and scope are taken into account. This

combination provides a powerful authorization mechanism.

Deny

Previously, only “allow” rules were permitted for RBAC. This

behavior made some scopes complicated to build. For instance,

allowing a security principal access to all storage accounts except

one required granting explicit permission to a potentially endless

list of storage accounts. Every time a new storage account was

created, it would have to be added to this list of accounts. This

added management overhead that certainly wasn’t desirable.

Deny rules take precedence over allow rules. Now representing the

same “allow all but one” scope could be represented as two rules

“allow all” and “deny this one specific one”. Deny rules not only

ease management but allow for resources that are extra secure by

denying access to everybody.

Checking access

As you can imagine, having a large number of roles and scopes can

make figuring out the effective permission of a service principal

quite difficult. Piling deny rules on top of that, only serves to

increase the complexity. Fortunately, there’s a permissions

calculator that can show the effective permissions for any service

principal. It’s typically found under the IAM tab in the portal, as

shown in Figure 9-3.

https://docs.microsoft.com/azure/role-based-access-control/check-access
https://docs.microsoft.com/azure/role-based-access-control/check-access

Figure 9-4. Permission calculator for an app service.

Securing secrets

Passwords and certificates are a common attack vector for

attackers. Password-cracking hardware can do a brute-force attack

and try to guess billions of passwords per second. So it’s

important that the passwords that are used to access resources are

strong, with a large variety of characters. These passwords are

exactly the kind of passwords that are near impossible to remember.

Fortunately, the passwords in Azure don’t actually need to be known

by any human.

Many security experts suggest that using a password manager to keep

your own passwords is the best approach. While it centralizes your

passwords in one location, it also allows using highly complex

passwords and ensuring they’re unique for each account. The same

system exists within Azure: a central store for secrets.

Azure Key Vault

Azure Key Vault provides a centralized location to store passwords

for things such as databases, API keys, and certificates. Once a

secret is entered into the Vault, it’s never shown again and the

commands to extract and view it are purposefully complicated. The

information in the safe is protected using either software

encryption or FIPS 140-2 Level 2 validated Hardware Security

Modules.

Access to the key vault is provided through RBACs, meaning that not

just any user can access the information in the vault. Say a web

application wishes to access the database connection string stored

in Azure Key Vault. To gain access, applications need to run using

a service principal. Under this assumed role, they can read the

secrets from the safe. There are a number of different security

settings that can further limit the access that an application has

to the vault, so that it can’t update secrets but only read them.

Access to the key vault can be monitored to ensure that only the

expected applications are accessing the vault. The logs can be

integrated back into Azure Monitor, unlocking the ability to set up

alerts when unexpected conditions are encountered.

Kubernetes

Within Kubernetes, there’s a similar service for maintaining small

pieces of secret information. Kubernetes Secrets can be set via the

typical kubectl executable.

Creating a secret is as simple as finding the base64 version of the

values to be stored:

https://www.troyhunt.com/password-managers-dont-have-to-be-perfect-they-just-have-to-be-better-than-not-having-one/

Then adding it to a secrets file named secret.yml for example that

looks similar to the following example:

echo -n 'admin' |
base64 YWRtaW4=
echo -n '1f2d1e2e67df' |

base64 MWYyZDFlMmU2N2Rm

apiVersio

n: v1 kind:
Secret

Finally, this file can be loaded into Kubernetes by running the

following command:

These secrets can then be mounted into volumes or exposed to

container processes through environment variables. The Twelve-

factor app approach to building applications suggests using the

lowest common denominator to transmit settings to an application.

Environment variables are the lowest common denominator, because

they’re supported no matter the operating system or application.

An alternative to use the built-in Kubernetes secrets is to access

the secrets in Azure Key Vault from within Kubernetes. The simplest

way to do this is to assign an RBAC role to the container looking

to load secrets. The application can then use the Azure Key Vault

APIs to access the secrets. However, this approach requires

modifications to the code and doesn’t follow the pattern of using

environment variables. Instead, it’s possible to inject values into

a container. This approach is actually more secure than using the

Kubernetes secrets directly, as they can be accessed by users on

the cluster.

Encryption in transit and at rest

Keeping data safe is important whether it’s on disk or transiting

between various different services.

The most effective way to keep data from leaking is to encrypt it into

a format that can’t be easily read

by others. Azure supports a wide range of encryption options.

In transit

There are several ways to encrypt traffic on the network in Azure.

The access to Azure services is typically done over connections

that use Transport Layer Security (TLS). For instance, all the

connections to the Azure APIs require TLS connections. Equally,

connections to endpoints in Azure storage can be restricted to work

only over TLS encrypted connections.

TLS is a complicated protocol and simply knowing that the

connection is using TLS isn’t sufficient to ensure security. For

instance, TLS 1.0 is chronically insecure, and TLS 1.1 isn’t much

better. Even within the versions of TLS, there are various settings

that can make the connections easier to decrypt. The best course of

action is to check and see if the server connection is using up-to-

date and well configured protocols.

type:

Opaque
data:

kubectl apply -f ./secret.yaml

https://12factor.net/
https://12factor.net/

This check can be done by an external service such as SSL labs’ SSL

Server Test. A test run against a

typical Azure endpoint, in this case a service bus endpoint, yields a

near perfect score of A.

Even services like Azure SQL databases use TLS encryption to keep

data hidden. The interesting part about encrypting the data in

transit using TLS is that it isn’t possible, even for Microsoft, to

listen in on the connection between computers running TLS. This

should provide comfort for companies concerned that their data may

be at risk from Microsoft proper or even a state actor with more

resources than the standard attacker.

Figure 9-5. SSL labs report showing a score of A for a Service Bus endpoint.

While this level of encryption isn’t going to be sufficient for all

time, it should inspire confidence that Azure TLS connections are

quite secure. Azure will continue to evolve its security standards

as encryption improves. It’s nice to know that there’s somebody

watching the security standards and updating Azure as they improve.

At rest

In any application, there are a number of places where data rests

on the disk. The application code itself is loaded from some

storage mechanism. Most applications also use some kind of a

database such as SQL Server, Cosmos DB, or even the amazingly

price-efficient Table Storage. These databases all use heavily

encrypted storage to ensure that nobody other than the

applications with proper permissions can read your data. Even the

system operators can’t read data that has been encrypted. So

customers can remain confident their secret information remains

secret.

Storage

The underpinning of much of Azure is the Azure Storage engine.

Virtual machine disks are mounted on top of Azure Storage. Azure

Kubernetes Service runs on virtual machines that, themselves, are

hosted on Azure Storage. Even serverless technologies, such as

Azure Functions Apps and Azure Container Instances, run out of

disk that is part of Azure Storage.

If Azure Storage is well encrypted, then it provides for a

foundation for most everything else to also be encrypted. Azure

Storage is encrypted with FIPS 140-2 compliant 256-bit AES. This

is a well- regarded encryption technology having been the subject

https://docs.microsoft.com/azure/storage/common/storage-service-encryption
https://en.wikipedia.org/wiki/FIPS_140
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

of extensive academic scrutiny over the last 20 or so years. At

present, there’s no known practical attack that would allow

someone without knowledge of the key to read data encrypted by

AES.

By default, the keys used for encrypting Azure Storage are managed

by Microsoft. There are extensive protections in place to ensure to

prevent malicious access to these keys. However, users with

particular encryption requirements can also provide their own

storage keys that are managed in Azure

https://docs.microsoft.com/azure/storage/common/storage-encryption-keys-powershell
https://docs.microsoft.com/azure/storage/common/storage-encryption-keys-powershell

Key Vault. These keys can be revoked at any time, which would

effectively render the contents of the Storage account using them

inaccessible.

Virtual machines use encrypted storage, but it’s possible to

provide another layer of encryption by using technologies like

BitLocker on Windows or DM-Crypt on Linux. These technologies mean

that even if the disk image was leaked off of storage, it would

remain near impossible to read it.

Azure SQL

Databases hosted on Azure SQL use a technology called Transparent

Data Encryption (TDE) to ensure data remains encrypted. It’s

enabled by default on all newly created SQL databases, but must be

enabled manually for legacy databases. TDE executes real-time

encryption and decryption of not just the database, but also the

backups and transaction logs.

The encryption parameters are stored in the master database and, on

startup, are read into memory for the remaining operations. This

means that the master database must remain unencrypted. The actual

key is managed by Microsoft. However, users with exacting security

requirements may provide their own key in Key Vault in much the

same way as is done for Azure Storage. The Key Vault provides for

such services as key rotation and revocation.

The “Transparent” part of TDS comes from the fact that there aren’t

client changes needed to use an encrypted database. While this

approach provides for good security, leaking the database password

is enough for users to be able to decrypt the data. There’s another

approach that encrypts individual columns or tables in a database.

Always Encrypted ensures that at no point the encrypted data

appears in plain text inside the database.

Setting up this tier of encryption requires running through a

wizard in SQL Server Management Studio to select the sort of

encryption and where in Key Vault to store the associated keys.

https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption
https://docs.microsoft.com/azure/sql-database/sql-database-always-encrypted-azure-key-vault

Figure 9-6. Selecting columns in a table to be encrypted using Always

Encrypted.

Client applications that read information from these encrypted

columns need to make special allowances to read encrypted data.

Connection strings need to be updated with Column Encryption

Setting=Enabled and client credentials must be retrieved from the

Key Vault. The SQL Server client must then be primed with the

column encryption keys. Once that is done, the remaining actions

use the standard interfaces to SQL Client. That is, tools like

Dapper and Entity Framework, which are built on top of SQL Client,

will continue to work without changes. Always Encrypted may not

yet be available for every SQL Server driver on every language.

The combination of TDE and Always Encrypted, both of which can be

used with client-specific keys, ensures that even the most exacting

encryption requirements are supported.

Cosmos DB

Cosmos DB is the newest database provided by Microsoft in Azure. It

has been built from the ground up with security and cryptography in

mind. AES-256bit encryption is standard for all Cosmos DB

databases and can’t be disabled. Coupled with the TLS 1.2 requirement

for communication, the entire

storage solution is encrypted.

Figure 9-7. The flow of data encryption within Cosmos DB.

While Cosmos DB doesn’t provide for supplying customer encryption

keys, there has been significant work done by the team to ensure it

remains PCI-DSS compliant without that. Cosmos DB also doesn’t

support any sort of single column encryption similar to Azure SQL’s

Always Encrypted yet.

Keeping secure

Azure has all the tools necessary to release a highly secure

product. However, a chain is only as strong as its weakest link. If

the applications deployed on top of Azure aren’t developed with a

proper security mindset and good security audits, then they become

the weak link in the chain. There are many great static analysis

tools, encryption libraries, and security practices that can be

used to ensure that the software installed on Azure is as secure as

Azure itself. Examples include static analysis tools, encryption

libraries, and security practices.

https://www.whitesourcesoftware.com/
https://www.whitesourcesoftware.com/
https://www.libressl.org/
https://www.libressl.org/
https://www.libressl.org/
https://www.libressl.org/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/

CHAPTER 10

DevOps

The favorite mantra of software consultants is to answer “It

depends” to any question posed. It isn’t because software

consultants are fond of not taking a position. It’s because

there’s no one true answer to any questions in software. There’s

no absolute right and wrong, but rather a balance between

opposites.

Take, for instance, the two major schools of developing web

applications: Single Page Applications (SPAs) versus server-side

applications. On the one hand, the user experience tends to be

better with SPAs and the amount of traffic to the web server can

be minimized making it possible to host them on something as

simple as static hosting. On the other hand, SPAs tend to be

slower to develop and more difficult to test. Which one is the

right choice? Well, it depends on your situation.

Cloud-native applications aren’t immune to that same dichotomy.

They have clear advantages in terms of speed of development,

stability, and scalability, but managing them can be quite a bit

more difficult.

Years ago, it wasn’t uncommon for the process of moving an

application from development to production to take a month, or even

more. Companies released software on a 6-month or even every year

cadence. One needs to look no further than Microsoft Windows to get

an idea for the cadence of releases that were acceptable before the

ever-green days of Windows 10. Five years passed between Windows XP

and Vista, a further 3 between Vista and Windows 7.

It’s now fairly well established that being able to release

software rapidly gives fast-moving companies a huge market

advantage over their more sloth-like competitors. It’s for that

reason that major updates to Windows 10 are now approximately every

six months.

The patterns and practices that enable faster, more reliable

releases to deliver value to the business are collectively known

as DevOps. They consist of a wide range of ideas spanning the

entire software development life cycle from specifying an

application all the way up to delivering and operating that

application.

DevOps emerged before microservices and it’s likely that the movement

towards smaller, more fit to purpose services wouldn’t have been

possible without DevOps to make releasing and operating not just one

but many applications in production easier.

Figure 10-1 - DevOps and microservices.

Through good DevOps practices, it’s possible to realize the

advantages of cloud-native applications without suffocating under a

mountain of work actually operating the applications.

There’s no golden hammer when it comes to DevOps. Nobody can sell a

complete and all- encompassing solution for releasing and operating

high-quality applications. This is because each application is

wildly different from all others. However, there are tools that can

make DevOps a far less daunting proposition. One of these tools is

known as Azure DevOps.

Azure DevOps

Azure DevOps has a long pedigree. It can trace its roots back to

when Team Foundation Server first moved online and through the

various name changes: Visual Studio Online and Visual Studio Team

Services. Through the years, however, it has become far more than

its predecessors.

Azure DevOps is divided into five major components:

Figure 10-2 - Azure DevOps.

Azure Repos - Source code management that supports the venerable

Team Foundation Version Control (TFVC) and the industry favorite

Git. Pull requests provide a way to enable social coding by

fostering discussion of changes as they’re made.

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git

Azure Boards - Provides an issue and work item tracking tool that

strives to allow users to pick the workflows that work best for

them. It comes with a number of pre-configured templates including

ones to support SCRUM and Kanban styles of development.

Azure Pipelines - A build and release management system that

supports tight integration with Azure. Builds can be run on various

platforms from Windows to Linux to macOS. Build agents may be

provisioned in the cloud or on-premises.

Azure Test Plans - No QA person will be left behind with the test

management and exploratory testing support offered by the Test

Plans feature.

Azure Artifacts - An artifact feed that allows companies to create

their own, internal, versions of NuGet, npm, and others. It serves

a double purpose of acting as a cache of upstream packages if

there’s a failure of a centralized repository.

The top-level organizational unit in Azure DevOps is known as a

Project. Within each project the various components, such as Azure

Artifacts, can be turned on and off. Each of these components

provides different advantages for cloud-native applications. The

three most useful are repositories, boards, and pipelines. If

users want to manage their source code in another repository

stack, such as GitHub, but still take advantage of Azure Pipelines

and other components, that’s perfectly possible.

Fortunately, development teams have many options when selecting a

repository. One of them is GitHub.

GitHub Actions

Founded in 2009, GitHub is a widely popular web-based repository

for hosting projects, documentation, and code. Many large tech

companies, such as Apple, Amazon, Google, and mainstream

corporations use GitHub. GitHub uses the open-source, distributed

version control system named Git as its foundation. On top, it then

adds its own set of features, including defect tracking, feature

and pull requests, tasks management, and wikis for each code base.

As GitHub evolves, it too is adding DevOps features. For example,

GitHub has its own continuous integration/continuous delivery

(CI/CD) pipeline, called GitHub Actions. GitHub Actions is a

community-powered workflow automation tool. It lets DevOps teams

integrate with their existing tooling, mix and match new products,

and hook into their software lifecycle, including existing CI/CD

partners."

GitHub has over 40 million users, making it the largest host of

source code in the world. In October of 2018, Microsoft purchased

GitHub. Microsoft has pledged that GitHub will remain an open

https://techcrunch.com/2018/06/04/microsoft-promises-to-keep-github-independent-and-open/

platform that any developer can plug into and extend. It continues

to operate as an independent company.

GitHub offers plans for enterprise, team, professional, and free

accounts.

Source control

Organizing the code for a cloud-native application can be

challenging. Instead of a single giant application, the cloud-

native applications tend to be made up of a web of smaller

applications that talk with one another. As with all things in

computing, the best arrangement of code remains an open

https://techcrunch.com/2018/06/04/microsoft-promises-to-keep-github-independent-and-open/

question. There are examples of successful applications using

different kinds of layouts, but two variants seem to have the most

popularity.

Before getting down into the actual source control itself, it’s

probably worth deciding on how many projects are appropriate.

Within a single project, there’s support for multiple repositories,

and build pipelines. Boards are a little more complicated, but

there too, the tasks can easily be assigned to multiple teams

within a single project. It’s possible to support hundreds, even

thousands of developers, out of a single Azure DevOps project.

Doing so is likely the best approach as it provides a single place

for all developer to work out of and reduces the confusion of

finding that one application when developers are unsure in which

project in which it resides.

Splitting up code for microservices within the Azure DevOps project

can be slightly more challenging.

Figure 10-3 - One vs. many repositories.

Repository per microservice

At first glance, this approach seems like the most logical approach

to splitting up the source code for microservices. Each repository

can contain the code needed to build the one microservice. The

advantages to this approach are readily visible:

1. Instructions for building and maintaining the application can

be added to a README file at the root of each repository. When

flipping through the repositories, it’s easy to find these

instructions, reducing spin-up time for developers.

2. Every service is located in a logical place, easily found by

knowing the name of the service.

3. Builds can easily be set up such that they’re only triggered when

a change is made to the

owning repository.

4. The number of changes coming into a repository is limited to

the small number of developers working on the project.

5. Security is easy to set up by restricting the repositories to

which developers have read and write permissions.

6. Repository level settings can be changed by the owning team with

a minimum of discussion with others.

One of the key ideas behind microservices is that services should

be siloed and separated from each other. When using Domain Driven

Design to decide on the boundaries for services the services act as

transactional boundaries. Database updates shouldn’t span multiple

services. This collection of related data is referred to as a

bounded context. This idea is reflected by the isolation of

microservice data to a database separate and autonomous from the

rest of the services. It makes a great deal of sense to carry this

idea all the way through to the source code.

However, this approach isn’t without its issues. One of the more

gnarly development problems of our time is managing dependencies.

Consider the number of files that make up the average node_modules

directory. A fresh install of something like create-react-app is

likely to bring with it thousands of packages. The question of how

to manage these dependencies is a difficult one.

If a dependency is updated, then downstream packages must also

update this dependency. Unfortunately, that takes development work

so, invariably, the node_modules directory ends up with multiple

versions of a single package, each one a dependency of some other

package that is versioned at a slightly different cadence. When

deploying an application, which version of a dependency should be

used? The version that is currently in production? The version

that is currently in Beta but is likely to be in production by the

time the consumer makes it to production? Difficult problems that

aren’t resolved by just using microservices.

There are libraries that are depended upon by a wide variety of

projects. By dividing the microservices up with one in each

repository the internal dependencies can best be resolved by using

the internal repository, Azure Artifacts. Builds for libraries will

push their latest versions into Azure Artifacts for internal

consumption. The downstream project must still be manually updated

to take a dependency on the newly updated packages.

Another disadvantage presents itself when moving code between

services. Although it would be nice to believe that the first

division of an application into microservices is 100% correct, the

reality is that rarely we’re so prescient as to make no service

division mistakes. Thus, functionality and the code that drives it

will need to move from service to service: repository to

repository. When leaping from one repository to another, the code

loses its history. There are many cases, especially in the event of

an audit, where having full history on a piece of code is

invaluable.

The final and most important disadvantage is coordinating changes.

In a true microservices application, there should be no deployment

dependencies between services. It should be possible to deploy

services A, B, and C in any order as they have loose coupling. In

reality, however, there are times when it’s desirable to make a

change that crosses multiple repositories at the same time. Some

examples include updating a library to close a security hole or

changing a communication protocol used by all services.

To do a cross-repository change requires a commit to each

repository be made in succession. Each change in each repository

will need to be pull-requested and reviewed separately. This

activity can be difficult to coordinate.

An alternative to using many repositories is to put all the source

code together in a giant, all knowing, single repository.

Single repository

In this approach, sometimes referred to as a monorepository, all

the source code for every service is put into the same repository.

At first, this approach seems like a terrible idea likely to make

dealing with source code unwieldy. There are, however, some marked

advantages to working this way.

The first advantage is that it’s easier to manage dependencies

between projects. Instead of relying on some external artifact

feed, projects can directly import one another. This means that

updates are instant, and conflicting versions are likely to be

found at compile time on the developer’s workstation. In effect,

shifting some of the integration testing left.

When moving code between projects, it’s now easier to preserve the

history as the files will be

detected as having been moved rather than being rewritten.

Another advantage is that wide ranging changes that cross service

boundaries can be made in a single commit. This activity reduces

the overhead of having potentially dozens of changes to review

individually.

There are many tools that can perform static analysis of code to

detect insecure programming practices or problematic use of APIs.

In a multi-repository world, each repository will need to be

iterated over to find the problems in them. The single repository

allows running the analysis all in one place.

There are also many disadvantages to the single repository

approach. One of the most worrying ones is that having a single

repository raises security concerns. If the contents of a

repository are leaked in a repository per service model, the amount

of code lost is minimal. With a single repository, everything the

company owns could be lost. There have been many examples in the

past of this happening and derailing entire game development

efforts. Having multiple repositories exposes less surface area,

which is a desirable trait in most security practices.

The size of the single repository is likely to become unmanageable

rapidly. This presents some interesting performance implications.

It may become necessary to use specialized tools such as Virtual

File System for Git, which was originally designed to improve the

experience for developers on the Windows team.

Frequently the argument for using a single repository boils down to

an argument that Facebook or Google use this method for source code

arrangement. If the approach is good enough for these companies,

then, surely, it’s the correct approach for all companies. The

https://danluu.com/monorepo/
https://danluu.com/monorepo/
https://github.com/Microsoft/VFSForGit
https://github.com/Microsoft/VFSForGit
https://github.com/Microsoft/VFSForGit
https://github.com/Microsoft/VFSForGit
https://github.com/Microsoft/VFSForGit

truth of the matter is that few companies operate on anything like

the scale of Facebook or Google. The problems that occur at those

scales are different from those most developers will face. What is

good for the goose may not be good for the gander.

In the end, either solution can be used to host the source code for

microservices. However, in most cases, the management, and

engineering overhead of operating in a single repository isn’t

worth the meager advantages. Splitting code up over multiple

repositories encourages better separation of concerns and

encourages autonomy among development teams.

Standard directory structure

Regardless of the single versus multiple repositories debate each

service will have its own directory. One of the best optimizations

to allow developers to cross between projects quickly is to maintain

a standard directory structure.

Figure 10-4 - Standard directory structure.

Whenever a new project is created, a template that puts in place

the correct structure should be used. This template can also

include such useful items as a skeleton README file and an azure-

pipelines.yml. In any microservice architecture, a high degree of

variance between projects makes bulk operations against the

services more difficult.

There are many tools that can provide templating for an entire

directory, containing several source code directories. Yeoman is

popular in the JavaScript world and GitHub have recently released

Repository Templates, which provide much of the same functionality.

Task management

Managing tasks in any project can be difficult. Up front there are

countless questions to be answered about the sort of workflows to

set up to ensure optimal developer productivity.

Cloud-native applications tend to be smaller than traditional

software products or at least they’re divided into smaller

services. Tracking of issues or tasks related to these services

remains as important as with any other software project. Nobody

https://yeoman.io/
https://github.blog/2019-06-06-generate-new-repositories-with-repository-templates/
https://github.blog/2019-06-06-generate-new-repositories-with-repository-templates/
https://github.blog/2019-06-06-generate-new-repositories-with-repository-templates/
https://github.blog/2019-06-06-generate-new-repositories-with-repository-templates/

wants to lose track of some work item or explain to a customer that

their issue wasn’t properly logged. Boards are configured at the

project level but within each project, areas can be defined. These

allow breaking down issues across several components. The advantage

to keeping all the work for the entire application in one place is

that it’s easy to move work items from one team to another as

they’re understood better.

Azure DevOps comes with a number of popular templates pre-

configured. In the most basic configuration, all that is needed to

know is what’s in the backlog, what people are working on, and

what’s done. It’s important to have this visibility into the

process of building software, so that work can be prioritized and

completed tasks reported to the customer. Of course, few software

projects stick to a process as simple as to do, doing, and done. It

doesn’t take long for people to start adding steps like QA or

Detailed Specification to the process.

One of the more important parts of Agile methodologies is self-

introspection at regular intervals. These reviews are meant to

provide insight into what problems the team is facing and how they

can be improved. Frequently, this means changing the flow of

issues and features through the development process. So, it’s

perfectly healthy to expand the layouts of the boards with

additional stages.

The stages in the boards aren’t the only organizational tool.

Depending on the configuration of the board, there’s a hierarchy of

work items. The most granular item that can appear on a board is a

task. Out of the box a task contains fields for a title,

description, a priority, an estimate of the amount of work

remaining and the ability to link to other work items or

development items (branches, commits, pull requests, builds, and so

forth). Work items can be classified into different areas of the

application and different iterations (sprints) to make finding them

easier.

Figure 10-5 - Task in Azure DevOps.

The description field supports the normal styles you’d expect

(bold, italic underscore and strike through) and the ability to

insert images. This makes it a powerful tool for use when

specifying work or bugs.

Tasks can be rolled up into features, which define a larger unit of

work. Features, in turn, can be rolled up into epics. Classifying

tasks in this hierarchy makes it much easier to understand how close

a large feature is to rolling out.

https://docs.microsoft.com/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&preserve-view=true
https://docs.microsoft.com/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&preserve-view=true
https://docs.microsoft.com/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&preserve-view=true
https://docs.microsoft.com/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&preserve-view=true

Figure 10-6 - Work item in Azure DevOps.

There are different kinds of views into the issues in Azure Boards.

Items that aren’t yet scheduled appear in the backlog. From there,

they can be assigned to a sprint. A sprint is a time box during

which it’s expected some quantity of work will be completed. This

work can include tasks but also the resolution of tickets. Once

there, the entire sprint can be managed from the Sprint board

section. This view shows how work is progressing and includes a

burn down chart to give an ever-updating estimate of if the sprint

will be successful.

Figure 10-7 - Board in Azure DevOps.

By now, it should be apparent that there’s a great deal of power in

the Boards in Azure DevOps. For developers, there are easy views of

what is being worked on. For project managers views into upcoming

work as well as an overview of existing work. For managers, there

are plenty of reports about resourcing and capacity. Unfortunately,

there’s nothing magical about cloud-native applications that

eliminate the need to track work. But if you must track work, there

are a few places where the experience is better than in Azure

DevOps.

CI/CD pipelines

Almost no change in the software development life cycle has been so

revolutionary as the advent of continuous integration (CI) and

continuous delivery (CD). Building and running automated tests

against the source code of a project as soon as a change is checked

in catches mistakes early. Prior to the advent of continuous

integration builds, it wouldn’t be uncommon to pull code from the

repository and find that it didn’t pass tests or couldn’t even be

built. This resulted in tracking down

the source of the breakage.

Traditionally shipping software to the production environment

required extensive documentation and a list of steps. Each one of

these steps needed to be manually completed in a very error prone

process.

Figure 10-8 - Checklist.

The sister of continuous integration is continuous delivery in

which the freshly built packages are deployed to an environment.

The manual process can’t scale to match the speed of development so

automation becomes more important. Checklists are replaced by

scripts that can execute the same tasks faster and more accurately

than any human.

The environment to which continuous delivery delivers might be a

test environment or, as is being done by many major technology

companies, it could be the production environment. The latter

requires an investment in high-quality tests that can give

confidence that a change isn’t going to break production for

users. In the same way that continuous integration caught issues

in the code early continuous delivery catches issues in the

deployment process early.

The importance of automating the build and delivery process is

accentuated by cloud-native applications. Deployments happen more

frequently and to more environments so manually deploying borders

on impossible.

Azure Builds

Azure DevOps provides a set of tools to make continuous integration

and deployment easier than ever. These tools are located under

Azure Pipelines. The first of them is Azure Builds, which is a tool

for running YAML-based build definitions at scale. Users can either

bring their own build machines (great for if the build requires a

meticulously set up environment) or use a machine from a constantly

refreshed pool of Azure hosted virtual machines. These hosted build

agents come pre-installed with a

wide range of development tools for not just .NET development but

for everything from Java to Python to iPhone development.

DevOps includes a wide range of out of the box build definitions

that can be customized for any build. The build definitions are

defined in a file called azure-pipelines.yml and checked into the

repository so they can be versioned along with the source code.

This makes it much easier to make changes to the build

pipeline in a branch as the changes can be checked into just that

branch. An example azure-pipelines.yml for building an ASP.NET web

application on full framework is show in Figure 10-9.

name: $(rev:r)

variables:
version:

9.2.0.$(Build.BuildNumber)
solution: Portals.sln

artifactName: drop
buildPlatform: any cpu
buildConfiguration:
release

pool:

name: Hosted
VS2017 demands:

msbuild
visualstudio
vstest

steps:

task:
NuGetToolInstaller@0
displayName: 'Use NuGet
4.4.1' inputs:

versionSpec: 4.4.1

task: NuGetCommand@2
displayName: 'NuGet
restore' inputs:

restoreSolution: '$(solution)'

task: VSBuild@1
displayName: 'Build

solution' inputs:
solution: '$(solution)'

msbuildArgs: '-p:DeployOnBuild=true -
p:WebPublishMethod=Package - p:PackageAsSingleFile=true -
p:SkipInvalidConfigurations=true -
p:PackageLocation="$(build.artifactstagingdirectory)\\"'

platform: '$(buildPlatform)'
configuration:
'$(buildConfiguration)'

- task: VSTest@2

Figure 10-9 - A sample azure-pipelines.yml

This build definition uses a number of built-in tasks that make

creating builds as simple as building a Lego set (simpler than the

giant Millennium Falcon). For instance, the NuGet task restores

NuGet packages, while the VSBuild task calls the Visual Studio

build tools to perform the actual compilation. There are hundreds

of different tasks available in Azure DevOps, with thousands more

that are maintained by the community. It’s likely that no matter

what build tasks you’re looking to run, somebody has built one

already.

Builds can be triggered manually, by a check-in, on a schedule, or

by the completion of another build. In most cases, building on every

check-in is desirable. Builds can be filtered so that different

builds run against different parts of the repository or against

different branches. This allows for scenarios like running fast

builds with reduced testing on pull requests and running a full

regression suite against the trunk on a nightly basis.

The end result of a build is a collection of files known as build

artifacts. These artifacts can be passed along to the next step in

the build process or added to an Azure Artifacts feed, so they can

be consumed by other builds.

Azure DevOps releases

Builds take care of compiling the software into a shippable

package, but the artifacts still need to be pushed out to a testing

environment to complete continuous delivery. For this, Azure DevOps

uses a separate tool called Releases. The Releases tool makes use

of the same tasks’ library that were available to the Build but

introduce a concept of “stages”. A stage is an isolated environment

into which the package is installed. For instance, a product might

make use of a development, a QA, and a production environment. Code

is continuously delivered into the development environment where

automated tests can be run against it. Once those tests pass the

release moves onto the QA environment for manual testing. Finally,

the code is pushed to production where it’s visible to everybody.

displayName: 'Copy UI Test Files to:
$(build.artifactstagingdirectory)' inputs:

SourceFolder: UITests
TargetFolder: '$(build.artifactstagingdirectory)/uitests'

- task:

PublishBuildArtifacts@1
displayName: 'Publish
Artifact' inputs:

PathtoPublish:

Figure 10-10 - Release pipeline

Each stage in the build can be automatically triggered by the

completion of the previous phase. In

many cases, however, this isn’t desirable. Moving code into production

might require approval from

somebody. The Releases tool supports this by allowing approvers at

each step of the release pipeline. Rules can be set up such that a

specific person or group of people must sign off on a release before

it makes into production. These gates allow for manual quality checks

and also for compliance with any regulatory requirements related to

control what goes into production.

Everybody gets a build pipeline

There’s no cost to configuring many build pipelines, so it’s

advantageous to have at least one build pipeline per microservice.

Ideally, microservices are independently deployable to any

environment so having each one able to be released via its own

pipeline without releasing a mass of unrelated code is perfect.

Each pipeline can have its own set of approvals allowing for

variations in build process for each service.

Versioning releases

One drawback to using the Releases functionality is that it can’t

be defined in a checked-in azure- pipelines.yml file. There are

many reasons you might want to do that from having per-branch

release definitions to including a release skeleton in your

project template. Fortunately, work is ongoing to shift some of

the stages support into the Build component. This will be known as

multi- stage build and the first version is available now!

Feature flags

In chapter 1, we affirmed that cloud native is much about speed and

agility. Users expect rapid responsiveness, innovative features,

and zero downtime. Feature flags are a modern deployment technique

that helps increase agility for cloud-native applications. They

enable you to deploy new features into a production environment,

but restrict their availability. With the flick of a switch, you

can activate a new feature for specific users without restarting

the app or deploying new code. They separate the release of new

features from their code deployment.

Feature flags are built upon conditional logic that control

visibility of functionality for users at run time. In modern cloud-

native systems, it’s common to deploy new features into production

early, but test them with a limited audience. As confidence

increases, the feature can be incrementally rolled out to wider

audiences.

Other use cases for feature flags include:

https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/

• Restrict premium functionality to specific customer groups

willing to pay higher subscription fees.

• Stabilize a system by quickly deactivating a problem feature,

avoiding the risks of a rollback or immediate hotfix.

• Disable an optional feature with high resource consumption during

peak usage periods.

• Conduct experimental feature releases to small user segments

to validate feasibility and popularity.

Feature flags also promote trunk-based development. It’s a source-

control branching model where developers collaborate on features in

a single branch. The approach minimizes the risk and complexity of

merging large numbers of long-running feature branches. Features are

unavailable until activated.

Implementing feature flags

At its core, a feature flag is a reference to a simple decision

object. It returns a Boolean state of on or off. The flag typically

wraps a block of code that encapsulates a feature capability. The

state of the flag determines whether that code block executes for a

given user. Figure 10-11 shows the implementation.

Figure 10-11 - Simple feature flag implementation.

Note how this approach separates the decision logic from the feature

code.

In chapter 1, we discussed the Twelve-Factor App. The guidance

recommended keeping configuration settings external from

application executable code. When needed, settings can be read in

from the external source. Feature flag configuration values should

also be independent from their codebase. By externalizing flag

configuration in a separate repository, you can change flag state

without modifying and redeploying the application.

Azure App Configuration provides a centralized repository for

feature flags. With it, you define different kinds of feature

flags and manipulate their states quickly and confidently. You add

the App Configuration client libraries to your application to

enable feature flag functionality. Various programming language

frameworks are supported.

Feature flags can be easily implemented in an ASP.NET Core service.

Installing the .NET Feature Management libraries and App

Configuration provider enable you to declaratively add feature

flags to your code. They enable FeatureGate attributes so that you

don’t have to manually write if statements across your codebase.

Once configured in your Startup class, you can add feature flag

functionality at the controller, action, or middleware level.

Figure 10-12 presents controller and action implementation:

if (featureFlag) {
// Run this code block if the featureFlag value is true

} else {
// Run this code block if the featureFlag value is false

}

https://docs.microsoft.com/azure/azure-app-configuration/overview
https://docs.microsoft.com/azure/azure-app-configuration/use-feature-flags-dotnet-core
https://docs.microsoft.com/azure/azure-app-configuration/use-feature-flags-dotnet-core

Figure 10-12 - Feature flag implementation in a controller and action.

[FeatureGate(MyFeatureFlags.FeatureA)]
public class ProductController : Controller
{

...
}

[FeatureGate(MyFeatureFlags.FeatureA)]
public IActionResult UpdateProductStatus()
{
return ObjectResult(ProductDto);

}

If a feature flag is disabled, the user will receive a 404 (Not

Found) status code with no response body. Feature flags can also be

injected directly into C# classes. Figure 10-13 shows feature flag

injection:

Figure 10-13 - Feature flag injection into a class.

The Feature Management libraries manage the feature flag lifecycle

behind the scenes. For example, to minimize high numbers of calls

to the configuration store, the libraries cache flag states for a

specified duration. They can guarantee the immutability of flag

states during a request call. They also offer a Point-in-time

snapshot. You can reconstruct the history of any key-value and

provide its past value at any moment within the previous seven

days.

Infrastructure as code

Cloud-native systems embrace microservices, containers, and modern

system design to achieve speed and agility. They provide automated

build and release stages to ensure consistent and quality code.

But, that’s only part of the story. How do you provision the cloud

environments upon which these systems run?

Modern cloud-native applications embrace the widely accepted

practice of Infrastructure as Code, or IaC. With IaC, you automate

platform provisioning. You essentially apply software engineering

practices such as testing and versioning to your DevOps practices.

Your infrastructure and deployments are automated, consistent, and

repeatable. Just as continuous delivery automated the traditional

model of manual deployments, Infrastructure as Code (IaC) is

evolving how application environments are managed.

Tools like Azure Resource Manager (ARM), Terraform, and the Azure

Command Line Interface (CLI) enable you to declaratively script

the cloud infrastructure you require.

Azure Resource Manager templates

ARM stands for Azure Resource Manager. It’s an API provisioning

engine that is built into Azure and exposed as an API service. ARM

public class ProductController : Controller
{

private readonly IFeatureManager _featureManager;

public ProductController(IFeatureManager featureManager)
{

_featureManager = featureManager;
}

}

https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/azure/azure-resource-manager/management/overview

enables you to deploy, update, delete, and manage the resources

contained in Azure resource group in a single, coordinated

operation. You provide the engine with a JSON-based template that

specifies the resources you require and their configuration. ARM

automatically orchestrates the deployment in the correct order

respecting dependencies. The engine ensures idempotency. If a

desired resource already exists with the same configuration,

provisioning will be ignored.

Azure Resource Manager templates are a JSON-based language for

defining various resources in Azure. The basic schema looks

something like Figure 10-14.

Figure 10-14 - The schema for a Resource Manager template

Within this template, one might define a storage container inside the

resources section like so:

Figure 10-15 - An example of a storage account defined in a Resource Manager

template

An ARM template can be parameterized with dynamic environment and

configuration information. Doing so enables it to be reused to

define different environments, such as development, QA, or

production. Normally, the template creates all resources within a

single Azure resource group. It’s possible to define multiple

resource groups in a single Resource Manager template, if needed.

You can delete all resources in an environment by deleting the

resource group itself. Cost analysis can also be run at the

resource group level, allowing for quick accounting of how much

each environment is costing.

There are many examples of ARM templates available in the Azure

Quickstart Templates project on GitHub. They can help accelerate

creating a new template or modifying an existing one.

Resource Manager templates can be run in many of ways. Perhaps the

simplest way is to simply paste them into the Azure portal. For

experimental deployments, this method can be quick. They can also

be run as part of a build or release process in Azure DevOps. There

{
"$schema":

"https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",

"contentVersion
": "",
"apiProfile": "",

"parameters": { },
"variables": { },
"functions": [],
"resources": [],
"outputs": { }

}

"resources":
[

{
"type":

"Microsoft.Storage/storageAccounts",
"name":
"[variables('storageAccountName')]",
"location": "[parameters('location')]",
"apiVersion": "2018-07-01",

"sku": {
"name": "[parameters('storageAccountType')]"

},
"kind": "StorageV2",
"properties": {}

}
],

https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates

are tasks that will leverage connections into Azure to run the

templates. Changes to Resource Manager templates are applied

incrementally, meaning that to add a new resource requires just

adding it to the template. The tooling will reconcile differences

between the current resources and those defined in the template.

Resources will then be created or altered so they match what is

defined in the template.

Terraform

Cloud-native applications are often constructed to be cloud agnostic.

Being so means the

application isn’t tightly coupled to a particular cloud vendor and can

be deployed to any public cloud.

Terraform is a commercial templating tool that can provision cloud-

native applications across all the major cloud players: Azure,

Google Cloud Platform, AWS, and AliCloud. Instead of using JSON as

the template definition language, it uses the slightly more terse

HCL (Hashicorp Configuration Language).

An example Terraform file that does the same as the previous Resource

Manager template (Figure 10-

15) is shown in Figure 10-16:

Figure 10-16 - An example of a Resource Manager template

Terraform also provides intuitive error messages for problem

templates. There’s also a handy validate

task that can be used in the build phase to catch template errors

early.

As with Resource Manager templates, command-line tools are

available to deploy Terraform templates. There are also community-

created tasks in Azure Pipelines that can validate and apply

Terraform templates.

Sometimes Terraform and ARM templates output meaningful values,

such as a connection string to a newly created database. This

information can be captured in the build pipeline and used in

subsequent tasks.

Azure CLI Scripts and Tasks

Finally, you can leverage Azure CLI to declaratively script your

cloud infrastructure. Azure CLI scripts can be created, found, and

provider
"azurerm" {
version =
"=1.28.0"
}

resource "azurerm_resource_group"

"test" { name = "production"
location = "West US"

}

resource "azurerm_storage_account" "testsa" {
name = "${var.storageAccountName}" resource_group_name =

"${azurerm_resource_group.testrg.name}" location =
"${var.region}"

account_tier = "${var.tier}"
account_replication_type =
"${var.replicationType}"

}

https://www.terraform.io/
https://docs.microsoft.com/cli/azure/

shared to provision and configure almost any Azure resource. The

CLI is simple to use with a gentle learning curve. Scripts are

executed within either PowerShell or Bash.

They’re also straightforward to debug, especially when compared with

ARM templates.

Azure CLI scripts work well when you need to tear down and

redeploy your infrastructure. Updating an existing environment can

be tricky. Many CLI commands aren’t idempotent. That means they’ll

recreate the resource each time they’re run, even if the resource

already exists. It’s always possible to

add code that checks for the existence of each resource before

creating it. But, doing so, your script can become bloated and

difficult to manage.

These scripts can also be embedded in Azure DevOps pipelines as

Azure CLI tasks. Executing the pipeline invokes the script.

Figure 10-17 shows a YAML snippet that lists the version of Azure

CLI and the details of the subscription. Note how Azure CLI

commands are included in an inline script.

Figure 10-17 - Azure CLI script

In the article, What is Infrastructure as Code, Author Sam

Guckenheimer describes how, “Teams who implement IaC can deliver

stable environments rapidly and at scale. Teams avoid manual

configuration of environments and enforce consistency by

representing the desired state of their environments via code.

Infrastructure deployments with IaC are repeatable and prevent

runtime issues caused by configuration drift or missing

dependencies. DevOps teams can work together with a unified set of

practices and tools to deliver applications and their supporting

infrastructure rapidly, reliably, and at scale.”

Cloud Native Application Bundles

A key property of cloud-native applications is that they leverage

the capabilities of the cloud to speed up development. This design

often means that a full application uses different kinds of

technologies. Applications may be shipped in Docker containers,

some services may use Azure Functions, while other parts may run

directly on virtual machines allocated on large metal servers with

hardware GPU acceleration. No two cloud-native applications are the

same, so it’s been difficult to provide a single mechanism for

shipping them.

The Docker containers may run on Kubernetes using a Helm Chart for

deployment. The Azure Functions may be allocated using Terraform

templates. Finally, the virtual machines may be allocated using

Terraform but built out using Ansible. This is a large variety of

technologies and there has been no way to package them all together

into a reasonable package. Until now.

- task: AzureCLI@2
displayName: Azure
CLI inputs:

azureSubscription: <Name of the Azure Resource Manager service
connection> scriptType: ps

scriptLocation:
inlineScript
inlineScript: |

az --version
az account show

https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/devops/deliver/what-is-infrastructure-as-code

Cloud Native Application Bundles (CNABs) are a joint effort by

many community-minded companies such as Microsoft, Docker, and

HashiCorp to develop a specification to package distributed

applications.

The effort was announced in December of 2018, so there’s still a

fair bit of work to do to expose the effort to the greater

community. However, there’s already an open specification and a

reference implementation known as Duffle. This tool, which was

written in Go, is a joint effort between Docker and Microsoft.

https://github.com/deislabs/cnab-spec
https://duffle.sh/
https://duffle.sh/

The CNABs can contain different kinds of installation technologies.

This aspect allows things like Helm Charts, Terraform templates,

and Ansible Playbooks to coexist in the same package. Once built,

the packages are self-contained and portable; they can be installed

from a USB stick. The packages are cryptographically signed to

ensure they originate from the party they claim.

The core of a CNAB is a file called bundle.json. This file defines

the contents of the bundle, be they Terraform or images or

anything else. Figure 11-9 defines a CNAB that invokes some

Terraform.

Notice, however, that it actually defines an invocation image that

is used to invoke the Terraform. When packaged up, the Docker file

that is located in the cnab directory is built into a Docker image,

which will be included in the bundle. Having Terraform installed

inside a Docker container in the bundle means that users don’t need

to have Terraform installed on their machine to run the bundling.

Figure 10-18 - An example Terraform file

{
"name": "terraform",
"version": "0.1.0",
"schemaVersion":

"v1.0.0-WD", "parameters":
{

"backend": {
"type"

: "boolean",
"defaultValue":
false,
"destination": {

"env": "TF_VAR_backend"
}

}
},
"invocationImages": [

{
"imageType": "docker",
"image": "cnab/terraform:latest"
}

],
"crede

ntials": {
"tenant_id"
: {

"env": "TF_VAR_tenant_id"
},
"client_id": {

"env": "TF_VAR_client_id"
},
"client_secret": {

"env": "TF_VAR_client_secret"
},
"subscription_id": {

"env": "TF_VAR_subscription_id"
},
"ssh_authorized_key": {

"env": "TF_VAR_ssh_authorized_key"
}

},
"actions": {

"status": {
"modifies": true

}
}

}

The bundle.json also defines a set of parameters that are passed

down into the Terraform. Parameterization of the bundle allows for

installation in various different environments.

The CNAB format is also flexible, allowing it to be used against

any cloud. It can even be used against on-premises solutions such

as OpenStack.

DevOps Decisions

There are so many great tools in the DevOps space these days and

even more fantastic books and papers on how to succeed. A favorite

book to get started on the DevOps journey is The Phoenix Project,

which follows the transformation of a fictional company from NoOps

to DevOps. One thing is for certain: DevOps is no longer a “nice to

have” when deploying complex, Cloud Native Applications. It’s a

requirement and should be planned for and resourced at the start of

any project.

References

• Azure DevOps

• Azure Resource Manager

• Terraform

• Azure CLI

https://www.openstack.org/
https://www.openstack.org/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://azure.microsoft.com/services/devops/
https://docs.microsoft.com/azure/azure-resource-manager/management/overview
https://www.terraform.io/
https://docs.microsoft.com/cli/azure/

CHAPTER 11

Summary: Architecting

Cloud-native Apps

In summary, here are important conclusions from this guide:

• Cloud-native is about designing modern applications that

embrace rapid change, large scale, and resilience, in modern,

dynamic environments such as public, private, and hybrid

clouds.

• The Cloud Native Computing Foundation (CNCF) is an influential

open-source consortium of over 300 major corporations. It’s

responsible for driving the adoption of cloud-native computing

across technology and cloud stacks.

https://www.cncf.io/

• CNCF guidelines recommend that cloud-native applications

embrace six important pillars as shown in Figure 11-1:

Figure 11-1. Cloud-native foundational pillars

• These cloud-native pillars include:

– The cloud and its underlying service model

– Modern design principles

– Microservices

– Containerization and container orchestration

– Cloud-based backing services, such as databases and message brokers

– Automation, including Infrastructure as Code and code deployment

• Kubernetes is the hosting environment of choice for most

cloud-native applications. Smaller, simple services are

sometimes hosted in serverless platforms, such as Azure

Functions. Among many key automation features, both

environments provide automatic scaling to handle fluctuating

workload volumes.

• Service communication becomes a significant design decision

when constructing a cloud- native application. Applications

typically expose an API gateway to manage front-end client

communication. Then backend microservices strive to

communicate with each other implementing asynchronous

communication patterns, when possible.

• gRPC is a modern, high-performance framework that evolves the

age-old remote procedure call (RPC) protocol. Cloud-native

applications often embrace gRPC to streamline messaging between

back-end services. gRPC uses HTTP/2 for its transport protocol.

It can be up to 8x faster than JSON serialization with message

sizes 60-80% smaller. gRPC is open source and managed by the

Cloud Native Computing Foundation (CNCF).

• Distributed data is a model often implemented by cloud-native

applications. Applications segregate business functionality

into small, independent microservices. Each microservice

encapsulates its own dependencies, data, and state. The classic

shared database model evolves into one of many smaller

databases, each aligning with a microservice. When the smoke

clears, we emerge with a design that exposes a database-per-

microservice model.

• No-SQL databases refer to high-performance, non-relational

data stores. They excel in their ease-of-use, scalability,

resilience, and availability characteristics. High volume

services that require sub second response time favor NoSQL

datastores. The proliferation of NoSQL technologies for

distributed cloud-native systems can’t be overstated.

• NewSQL is an emerging database technology that combines the

distributed scalability of NoSQL and the ACID guarantees of a

relational database. NewSQL databases target business systems

that must process high-volumes of data, across distributed

environments, with full transactional/ACID compliance. The Cloud

Native Computing Foundation (CNCF) features several NewSQL

database projects.

• Resiliency is the ability of your system to react to failure and

still remain functional. Cloud-native systems embrace

distributed architecture where failure is inevitable.

Applications must be constructed to respond elegantly to failure

and quickly return to a fully functioning state.

• Service meshes are a configurable infrastructure layer with

built-in capabilities to handle service communication and other

cross-cutting challenges. They decouple cross-cutting

responsibilities from your business code. These responsibilities

move into a service proxy. Referred to as the Sidecar pattern,

the proxy is deployed into a separate process to provide

isolation from your business code.

• Observability is a key design consideration for cloud-native

applications. As services are distributed across a cluster of

nodes, centralized logging, monitoring, and alerts, become

mandatory. Azure Monitor is a collection of cloud-based tools

designed to provide visibility into the state of your system.

• Infrastructure as Code is a widely accepted practice that

automates platform provisioning. Your infrastructure and

deployments are automated, consistent, and repeatable. Tools

like Azure Resource Manager, Terraform, and the Azure CLI,

enable you to declaratively script the cloud infrastructure you

require.

• Code automation is a requirement for cloud-native

applications. Modern CI/CD systems help fulfill this

principle. They provide separate build and deployment steps

that help ensure consistent and quality code. The build stage

transforms the code into a binary artifact. The release stage

picks up the binary artifact, applies external environment

configuration, and deploys it to a specified environment.

Azure DevOps and GitHub are full-featured DevOps environments.

