Microsoft Azure/ DuploCloud Quick Start

Quick Start

Get up and running with DuploCloud running inside a Microsoft Azure cloud environment; harness the power of generating application infrastructures.

This Quick Start tutorial shows you how to set up an end-to-end cloud deployment. You will create Azure infrastructure and tenants and by the end of this tutorial, you can view a deployed sample web application.

Estimated time to complete tutorial: 90-100 minutes.

- 1. Create Azure Infrastructure
- 2. Create a Tenant
- 3. Create an Azure Agent Pool
- 4. Create and deploy a sample app service
- 5. Create a Load Balancer to access the web application deployed
- 6. Test the sample application

Step 1: Create Infrastructure and Plan

Creating the DuploCloud Infrastructure and a Plan

Each DuploCloud Infrastructure is a Virtual Private Cloud (VPC) instance that resides in a region containing Kubernetes clusters, AKS clusters, GKE clusters, EKS clusters, or a combination of all of these. An Infrastructure can reside On-Premises (On-Prem) or in a Public Cloud.

After you supply a few basic inputs DuploCloud creates an Infrastructure for you, within Azure and within DuploCloud, with a few clicks. Behind the scenes, DuploCloud does a lot with what little you supply — generating subnets, NAT gateway, routes, and a cluster in the region.

With the Infrastructure as your foundation, you can customize an extensible, versatile Platform Engineering development environment by adding Tenants, Plans, Hosts, Services, and more.

Estimated time to complete Step 1: 40 minutes. Much of this time is consumed by DuploCloud's creation of the Infrastructure and enabling your AKS cluster with Kubernetes.

Prerequisites

Before starting this tutorial:

- Learn more about DuploCloud Infrastructures, Plans, and Tenants.
- Reference the Access Control documentation to create User IDs with the Administrator role. In order to perform the tasks in this tutorial, you must have Administrator privileges.

Creating a DuploCloud Infrastructure

- 1. In the DuploCloud Portal, navigate to Administrator -> Infrastructure.
- 2. Click Add. The Add Infrastructure page displays.

Infrastructure Admin > Infrastructure > A	dd Infrastructure	
Name	Subscription	VNET CIDR
nonprod 🗸	Azure: 143ffc59-9394-4ec6-8f5a-c408a238be62 × ×	10.23.0.0/16
Cloud	Region	Subnet Name
Azure × •	West US × •	default
	Security Group Rules	Subnet CIDR
	[{"Name":"ssh", "Priority":"101", "SrcAddressPrefix":"*",	10.23.0.0/20
	"DstAddressPrefix":"**, "SourcePortRange":"*", "DestinationPortRange":"22", "Protocol":"tcp",	Туре
	"Direction":"Inbound"}]	None × •
		Log Analytics Workspace
		No × •
Cancel		

Add Infrastructure page for creating a DuploCloud Infrastructure

- 3. From the table below, enter the values that correspond to the fields on the **Add Infrastructure** page. Accept all other default values for fields not specified.
- 4. Click Create to create the Infrastructure. It may take up to half an hour to create the Infrastructure. While the Infrastructure is being created, a Pending status displays in the Infrastructure page Status column, often with additional information about what part of the Infrastructure DuploCloud is currently creating. When creation completes, a status of Complete displays.

Add Infrastructure page field	Value
Name	nonprod
Subscription	YOUR_AZURE_SUBSCRIPTION_NAME
VNET CIDR	10.23.0.0/16
Subnet CIDR	10.23.0.0/20
Cloud	Azure
Region	YOUR_GEOGRAPHIC_REGION

Infrastructure Admin > Infrastructure										
Total 1 Show 25 v nonprod										
NAME	¢ CLOUD	÷	REGION	\$	VNET	\$	STATUS			
NONPROD	Azure		West US		10.23.0.0/16		Complete			
1 total										

Infrastructure creation with a status of Complete

Verifying that a Plan exists for your infrastructure

Every DuploCloud Infrastructure generates a Plan. Plans are sets of templates that are used to configure the Tenants, or workspaces, in your Infrastructure. You will set up Tenants in the next tutorial step.

Before proceeding, confirm that a Plan exists that corresponds to your newly created Infrastructure.

- 1. In the DuploCloud Portal, navigate to Administrator -> Plans. The Plans page displays.
- 2. Verify that a Plan exists with the name **NONPROD**, the name that you gave to the Infrastructure you created.

Enabling the AKS Kubernetes Cluster

Once your Infrastructure and Plan have been created, the final step before creating a Tenant is to enable Azure Kubernetes Service (AKS) to connect with Azure cloud management.

- 1. In the DuploCloud Portal, navigate to Administrator -> Infrastructure.
- 2. Select the **NONPROD** Infrastructure that you created, in the **NAME** column of the Infrastructure page.
- 3. Click the Kubernetes tab. The following message displays: Kubernetes cluster is not yet enabled. Click Here to enable the Kubernetes Cluster.
- 4. Click on the Click Here hyperlink. The Configure AKS Cluster pane displays.
- 5. Accept the default values and click **Create** to enable the AKS service for your Infrastructure.

DuploCloud begins creating and configuring an AKS cluster using Kubernetes. You receive an alert message when the Infrastructure has been updated.

It may take some time for enablement to complete. Use the Kubernetes card in the Infrastructure screen to monitor the status, which should display as Enabled when completed. You can also monitor progress by using the Kubernetes tab, as DuploCloud generates your Cluster Name, Default VM Size, Server Endpoint, and Token.

Check your work

You previously verified that your Infrastructure and Plan were created. Now verify that AKS is Enabled before proceeding to Create a Tenant.

When AKS has been **Enabled**, details are listed in the **Kubernetes** tab. The Infrastructure page also displays the **Enabled** status on the **Kubernetes** card.

💎 Subnets	Security Group Rules	Settings	& Kubernetes	Ö Log An					
KEY		VALUE							
Cluster Name		nonprod							
Default VM Size	à	Standard_B2s							
Server Endpoin	t	https://nonprod-efc3131c.hcp.uswest.azmk8s.io							
Token		56d884a39180ee0b2	2797c9a22a60a4cccdc5f5	c0df6771ddb49					

Kubernetes tab in the Infrastructure page with details about your configured AKS cluster

Infrastructu	re Admir	n → Infra	structure > non	prod									
NONPR	OD									🍳 Actions 🗸	~	Status Complete	0
Complete						Clo	ud: Azur	re Region:	East US V	NET: 10.23.0.0/16	*	Subnets 1	0
💎 Subnets	Security Group	Rules	O Settings	🔘 Kube	rnetes	C Log Analytics WS		O Vault Config	Metadata		۲	Kubernetes Enabled	O
Total 1 Show	25 v Search									+ Add			
NAME	\$	ID		¢	ADDRES	SPREFIX	÷	SUBNETTYPE	\$	ACTIONS			
duploinfra-default					10.23.0.0/2	0				:			
1 total													

NONPROD Infrastructure page with Kubernetes Enabled card

Step 2: Create a Tenant

Creating a DuploCloud Tenant that segregates your workloads

Now that the Infrastructure and Plan exist and AKS has been enabled, create one or more Tenants that use the configuration DuploCloud created.

Tenants in DuploCloud are similar to projects or workspaces and have a subordinate relationship to the Infrastructure. Think of the Infrastructure as a virtual "house" (cloud), with Tenants conceptually "residing" in the Infrastructure performing specific workloads that you define. As Infrastructure is an abstraction of a Virtual Private Cloud, Tenants abstract the segregation created by a Kubernetes Namespace, although Kubernetes Namespaces are only one component that Tenants can contain.

In Azure, Microsoft cloud features such as Azure resource groups, Azure managed identity, Azure application security groups (ASG), and KMS keys are exposed in Tenants, which reference these feature configurations.

Estimated time to complete Step 2: 10 minutes.

Tenant use cases

DuploCloud customers often create at least two Tenants for their production and non-production cloud environments (Infrastructures).

For example:

- Production Infrastructure
 - Pre-production Tenant for preparing or reviewing production code
 - Production Tenant for deploying tested code
- Non-production Infrastructure
 - Development Tenant for writing and reviewing code
 - Quality Assurance Tenant for automated testing

In larger organizations, some customers create Tenants based on application environments, such as creating one Tenant for Data Science applications and another Tenant for web applications, and so on.

Tenants are sometimes created to isolate a single customer workload, allowing more granular performance monitoring, scaling flexibility, or tighter security. This is referred to as a *single-Tenant* setup.

Prerequisites

Before creating a Tenant, verify that you accomplished the tasks in Step 1 of this tutorial. Using the DuploCloud Portal, confirm that:

- An Infrastructure and Plan exist, both with the name NONPROD.
- The NONPROD infrastructure has Azure Kubernetes Service (AKS) Enabled.

Creating a Tenant

Create a Tenant for your Infrastructure and Plan:

- 1. In the DuploCloud Portal, navigate to Administrator --> Tenants.
- 2. Click Add. The Create a Tenant pane displays.
- 3. Enter dev01 in the Name field.
- 4. Select the Plan that you created in the previous step (NONPROD).
- 5. Click Create.

Create a Tenant	×
Name dev01	~
Plan nonprod	× ¥
Cancel	

Create a Tenant pane

Check your work

Navigate to Administrator -> Tenants and verify that the DEV01 Tenant displays in the list.

Tenant: DEV01 V	Switch to Old UI	Administrator	
Tenants 🔒 Admin > Tenants			
Total 6 Show 25 > Search			+ Add
NAME	ID \$	PLAN \$	ACTIONS
PVC01	218535d1-48d6-42f3-9ac2-2a249fc6cd79	pvctest	2 :
DUPLO	50d1897a-33ad-46f3-853a-2398c5940aed	pvctest	C7 :
ТКВУ-01	e7f39845-c69d-452f-9887-93af03c7c92c	k8version	C" :
QAAUTO-07	cafa97ba-246f-4b60-8686-67c9ac708ffd	sanqa1001	2 :
BG-TST-AZURE	2f104765-8584-4882-817d-b8e50b6370fb	sanqa1001	♂ :
DEV01	c6bd1313-68db-4251-853d-31b01eb54e8a	nonprod	C" :
6 total			

Tenant page with Tenant dev01 using Plan NONPROD

Navigate to **Administrator** -> **Infrastructure** and select **DEV01** from the **Tenant** list box at the top left in the DuploCloud Portal. The **NONPROD** Infrastructure appears in the list of Infrastructures, indicating that the **DEV01** Tenant is associated with Infrastructure **NONPROD**.

Tenant: DEV01 V		Switch	to Old UI		Administrator
Infrastructure Admin > Infrastructure					
Total 4 Show 25 v Search					+ Add
NAME	CLOUD 0	REGION	VNET	C STATUS	© ACTIONS
PVCTEST	Azure	South India	10.111.0.0/16	Complete	:
SANQA1001	Azure	West US 3	10.120.0.0/16	Complete	:
KBVERSION	Azure	West US 2	10.121.0.0/16	Complete	I
NONPROD	Azure	East US	10.23.0.0/16	Complete	:
4 total					

Tenant list box with DEV01 selected; NONPROD Infrastructure with Status Complete

Step 3: Create Agent Pools

Creating Azure Agent Pools as shared resources across Tenants

So far you have created an Infrastructure, a Plan, and a Tenant. Now you need to create Agent Pools to serve computing and storage resources to your Tenants, using agents that monitor resource allocation.

Instead of managing each agent individually, agents are grouped into agent pools for maximum efficiency. You share Azure Agent Pools across workloads defined by the Tenants that you set up. Azure Agent Pools are scoped to a Host (Virtual Machine or VM) or a group of Hosts by Azure Pipeline Agents. In this tutorial, you won't be creating specific Hosts, but you will create an Azure Agent Pool to which a group of VMs has already been defined by DuploCloud.

DuploCloud ensures that your application development platform conforms to Azure best practices. While you provide only high-level specifications, DuploCloud does the rest, configuring encryption, linking to managed identity, and logging you into a virtual Linux workstation to access Kubernetes constructs like Pods, Namespaces, and ConfigMaps.

Estimated time to complete Step 3: 10 minutes.

Prerequisites

Before creating Azure Agent Pools, verify that you accomplished the tasks in Step 2 of this tutorial. In DuploCloud Portal, in the **Administrator** navigation group, confirm that you have:

- An Infrastructure named NONPROD.
- A Plan named NONPROD.
- A Tenant named **DEV01**
- Selected Tenant DEV01 in the Tenant list box, at the top of the DuploCloud Portal.

Tenant list box with Tenant DEV01 selected

Create an Azure Agent Pool

- 1. In the DuploCloud Portal, navigate to **DevOps** -> **Hosts**.
- 2. Click the Azure Agent Pool tab.
- 3. Click Add. The Azure Agent Pool page displays.
- 4. From the table below, enter the values corresponding to the fields and options on the **Azure Agent Pool** page. Accept the defaults for fields that are not listed.
- 5. Click Add. After a few minutes, the Azure Agent Pool is created.

Azure Agent Pool page fields and options	Value or action
ld	1
Instance Type	(4 CPU 16GB)

Add Azure Agent Pool								
Id	Instance Type							
1 × •	(4 CPU 16GB) × 🗸							
Min Capacity	Max Capacity	Desired Capacity						
1	1	1						
Allocation Tag								
Enter Allocation Tag								
Enable Autoscaling								
Cancel								
Add Azure Agent Pool page								

Check your work

On the **Azure Agent Pool** page, verify that the created agent pool (with a **Name** generated by DuploCloud) has a **Status** of **Succeeded**.

Tenant: DEV01		~		Switch to Old UI								() Bob	
Azure Agent	Pool 🔒 🔿 🗅)evOps >	Hosts > Az	ure Agent	Pool								
Host	VM Scale Set	Azure	Agent Pool	🐦 BYC	н								
Total 1 Show	25 v Search												+ Add
NAME	CAPACITY	÷	DESIRED	÷	AUTO SCALING	÷	MIN	Ŷ	MAX	÷	STATUS	÷	ACTIONS
DLDEV011	Standard_D4s_v	/3	1		true		1		1		Succeeded		· :
1 total													

Successfully creted Azure Agent Pool

Step 4: Create a Service

Create a DuploCloud Service for application deployment

With all of the core components of your Duplocloud platform configured, enabled, and running, you're ready to deploy applications with Azure, using AKG and Kubernetes.

In order to deploy applications, you must first create a DuploCloud Service to connect to the Docker containers and images where your application code exists. Once you create a service from the DuploCloud Portal, you can also perform tasks that you might perform when working with a Kubernetes service. For example, you can view container logs, container state, and container shell, as well as get access to kubect1, which allows you to work directly with Kubernetes constructs such as Pods.

In this step, we create a service to connect a Docker container image with code that displays text on a web page. The Docker container and image name is **nginx:latest**. **nginx** is the image name and **:latest** indicates that the latest version of that image will be used.

Estimated time to complete Step 4: 15 minutes.

i) See the Docker documentation for an overview of containers and images.

Prerequisites

Before creating your DuploCloud Service, ensure that:

- All previous steps in this tutorial to create an Infrastructure and Plan, Tenant, Host, and Azure Agent Pool are complete.
- The AKS Kubernetes cluster is enabled.
- Tenant **DEV01** is selected in the **Tenant** list box, at the top of the DuploCloud Portal.

Creating a Service

- 1. In the DuploCloud Portal, navigate to **DevOps** -> **Containers** -> **AKS/Native**.
- 2. Click Add. The Add Service page displays.

dd Service					Import Kubernetes Deploymen
Basic Options 2 Minimal Inputs to start service 2	dvanced Options fore options to configu				
Service Name 🕦		Cloud		Platform	
nginx-service	~	Azure	× •	K8S Linux	×v
Docker Image		Allocation Tag 🕕		Replication Strategy ()	
nginx:1.13	✓	Allocation Tag	✓	Static Count	× *
Environment Variables 🕕				Replicas	
1				1	✓
← Previous					Next →

Add Service page to add nginx-service

- 3. In the Service Name field, enter nginx-service.
- 4. Specify the Docker image that you use to run the application. In the Docker Image field, enter **nginx:latest**.
- 5. Click Next, accepting all other defaults. The Advanced Options page displays.
- 6. Scroll down if needed and click Create.

Check your work

After a few minutes, the Service initializes and starts up. Shortly afterward, you can see the service and the containers running.

Tenant: DEV01	~			h to Old Ul			O Administra	ator	
Services 🔒	> DevOps > Conta	ainers > AKS/N	ative > Services						
Services	👉 Containers	K8S Secrets	🏠 K8S Config Maps	K8S Ingress	K8S Storage				
Total 1 Show 25 v Search & Kube Config + Add :									id :
NAME		≎ IMAG	E	ŝ	DNS	\$	REPLICAS 0	RUNNING 🗘	ACTIONS
nginx-service		nginx:l	atest ြ		nginx-service-dev01	.azure-qa.duplocloud.net ြ	1	1/1	Ľ :
1 total									

nginx-service page with service RUNNING (1/1)

Step 5: Create a Load Balancer

Create a load balancer to access your application

Now that your service is running, you have a mechanism to expose the containers and images in which your application resides.

But because your containers are running inside a private network, you also need a load balancer to listen on the correct ports in order to access the application.

In this step, we add a Load Balancer Listener to complete this network configuration.

Estimated time to complete Step 5: 20 minutes.

Prerequisites

Before creating your DuploCloud load balancer, ensure that:

- All previous steps in this tutorial to create an Infrastructure and Plan, Tenant, Azure Agent Pool, and Service are complete.
- AKS Kubernetes cluster is enabled.
- **DEV01** is selected in the **Tenant** list box, at the top of the DuploCloud Portal.

Adding and configuring a load balancer

Add a load balancer for your running service that listens on port 80:

- 1. In the DuploCloud Portal, navigate to **DevOps** -> **Containers** -> **AKS** / **Native**.
- 2. In the **Services** tab, select the **nginx-service** that you started when creating a service in the previous step.
- 3. Click the Load Balancers tab.
- 4. Click the Configure Load Balancer link. The Add Load Balancer Listener pane displays.
- 5. Select K8S Node Port from the Select Type list box.
- 6. Enter 80 in the Container port field.
- 7. Enter 30008 in the External port field.
- 8. Type *I* (forward-slash) in the **Health Check** field to indicate that the cluster we want Kubernetes to perform Health Checks on is located at the root level.
- 9. Select TCP from the Backend Protocol list box.

Add Load Balancer Listener	×
Select Type 🕕	
K8S Node Port	× •
Container port ()	
80	~
External port 🕕	
30008	~
Health Check 🕦	
	~
Backend Protocol 🕕	
ТСР	× ¥
Advanced Kubernetes settings	
Additional health check configs	
Cancel	

Add Load Balancer Listener pane using K8S Node Port

10. Click **Add**. The Load Balancer is created and started. After a few minutes, the **LB Status** card displays a status of **Ready**, indicating that the Load Balancer is ready for use.

Tenant: DEV01	~			Switch	to Old UI			() Bob
Services 🔒 🔿	DevOps > Containe	rs > AKS / Native	> Services > ngi	inx-service				
n nginx-serv	ice_{Löad Balancers}						🍳 Actions 🗸	■ Running 1/1
Image: nginx:latest		ured for this service			KubeCtl v	Replicas: 1	Status: Running	LB Status Ready
	() Load Balancers	Configuratio	n ()					DNS 0 n/a
LB Configurat Visibility: N/A - No C Type: K8S Node Por	ion Cloud LB t	R /A	Certificate					 LB Visibility External
DNS Name:								Operating System ^③ Linux
LB Listeners							+Add	Container Platform [®] AKS Linux
HOSTNAME	O PROTOCOL O	EXT PORT 0	HOST PORT 0	CONTAINER PORT	IS NATIVE \$	HEALTH 0	# 0	
	tcp	30008	30007	80	No	/	20:	
1 total		·						

nginx-service Load Balancers tab with LB Status Ready

Enable the Ingress Controller

When we created the Load Balancer Listener, we used the **K8S Node Port** type. Even though the Node Port is ready, before you use it, you must enable the Kubernetes Ingress Controller to open the application gateway.

- 1. In the DuploCloud Portal, navigate to Administrator -> Infrastructure.
- 2. Select your Infrastructure from the Name column.
- 3. Click the **Settings** tab.
- 4. Click Add. The Infra-Set Custom Data pane displays.
- 5. In the Setting Name field, select Enable App Gateway Ingress Controller.
- 6. Click Enable.
- 7. Click Set. In the Settings tab, the Enable App Gateway Ingress Controller setting now contains a value of true.

Tenant: DEV01 V	Switch to Old UI	Administrator
Infrastructure Admin > Infrastructure > n	onprod	
NONPROD	🔍 Actions 🗸	Status O Complete
Complete	Cloud: Azure Region: East US VNET: 10.23.0.0/16	Subnets 0
😵 Subnets 💡 Security Group Rules 🔇 Settings	C Kubernetes C Log Analytics WS Vault Config Metadata	Kubernetes 0 Enabled
Total 1 Show 25 V Search	+ Add	
NAME [‡] VALUE	ACTIONS	
Enable App Gateway Ingress Controller true	:	
1 total		

NONPROD Infrastructure page with Enable App Gateway Ingress Controller set to true

Add Kubernetes Ingress

Now that your gateway is established and opened, you add a Kubernetes Ingress to expose the backend HTTP routes from outside the cluster to your service.

The Ingress object communicates with the Kubernetes NodePort that your Load Balancer Listener uses. Ingress objects are flexible constructs in Kubernetes, and their use here is an example of how DuploCloud leverages the power of Kubernetes constructs while abstracting away their native complexity. To manually create these components (and maintain them) in Kubernetes, takes a significant amount of developer time.

- 1. In the DuploCloud Portal, navigate to DevOps -> Containers -> AKS / Native.
- 2. Click the K8S Ingress tab.
- 3. Click Add. The Add Kubernetes Ingress page displays.
- 4. In the Ingress Name field, type viewwebsite.
- 5. In the Ingress Controller list box, select azure-application-gateway.
- 6. In the Visibility list box, select Public.
- 7. Click Add Rule. The Add Ingress Rule pane displays.

iress Nairie U	Ingress Controller 🕢	
viewwebsite 🗸	azure-application-gateway × v	
ibility ()	Certificate ARN ()	Port Override 🚯
Public × ¥	Certificate ARN 🗸	Port Override
rress Rules Add Rule		
PATH 🗘 PATH TYPE 🗘 HOST	SERVICE C ACTIONS C	
No data to display		
notations 🕕	Labels	
	1	

Add Rule option on the Add Kubernetes Ingress page

- 8. In the **Path** field, type *I* (forward-slash).
- 9. In the Service Name field, select nginx-service:80.
- 10. Click **Add Rule** to add the rule and to close the **Add Ingress Rule** pane. You should be back to viewing the **Add Kubernetes Ingress** page.

Add Ingress Rule	×
Path 🕕	
1	×
Path Type 🕕	
Prefix	× *
Host 🕕	
Host	
Service Name 🕕	
nginx-service:80	× ¥
Container port ()	

80		
Cancel	Add Rule	

Add Ingress Rule pane

11. On the Add Kubernetes Ingress page, click Add to add Ingress. On the K8S Ingress tab, the VIEWWEBSITE Ingress that you defined, with an Ingress Class of azure-application-gateway, displays.

т	enant: DEV	וכ	~			Swite	h to Old UI	•	Bob Administrator
Ingi	ress 🔒	> DevOps > Cor	ntainers > AKS / Nat	ive > Ingress					
- dr	Services	👉 Containers	K8S Secrets	🍖 K8S Config Maps	к	(8S Ingress	K8S Storage		
Tot	al 1 Shov	v 25 V Searc	h						+ Add
NAM	ЧE				÷	INGRESSCLA	SS	÷	ACTIONS
VIEV	VWEBSITE					azure-applicatio	on-gateway		2 :
1 to	tal								

Check your work

Before you proceed to the final step and run your application, ensure that you:

- Configured a Load Balancer Listener that uses K8S Node Port.
- Enabled the App Gateway Ingress Controller.
- Defined an Ingress and a rule for your DuploCloud Service to listen on port 80.

Step 6: Test your application

Test the application to ensure you get the results you expect

You can test the sample web page application directly from the **VIEWWEBSITE** Ingress that you created in the previous step.

Estimated time to complete Step 6 and finish tutorial: 10 minutes.

Prerequisites

Before testing your application, ensure that:

- Previous steps in this tutorial to create an Infrastructure and Plan, Tenant, Azure Agent Pool, Service, and Load Balancer Listener are complete.
- AKS Kubernetes cluster is enabled.
- Tenant **DEV01** is selected in the **Tenant** list box, at the top of the DuploCloud Portal.
- nginx-service is Running and the LB Status is Ready.
- You defined an Ingress and a rule for your DuploCloud Service to listen on port 80, enabled the App Gateway Ingress Controller, and configured a Load Balancer Listener that uses K8S Node Port.

Testing the application

Display the web page that the application creates:

- 1. In the DuploCloud Portal, navigate to **DevOps** -> **Containers** -> **AKS** / **Native**.
- 2. Click the K8S Ingress tab.
- 3. Select the VIEWWEBSITE Ingress from the Name column.
- 4. Click the **Configuration** tab.

Tenant: DEV01	~	Switch to Old UI	(Bob Administrator
Ingress A > DevOps	> Containers > AKS/Nativ	e > Ingress > viewwebsite		
			🍳 Actions 🗸	Visibility (1) Internet Facing
Ingress Class: azure-applicatio	n-gateway			
Configuration Ingress	Rules			
Application Gateway IP 20.84.11.154		O Certifcate Name	O	
Port 80 G		0		

- 5. In the **Application Gateway IP** card, copy the displayed IP address to your clipboard. In this example, the IP address is **20.84.11.154**.
- 6. Open a web browser and paste the copied IP address in your browser's URL field.
- 7. Press **Enter**. Your application runs and your web page renders as shown below. Congratulations! You just launched your first web service with Azure on DuploCloud!

Reviewing what you learned

In this tutorial, your objective was to create a cloud environment to deploy an application for testing purposes, and to understand how the various components of DuploCloud work together.

The application rendered a simple web page with text, coded in JavaScript, from software application code residing in a Docker container. You can use this same procedure to deploy much more complex cloud applications.

In the previous steps, you:

- Created a DuploCloud Infrastructure named **NONPROD**, a Virtual Private Cloud instance, backed by an AKS-enabled Kubernetes cluster.
- Created a Tenant named DEV01 in Infrastructure NONPROD. While generating the Infrastructure, DuploCloud created a set of templates (Plan) to configure multiple Azure and Kubernetes components needed for your environment.
- Created an Azure Agent Pool backed by pre-existing hosts (VMs), so that your application has storage resources with which to run.
- Created a Service to connect the Docker containers and associated images, in which your application code resides, to the DuploCloud Tenant environment.
- Created a Load Balancer Listener and a Kubernetes Node Port to expose your application via ports and backend network configurations. You enabled an Azure application gateway and created a Kubernetes Ingress to communicate with the node port and the AKS-enabled Kubernetes cluster in the Infrastructure.
- Verified that your web page rendered as expected by testing the IP address exposed by the Kubernetes Ingress.

Cleaning up your tutorial environment

In this tutorial, you created many artifacts for testing purposes. When you are ready, clean them up so that another person can run this tutorial from the start, using the same names for Infrastructure and Tenant.

- 1. To delete the **DEV01** tenant follow these instructions and then return to this page. As you learned, the Tenant segregates all work in one isolated environment, so deleting the Tenant that you created cleans up most of your artifacts.

) for the NONPROD row and select Delete.

The NONPROD Infrastructure is deleted and you have completed the clean-up of your test environment.

Thanks for completing this tutorial and proceed to the next section to learn more about using DuploCloud with Microsoft Azure.